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 Preface
Objectives
A primary objective in a first course in mechanics is to help develop a 

student’s ability first to analyze problems in a simple and logical manner, 

and then to apply basic principles to their solutions. A strong conceptual 

understanding of these basic mechanics principles is essential for success-

fully solving mechanics problems. We hope this text will help instructors 

achieve these goals.

General Approach
Vector algebra was introduced at the beginning of the first volume and is 

used in the presentation of the basic principles of statics, as well as in the 

solution of many problems, particularly three-dimensional problems. Simi-

larly, the concept of vector differentiation will be introduced early in this 

volume, and vector analysis will be used throughout the presentation of 

dynamics. This approach leads to more concise derivations of the fundamen-

tal principles of mechanics. It also makes it possible to analyze many prob-

lems in kinematics and kinetics which could not be solved by scalar methods. 

The emphasis in this text, however, remains on the correct understanding of 

the principles of mechanics and on their application to the solution of engi-

neering problems, and vector analysis is presented chiefly as a convenient 

tool.†

Practical Applications Are Introduced Early. One of the 

characteristics of the approach used in this book is that mechanics of 

particles is clearly separated from the mechanics of rigid bodies. This 

approach makes it possible to consider simple practical applications at an 

early stage and to postpone the introduction of the more difficult concepts. 

For example:

• In Statics, the statics of particles is treated first, and the principle of 

equilibrium of a particle was immediately applied to practical situa-

tions involving only concurrent forces. The statics of rigid bodies is 

considered later, at which time the vector and scalar products of two 

vectors were introduced and used to define the moment of a force 

about a point and about an axis.

• In Dynamics, the same division is observed. The basic concepts of 

force, mass, and acceleration, of work and energy, and of impulse 

and momentum are introduced and first applied to problems involv-

ing only particles. Thus, students can familiarize themselves with 

the three basic methods used in dynamics and learn their respective 

advantages before facing the difficulties associated with the motion of 

rigid bodies.

†In a parallel text, Mechanics for Engineers, fifth edition, the use of vector algebra is limited 

to the addition and subtraction of vectors, and vector differentiation is omitted.

2.2  ADDING FORCES BY 
COMPONENTS

In Sec. 2.1E, we described how to resolve a force into components. Here we 

discuss how to add forces by using their components, especially rectangular 

components. This method is often the most convenient way to add forces 

and, in practice, is the most common approach. (Note that we can readily 

extend the properties of vectors established in this section to the rectangular 

components of any vector quantity, such as velocity or momentum.)

2.2A  Rectangular Components of a 
Force: Unit Vectors

In many problems, it is useful to resolve a force into two components that 

are perpendicular to each other. Figure 2.14 shows a force F resolved into 

a component Fx along the x axis and a component Fy along the y axis. 

The parallelogram drawn to obtain the two components is a rectangle, and 

Fx and Fy are called rectangular components.

The x and y axes are usually chosen to be horizontal and vertical, 

respectively, as in Fig. 2.14; they may, however, be chosen in any two 

perpendicular directions, as shown in Fig. 2.15. In determining the 

O

F
Fy

Fx
x

y

�

Fig. 2.14 Rectangular components of a 
force F.

Fy
Fx

F
x

y

O

�

Fig. 2.15 Rectangular components of a force F 
for axes rotated away from horizontal and vertical.
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xii Preface

New Concepts Are Introduced in Simple Terms. Since this 

text is designed for the first course in dynamics, new concepts are pre-

sented in simple terms and every step is explained in detail. On the other 

hand, by discussing the broader aspects of the problems considered, and 

by stressing methods of general applicability, a definite maturity of 

approach has been achieved. For example, the concept of potential energy 

is discussed in the general case of a conservative force. Also, the study of 

the plane motion of rigid bodies is designed to lead naturally to the study 

of their general motion in space. This is true in kinematics as well as in 

kinetics, where the principle of equivalence of external and effective forces 

is applied directly to the analysis of plane motion, thus facilitating the 

transition to the study of three-dimensional motion.

Fundamental Principles Are Placed in the Context of 
Simple Applications. The fact that mechanics is essentially a deduc-
tive science based on a few fundamental principles is stressed. Derivations 

have been presented in their logical sequence and with all the rigor war-

ranted at this level. However, the learning process being largely inductive, 
simple applications are considered first. For example:

• The statics of particles precedes the statics of rigid bodies, and prob-

lems involving internal forces are postponed until Chap. 6.

• In Chap. 4, equilibrium problems involving only coplanar forces 

are considered first and solved by ordinary algebra, while problems 

involving three-dimensional forces and requiring the full use of vector 

algebra are discussed in the second part of the chapter.

• The kinematics of particles (Chap. 11) precedes the kinematics of 

rigid bodies (Chap. 15).

• The fundamental principles of the kinetics of rigid bodies are first 

applied to the solution of two-dimensional problems (Chaps. 16 

and 17), which can be more easily visualized by the student, while 

three-dimensional problems are postponed until Chap. 18.

The Presentation of the Principles of Kinetics Is Unified. 
The eleventh edition of Vector Mechanics for Engineers retains the unified 

presentation of the principles of kinetics which characterized the previous 

ten editions. The concepts of linear and angular momentum are introduced 

in Chap. 12 so that Newton’s second law of motion can be presented not 

only in its conventional form F 5 ma, but also as a law relating, respec-

tively, the sum of the forces acting on a particle and the sum of their 

moments to the rates of change of the linear and angular momentum of 

the particle. This makes possible an earlier introduction of the principle 

of conservation of angular momentum and a more meaningful discussion 

of the motion of a particle under a central force (Sec. 12.3A). More 

importantly, this approach can be readily extended to the study of the 

motion of a system of particles (Chap. 14) and leads to a more concise 

and unified treatment of the kinetics of rigid bodies in two and three 

dimensions (Chaps. 16 through 18).

Systematic Problem-Solving Approach. New to this edition of 

the text, all the sample problems are solved using the steps of Strategy, 

Modeling, Analysis, and Reflect & Think, or the “SMART” approach. 

17.1  ENERGY METHODS FOR A 
RIGID BODY

We now use the principle of work and energy to analyze the plane motion 

of rigid bodies. As we pointed out in Chap. 13, the method of work and 

energy is particularly well adapted to solving problems involving veloci-

ties and displacements. Its main advantage is that the work of forces and 

the kinetic energy of particles are scalar quantities.

17.1A Principle of Work and Energy
To apply the principle of work and energy to the motion of a rigid body, 

we again assume that the rigid body is made up of a large number n of 

particles of mass Dmi. From Eq. (14.30) of Sec. 14.2B, we have

Principle of work 
and energy, rigid body

T1 1 U1y2 5 T2 (17.1)

where T1, T2 5  the initial and final values of total kinetic energy of 

particles forming the rigid body

U1y2 5 work of all forces acting on various particles of the body 

Just as we did in Chap. 13, we can express the work done by nonconser-

vative forces as U 
NC
1y2, and we can define potential energy terms for con-

servative forces. Then we can express Eq. (17.1) as

 T1 1 Vg1
1 Ve1

1 U 
NC
1y2 5 T2 1 Vg2

1 Ve2
 (17.19)

where Vg1
 and Vg2

 are the initial and final gravitational potential energy of 

the center of mass of the rigid body with respect to a reference point or 

datum, and Ve1
 and Ve2

 are the initial and final values of the elastic energy 

associated with springs in the system. 

We obtain the total kinetic energy

 T 5
1

2
 On

i51

Dmi v
2
i  (17.2)

by adding positive scalar quantities, so it is itself a positive scalar quantity. 

You will see later how to determine T for various types of motion of a 

rigid body.

The expression U1y2 in Eq. (17.1) represents the work of all the 

forces acting on the various particles of the body whether these forces are 

internal or external. However, the total work of the internal forces holding 

together the particles of a rigid body is zero. To see this, consider two 

particles A and B of a rigid body and the two equal and opposite forces F
 and –F they exert on each other (Fig. 17.1). Although, in general, small 

displacements dr and dr9 of the two particles are different, the components 

of these displacements along AB must be equal; otherwise, the particles 

would not remain at the same distance from each other and the body 

would not be rigid. Therefore, the work of F is equal in magnitude and 

T1TT 1 U1y2 5 T2TT
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xiiiPreface

This methodology is intended to give students confidence when approaching 

new problems, and students are encouraged to apply this approach in the 

solution of all assigned problems.

Free-Body Diagrams Are Used Both to Solve Equilibrium 
Problems and to Express the Equivalence of Force 
Systems. Free-body diagrams were introduced early in statics, and their 

importance was emphasized throughout. They were used not only to solve 

equilibrium problems but also to express the equivalence of two  systems 

of forces or, more generally, of two systems of vectors. In dynamics we 

will introduce a kinetic diagram, which is a pictorial representation of 

inertia terms. The advantage of this approach becomes apparent in the 

study of the dynamics of rigid bodies, where it is used to solve three-

dimensional as well as two-dimensional problems. By placing the empha-

sis on the free-body diagram and kinetic diagram, rather than on the 

standard algebraic equations of motion, a more intuitive and more com-

plete understanding of the fundamental principles of dynamics can be 

achieved. This approach, which was first introduced in 1962 in the first 

edition of Vector Mechanics for Engineers, has now gained wide accep-

tance among mechanics teachers in this country. It is, therefore, used in 

preference to the method of dynamic equilibrium and to the equations 

of motion in the solution of all sample problems in this book.

A Careful Balance between SI and U.S. Customary Units 
Is Consistently Maintained. Because of the current trend in the 

American government and industry to adopt the international system of 

units (SI metric units), the SI units most frequently used in mechanics are 

introduced in Chap. 1 and are used throughout the text. Approximately half 

of the sample problems and 60 percent of the homework problems are 

stated in these units, while the remainder are in U.S. customary units. The 

authors believe that this approach will best serve the need of the students, 

who, as engineers, will have to be conversant with both systems of units.

 It also should be recognized that using both SI and U.S. customary 

units entails more than the use of conversion factors. Since the SI system 

of units is an absolute system based on the units of time, length, and mass, 

whereas the U.S. customary system is a gravitational system based on the 

units of time, length, and force, different approaches are required for the 

solution of many problems. For example, when SI units are used, a body 

is generally specified by its mass expressed in kilograms; in most prob-

lems of statics it will be necessary to determine the weight of the body 

in newtons, and an additional calculation will be required for this purpose. 

On the other hand, when U.S. customary units are used, a body is speci-

fied by its weight in pounds and, in dynamics problems, an additional 

calculation will be required to determine its mass in slugs (or lb?s2/ft). 

The authors, therefore, believe that problem assignments should include 

both systems of units.

 The Instructor’s and Solutions Manual provides six different lists of 

assignments so that an equal number of problems stated in SI units and 

in U.S. customary units can be selected. If so desired, two complete lists 

of assignments can also be selected with up to 75 percent of the problems 

stated in SI units.

Sample Problem 3.10

Three cables are attached to a bracket as shown. Replace the forces 

exerted by the cables with an equivalent force-couple system at A.

STRATEGY: First determine the relative position vectors drawn from 

point A to the points of application of the various forces and resolve the 

forces into rectangular components. Then sum the forces and moments.

MODELING and ANALYSIS: Note that FB 5 (700 N)lBE where

lBE 5
BE
�

BE
5

75i 2 150j 1 50k

175

Using meters and newtons, the position and force vectors are

 rB/A 5 AB
�

5 0.075i 1 0.050k     FB 5 300i 2 600j 1 200k

 rC/A 5 AC
�

5 0.075i 2 0.050k     FC 5 707i  2 707k

 rD/A 5 AD
�

5 0.100i 2 0.100j     FD 5 600i 1 1039j

 The force-couple system at A equivalent to the given forces con-

sists of a force R 5 oF and a couple MR
A 5 o(r 3 F). Obtain the 

force R by adding respectively the x, y, and z components of the forces:

 R 5 oF 5 (1607 N)i 1 (439 N)j 2 (507 N)k b

(continued)

50 mm

50 mm

100 mm

100 mm

75 mm 1000 N

1200 N
700 N

x

y

z

O

A
B

C

D

45º

45º

30º

60º

E(150 mm, –50 mm, 100 mm)
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 Remark: Since all the forces are contained in the plane of the figure, 

you would expect the sum of their moments to be perpendicular to that 

plane. Note that you could obtain the moment of each force component 

directly from the diagram by first forming the product of its magnitude 

and perpendicular distance to O and then assigning to this product a posi-

tive or a negative sign, depending upon the sense of the moment.

b. Single Tugboat. The force exerted by a single tugboat must be equal 

to R, and its point of application A must be such that the moment of R
about O is equal to MR

O (Fig. 3). Observing that the position vector of A is

r 5 xi 1 70j

you have

r 3 R 5 MR
O

(xi 1 70j) 3 (9.04i 2 9.79j) 5 21035k

2x(9.79)k 2 633k 5 21035k  x 5 41.1 ft b

REFLECT and THINK: Reducing the given situation to that of a single 

force makes it easier to visualize the overall effect of the tugboats in 

maneuvering the ocean liner. But in practical terms, having four boats 

applying force allows for greater control in slowing and turning a large 

ship in a crowded harbor.

Fig. 3 Point of application of 
single tugboat to create same 
effect as given force system.

70 ft

x

9.04 i

– 9.79 jR

A

O
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Optional Sections Offer Advanced or Specialty Topics. 
A large number of optional sections have been included. These sections 

are indicated by asterisks and thus are easily distinguished from those 

which form the core of the basic dynamics course. They can be omitted 

without prejudice to the understanding of the rest of the text.

 The topics covered in the optional sections in statics include the 

reduction of a system of forces of a wrench, applications to hydrostatics, 

equilibrium of cables, products of inertia and Mohr’s circle, the determina-

tion of the principal axes and the mass moments of inertia of a body of 

arbitrary shape, and the method of virtual work. The sections on the inertia 

properties of three-dimensional bodies are primarily intended for students 

who will later study in dynamics the three-dimensional motion of rigid 

bodies.

 The topics covered in the optional sections in dynamics include 

graphical methods for the solution of rectilinear-motion problems, the 

 trajectory of a particle under a central force, the deflection of fluid streams, 

problems involving jet and rocket propulsion, the kinematics and kinetics 

of rigid bodies in three dimensions, damped mechanical vibrations, and 

electrical analogues. These topics will be found of particular interest when 

dynamics is taught in the junior year.

 The material presented in the text and most of the problems require 

no previous mathematical knowledge beyond algebra, trigonometry, elemen-

tary calculus, and the elements of vector algebra presented in Chaps. 2 

and 3 of the volume on statics. However, special problems are included, 

which make use of a more advanced knowledge of calculus, and certain 

sections, such as Secs. 19.5A and 19.5B on damped vibrations, should be 

assigned only if students possess the proper mathematical background. In 

portions of the text using elementary calculus, a greater emphasis is placed 

on the correct understanding and application of the concepts of differentia-

tion and integration, than on the nimble manipulation of mathematical for-

mulas. In this connection, it should be mentioned that the determination of 

the centroids of composite areas precedes the calculation of centroids by 

integration, thus making it possible to establish the concept of moment of 

area firmly before introducing the use of integration.

xiv Preface
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xv

Guided Tour
Chapter Introduction. Each chapter begins with a list of learning 

objectives and an outline that previews chapter topics. An introductory 

section describes the material to be covered in simple terms, and how it 

will be applied to the solution of engineering problems. 

Chapter Lessons. The body of the text is divided into sections, each 

consisting of one or more sub-sections, several sample problems, and a 

large number of end-of-section problems for students to solve. Each section 

corresponds to a well-defined topic and generally can be covered in one 

lesson. In a number of cases, however, the instructor will find it desirable 

to devote more than one lesson to a given topic. The Instructor’s and Solu-
tions Manual contains suggestions on the coverage of each lesson.

Sample Problems. The Sample Problems are set up in much the same 

form that students will use when solving assigned problems, and they 

employ the SMART problem-solving methodology that students are encour-

aged to use in the solution of their assigned problems. They thus serve the 

double purpose of reinforcing the text and demonstrating the type of neat 

and orderly work that students should cultivate in their own solutions. In 

addition, in-problem references and captions have been added to the sample 

problem figures for contextual linkage to the step-by-step solution.

Concept Applications. Concept Applications are used within 

selected theory sections in the Statics volume to amplify certain topics, 

and they are designed to reinforce the specific material being presented 

and facilitate its understanding.

Solving Problems on Your Own. A section entitled Solving 
Problems on Your Own is included for each lesson, between the sample 

problems and the problems to be assigned. The purpose of these sections 

is to help students organize in their own minds the preceding theory of 

the text and the solution methods of the sample problems so that they can 

more successfully solve the homework problems. Also included in these 

sections are specific suggestions and strategies that will enable the students 

to more efficiently attack any assigned problems.

Homework Problem Sets. Most of the problems are of a practical 

nature and should appeal to engineering students. They are primarily designed, 

however, to illustrate the material presented in the text and to help students 

understand the principles of mechanics. The problems are grouped according 

to the portions of material they illustrate and, in general, are arranged in 

order of increasing difficulty. Problems requiring special attention are indi-

cated by asterisks. Answers to 70 percent of the problems are given at the 

end of the book. Problems for which the answers are given are set in straight 

type in the text, while problems for which no answer is given are set in italic 

and red font color.

 Sample Problem 4.10

A 450-lb load hangs from the corner C of a rigid piece of pipe ABCD
that has been bent as shown. The pipe is supported by ball-and-socket 

joints A and D, which are fastened, respectively, to the floor and to a 

vertical wall, and by a cable attached at the midpoint E of the portion BC
of the pipe and at a point G on the wall. Determine (a) where G should 

be located if the tension in the cable is to be minimum, (b) the correspond-

ing minimum value of the tension.

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

STRATEGY: Draw the free-body diagram of the pipe showing the reac-

tions at A and D. Isolate the unknown tension T and the known weight W
by summing moments about the diagonal line AD, and compute values 

from the equilibrium equations.

MODELING and ANALYSIS: 

Free-Body Diagram. The free-body diagram of the pipe includes the 

load W 5 (2450 lb)j, the reactions at A and D, and the force T exerted by 

the cable (Fig. 1). To eliminate the reactions at A and D from the computations, 

take the sum of the moments of the forces about the line AD and set it equal 

to zero. Denote the unit vector along AD by λ, which enables you to write

 oMAD 5 0:    λ ? (AE
�

3 T) 1 λ ? (AC
�

3 W) 5 0 (1)

Fig. 1 Free-body diagram of pipe.

A

B C DE

x

y

z

T

�

Dxi

Dy j
Dzk

A x i

Ay j

Azk

W = –450 j

6 ft

6 ft

12 ft

12 ft

12 ft
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The tallest skyscraper in the Western Hemisphere, One World 

Trade Center is a prominent feature of the New York City skyline. 

From its foundation to its structural components and mechanical 

systems, the design and operation of the tower is based on the 

fundamentals of engineering mechanics.

Introduction

1
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 NEW!

 

Over 650 of the homework problems in the 

text are new or revised.

NEW!

bee98242_FM_i-xxii.indd   xvbee98242_FM_i-xxii.indd   xv 12/3/14   11:10 AM12/3/14   11:10 AM

UPLOADED BY AHMAD T JUNDI



xvi Guided Tour

Chapter Review and Summary. Each chapter ends 

with a review and summary of the material covered in that 

chapter. Marginal notes are used to help students organize 

their review work, and cross-references have been included to 

help them find the portions of material requiring their special 

attention.

Review Problems. A set of review problems is included 

at the end of each chapter. These problems provide students 

further opportunity to apply the most important concepts intro-

duced in the chapter.

Computer Problems. Accessible through Connect are problem sets 

for each chapter that are designed to be solved with computational software. 

Many of these problems are relevant to the design process; they may involve 

the analysis of a structure for various configurations and loadings of the 

structure, or the determination of the equilibrium positions of a given 

mechanism that may require an iterative method of solution. Developing the 

algorithm required to solve a given mechanics problem will benefit the 

students in two different ways: (1) it will help them gain a better 

understanding of the mechanics principles involved; (2) it will provide them 

with an opportunity to apply their computer skills to the solution of a 

meaningful engineering problem.

75

In this chapter, we have studied the effect of forces on particles, i.e., on bodies 

of such shape and size that we may assume all forces acting on them apply 

at the same point.

Resultant of Two Forces
Forces are vector quantities; they are characterized by a point of application, 

a magnitude, and a direction, and they add according to the parallelogram law 

(Fig. 2.30). We can determine the magnitude and direction of the resultant R
of two forces P and Q either graphically or by trigonometry using the law of 

cosines and the law of sines [Sample Prob. 2.1].

Components of a Force
Any given force acting on a particle can be resolved into two or more com-

ponents, i.e., it can be replaced by two or more forces that have the same 

effect on the particle. A force F can be resolved into two components P and Q
by drawing a parallelogram with F for its diagonal; the components P and Q
are then represented by the two adjacent sides of the parallelogram (Fig. 2.31). 

Again, we can determine the components either graphically or by trigonom-

etry [Sec. 2.1E].

Review and Summary

Q

R

P

A

Fig. 2.30

Q
F

P

A

Fig. 2.31

F

x

y

Fy = Fy j

Fx = Fx i

j

i

�

Fig. 2.32

Rectangular Components; Unit Vectors
A force F is resolved into two rectangular components if its components Fx

and Fy are perpendicular to each other and are directed along the coordinate 

axes (Fig. 2.32). Introducing the unit vectors i and j along the x and y axes, 

respectively, we can write the components and the vector as [Sec. 2.2A]

Fx 5 Fxi   Fy 5 Fy j (2.6)

and

F 5 Fxi 1 Fyj (2.7)

where Fx and Fy are the scalar components of F. These components, which 

can be positive or negative, are defined by the relations

Fx 5 F cos θ   Fy 5 F sin θ (2.8)

bee87302_ch02_015-081.indd   75 09/07/14   4:38 PM
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 2.127 Two structural members A and B are bolted to a bracket as shown. 

Knowing that both members are in compression and that the force 

is 15 kN in member A and 10 kN in member B, determine by trigo-

nometry the magnitude and direction of the resultant of the forces 

applied to the bracket by members A and B.

 2.128 Determine the x and y components of each of the forces shown.

Review Problems

A B

40° 20°

Fig. P2.127

106 lb102 lb

200 lb x

y

24 in. 28 in.

45 in.

40 in.

30 in.

O

Fig. P2.128

a

a

200 lb
400 lb

P

Fig. P2.129
30° 20°

α

300 lb

A

B

C

Fig. P2.130

 2.129 A hoist trolley is subjected to the three forces shown. Knowing that 

α 5 40°, determine (a) the required magnitude of the force P if the 

resultant of the three forces is to be vertical, (b) the corresponding 

magnitude of the resultant.

 2.130 Knowing that α 5 55° and that boom AC exerts on pin C a force 

directed along line AC, determine (a) the magnitude of that force, 

(b) the tension in cable BC.
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xviiGuided Tour

Concept Questions. Educational research has shown that students can 

often choose appropriate equations and solve algorithmic problems without 

having a strong conceptual understanding of mechanics principles.† To help 

assess and develop student conceptual understanding, we have included Con-

cept Questions, which are multiple choice problems that require few, if any, 

calculations. Each possible incorrect answer typically represents a common 

misconception (e.g., students often think that a vehicle moving in a curved 

path at constant speed has zero acceleration). Students are encouraged to 

solve these problems using the principles and techniques discussed in the 

text and to use these principles to help them develop their intuition. Mastery 

and discussion of these Concept Questions will deepen students’ conceptual 

understanding and help them to solve dynamics problems.

Free Body and Impulse-Momentum Diagram Practice 
Problems. Drawing diagrams correctly is a critical step in solving kinetics 

problems in dynamics. A new type of problem has been added to the text to 

emphasize the importance of drawing these diagrams. In Chaps. 12 and 16 

the Free Body Practice Problems require students to draw a free-

body diagram (FBD) showing the applied forces and an equivalent 

diagram called a “kinetic diagram” (KD) showing ma or its 

components and  Iα. These diagrams provide students with a 

pictorial representation of  Newton’s second law and are critical 

in helping students to correctly solve kinetic problems. In Chaps. 

13 and 17 the Impulse-Momentum Diagram Practice Problems 

require students to draw diagrams showing the momenta of the 

bodies before impact, the impulses exerted on the body during 

impact, and the final momenta of the bodies. The answers to all 

of these questions can be accessed through Connect.

1039

FREE-BODY PRACTICE PROBLEMS

16.F1 A 6-ft board is placed in a truck with one end resting against a block 

secured to the floor and the other leaning against a vertical partition. 

Draw the FBD and KD necessary to determine the maximum 

allowable acceleration of the truck if the board is to remain in the 

position shown.

16.F2 A uniform circular plate of mass 3 kg is attached to two links AC
and BD of the same length. Knowing that the plate is released 

from rest in the position shown, in which lines joining G to A and 

B are, respectively, horizontal and vertical, draw the FBD and KD 

for the plate.

75°

75°
C

A

D

B

G

Fig. P16.F2

16.F3 Two uniform disks and two cylinders are assembled as indicated. 

Disk A weighs 20 lb and disk B weighs 12 lb. Knowing that the 

system is released from rest, draw the FBD and KD for the whole 

system.

18 lb15 lb

6 in.8 in.

B

C D

A

Fig. P16.F3

 16.F4 The 400-lb crate shown is lowered by means of two overhead cranes. 

Knowing the tension in each cable, draw the FBD and KD that can 

be used to determine the angular acceleration of the crate and the 

acceleration of the center of gravity.

A

B

78°

Fig. P16.F1

TA TB

6.6 ft

3.6 ft

3.3 ft

1.8 ft

A

G

B

Fig. P16.F4
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†Hestenes, D., Wells, M., and Swakhamer, G (1992). The force concept inventory. The Physics 
Teacher, 30: 141–158.

Streveler, R. A., Litzinger, T. A., Miller, R. L., and Steif, P. S. (2008). Learning conceptual knowl-

edge in the engineering sciences: Overview and future research directions, JEE, 279–294.
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xviii

Connect® Engineering provides online presenta-

tion, assignment, and assessment solutions. It 

connects your students with the tools and 

resources they’ll need to achieve success. With Connect Engineering you 

can deliver assignments, quizzes, and tests online. A robust set of questions 

and activities are presented and aligned with the textbook’s learning 

outcomes. As an instructor, you can edit existing questions and author 

entirely new problems. Integrate grade reports easily with Learning 

Management Systems (LMS), such as WebCT and Blackboard—and much 

more. Connect Engineering also provides students with 24/7 online access 

to a media-rich eBook, allowing seamless integration of text, media, and 

assessments. To learn more, visit connect.mheducation.com 
 Find the following instructor resources available through Connect:

• Instructor’s and Solutions Manual. The Instructor’s and Solutions 
Manual that accompanies the eleventh edition features solutions to all 

end of chapter problems. This manual also features a number of tables 

designed to assist instructors in creating a schedule of assignments for 

their course. The various topics covered in the text have been listed in 

Table I and a suggested number of periods to be spent on each topic 

has been indicated. Table II prepares a brief description of all groups 

of problems and a classification of the problems in each group accord-

ing to the units used. Sample lesson schedules are shown in Tables III, 

IV, and V, together with various alternative lists of assigned homework 

problems.

• Lecture PowerPoint Slides for each chapter that can be modified. 

These generally have an introductory application slide, animated 

worked-out problems that you can do in class with your students, 

concept questions, and “what-if?” questions at the end of the units.

• Textbook images
• Computer Problem sets for each chapter that are designed to be 

solved with computational software.

• C.O.S.M.O.S., the Complete Online Solutions Manual Organization 

System that allows instructors to create custom homework, quizzes, 

and tests using end-of-chapter problems from the text.

LearnSmart is available as 

an integrated feature of McGraw-Hill Connect. It is an adaptive learning 

system designed to help students learn faster, study more efficiently, and 

retain more knowledge for greater success. LearnSmart assesses a student’s 

knowledge of course content through a series of adaptive questions. It 

pinpoints concepts the student does not understand and maps out a 

personalized study plan for success. This innovative study tool also has 

features that allow instructors to see exactly what students have 

accomplished and a built-in assessment tool for graded assignments. 

Digital Resources

 NEW!
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xixDigital Resources

SmartBook™ is the first and 

only adaptive reading experience available for the higher education mar-

ket. Powered by an intelligent diagnostic and adaptive engine, SmartBook 

facilitates the reading process by identifying what content a student knows 

and doesn’t know through adaptive assessments. As the student reads, the 

reading material constantly adapts to ensure the student is focused on the 

content he or she needs the most to close any knowledge gaps.

Visit the following site for a demonstration of LearnSmart or Smart-
Book: www.learnsmartadvantage.com

CourseSmart. This text is offered through CourseSmart for both 

instructors and students. CourseSmart is an online browser where stu-

dents can purchase access to this and other McGraw-Hill textbooks in a 

digital format. Through their browser, students can access the complete 

text online at almost half the cost of a traditional text. Purchasing the 

eTextbook also allows students to take advantage of CourseSmart’s web 

tools for learning, which include full text search, notes and highlighting, 

and e-mail tools for sharing notes among classmates. To learn more 

about CourseSmart options, contact your sale s representative or visit 

www.coursesmart.com.

 NEW!
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xxi

a, a Acceleration

a Constant; radius; distance; semimajor 

 axis of ellipse

a, a Acceleration of mass center

aB/A Acceleration of B relative to frame in 

translation with A
aP/^ Acceleration of P relative to rotating 

 frame ^
ac Coriolis acceleration

A, B, C, . . . Reactions at supports and connections

A, B, C, . . . Points

A Area

b Width; distance; semiminor axis of 

 ellipse

c Constant; coefficient of viscous damping

C Centroid; instantaneous center of rotation; 

 capacitance

d Distance

en, et Unit vectors along normal and tangent

er, eθ Unit vectors in radial and transverse 

 directions

e Coefficient of restitution; base of natural 

 logarithms

E Total mechanical energy; voltage

f Scalar function

ff Frequency of forced vibration

fn Natural frequency

F Force; friction force

g Acceleration of gravity

G Center of gravity; mass center; constant of 

 gravitation

h Angular momentum per unit mass

HO Angular momentum about point O
H
#  
G Rate of change of angular momentum HG 

 with respect to frame of fixed orientation

 (H
#  
G)Gxyz Rate of change of angular momentum HG 

 with respect to rotating frame Gxyz
 i, j, k Unit vectors along coordinate axes

 i Current

 I, Ix, . . .  Moments of inertia

  I  Centroidal moment of inertia

 Ixy, . . .  Products of inertia

 J Polar moment of inertia

 k Spring constant

 kx, ky, kO Radii of gyration

k Centroidal radius of gyration

l Length

L Linear momentum

L Length; inductance

m Mass

m9 Mass per unit length

M Couple; moment

MO Moment about point O
MR

O Moment resultant about point O
M Magnitude of couple or moment; mass of 

 earth

MOL Moment about axis OL
n Normal direction

N Normal component of reaction

O Origin of coordinates

P Force; vector

P
#  

Rate of change of vector P with respect 

 to frame of fixed orientation

q Mass rate of flow; electric charge

Q Force; vector

Q
#  

Rate of change of vector Q with respect 

 to frame of fixed orientation

(Q
#  
)Oxyz Rate of change of vector Q with respect to 

 frame Oxyz
r Position vector

rB/A Position vector of B relative to A
r Radius; distance; polar coordinate

R Resultant force; resultant vector; reaction

R Radius of earth; resistance

s Position vector

s Length of arc

t Time; thickness; tangential direction

T Force

T Tension; kinetic energy

u Velocity

u Variable

U Work

UNC
122 work done by non-conservative forces

v, v Velocity

v Speed

v, v Velocity of mass center

vB/A Velocity of B relative to frame in 

 translation with A
vP/^ Velocity of P relative to rotating frame ^

List of Symbols
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xxii List of Symbols

 V Vector product

 V Volume; potential energy

 w Load per unit length

 W, W Weight; load

 x, y, z Rectangular coordinates; distances

 x
#
, y
#
, z
#
 Time derivatives of coordinates x, y, z

 x, y, z Rectangular coordinates of centroid, 

 center of gravity, or mass center

 α, α Angular acceleration

 α, β, g Angles

 g Specific weight

 δ Elongation

 e Eccentricity of conic section or of orbit

 l Unit vector along a line

 η Efficiency

 θ Angular coordinate; Eulerian angle; 

 angle; polar coordinate

 μ Coefficient of friction

 ρ Density; radius of curvature

 τ Periodic time

 τn Period of free vibration

 f Angle of friction; Eulerian angle; phase 

 angle; angle

 w Phase difference

 c Eulerian angle

 v, v Angular velocity

 vf Circular frequency of forced vibration

 vn Natural circular frequency

 V Angular velocity of frame of reference
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The tallest skyscraper in the Western Hemisphere, One World 

Trade Center is a prominent feature of the New York City skyline. 

From its foundation to its structural components and mechanical 

systems, the design and operation of the tower is based on the 

fundamentals of engineering mechanics.

Introduction

1
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2 Introduction

 Introduction

 1.1 WHAT IS MECHANICS?

 1.2 FUNDAMENTAL CONCEPTS 
AND PRINCIPLES

 1.3 SYSTEMS OF UNITS

 1.4 CONVERTING BETWEEN 
TWO SYSTEMS OF UNITS

 1.5 METHOD OF SOLVING 
PROBLEMS

 1.6 NUMERICAL ACCURACY

Objectives
• Define the science of mechanics and examine its 

fundamental principles.

• Discuss and compare the International System of 
Units and U.S. Customary Units.

• Discuss how to approach the solution of mechanics 
problems, and introduce the SMART problem-solving 
methodology.

• Examine factors that govern numerical accuracy in the 
solution of a mechanics problem.

1.1 What is Mechanics?
Mechanics is defined as the science that describes and predicts the condi-

tions of rest or motion of bodies under the action of forces. It consists of 

the mechanics of rigid bodies, mechanics of deformable bodies, and 

mechanics of fluids.

The mechanics of rigid bodies is subdivided into statics and dynamics. 

Statics deals with bodies at rest; dynamics deals with bodies in motion. 

In this text, we assume bodies are perfectly rigid. In fact, actual structures 

and machines are never absolutely rigid; they deform under the loads to 

which they are subjected. However, because these deformations are usu-

ally small, they do not appreciably affect the conditions of equilibrium or 

the motion of the structure under consideration. They are important, 

though, as far as the resistance of the structure to failure is concerned. 

Deformations are studied in a course in mechanics of materials, which is 

part of the mechanics of deformable bodies. The third division of mechan-

ics, the mechanics of fluids, is subdivided into the study of incompressible 
fluids and of compressible fluids. An important subdivision of the study 

of incompressible fluids is hydraulics, which deals with applications 

involving water.

Mechanics is a physical science, since it deals with the study of 

physical phenomena. However, some teachers associate mechanics with 

mathematics, whereas many others consider it as an engineering subject. 

Both these views are justified in part. Mechanics is the foundation of most 

engineering sciences and is an indispensable prerequisite to their study. 

However, it does not have the empiricism found in some engineering sci-

ences, i.e., it does not rely on experience or observation alone. The rigor 

of mechanics and the emphasis it places on deductive reasoning makes it 

resemble mathematics. However, mechanics is not an abstract or even a 

pure science; it is an applied science. 

The purpose of mechanics is to explain and predict physical phe-

nomena and thus to lay the foundations for engineering applications. You 

need to know statics to determine how much force will be exerted on a 

point in a bridge design and whether the structure can withstand that force. 

Determining the force a dam needs to withstand from the water in a river 

requires statics. You need statics to calculate how much weight a crane 

can lift, how much force a locomotive needs to pull a freight train, or how 
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1.2 Fundamental Concepts and Principles 3

much force a circuit board in a computer can withstand. The concepts of 

dynamics enable you to analyze the flight characteristics of a jet, design 

a building to resist earthquakes, and mitigate shock and vibration to pas-

sengers inside a vehicle. The concepts of dynamics enable you to calculate 

how much force you need to send a satellite into orbit, accelerate a 

200,000-ton cruise ship, or design a toy truck that doesn’t break. You will 

not learn how to do these things in this course, but the ideas and methods 

you learn here will be the underlying basis for the engineering applications 

you will learn in your work.

1.2  Fundamental Concepts 
and Principles

Although the study of mechanics goes back to the time of Aristotle (384–

322 b.c.) and Archimedes (287–212 b.c.), not until Newton (1642–1727) 

did anyone develop a satisfactory formulation of its fundamental princi-

ples. These principles were later modified by d’Alembert, Lagrange, and 

Hamilton. Their validity remained unchallenged until Einstein formulated 

his theory of relativity (1905). Although its limitations have now been 

recognized, newtonian mechanics still remains the basis of today’s engi-

neering sciences.

The basic concepts used in mechanics are space, time, mass, and 

force. These concepts cannot be truly defined; they should be accepted on 

the basis of our intuition and experience and used as a mental frame of 

reference for our study of mechanics.

The concept of space is associated with the position of a point P. 

We can define the position of P by providing three lengths measured from 

a certain reference point, or origin, in three given directions. These lengths 

are known as the coordinates of P.

To define an event, it is not sufficient to indicate its position in 

space. We also need to specify the time of the event.

We use the concept of mass to characterize and compare bodies on 

the basis of certain fundamental mechanical experiments. Two bodies of 

the same mass, for example, are attracted by the earth in the same manner; 

they also offer the same resistance to a change in translational motion.

A force represents the action of one body on another. A force can 

be exerted by actual contact, like a push or a pull, or at a distance, as in 

the case of gravitational or magnetic forces. A force is characterized by 

its point of application, its magnitude, and its direction; a force is repre-

sented by a vector (Sec. 2.1B).

In newtonian mechanics, space, time, and mass are absolute con-

cepts that are independent of each other. (This is not true in relativistic 
mechanics, where the duration of an event depends upon its position and 

the mass of a body varies with its velocity.) On the other hand, the concept 

of force is not independent of the other three. Indeed, one of the funda-

mental principles of newtonian mechanics listed below is that the resultant 

force acting on a body is related to the mass of the body and to the manner 

in which its velocity varies with time.

In this text, you will study the conditions of rest or motion of par-

ticles and rigid bodies in terms of the four basic concepts we have intro-

duced. By particle, we mean a very small amount of matter, which we 
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4 Introduction

assume occupies a single point in space. A rigid body consists of a large 

number of particles occupying fixed positions with respect to one another. 

The study of the mechanics of particles is clearly a prerequisite to that of 

rigid bodies. Besides, we can use the results obtained for a particle directly 

in a large number of problems dealing with the conditions of rest or 

motion of actual bodies.

The study of elementary mechanics rests on six fundamental prin-

ciples, based on experimental evidence.

• The Parallelogram Law for the Addition of Forces. Two forces 

acting on a particle may be replaced by a single force, called their 

resultant, obtained by drawing the diagonal of the parallelogram 

with sides equal to the given forces (Sec. 2.1A).

• The Principle of Transmissibility. The conditions of equilibrium 

or of motion of a rigid body remain unchanged if a force acting at 

a given point of the rigid body is replaced by a force of the same 

magnitude and same direction, but acting at a different point, pro-

vided that the two forces have the same line of action (Sec. 3.1B).

• Newton’s Three Laws of Motion. Formulated by Sir Isaac Newton 

in the late seventeenth century, these laws can be stated as follows:

 FIRST LAW. If the resultant force acting on a particle is zero, the 

particle remains at rest (if originally at rest) or moves with constant 

speed in a straight line (if originally in motion) (Sec. 2.3B).

 SECOND LAW. If the resultant force acting on a particle is not 

zero, the particle has an acceleration proportional to the magnitude 

of the resultant and in the direction of this resultant force.

As you will see in Sec. 12.1, this law can be stated as

 F 5 ma (1.1)

 where F, m, and a represent, respectively, the resultant force acting 

on the particle, the mass of the particle, and the acceleration of the 

particle expressed in a consistent system of units.

 THIRD LAW. The forces of action and reaction between bodies 

in contact have the same magnitude, same line of action, and oppo-

site sense (Ch. 6, Introduction).

• Newton’s Law of Gravitation. Two particles of mass M and m 

are mutually attracted with equal and opposite forces F and 2F of 

magnitude F (Fig. 1.1), given by the formula

 F 5 G 

Mm

r2
 (1.2)

 where r 5 the distance between the two particles and G 5 a uni-

versal constant called the constant of gravitation. Newton’s law of 

gravitation introduces the idea of an action exerted at a distance and 

extends the range of application of Newton’s third law: the action F 

and the reaction 2F in Fig.  1.1 are equal and opposite, and they 

have the same line of action.

A particular case of great importance is that of the attraction of the 

earth on a particle located on its surface. The force F exerted by the earth 

on the particle is defined as the weight W of the particle. Suppose we set 

M

–F

F

m

r

Fig. 1.1 From Newton‘s law of gravitation, 
two particles of masses M and m exert 
forces upon each other of equal magnitude, 
opposite direction, and the same line of 
action. This also illustrates Newton‘s third 
law of motion.
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1.3 Systems of Units 5

M equal to the mass of the earth, m equal to the mass of the particle, and 

r equal to the earth’s radius R. Then introducing the constant

 g 5
GM

R2
 (1.3)

we can express the magnitude W of the weight of a particle of mass m as†

 W 5 mg (1.4)

The value of R in formula (1.3) depends upon the elevation of the point 

considered; it also depends upon its latitude, since the earth is not truly 

spherical. The value of g therefore varies with the position of the point 

considered. However, as long as the point actually remains on the earth’s 

surface, it is sufficiently accurate in most engineering computations to 

assume that g equals 9.81 m/s2 or 32.2 ft/s2.

The principles we have just listed will be introduced in the course 

of our study of mechanics as they are needed. The statics of particles 

carried out in Chap. 2 will be based on the parallelogram law of addition 

and on Newton’s first law alone. We introduce the principle of transmis-

sibility in Chap. 3 as we begin the study of the statics of rigid bodies, and 

we bring in Newton’s third law in Chap. 6 as we analyze the forces exerted 

on each other by the various members forming a structure. We introduce 

Newton’s second law and Newton’s law of gravitation in dynamics. We 

will then show that Newton’s first law is a particular case of Newton’s 

second law (Sec. 12.1) and that the principle of transmissibility could be 

derived from the other principles and thus eliminated (Sec. 16.1D). In the 

meantime, however, Newton’s first and third laws, the parallelogram law 

of addition, and the principle of transmissibility will provide us with the 

necessary and sufficient foundation for the entire study of the statics of 

particles, rigid bodies, and systems of rigid bodies.

As noted earlier, the six fundamental principles listed previously are 

based on experimental evidence. Except for Newton’s first law and the prin-

ciple of transmissibility, they are independent principles that cannot be derived 

mathematically from each other or from any other elementary physical prin-

ciple. On these principles rests most of the intricate structure of newtonian 

mechanics. For more than two centuries, engineers have solved a tremendous 

number of problems dealing with the conditions of rest and motion of rigid 

bodies, deformable bodies, and fluids by applying these fundamental prin-

ciples. Many of the solutions obtained could be checked experimentally, thus 

providing a further verification of the principles from which they were 

derived. Only in the twentieth century has Newton’s mechanics found to be 

at fault, in the study of the motion of atoms and the motion of the planets, 

where it must be supplemented by the theory of relativity. On the human or 

engineering scale, however, where velocities are small compared with the 

speed of light, Newton’s mechanics have yet to be disproved.

1.3 Systems of Units
Associated with the four fundamental concepts just discussed are the 

so-called kinetic units, i.e., the units of length, time, mass, and force. 

These units cannot be chosen independently if Eq. (1.1) is to be satisfied. 

†A more accurate definition of the weight W should take into account the earth’s rotation.

Photo 1.1 When in orbit of the earth, 
people and objects are said to be weightless 
even though the gravitational force acting 
is approximately 90% of that experienced 
on the surface of the earth. This apparent 
contradiction will be resolved in Chapter 12 
when we apply Newton’s second law to the 
motion of particles.
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6 Introduction

Three of the units may be defined arbitrarily; we refer to them as basic 
units. The fourth unit, however, must be chosen in accordance with 

Eq. (1.1) and is referred to as a derived unit. Kinetic units selected in 

this way are said to form a consistent system of units.

International System of Units (SI Units).† In this system, which 

will be in universal use after the United States has completed its conver-

sion to SI units, the base units are the units of length, mass, and time, and 

they are called, respectively, the meter (m), the kilogram (kg), and the 

second (s). All three are arbitrarily defined. The second was originally 

chosen to represent 1/86 400 of the mean solar day, but it is now defined 

as the duration of 9 192 631 770 cycles of the radiation corresponding to 

the transition between two levels of the fundamental state of the cesium-133 

atom. The meter, originally defined as one ten-millionth of the distance 

from the equator to either pole, is now defined as 1 650 763.73 wave-

lengths of the orange-red light corresponding to a certain transition in an 

atom of krypton-86. (The newer definitions are much more precise and 

with today’s modern instrumentation, are easier to verify as a standard.) 

The kilogram, which is approximately equal to the mass of 0.001 m3 of 

water, is defined as the mass of a platinum-iridium standard kept at the 

International Bureau of Weights and Measures at Sèvres, near Paris, 

France. The unit of force is a derived unit. It is called the newton (N) 

and is defined as the force that gives an acceleration of 1 m/s2 to a body 

of mass 1 kg (Fig. 1.2). From Eq. (1.1), we have

 1 N 5 (1 kg)(1 m/s2) 5 1 kg?m/s2 (1.5)

The SI units are said to form an absolute system of units. This means that 

the three base units chosen are independent of the location where measure-

ments are made. The meter, the kilogram, and the second may be used 

anywhere on the earth; they may even be used on another planet and still 

have the same significance.

The weight of a body, or the force of gravity exerted on that body, 

like any other force, should be expressed in newtons. From Eq. (1.4), it 

follows that the weight of a body of mass 1 kg (Fig. 1.3) is

W 5 mg

   5 (1 kg)(9.81 m/s2)

   5 9.81 N

Multiples and submultiples of the fundamental SI units are denoted 

through the use of the prefixes defined in Table 1.1. The multiples and 

submultiples of the units of length, mass, and force most frequently used 

in engineering are, respectively, the kilometer (km) and the millimeter (mm); 

the megagram‡ (Mg) and the gram (g); and the kilonewton (kN). Accord-

ing to Table 1.1, we have

1 km 5 1000 m  1 mm 5 0.001 m

1 Mg 5 1000 kg   1 g 5 0.001 kg

1 kN 5 1000 N

The conversion of these units into meters, kilograms, and  newtons, respec-

tively, can be effected by simply moving the decimal point three places 

†SI stands for Système International d’Unités (French)
‡Also known as a metric ton.

a = 1 m/s2

m = 1 kg F = 1 N

Fig. 1.2 A force of 1 newton applied to 
a body of mass 1 kg provides an acceleration 
of 1 m/s2.

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

Fig. 1.3 A body of mass 1 kg experiencing 
an acceleration due to gravity of 9.81 m/s2 
has a weight of 9.81 N.

bee87302_ch01_001-014.indd   6bee87302_ch01_001-014.indd   6 28/07/14   11:50 AM28/07/14   11:50 AM

UPLOADED BY AHMAD T JUNDI



1.3 Systems of Units 7

to the right or to the left. For example, to convert 3.82 km into meters, 

move the decimal point three places to the right:

3.82 km 5 3820 m

Similarly, to convert 47.2 mm into meters, move the decimal point three 

places to the left:

47.2 mm 5 0.0472 m

Using engineering notation, you can also write

 3.82 km 5 3.82 3 103 m

47.2 mm 5 47.2 3 1023 m

The multiples of the unit of time are the minute (min) and the hour (h). 

Since 1 min 5 60 s and 1 h 5 60 min 5 3600 s, these multiples cannot 

be converted as readily as the others.

By using the appropriate multiple or submultiple of a given unit, 

you can avoid writing very large or very small numbers. For example, it 

is usually simpler to write 427.2 km rather than 427 200 m and 2.16 mm 

rather than 0.002 16 m.†

Units of Area and Volume. The unit of area is the square meter (m2), 

which represents the area of a square of side 1 m; the unit of volume is 

the cubic meter (m3), which is equal to the volume of a cube of side 1 m. 

In order to avoid exceedingly small or large numerical values when com-

puting areas and volumes, we use systems of subunits obtained by respec-

tively squaring and cubing not only the millimeter, but also two intermediate 

†Note that when more than four digits appear on either side of the decimal point to express 

a quantity in SI units––as in 427 000 m or 0.002 16 m––use spaces, never commas, to sepa-

rate the digits into groups of three. This practice avoids confusion with the comma used in 

place of a decimal point, which is the convention in many countries.

Table 1.1 Sl Prefixes

Multiplication Factor  Prefix† Symbol

 1 000 000 000 000 5 1012 tera T

 1 000 000 000 5 109 giga G

 1 000 000 5 106 mega M

 1 000 5 103 kilo k

 100 5 102 hecto‡ h

 10 5 101 deka‡ da

 0.1 5 1021 deci‡ d

 0.01 5 1022 centi‡ c

 0.001 5 1023 milli m

 0.000 001 5 1026 micro μ

 0.000 000 001 5 1029 nano n

 0.000 000 000 001 5 10212 pico p

 0.000 000 000 000 001 5 10215 femto f

 0.000 000 000 000 000 001 5 10218 atto a

†The first syllable of every prefix is accented, so that the prefix retains its identity. Thus, the 

preferred pronunciation of kilometer places the accent on the first syllable, not the second.
‡The use of these prefixes should be avoided, except for the measurement of areas and volumes 

and for the nontechnical use of centimeter, as for body and clothing measurements.
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8 Introduction

submultiples of the meter: the  decimeter (dm) and the centimeter (cm). 

By definition,

 1 dm 5 0.1 m 5 1021 m

  1 cm 5 0.01 m 5 1022 m

1 mm 5 0.001 m 5 1023 m

Therefore, the submultiples of the unit of area are

 1 dm2 5 (1 dm)2 5 (1021 m)2 5 1022 m2

  1 cm2 5 (1 cm)2 5 (1022 m)2 5 1024 m2

1 mm2 5 (1 mm)2 5 (1023 m)2 5 1026 m2

Similarly, the submultiples of the unit of volume are

 1 dm3 5 (1 dm)3 5 (1021 m)3 5 1023 m3

 1 cm3 5 (1 cm)3 5 (1022 m)3 5 1026 m3

1 mm3 5 (1 mm)3 5 (1023 m)3 5 1029 m3

 

Note that when measuring the volume of a liquid, the cubic decimeter (dm3) 

is usually referred to as a liter (L).

Table 1.2 shows other derived SI units used to measure the moment 

of a force, the work of a force, etc. Although we will introduce these units 

in later chapters as they are needed, we should note an important rule at 

Table 1.2 Principal SI Units Used in Mechanics

Quantity Unit Symbol Formula

Acceleration Meter per second squared . . . m/s2

Angle Radian rad †

Angular acceleration Radian per second squared . . . rad/s2

Angular velocity Radian per second . . . rad/s

Area Square meter . . . m2

Density Kilogram per cubic meter . . . kg/m3

Energy Joule J N?m

Force Newton N kg?m/s2

Frequency Hertz Hz s–1

Impulse Newton-second . . . kg?m/s

Length Meter m ‡

Mass Kilogram kg ‡

Moment of a force Newton-meter . . . N?m

Power Watt W J/s

Pressure Pascal Pa N/m2

Stress Pascal Pa N/m2

Time Second s ‡

Velocity Meter per second . . . m/s

Volume

 Solids Cubic meter . . . m3

 Liquids Liter L 10–3 m3

Work Joule J N?m

†Supplementary unit (1 revolution 5 2π rad 5 360°).
‡Base unit.
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1.3 Systems of Units 9

this time: When a derived unit is obtained by dividing a base unit by 

another base unit, you may use a prefix in the numerator of the derived 

unit, but not in its denominator. For example, the constant k of a spring 

that stretches 20 mm under a load of 100 N is expressed as

k 5
100 N

20 mm
5

100 N

0.020 m
5 5000 N/m or k 5 5 kN/m

but never as k 5 5 N/mm.

U.S. Customary Units. Most practicing American engineers still 

commonly use a system in which the base units are those of length, force, 

and time. These units are, respectively, the foot (ft), the pound (lb), and 

the second (s). The second is the same as the corresponding SI unit. The 

foot is defined as 0.3048 m. The pound is defined as the weight of a 

platinum standard, called the standard pound, which is kept at the National 

Institute of Standards and Technology outside Washington D.C., the mass 

of which is 0.453 592 43 kg. Since the weight of a body depends upon 

the earth’s gravitational attraction, which varies with location, the standard 

pound should be placed at sea level and at a latitude of 45° to properly 

define a force of 1 lb. Clearly the U.S. customary units do not form an 

absolute system of units. Because they depend upon the gravitational 

attraction of the earth, they form a gravitational system of units.

Although the standard pound also serves as the unit of mass in com-

mercial transactions in the United States, it cannot be used that way in 

engineering computations, because such a unit would not be consistent 

with the base units defined in the preceding paragraph. Indeed, when acted 

upon by a force of 1 lb––that is, when subjected to the force of gravity––

the standard pound has the acceleration due to gravity, g 5 32.2 ft/s2 

(Fig. 1.4), not the unit acceleration required by Eq. (1.1). The unit of mass 

consistent with the foot, the pound, and the second is the mass that 

receives an acceleration of 1 ft/s2 when a force of 1 lb is applied to it 

(Fig.  1.5). This unit, sometimes called a slug, can be derived from the 

equation F 5 ma after substituting 1 lb for F and 1 ft/s2 for a. We have

F 5 ma  1 lb 5 (1 slug)(1 ft/s2)

This gives us

 1 slug 5
1 lb

1 ft/s2
5 1 lb?s2/ft (1.6)

Comparing Figs. 1.4 and 1.5, we conclude that the slug is a mass 32.2 

times larger than the mass of the standard pound.

The fact that, in the U.S. customary system of units, bodies are 

characterized by their weight in pounds rather than by their mass in slugs 

is convenient in the study of statics, where we constantly deal with weights 

and other forces and only seldom deal directly with masses. However, in 

the study of dynamics, where forces, masses, and accelerations are 

involved, the mass m of a body is expressed in slugs when its weight W 

is given in pounds. Recalling Eq. (1.4), we write

 m 5
W
g

 (1.7)

where g is the acceleration due to gravity (g 5 32.2 ft/s2).

a = 32.2 ft /s2

m = 1 lb mass

F = 1 lb

Fig. 1.4 A body of 1 pound mass acted 
upon by a force of 1 pound has an 
acceleration of 32.2 ft/s2.

a = 1 ft /s2

m = 1 slug
(= 1 lb • s2/ft) 

F = 1 lb

Fig. 1.5 A force of 1 pound applied to a 
body of mass 1 slug produces an acceleration 
of 1 ft/s2.
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10 Introduction

Other U.S. customary units frequently encountered in engineering 

problems are the mile (mi), equal to 5280 ft; the inch (in.), equal to 

(1/12) ft; and the kilopound (kip), equal to 1000 lb. The ton is often used 

to represent a mass of 2000 lb but, like the pound, must be converted into 

slugs in engineering computations.

The conversion into feet, pounds, and seconds of quantities expressed 

in other U.S. customary units is generally more involved and requires 

greater attention than the corresponding operation in SI units. For exam-

ple, suppose we are given the magnitude of a velocity v 5 30 mi/h and 

want to convert it to ft/s. First we write

v 5 30 

mi

h

Since we want to get rid of the unit miles and introduce instead the unit 

feet, we should multiply the right-hand member of the equation by an 

expression containing miles in the denominator and feet in the numerator. 

However, since we do not want to change the value of the right-hand side 

of the equation, the expression used should have a value equal to unity. 

The quotient (5280 ft)/(1 mi) is such an expression. Operating in a similar 

way to transform the unit hour into seconds, we have

v 5 a30
mi

h
b a5280 ft

1 mi
b a 1 h

3600 s
b

Carrying out the numerical computations and canceling out units that 

appear in both the numerator and the denominator, we obtain

v 5 44 

ft

s
5 44 ft/s

 1.4  Converting Between Two Systems 
of Units 

In many situations, an engineer might need to convert into SI units a 

numerical result obtained in U.S. customary units or vice versa. Because 

the unit of time is the same in both systems, only two kinetic base units 

need be converted. Thus, since all other kinetic units can be derived from 

these base units, only two conversion factors need be remembered.

Units of Length. By definition, the U.S. customary unit of length is

 1 ft 5 0.3048 m (1.8)

It follows that

1 mi 5 5280 ft 5 5280(0.3048 m) 5 1609 m

or

 1 mi 5 1.609 km (1.9)

Also,

1 in. 5
1

12
  ft 5

1

12
(0.3048 m) 5 0.0254 m
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1.4 Converting Between Two Systems of Units  11

or

 1 in. 5 25.4 mm (1.10)

Units of Force. Recall that the U.S. customary unit of force (pound) 

is defined as the weight of the standard pound (of mass 0.4536 kg) at sea 

level and at a latitude of 45° (where g 5 9.807 m/s2). Then, using Eq. (1.4), 

we write

   W 5 mg

1 lb 5 (0.4536 kg)(9.807 m/s2) 5 4.448 kg?m/s2

From Eq. (1.5), this reduces to

 1 lb 5 4.448 N (1.11)

Units of Mass. The U.S. customary unit of mass (slug) is a derived 

unit. Thus, using Eqs. (1.6), (1.8), and (1.11), we have

1 slug 5 1 lb?s2/ft 5
1 lb

1 ft/s2
5

4.448 N

0.3048 m/s2
5 14.59 N?s2/m

Again, from Eq. (1.5),

 1 slug 5 1 lb?s2/ft 5 14.59 kg (1.12)

Although it cannot be used as a consistent unit of mass, recall that the 

mass of the standard pound is, by definition,

 1 pound mass 5 0.4536 kg (1.13)

We can use this constant to determine the mass in SI units (kilograms) of 

a body that has been characterized by its weight in U.S. customary units 

(pounds).

To convert a derived U.S. customary unit into SI units, simply 

multiply or divide by the appropriate conversion factors. For example, to 

convert the moment of a force that is measured as M 5 47 lb?in. into 

SI units, use formulas (1.10) and (1.11) and write

M 5 47 lb?in. 5 47(4.448 N)(25.4 mm)

   5 5310 N?mm 5 5.31 N?m

You can also use conversion factors to convert a numerical result 

obtained in SI units into U.S. customary units. For example, if the moment 

of a force is measured as M 5 40 N?m, follow the procedure at the end 

of Sec. 1.3 to write

M 5 40 N?m 5 (40 N?m)a 1ÿ lb

4.448 N
b a 1 ft

0.3048 m
b

Carrying out the numerical computations and canceling out units that 

appear in both the numerator and the denominator, you obtain

M 5 29.5 lb?ft

The U.S. customary units most frequently used in mechanics are 

listed in Table 1.3 with their SI equivalents.

Photo 1.2 In 1999, The Mars Climate Orbiter 
entered orbit around Mars at too low an 
altitude and disintegrated. Investigation 
showed that the software on board the 
probe interpreted force instructions in 
newtons, but the software at mission control 
on the earth was generating those 
instructions in terms of pounds.

bee87302_ch01_001-014.indd   11bee87302_ch01_001-014.indd   11 11/13/14   5:51 PM11/13/14   5:51 PM

UPLOADED BY AHMAD T JUNDI



12 Introduction

 1.5 Method of Solving Problems
You should approach a problem in mechanics as you would approach an 

actual engineering situation. By drawing on your own experience and 

intuition about physical behavior, you will find it easier to understand and 

formulate the problem. Once you have clearly stated and understood the 

problem, however, there is no place in its solution for arbitrary 

methodologies. 

The solution must be based on the six fundamental principles stated 
in Sec. 1.2 or on theorems derived from them. 

Every step you take in the solution must be justified on this basis. Strict 

rules must be followed, which lead to the solution in an almost automatic 

fashion, leaving no room for your intuition or “feeling.” After you have 

obtained an answer, you should check it. Here again, you may call upon 

Table 1.3 U.S. Customary Units and Their SI Equivalents

Quantity U.S. Customary Unit SI Equivalent

Acceleration ft/s2 0.3048 m/s2

 in./s2 0.0254 m/s2

Area ft2 0.0929 m2

 in2 645.2 mm2

Energy ft?lb 1.356 J

Force kip 4.448 kN

 lb 4.448 N

 oz 0.2780 N

Impulse lb?s 4.448 N?s

Length ft 0.3048 m

 in. 25.40 mm

 mi 1.609 km

Mass oz mass 28.35 g

 lb mass 0.4536 kg

 slug 14.59 kg

 ton 907.2 kg

Moment of a force lb?ft 1.356 N?m

 lb?in. 0.1130 N?m

Moment of inertia

 Of an area in4 0.4162 3 106 mm4

 Of a mass lb?ft?s2 1.356 kg?m2

Momentum lb?s 4.448 kg?m/s

Power ft?lb/s 1.356 W

 hp 745.7 W

Pressure or stress lb/ft2 47.88 Pa

 lb/in2 (psi) 6.895 kPa

Velocity ft/s 0.3048 m/s

 in./s 0.0254 m/s

 mi/h (mph) 0.4470 m/s

 mi/h (mph) 1.609 km/h

Volume ft3 0.02832 m3

 in3 16.39 cm3

Liquids gal 3.785 L

 qt 0.9464 L

Work ft?lb 1.356 J
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1.5 Method of Solving Problems 13

your common sense and personal experience. If you are not completely 

satisfied with the result, you should carefully check your formulation of 

the problem, the validity of the methods used for its solution, and the 

accuracy of your computations.

In general, you can usually solve problems in several different ways; 

there is no one approach that works best for everybody. However, we have 

found that students often find it helpful to have a general set of guidelines 

to use for framing problems and planning solutions. In the Sample Prob-

lems throughout this text, we use a four-step method for approaching prob-

lems, which we refer to as the SMART methodology: Strategy, Modeling, 

Analysis, and Reflect and Think.

 1. Strategy. The statement of a problem should be clear and precise, and 

it should contain the given data and indicate what information is 

required. The first step in solving the problem is to decide what con-

cepts you have learned that apply to the given situation and to connect 

the data to the required information. It is often useful to work backward 

from the information you are trying to find: Ask yourself what quanti-

ties you need to know to obtain the answer, and if some of these quanti-

ties are unknown, how can you find them from the given data.

 2. Modeling. The first step in modeling is to define the system; that is, 

clearly define what you are setting aside for analysis. After you have 

selected a system, draw a neat sketch showing all quantities involved 

with a separate diagram for each body in the problem. For equilibrium 

problems, indicate clearly the forces acting on each body along with 

any relevant geometrical data, such as lengths and angles. (These 

diagrams are known as free-body diagrams and are described in detail 

in Sec. 2.3C and the beginning of Ch. 4.) 

 3. Analysis. After you have drawn the appropriate diagrams, use the 

fundamental principles of mechanics listed in Sec. 1.2 to write equations 

expressing the conditions of rest or motion of the bodies considered. 

Each equation should be clearly related to one of the free-body dia-

grams and should be numbered. If you do not have enough equations 

to solve for the unknowns, try selecting another system, or reexamine 

your strategy to see if you can apply other principles to the problem. 

Once you have obtained enough equations, you can find a numerical 

solution by following the usual rules of algebra, neatly recording each 

step and the intermediate results. Alternatively, you can solve the 

resulting equations with your calculator or a computer. (For multipart 

problems, it is sometimes convenient to present the Modeling and 

Analysis steps together, but they are both essential parts of the overall 

process.)

 4. Reflect and Think. After you have obtained the answer, check it 

carefully. Does it make sense in the context of the original problem? 

For instance, the problem may ask for the force at a given point of a 

structure. If your answer is negative, what does that mean for the force 

at the point? 

You can often detect mistakes in reasoning by checking the units. 

For example, to determine the moment of a force of 50 N about a point 

0.60 m from its line of action, we write (Sec. 3.3A)

M 5 Fd 5 (30 N)(0.60 m) 5 30 N?m
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14 Introduction

The unit N?m obtained by multiplying newtons by meters is the correct 

unit for the moment of a force; if you had obtained another unit, you 

would know that some mistake had been made.

You can often detect errors in computation by substituting the 

numerical answer into an equation that was not used in the solution and 

verifying that the equation is satisfied. The importance of correct computa-

tions in engineering cannot be overemphasized.

 1.6 Numerical Accuracy
The accuracy of the solution to a problem depends upon two items: (1) the 

accuracy of the given data and (2) the accuracy of the computations per-

formed. The solution cannot be more accurate than the less accurate of 

these two items. 

For example, suppose the loading of a bridge is known to be 75 000 lb 

with a possible error of 100 lb either way. The relative error that measures 

the degree of accuracy of the data is

100 lb

75 000 lb
5 0.0013 5 0.13%

In computing the reaction at one of the bridge supports, it would be mean-

ingless to record it as 14 322 lb. The accuracy of the solution cannot be 

greater than 0.13%, no matter how precise the computations are, and the 

possible error in the answer may be as large as (0.13/100)(14 322 lb) ≈ 20 lb. 

The answer should be properly recorded as 14 320 6 20 lb.

In engineering problems, the data are seldom known with an accu-

racy greater than 0.2%. It is therefore seldom justified to write answers 

with an accuracy greater than 0.2%. A practical rule is to use four figures 

to record numbers beginning with a “1” and three figures in all other 

cases. Unless otherwise indicated, you should assume the data given in a 

problem are known with a comparable degree of accuracy. A force of 

40 lb, for example, should be read as 40.0 lb, and a force of 15 lb should 

be read as 15.00 lb.

Electronic calculators are widely used by practicing engineers and 

engineering students. The speed and accuracy of these calculators facili-

tate the numerical computations in the solution of many problems. How-

ever, you should not record more significant figures than can be justified 

merely because you can obtain them easily. As noted previously, an accu-

racy greater than 0.2% is seldom necessary or meaningful in the solution 

of practical engineering problems.
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Many engineering problems can be solved by considering the 

equilibrium of a “particle.” In the case of this beam that is being 

hoisted into position, a relation between the tensions in the various 

cables involved can be obtained by considering the equilibrium of 

the hook to which the cables are attached.

Statics of Particles

2
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16 Statics of Particles

Introduction

 2.1 ADDITION OF PLANAR 
FORCES

2.1A Force on a Particle: Resultant 
of Two Forces

2.1B Vectors
2.1C Addition of Vectors
2.1D Resultant of Several 

Concurrent Forces
2.1E Resolution of a Force into 

Components

 2.2 ADDING FORCES BY 
COMPONENTS

2.2A Rectangular Components of a 
Force: Unit Vectors

2.2B Addition of Forces by 
Summing X and Y
Components

 2.3 FORCES AND 
EQUILIBRIUM IN A 
PLANE

2.3A Equilibrium of a Particle
2.3B Newton’s First Law of Motion
2.3C Problems Involving the 

Equilibrium of a Particle: 
Free-Body Diagrams

 2.4 ADDING FORCES IN 
SPACE

2.4A Rectangular Components of a 
Force in Space

2.4B Force Defined by Its 
Magnitude and Two Points on 
Its Line of Action

2.4C Addition of Concurrent Forces 
in Space

 2.5 FORCES AND 
EQUILIBRIUM IN SPACE

Objectives
• Describe force as a vector quantity.

• Examine vector operations useful for the analysis of 
forces.

• Determine the resultant of multiple forces acting on 
a particle.

• Resolve forces into components.

• Add forces that have been resolved into rectangular 
components.

• Introduce the concept of the free-body diagram.

• Use free-body diagrams to assist in the analysis of 
planar and spatial  particle equilibrium problems.

Introduction
In this chapter, you will study the effect of forces acting on particles. By 

the word “particle” we do not mean only tiny bits of matter, like an atom 

or an electron. Instead, we mean that the sizes and shapes of the bodies 

under consideration do not significantly affect the solutions of the problems. 

Another way of saying this is that we assume all forces acting on a given 

body act at the same point. This does not mean the object must be tiny—if 

you were modeling the mechanics of the Milky Way galaxy, for example, 

you could treat the Sun and the entire Solar System as just a particle.

Our first step is to explain how to replace two or more forces acting 

on a given particle by a single force having the same effect as the original 

forces. This single equivalent force is called the resultant of the original 

forces. After this step, we will derive the relations among the various forces 

acting on a particle in a state of equilibrium. We will use these relations 

to determine some of the forces acting on the particle.

The first part of this chapter deals with forces contained in a single 

plane. Because two lines determine a plane, this situation arises any time 

we can reduce the problem to one of a particle subjected to two forces 

that support a third force, such as a crate suspended from two chains or 

a traffic light held in place by two cables. In the second part of this chap-

ter, we examine the more general case of forces in three-dimensional 

space.

2.1  ADDITION OF PLANAR 
FORCES

Many important practical situations in engineering involve forces in the 

same plane. These include forces acting on a pulley, projectile motion, 

and an object in equilibrium on a flat surface. We will examine this situ-

ation first before looking at the added complications of forces acting in 

three-dimensional space.
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2.1 Addition of Planar Forces 17

2.1A  Force on a Particle: Resultant 
of Two Forces

A force represents the action of one body on another. It is generally char-

acterized by its point of application, its magnitude, and its direction. 

Forces acting on a given particle, however, have the same point of applica-

tion. Thus, each force considered in this chapter is completely defined by 

its magnitude and direction.

The magnitude of a force is characterized by a certain number of units. 

As indicated in Chap. 1, the SI units used by engineers to measure the mag-

nitude of a force are the newton (N) and its multiple the kilonewton (kN), 

which is equal to 1000 N. The U.S. customary units used for the same 

purpose are the pound (lb) and its multiple the kilopound (kip), which is 

equal to 1000 lb. We saw in Chapter 1 that a force of 445 N is equivalent 

to a force of 100 lb or that a force of 100 N equals a force of about 22.5 lb.

We define the direction of a force by its line of action and the sense 

of the force. The line of action is the infinite straight line along which the 

force acts; it is characterized by the angle it forms with some fixed axis 

(Fig. 2.1). The force itself is represented by a segment of that line; through 

the use of an appropriate scale, we can choose the length of this segment 

to represent the magnitude of the force. We indicate the sense of the force 

by an arrowhead. It is important in defining a force to indicate its sense. 

Two forces having the same magnitude and the same line of action but a 

different sense, such as the forces shown in Fig. 2.1a and b, have directly 

opposite effects on a particle.

(a)

A 30°

Fixed axis Fixed axis

10 lb

(b)

A 30°
10 lb

Fig. 2.1 The line of action of a force makes an angle with a given fixed axis. 
(a) The sense of the 10-lb force is away from particle A; (b) the sense of the 
10-lb force is toward particle A.

Experimental evidence shows that two forces P and Q acting on a 

particle A (Fig. 2.2a) can be replaced by a single force R that has the 

same effect on the particle (Fig. 2.2c). This force is called the resultant 
of the forces P and Q. We can obtain R, as shown in Fig. 2.2b, by con-

structing a parallelogram, using P and Q as two adjacent sides. The diago-
nal that passes through A represents the resultant. This method for 

finding the resultant is known as the parallelogram law for the addition 

of two forces. This law is based on experimental evidence; it cannot be 

proved or derived mathematically.

2.1B Vectors
We have just seen that forces do not obey the rules of addition defined in 

ordinary arithmetic or algebra. For example, two forces  acting at a right 

angle to each other, one of 4 lb and the other of 3 lb, add up to a force of 

Fig. 2.2 (a) Two forces P and Q 
act on particle A. (b) Draw a 
parallelogram with P and Q as the 
adjacent sides and label the diagonal 
that passes through A as R. (c) R is 
the resultant of the two forces P and 
Q and is equivalent to their sum.

A

P

Q

(a)

A

P
R

Resultant

Parallelogram

Q

(b)

A

R

(c)
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18 Statics of Particles

5 lb acting at an angle between them, not to a force of 7 lb. Forces are not 

the only quantities that follow the parallelogram law of addition. As you 

will see later, displacements, velocities, accelerations, and momenta are 

other physical quantities possessing magnitude and direction that add 

according to the parallelogram law. All of these quantities can be repre-

sented mathematically by vectors. Those physical quantities that have mag-

nitude but not direction, such as volume, mass, or energy, are represented 

by plain numbers often called scalars to distinguish them from vectors.

Vectors are defined as mathematical expressions possessing 
 magnitude and direction, which add according to the parallelogram 
law. Vectors are represented by arrows in diagrams and are distinguished 

from scalar quantities in this text through the use of boldface type (P). In 

longhand writing, a vector may be denoted by drawing a short arrow above 

the letter used to represent it ( P
→

). The magnitude of a vector defines the 

length of the arrow used to represent it. In this text, we use italic type to 

denote the magnitude of a vector. Thus, the magnitude of the vector P is 

denoted by P.

A vector used to represent a force acting on a given particle has a 

well-defined point of application––namely, the particle itself. Such a vec-

tor is said to be a fixed, or bound, vector and cannot be moved without 

modifying the conditions of the problem. Other physical quantities, how-

ever, such as couples (see Chap. 3), are represented by vectors that may 

be freely moved in space; these vectors are called free vectors. Still other 

physical quantities, such as forces acting on a rigid body (see Chap. 3), 

are represented by vectors that can be moved along their lines of action; 

they are known as sliding vectors.

Two vectors that have the same magnitude and the same direction 

are said to be equal, whether or not they also have the same point of 

application (Fig. 2.3); equal vectors may be denoted by the same letter.

The negative vector of a given vector P is defined as a vector  having 

the same magnitude as P and a direction opposite to that of P (Fig. 2.4); 

the negative of the vector P is denoted by 2P. The vectors P and 2P are 

commonly referred to as equal and opposite vectors. Clearly, we have

P 1 (2P) 5 0

2.1C Addition of Vectors
By definition, vectors add according to the parallelogram law. Thus, we 

obtain the sum of two vectors P and Q by attaching the two vectors to 

the same point A and constructing a parallelogram, using P and Q as two 

adjacent sides (Fig. 2.5). The diagonal that passes through A represents 

the sum of the vectors P and Q, denoted by P 1 Q. The fact that the 

sign 1 is used for both vector and scalar addition should not cause any 

confusion if vector and scalar quantities are always carefully distinguished. 

Note that the magnitude of the vector P 1 Q is not, in general, equal to 

the sum P 1 Q of the magnitudes of the vectors P and Q.

Since the parallelogram constructed on the vectors P and Q does 

not depend upon the order in which P and Q are selected, we conclude 

that the addition of two vectors is commutative, and we write

 P 1 Q 5 Q 1 P (2.1)P 1 Q 5 Q 1 P

Fig. 2.3 Equal vectors have the same 
magnitude and the same direction, even if 
they have different points of application.

P

P

Fig. 2.4 The negative vector of a given 
vector has the same magnitude but the 
opposite direction of the given vector.

P

–P

Fig. 2.5 Using the parallelogram law to add 
two vectors.

A

P
P + Q

Q

Photo 2.1 In its purest form, a tug-of-war 
pits two opposite and almost-equal forces 
against each other. Whichever team can 
generate the larger force, wins. As you can 
see, a competitive tug-of-war can be quite 
intense.
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2.1 Addition of Planar Forces 19

From the parallelogram law, we can derive an alternative method 

for determining the sum of two vectors, known as the triangle rule. 

Consider Fig. 2.5, where the sum of the vectors P and Q has been deter-

mined by the parallelogram law. Since the side of the parallelogram oppo-

site Q is equal to Q in magnitude and direction, we could draw only half 

of the parallelogram (Fig. 2.6a). The sum of the two vectors thus can be 

found by arranging P and Q in tip-to-tail fashion and then connecting 
the tail of P with the tip of Q. If we draw the other half of the parallelo-

gram, as in Fig. 2.6b, we obtain the same result, confirming that vector 

addition is commutative.

We define subtraction of a vector as the addition of the correspond-

ing negative vector. Thus, we determine the vector P 2 Q, representing 

the difference between the vectors P and Q, by adding to P the negative 

vector 2Q (Fig. 2.7). We write

 P 2 Q 5 P 1 (2Q) (2.2)

Fig. 2.6 The triangle rule of 
vector addition. (a) Adding vector 
Q to vector P equals (b) adding 
vector P to vector Q.

A

A

P

P

Q

Q

P + Q

P + Q

(a)

(b)

Fig. 2.7 Vector subtraction: 
Subtracting vector Q from vector P 
is the same as adding vector –Q to 
vector P.

P 
– 

Q

P
P

Q

–Q

(a) (b)

A

P

Q S

P +
 Q

P + Q + S

P

Q S

P + Q + S

A

A

P

Q S

Q + S

P + Q + S

P

P

Q

Q S

S

P + Q + S

= S + Q + P

A

(a)

(b)

(c)

(d)

Fig. 2.8 Graphical addition of vectors. 
(a) Applying the triangle rule twice to add 
three vectors; (b) the vectors can be added 
in one step by the polygon rule; (c) vector 
addition is associative; (d) the order of 
addition is immaterial.

Here again we should observe that, although we use the same sign to 

denote both vector and scalar subtraction, we avoid confusion by taking 

care to distinguish between vector and scalar quantities.

We now consider the sum of three or more vectors. The sum of three 

vectors P, Q, and S is, by definition, obtained by first adding the vectors 

P and Q and then adding the vector S to the vector P 1 Q. We write

 P 1 Q 1 S 5 (P 1 Q) 1 S (2.3)

Similarly, we obtain the sum of four vectors by adding the fourth vector 

to the sum of the first three. It follows that we can obtain the sum of any 

number of vectors by applying the parallelogram law repeatedly to suc-

cessive pairs of vectors until all of the given vectors are replaced by a 

single vector.

If the given vectors are coplanar, i.e., if they are contained in the 

same plane, we can obtain their sum graphically. For this case, repeated 

application of the triangle rule is simpler than applying the parallelogram 

law. In Fig. 2.8a, we find the sum of three vectors P, Q, and S in this 

manner. The triangle rule is first applied to obtain the sum P 1 Q of the 
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20 Statics of Particles

vectors P and Q; we apply it again to obtain the sum of the vectors P 1 Q
and S. However, we could have omitted determining the vector P 1 Q
and obtain the sum of the three vectors directly, as shown in Fig. 2.8b, 

by arranging the given vectors in tip-to-tail fashion and connecting 
the tail of the first vector with the tip of the last one. This is known 

as the polygon rule for the addition of vectors.

The result would be unchanged if, as shown in Fig. 2.8c, we had 

replaced the vectors Q and S by their sum Q 1 S. We may thus write

P 1 Q 1 S 5 (P 1 Q) 1 S 5 P 1 (Q 1 S) (2.4)

which expresses the fact that vector addition is associative. Recalling that 

vector addition also has been shown to be commutative in the case of two 

vectors, we can write

 P 1 Q 1 S 5 (P 1 Q) 1 S 5 S 1 (P 1 Q) (2.5)

 5 S 1 (Q 1 P) 5 S 1 Q 1 P

This expression, as well as others we can obtain in the same way, shows 

that the order in which several vectors are added together is immaterial 

(Fig. 2.8d ).

Product of a Scalar and a Vector. It is convenient to denote the 

sum P 1 P by 2P, the sum P 1 P 1 P by 3P, and, in  general, the sum 

of n equal vectors P by the product nP. Therefore, we define the product nP
of a positive integer n and a vector P as a vector having the same direction 

as P and the magnitude nP. Extending this definition to include all scalars 

and recalling the definition of a negative vector given earlier, we define 

the product kP of a scalar k and a vector P as a vector having the same 

direction as P (if k is positive) or a direction opposite to that of P (if k is 

negative) and a magnitude equal to the product of P and the absolute value 

of k (Fig. 2.9).

2.1D  Resultant of Several Concurrent 
Forces

Consider a particle A acted upon by several coplanar forces, i.e., by several 

forces contained in the same plane (Fig. 2.10a). Since the forces all pass 

through A, they are also said to be concurrent. We can add the vectors 

representing the forces acting on A by the polygon rule (Fig. 2.10b). Since 

the use of the polygon rule is equivalent to the repeated application of the 

parallelogram law, the vector R obtained in this way represents the resul-

tant of the given concurrent forces. That is, the single force R has the 

same effect on the particle A as the given forces. As before, the order in 

which we add the vectors P, Q, and S representing the given forces is 

immaterial.

2.1E  Resolution of a Force into 
Components

We have seen that two or more forces acting on a particle may be replaced 

by a single force that has the same effect on the particle. Conversely, a single 

P 1 Q 1 S 5 (P 1 Q) 1 S 5 P 1 (Q 1 S) 

P 1.5 P

–2 P

Fig. 2.9 Multiplying a vector by a scalar 
changes the vector’s magnitude, but not its 
direction (unless the scalar is negative, in 
which case the direction is reversed).

A
A

P

P

Q

Q

S

S

(a)

R

(b)

Fig. 2.10 Concurrent forces can be added 
by the polygon rule.
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2.1 Addition of Planar Forces 21

force F acting on a particle may be replaced by two or more forces that, 

together, have the same effect on the particle. These forces are called 

components of the original force F, and the process of substituting them 

for F is called resolving the force F into components.

Clearly, each force F can be resolved into an infinite number of 

possible sets of components. Sets of two components P and Q are the 

most important as far as practical applications are concerned. However, 

even then, the number of ways in which a given force F may be resolved 

into two components is unlimited (Fig. 2.11). 

A

A
A

P

P P

Q

Q

Q

F

F
F

(a) (b)

(c)

Fig. 2.11 Three possible sets of 
components for a given force vector F.

A

P

Q

F

Fig. 2.12 When component P is known, use 
the triangle rule to find component Q.

Fig. 2.13 When the lines of action are 
known, use the parallelogram rule to 
determine components P and Q.

A

P

Q
F

In many practical problems, we start with a given vector F and want 

to determine a useful set of components. Two cases are of particular 

interest:

 1. One of the Two Components, P, Is Known. We obtain the second 

component, Q, by applying the triangle rule and joining the tip of P to 

the tip of F (Fig. 2.12). We can determine the magnitude and direction 

of Q graphically or by trigonometry. Once we have determined Q, both 

components P and Q should be applied at A.

 2. The Line of Action of Each Component Is Known. We obtain the 

magnitude and sense of the components by applying the parallelogram 

law and drawing lines through the tip of F that are parallel to the given 

lines of action (Fig. 2.13). This process leads to two well-defined com-

ponents, P and Q, which can be determined graphically or computed 

trigonometrically by applying the law of sines.

You will encounter many similar cases; for example, you might know the 

direction of one component while the magnitude of the other component 

is to be as small as possible (see Sample Prob. 2.2). In all cases, you need 

to draw the appropriate triangle or parallelogram that satisfies the given 

conditions.
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22 Statics of Particles

Sample Problem 2.1

Two forces P and Q act on a bolt A. Determine their resultant.

STRATEGY: Two lines determine a plane, so this is a problem of two 

coplanar forces. You can solve the problem graphically or by 

trigonometry.

MODELING: For a graphical solution, you can use the parallelogram 

rule or the triangle rule for addition of vectors. For a trigonometric solu-

tion, you can use the law of cosines and law of sines or use a right-triangle 

approach.

ANALYSIS: 

Graphical Solution. Draw to scale a parallelogram with sides equal 

to P and Q (Fig. 1). Measure the magnitude and direction of the resultant. 

They are

 R 5 98 N   α 5 35° R 5 98 N a 35° b

You can also use the triangle rule. Draw forces P and Q in tip-to-tail 

fashion (Fig. 2). Again measure the magnitude and direction of the resul-

tant. The answers should be the same.

 R 5 98 N   α 5 35° R 5 98 N a 35° b

Trigonometric Solution. Using the triangle rule again, you know 

two sides and the included angle (Fig. 3). Apply the law of cosines.

 R2 5 P2 1 Q2 2 2PQ cos B

 R2 5 (40 N)2 1 (60 N)2 2 2(40 N)(60 N) cos 155°

 R 5 97.73 N

Now apply the law of sines: 

 
 sin A

Q
5

 sin B

R
     sin A

60 N
5

 sin 1558

97.73 N
 (1)

Solving Eq. (1) for sin A, you obtain

 sin A 5
(60 N) sin1558

97.73 N

Using a calculator, compute this quotient, and then obtain its arc sine:

A 5 15.04°   α 5 20° 1 A 5 35.04°

Use three significant figures to record the answer (cf. Sec. 1.6):

 R 5 97.7 N a 35.0° b

Alternative Trigonometric Solution. Construct the right triangle 

BCD (Fig. 4) and compute

 CD 5 (60 N) sin 25° 5 25.36 N

 BD 5 (60 N) cos 25° 5 54.38 N

25°

20°
A

Q = 60 N

P = 40 N

A
P

Q

R

a

Fig. 1 Parallelogram law 
applied to add forces P and Q.

A
P

Q

R

�

Fig. 2 Triangle rule applied to 
add forces P and Q.

155º 25°

20°

R

B

C

P = 40 N

Q = 60 N

aA

Fig. 3 Geometry of triangle rule 
applied to add forces P and Q.

25°

20°

= 60 NQ

R

B

C

D

40

25.36

54.38

94.38

a
A

Fig. 4 Alternative geometry of 
triangle rule applied to add forces P 
and Q.
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2.1 Addition of Planar Forces 23

 Sample Problem 2.2

Two tugboats are pulling a barge. If the resultant of the forces exerted by 

the tugboats is a 5000-lb force directed along the axis of the barge, deter-

mine (a) the tension in each of the ropes, given that α 5 45°, (b) the 

value of α for which the tension in rope 2 is minimum.

STRATEGY: This is a problem of two coplanar forces. You can solve 

the first part either graphically or analytically. In the second part, a graphi-

cal approach readily shows the necessary direction for rope 2, and you 

can use an analytical approach to complete the solution.

MODELING: You can use the parallelogram law or the triangle rule to 

solve part (a). For part (b), use a variation of the triangle rule.

ANALYSIS: a. Tension for α 5 45°. 

Graphical Solution. Use the parallelogram law. The resultant (the 

diagonal of the parallelogram) is equal to 5000 lb and is directed to the 

right. Draw the sides parallel to the ropes (Fig. 1). If the drawing is done 

to scale, you should measure

 T1 5 3700 lb T2 5 2600 lb b

(continued)

Then, using triangle ACD, you have

 tan A 5
25.36 N

94.38 N
    A 5 15.048

      R 5
25.36

 sin A
    R 5 97.73 N

Again,

 α 5 20° 1 A 5 35.04° R 5 97.7 N a 35.0° b

REFLECT and THINK: An analytical solution using trigonometry pro-

vides for greater accuracy. However, it is helpful to use a graphical solu-

tion as a check.

30° 45°

30°45°

5000 lb

T1

T2

B

Fig. 1 Parallelogram law 
applied to add forces T1 
and T2.

30°
1

2
a

A

C

B
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24 Statics of Particles

Trigonometric Solution. Use the triangle rule. Note that the triangle 

in Fig. 2 represents half of the parallelogram shown in Fig. 1. Using the 

law of sines, 

T1

 sin 458
5

T2

 sin 308
5

5000 lb

 sin 1058
 

With a calculator, compute and store the value of the last quotient. Mul-

tiply this value successively by sin 45° and sin 30°, obtaining

 T1 5 3660 lb   T2 5 2590 lb b

 b. Value of α for Minimum T2. To determine the value of α for 

which the tension in rope 2 is minimum, use the triangle rule again. In 

Fig. 3, line 1-19 is the known direction of T1. Several possible directions 

of T2 are shown by the lines 2-29. The minimum value of T2 occurs when 

T1 and T2 are perpendicular (Fig. 4). Thus, the minimum value of T2 is

T2 5 (5000 lb) sin 30° 5 2500 lb

Corresponding values of T1 and α are

 T1 5 (5000 lb) cos 30° 5 4330 lb

 α 5 90° 2 30° α 5 60° b

REFLECT and THINK: Part (a) is a straightforward application of 

resolving a vector into components. The key to part (b) is recognizing that 

the minimum value of T2 occurs when T1 and T2 are perpendicular.

45° 30°

5000 lb

105°
T1

T2

B

Fig. 2 Triangle rule applied 
to add forces T1 and T2.

1

2
2

2

5000 lb
1'

2'

2'

2'

Fig. 3 Determination of direction of 
minimum T2.

30°

5000 lb

T1
T2 90°

a
B

Fig. 4 Triangle rule applied 
for minimum T2.
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25 25

The preceding sections were devoted to adding vectors by using the parallelogram 

law, triangle rule, and polygon rule with application to forces.

We presented two sample problems. In Sample Prob. 2.1, we used the parallelogram 

law to determine the resultant of two forces of known magnitude and direction. In 

Sample Prob. 2.2, we used it to resolve a given force into two components of known 

direction.

You will now be asked to solve problems on your own. Some may resemble one of 

the sample problems; others may not. What all problems and sample problems in this 

section have in common is that they can be solved by direct application of the paral-

lelogram law.

Your solution of a given problem should consist of the following steps:

1. Identify which forces are the applied forces and which is the resultant. It is 

often helpful to write the vector equation that shows how the forces are related. For 

example, in Sample Prob. 2.1 you could write

R 5 P 1 Q

You may want to keep this relation in mind as you formulate the next part of the 

solution.

2. Draw a parallelogram with the applied forces as two adjacent sides and the 
resultant as the included diagonal (Fig. 2.2). Alternatively, you can use the triangle 
rule with the applied forces drawn in tip-to-tail fashion and the resultant extending 

from the tail of the first vector to the tip of the second (Fig. 2.6).

3. Indicate all dimensions. Using one of the triangles of the parallelogram or the 

triangle constructed according to the triangle rule, indicate all dimensions—whether 

sides or angles—and determine the unknown dimensions either graphically or by 

trigonometry.

4. Recall the laws of trigonometry. If you use trigonometry, remember that the law 

of cosines should be applied first if two sides and the included angle are known 

[Sample Prob. 2.1], and the law of sines should be applied first if one side and all 

angles are known [Sample Prob. 2.2].

If you have had prior exposure to mechanics, you might be tempted to ignore the 

solution techniques of this lesson in favor of resolving the forces into rectangular 

components. The component method is important and is considered in the next sec-

tion, but use of the parallelogram law simplifies the solution of many problems and 

should be mastered first.

SOLVING PROBLEMS 
ON YOUR OWN
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Problems

 2.1 Two forces are applied as shown to a hook. Determine graphically 

the magnitude and direction of their resultant using (a) the parallelo-

gram law, (b) the triangle rule.

 2.2 Two forces are applied as shown to a bracket support. Determine 

graphically the magnitude and direction of their resultant using 

(a) the parallelogram law, (b) the triangle rule.

 2.3 Two structural members B and C are bolted to bracket A. Knowing 

that both members are in tension and that P 5 10 kN and Q 5 15 kN, 

determine graphically the magnitude and direction of the resultant 

force exerted on the bracket using (a) the parallelogram law, (b) the 

triangle rule.

 2.4 Two structural members B and C are bolted to bracket A. Knowing 

that both members are in tension and that P 5 6 kips and Q 5 4 kips, 

determine graphically the magnitude and direction of the resultant 

force exerted on the bracket using (a) the parallelogram law, (b) the 

triangle rule.

45°

30°

900 N

600 N

Fig. P2.1

500 lb

800 lb

35°

60°

Fig. P2.2

C

A

B
25°

50°

P

Q

Fig. P2.3 and P2.4
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 2.5 A stake is being pulled out of the ground by means of two ropes as 

shown. Knowing that α 5 30°, determine by trigonometry (a) the 

magnitude of the force P so that the resultant force exerted on the 

stake is vertical, (b) the corresponding magnitude of the resultant. 

120 N P

α25°

Fig. P2.5

A

B

25°15°

T1 T2

Fig. P2.6 and P2.7

30°

B

C

A
α

Fig. P2.8 and P2.9

 2.6 A telephone cable is clamped at A to the pole AB. Knowing that the 

tension in the left-hand portion of the cable is T1 5 800 lb, determine 

by trigonometry (a) the required tension T2 in the right-hand portion 

if the resultant R of the forces exerted by the cable at A is to be 

vertical, (b) the corresponding magnitude of R.

2.7 A telephone cable is clamped at A to the pole AB. Knowing that the 

tension in the right-hand portion of the cable is T2 5 1000 lb, deter-

mine by trigonometry (a) the required tension T1 in the left-hand 

portion if the resultant R of the forces exerted by the cable at A is 

to be vertical, (b) the corresponding magnitude of R.

 2.8 A disabled automobile is pulled by means of two ropes as shown. 

The tension in rope AB is 2.2 kN, and the angle α is 25°. Knowing 

that the resultant of the two forces applied at A is directed along the 

axis of the automobile, determine by trigonometry (a) the tension in 

rope AC, (b) the magnitude of the resultant of the two forces applied 

at A.

 2.9 A disabled automobile is pulled by means of two ropes as shown. 

Knowing that the tension in rope AB is 3 kN, determine by trigo-

nometry the tension in rope AC and the value of α so that the resul-

tant force exerted at A is a 4.8-kN force directed along the axis of 

the automobile.
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 2.10 Two forces are applied as shown to a hook support. Knowing that 

the magnitude of P is 35 N, determine by trigonometry (a) the 

required angle α if the resultant R of the two forces applied to the 

support is to be horizontal, (b) the corresponding magnitude of R.

Fig. P2.19 and P2.20

A

55°

25°

85°
P

Q

50 N

25°

P

a

Fig. P2.10
425 lb

A
P

30° a

Fig. P2.11, P2.12 and P2.13

 2.11 A steel tank is to be positioned in an excavation. Knowing that 

α 5 20°, determine by trigonometry (a) the required magnitude of 

the force P if the resultant R of the two forces applied at A is to be 

vertical, (b) the corresponding magnitude of R.

 2.12 A steel tank is to be positioned in an excavation. Knowing that the 

magnitude of P is 500 lb, determine by trigonometry (a) the required 

angle α if the resultant R of the two forces applied at A is to be 

vertical, (b) the corresponding magnitude of R.

 2.13 A steel tank is to be positioned in an excavation. Determine by trigo-

nometry (a) the magnitude and direction of the smallest force P for 

which the resultant R of the two forces applied at A is vertical, 

(b) the corresponding magnitude of R.

 2.14 For the hook support of Prob. 2.10, determine by trigonometry 

(a) the magnitude and direction of the smallest force P for which 

the resultant R of the two forces applied to the support is horizontal, 

(b) the corresponding magnitude of R.

 2.15 For the hook support shown, determine by trigonometry the magni-

tude and direction of the resultant of the two forces applied to the 

support.

 2.16 Solve Prob. 2.1 by trigonometry.

 2.17 Solve Prob. 2.4 by trigonometry.

2.18 For the stake of Prob. 2.5, knowing that the tension in one rope is 

120 N, determine by trigonometry the magnitude and direction of 

the force P so that the resultant is a vertical force of 160 N.

 2.19 Two forces P and Q are applied to the lid of a storage bin as shown. 

Knowing that P 5 48 N and Q 5 60 N, determine by trigonometry 

the magnitude and direction of the resultant of the two forces.

2.20 Two forces P and Q are applied to the lid of a storage bin as shown. 

Knowing that P 5 60 N and Q 5 48 N, determine by trigonometry 

the magnitude and direction of the resultant of the two forces.

25° 45°

200 lb

300 lb

Fig. P2.15
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2.2 Adding Forces by Components 29

2.2  ADDING FORCES BY 
COMPONENTS

In Sec. 2.1E, we described how to resolve a force into components. Here we 

discuss how to add forces by using their components, especially rectangular 

components. This method is often the most convenient way to add forces 

and, in practice, is the most common approach. (Note that we can readily 

extend the properties of vectors established in this section to the rectangular 

components of any vector quantity, such as velocity or momentum.)

2.2A  Rectangular Components of a 
Force: Unit Vectors

In many problems, it is useful to resolve a force into two components that 

are perpendicular to each other. Figure 2.14 shows a force F resolved into 

a component Fx along the x axis and a component Fy along the y axis. 

The parallelogram drawn to obtain the two components is a rectangle, and 

Fx and Fy are called rectangular components.

The x and y axes are usually chosen to be horizontal and vertical, 

respectively, as in Fig. 2.14; they may, however, be chosen in any two 

perpendicular directions, as shown in Fig. 2.15. In determining the 

O

F
Fy

Fx
x

y

�

Fig. 2.14 Rectangular components of a 
force F.

Fy
Fx

F
x

y

O

�

Fig. 2.15 Rectangular components of a force F 
for axes rotated away from horizontal and vertical.

x

y

Magnitude = 1j

i

Fig. 2.16 Unit vectors along the x and y axes.

rectangular components of a force, you should think of the construction 

lines shown in Figs. 2.14 and 2.15 as being parallel to the x and y axes, 

rather than perpendicular to these axes. This practice will help avoid mis-

takes in determining oblique components, as in Sec. 2.1E.

Force in Terms of Unit Vectors. To simplify working with rect-

angular components, we introduce two vectors of unit magnitude, directed 

respectively along the positive x and y axes. These vectors are called unit 
vectors and are denoted by i and j, respectively (Fig. 2.16). Recalling the 
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30 Statics of Particles

definition of the product of a scalar and a vector given in Sec. 2.1C, note 

that we can obtain the rectangular components Fx and Fy of a force F by 

multiplying respectively the unit vectors i and j by appropriate scalars 

(Fig. 2.17). We have

 Fx 5 Fxi   Fy 5 Fyj (2.6)

and

 F 5 Fx i 1 F y j (2.7)

The scalars Fx and Fy may be positive or negative, depending upon the 

sense of Fx and of Fy, but their absolute values are equal to the magnitudes 

of the component forces Fx and Fy, respectively. The scalars Fx and Fy are 

called the scalar components of the force F, whereas the actual component 

forces Fx and Fy should be referred to as the vector components of F. 

However, when there exists no possibility of  confusion, we may refer to 

the vector as well as the scalar components of F as simply the components
of F. Note that the scalar component Fx is positive when the vector com-

ponent Fx has the same sense as the unit vector i (i.e., the same sense as 

the positive x axis) and is negative when Fx has the opposite sense. A simi-

lar conclusion holds for the sign of the scalar component Fy.

Scalar Components. Denoting by F the magnitude of the force F 

and by θ the angle between F and the x axis, which is measured counter-

clockwise from the positive x axis (Fig. 2.17), we may express the scalar 

components of F as 

 Fx 5 F cos θ   Fy 5 F sin θ (2.8)

These relations hold for any value of the angle θ from 0° to 360°, and 

they define the signs as well as the absolute values of the scalar compo-

nents Fx and Fy.

F 5 Fx F i 1 F y j

FxF 5 F cos θ   θ FyFF 5 F sin F θ

Concept Application 2.1

A force of 800 N is exerted on a bolt A as shown in Fig. 2.18a. Determine 

the horizontal and vertical components of the force.

Solution

In order to obtain the correct sign for the scalar components Fx and Fy, 

we could substitute the value 180° 2 35° 5 145° for θ in Eqs. (2.8). 

However, it is often more practical to determine by inspection the signs 

of Fx and Fy (Fig. 2.18b) and then use the trigonometric functions of the 

angle α 5 35°. Therefore,

Fx 5 2F cos α 5 2(800 N) cos 35° 5 2655 N

 Fy 5 1F sin α 5 1(800 N) sin 35° 5 1459 N

The vector components of F are thus

Fx 5 2(655 N)i   Fy 5 1(459 N)j

and we may write F in the form

 F 5 2(655 N)i 1 (459 N)j b
Fig. 2.18 (a) Force F exerted on a bolt; 
(b) rectangular components of F.

F = 800 N

F = 800 N

35º

A

A

(a)

(b)

x

y

Fy

Fx

� = 35º

� = 145º

F

x

y

Fy = Fy j = F sin �j

Fx = Fx i = F cos �i

j

i

�

Fig. 2.17 Expressing the components of F in 
terms of unit vectors with scalar multipliers.
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2.2 Adding Forces by Components 31

Concept Application 2.2

A man pulls with a force of 300 N on a rope attached to the top of a 

building, as shown in Fig. 2.19a. What are the horizontal and vertical 

components of the force exerted by the rope at point A?

Solution

You can see from Fig. 2.19b that

Fx 5 1(300 N) cos α   Fy 5 2(300 N) sin α

Observing that AB 5 10 m, we find from Fig. 2.19a

 cos  α 5
8 m

AB
5

8 m

10 m
5

4

5
       sin  α 5

6 m

AB
5

6 m

10 m
5

3

5

We thus obtain

Fx 5 1(300 N)
4

5
5 1240 N      Fy 5 2(300 N)

3

5
5 2180 N

This gives us a total force of

F 5 (240 N)i 2 (180 N)j b

Fig. 2.19 (a) A man pulls on a rope attached to a building; (b) components 
of the rope’s force F.

(a)

6 m

8 m

A

B

�

(b)

F = 300 N

A

Fy

Fx

x

y

�

�

Direction of a Force. When a force F is defined by its rectangular 

components Fx and Fy (see Fig. 2.17), we can find the angle θ defining 

its direction from

 tan θ 5
Fy

Fx
 (2.9)

We can obtain the magnitude F of the force by applying the Pythagorean 

theorem, 

F 5 2F  x
2 1 F  y

2 (2.10)

or by solving for F from one of the Eqs. (2.8).
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32 Statics of Particles

Concept Application 2.3

A force F 5 (700 lb)i 1 (1500 lb)j is applied to a bolt A. Determine the 

magnitude of the force and the angle θ it forms with the horizontal.

Solution

First draw a diagram showing the two rectangular components of the force 

and the angle θ (Fig. 2.20). From Eq. (2.9), you obtain

 tan θ 5
Fy

Fx
5

1500 lb

700 lb

 Using a calculator, enter 1500 lb and divide by 700 lb; computing the 

arc tangent of the quotient gives you θ 5 65.0°. Solve the second of 

Eqs. (2.8) for F to get

F 5
Fy

 sin θ
5

1500 lb

 sin 65.08
5 1655 lb

The last calculation is easier if you store the value of Fy when originally 

entered; you may then recall it and divide it by sin θ.

Fig. 2.20 Components of a force F 
exerted on a bolt.

A x

y

F

Fx = (700 lb) i

F
y 

= 
(1

50
0 

lb
)j

�

2.2B  Addition of Forces by Summing 
X and Y Components

We described in Sec. 2.1A how to add forces according to the parallelo-

gram law. From this law, we derived two other methods that are more 

readily applicable to the graphical solution of problems: the triangle rule 

for the addition of two forces and the polygon rule for the addition of 

three or more forces. We also explained that the force triangle used to 

define the resultant of two forces could be used to obtain a trigonometric 
solution.

However, when we need to add three or more forces, we cannot 

obtain any practical trigonometric solution from the force polygon that 

defines the resultant of the forces. In this case, the best approach is to 

obtain an analytic solution of the problem by resolving each force into 

two rectangular components. 

Consider, for instance, three forces P, Q, and S acting on a particle A 

(Fig. 2.21a). Their resultant R is defined by the relation

 R 5 P 1 Q 1 S (2.11)

Resolving each force into its rectangular components, we have

 Rx i 1 R y j 5 Px i 1 Py j 1 Qx i 1 Qy j 1 Sx i 1 Sy j

 5 (Px 1 Qx 1 Sx )i 1 (Py 1 Qy 1 Sy)j

S

P

Q

A

(a)

Fig. 2.21 (a) Three forces 
acting on a particle.
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2.2 Adding Forces by Components 33

From this equation, we can see that

 Rx 5 Px 1 Qx 1 Sx    Ry 5 Py 1 Qy 1 Sy (2.12)

or for short,

 Rx 5 oFx    Ry 5 oFy (2.13)

We thus conclude that when several forces are acting on a particle, we 
obtain the scalar components Rx and Ry of the resultant R by adding 
algebraically the corresponding scalar components of the given forces. 
(Clearly, this result also applies to the addition of other vector quantities, 
such as velocities, accelerations, or momenta.)

In practice, determining the resultant R is carried out in three steps, 

as illustrated in Fig. 2.21. 

 1. Resolve the given forces (Fig. 2.21a) into their x and y components 

(Fig. 2.21b). 

(d )

A

R

q

Fig. 2.21 (d) Determining the 
resultant from its components.

(b)

A

Py j

Sy j

Sx i

Qy j

Qxi Px i

Fig. 2.21 (b) Rectangular 
components of each force.

 2. Add these components to obtain the x and y components of R 

(Fig. 2.21c). 

(c)

A

Ry j

R x i

Fig. 2.21 (c) Summation of 
the components.

 3. Apply the parallelogram law to determine the resultant R 5 Rx i 1 Ry j 
(Fig. 2.21d ). 

The procedure just described is most efficiently carried out if you 

arrange the computations in a table (see Sample Problem 2.3). Although 

this is the only practical analytic method for adding three or more forces, 

it is also often preferred to the trigonometric solution in the case of adding 

two forces.
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34 Statics of Particles

Sample Problem 2.3

Four forces act on bolt A as shown. Determine the resultant of the forces 

on the bolt.

STRATEGY: The simplest way to approach a problem of adding four 

forces is to resolve the forces into components.

MODELING: As we mentioned, solving this kind of problem is usually 

easier if you arrange the components of each force in a table. In the table 

below, we entered the x and y components of each force as determined 

by trigonometry (Fig. 1). According to the convention adopted in this 

section, the scalar number representing a force component is positive if 

the force component has the same sense as the corresponding coordinate 

axis. Thus, x components acting to the right and y components acting 

upward are represented by positive numbers.

ANALYSIS: 

Force Magnitude, N x Component, N y Component, N

F1 150 1129.9 175.0

F2 80 227.4 175.2

F3 110 0 2110.0

F4 100 196.6 225.9

  Rx 5 1199.1 Ry 5 114.3

Thus, the resultant R of the four forces is

 R 5 Rx i 1 R y j   R 5 (199.1 N)i 1 (14.3 N)j b

You can now determine the magnitude and direction of the resultant. 

From the triangle shown in Fig. 2, you have

 tan α 5
Ry

Rx
5

14.3 N

199.1 N
    α 5 4.18

      R 5
14.3 N

sinα
5 199.6 N    R 5 199.6 N a 4.1° b

F2 = 80 N F1 = 150 N

F3 = 110 N

F4 = 100 N

20°

30°

15° x

y

A

(F2 cos 20°) j

(F1 sin 30°) j

(F1 cos 30°) i

–(F2 sin 20°) i
(F4 cos 15°) i

–(F4 sin 15°) j

–F3 j

Fig. 1 Rectangular components of 
each force.

R

Ry = (14.3 N) j Rx = (199.1 N) i

a

Fig. 2 Resultant of the given force 
system.

REFLECT and THINK: Arranging data in a table not only helps you 

keep track of the calculations, but also makes things simpler for using a 

calculator on similar computations.
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35 35

You saw in the preceding lesson that we can determine the resultant of two forces 

either graphically or from the trigonometry of an oblique triangle.

A. When three or more forces are involved, the best way to determine their 
resultant R is by first resolving each force into rectangular components. You may 

encounter either of two cases, depending upon the way in which each of the given 

forces is defined.

Case 1. The force F is defined by its magnitude F and the angle α it forms with 
the x axis. Obtain the x and y components of the force by multiplying F by cos α

and sin α, respectively [Concept Application 2.1].

Case 2. The force F is defined by its magnitude F and the coordinates of two 
points A and B on its line of action (Fig. 2.19). Find the angle α that F forms with 

the x axis by trigonometry, and then use the process of Case 1. However, you can 

also find the components of F directly from proportions among the various dimensions 

involved without actually determining α [Concept Application 2.2].

B. Rectangular components of the resultant. Obtain the components Rx and Ry of 

the resultant by adding the corresponding components of the given forces algebraically 

[Sample Prob. 2.3].

You can express the resultant in vectorial form using the unit vectors i and j, which 

are directed along the x and y axes, respectively:

R 5 R x i 1 R y j

Alternatively, you can determine the magnitude and direction of the resultant by solv-

ing the right triangle of sides Rx and Ry for R and for the angle that R forms with the 

x axis.

SOLVING PROBLEMS 
ON YOUR OWN
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Problems

 2.21 and 2.22 Determine the x and y components of each of the forces 

shown.

A

C

B

720 mm

650 mm

Fig. P2.25

29 lb

51 lbO x

y

90 in.

96 in.

28 in.
84 in.

80 in.

48 in.

50 lb

Fig. P2.21

O

Dimensions
in mm

424 N 408 N

800 N

x

y

900

800

600

560 480

Fig. P2.22

60 lb

50 lb
40 lb

25°

y

x

60°

50°

Fig. P2.24

80 N

120 N

150 N 30°

35° 40°

y

x

Fig. P2.23

 2.23 and 2.24 Determine the x and y components of each of the forces 

shown.

2.25 Member BC exerts on member AC a force P directed along line BC. 

Knowing that P must have a 325-N horizontal component, determine 

(a) the magnitude of the force P, (b) its vertical component.
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 2.26 Member BD exerts on member ABC a force P directed along line 

BD. Knowing that P must have a 300-lb horizontal component, deter-

mine (a) the magnitude of the force P, (b) its vertical component.

 2.27 The hydraulic cylinder BC exerts on member AB a force P directed 

along line BC. Knowing that P must have a 600-N component per-

pendicular to member AB, determine (a) the magnitude of the 

force P, (b) its component along line AB.

A

B

C D

35°

Q

Fig. P2.26

45°
30°

B

A

M

C

Fig. P2.27

A

B

C

55°

Q

Fig. P2.28

60°

50°

B

C

D

A

Q

Fig. P2.29

 2.28 Cable AC exerts on beam AB a force P directed along line AC. 

Knowing that P must have a 350-lb vertical component, determine 

(a) the magnitude of the force P, (b) its horizontal component.

 2.29 The hydraulic cylinder BD exerts on member ABC a force P directed 

along line BD. Knowing that P must have a 750-N component per-

pendicular to member ABC, determine (a) the magnitude of the 

force P, (b) its component parallel to ABC.

2.30 The guy wire BD exerts on the telephone pole AC a force P directed 

along BD. Knowing that P must have a 720-N component perpen-

dicular to the pole AC, determine (a) the magnitude of the force P, 

(b) its component along line AC.

 2.31 Determine the resultant of the three forces of Prob. 2.21.

 2.32 Determine the resultant of the three forces of Prob. 2.23.

2.33 Determine the resultant of the three forces of Prob. 2.24.

 2.34 Determine the resultant of the three forces of Prob. 2.22.

A

B

C D

7 m

2.4 m

Fig. P2.30
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 2.35 Knowing that α 5 35°, determine the resultant of the three forces 

shown.

200 N

150 N

100 N
30°

aa

Fig. P2.35

500 N

200 N

7
25

24

5
3

4

A B

C

L = 1460 mm

1100 mm

960 mm

Fig. P2.36

120 lb

80 lb

60 lb

a

a'

α
α

20°

Fig. P2.37 and P2.38

75 lb
50 lb

25°

65°

35°

A

B

C

Fig. P2.41

 2.36 Knowing that the tension in rope AC is 365 N, determine the resul-

tant of the three forces exerted at point C of post BC.

 2.37 Knowing that α 5 40°, determine the resultant of the three forces 

shown. 

2.38 Knowing that α 5 75°, determine the resultant of the three forces 

shown.

 2.39 For the collar of Prob. 2.35, determine (a) the required value of α 

if the resultant of the three forces shown is to be vertical, (b) the 

corresponding magnitude of the resultant.

 2.40 For the post of Prob. 2.36, determine (a) the required tension in rope 

AC if the resultant of the three forces exerted at point C is to be 

horizontal, (b) the corresponding magnitude of the resultant.

 2.41 Determine (a) the required tension in cable AC, knowing that the 

resultant of the three forces exerted at point C of boom BC must be 

directed along BC, (b) the corresponding magnitude of the 

resultant.

 2.42 For the block of Probs. 2.37 and 2.38, determine (a) the required 

value of α if the resultant of the three forces shown is to be parallel 

to the incline, (b) the corresponding magnitude of the resultant.
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2.3 Forces and Equilibrium in a Plane 39

2.3  FORCES AND EQUILIBRIUM 
IN A PLANE

Now that we have seen how to add forces, we can proceed to one of the 

key concepts in this course: the equilibrium of a particle. The connection 

between equilibrium and the sum of forces is very direct: a particle can 

be in equilibrium only when the sum of the forces acting on it is zero.

2.3A Equilibrium of a Particle
In the preceding sections, we discussed methods for determining the resul-

tant of several forces acting on a particle. Although it has not occurred in 

any of the problems considered so far, it is quite possible for the resultant 

to be zero. In such a case, the net effect of the given forces is zero, and 

the particle is said to be in equilibrium. We thus have the definition: 

When the resultant of all the forces acting on a particle is zero, the 
particle is in equilibrium.

A particle acted upon by two forces is in equilibrium if the two 

forces have the same magnitude and the same line of action but opposite 

sense. The resultant of the two forces is then zero, as shown in Fig. 2.22.

Another case of equilibrium of a particle is represented in Fig. 2.23a, 

where four forces are shown acting on particle A. In Fig. 2.23b, we use 

the polygon rule to determine the resultant of the given forces. Starting 

from point O with F1 and arranging the forces in tip-to-tail fashion, we 

find that the tip of F4 coincides with the starting point O. Thus, the 

resultant R of the given system of forces is zero, and the particle is in 

equilibrium.

A

100 lb

100 lb

Fig. 2.22 When a 
particle is in equilibrium, 
the resultant of all forces 
acting on the particle 
is zero.

Fig. 2.23 (a) Four forces acting on particle A; (b) using the polygon law to 
find the resultant of the forces in (a), which is zero because the particle is 
in equilibrium.

A

F1 = 300 lb

F2 = 173.2 lb

F4 = 400 lb

F3 = 200 lb

30º

30º

(a)

F4 = 400 lb

F1 = 300 lb

F3 = 200 lb

F2 = 173.2 lb

O

(b)

Photo 2.2 Forces acting on the carabiner 
include the weight of the girl and her 
harness, and the force exerted by the pulley 
attachment. Treating the carabiner as a 
particle, it is in equilibrium because the 
resultant of all forces acting on it is zero.

The closed polygon drawn in Fig. 2.23b provides a graphical expres-

sion of the equilibrium of A. To express algebraically the conditions for 

the equilibrium of a particle, we write

Equilibrium of a particle R 5 oF 5 0 (2.14)R 5 oF 5 0
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40 Statics of Particles

Resolving each force F into rectangular components, we have

o (F x i 1 Fy j) 5 0 or (o F x )i 1 (o F y ) j 5 0

We conclude that the necessary and sufficient conditions for the equilib-

rium of a particle are

Equilibrium of a particle 
(scalar equations)

 o Fx 5 0 o Fy 5 0 (2.15)

Returning to the particle shown in Fig. 2.23, we can check that the equi-

librium conditions are satisfied. We have

o Fx 5 300 lb 2 (200 lb) sin 30° 2 (400 lb) sin 30°

5 300 lb 2 100 lb 2 200 lb 5 0

 o Fy 5 2173.2 lb 2 (200 lb) cos 30° 1 (400 lb) cos 30°

 5 2173.2 lb 2 173.2 lb 1 346.4 lb 5 0

2.3B Newton’s First Law of Motion
As we discussed in Section 1.2, Sir Isaac Newton formulated three fun-

damental laws upon which the science of mechanics is based. The first of 

these laws can be stated as:

If the resultant force acting on a particle is zero, the particle will 
remain at rest (if originally at rest) or will move with constant speed 
in a straight line (if originally in motion).

From this law and from the definition of equilibrium just presented, 

we can see that a particle in equilibrium is either at rest or moving in a 

straight line with constant speed. If a particle does not behave in either 

of these ways, it is not in equilibrium, and the resultant force on it is not 

zero. In the following section, we consider various problems concerning 

the equilibrium of a particle. 

Note that most of statics involves using Newton’s first law to ana-

lyze an equilibrium situation. In practice, this means designing a bridge 

or a building that remains stable and does not fall over. It also means 

understanding the forces that might act to disturb equilibrium, such as a 

strong wind or a flood of water. The basic idea is pretty simple, but the 

applications can be quite complicated.

2.3C  Free-Body Diagrams and Problem 
Solving

In practice, a problem in engineering mechanics is derived from an actual 

physical situation. A sketch showing the physical conditions of the problem 

is known as a space diagram.

The methods of analysis discussed in the preceding sections apply 

to a system of forces acting on a particle. A large number of problems 

involving actual structures, however, can be reduced to problems concern-

ing the equilibrium of a particle. The method is to choose a significant 

particle and draw a separate diagram showing this particle and all the 

o FxF 5 0 oFyFF 5 0
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2.3 Forces and Equilibrium in a Plane 41

forces acting on it. Such a diagram is called a free-body diagram. (The 

name derives from the fact that when drawing the chosen body, or particle, 

it is “free” from all other bodies in the actual situation.)

As an example, consider the 75-kg crate shown in the space diagram 

of Fig. 2.24a. This crate was lying between two buildings, and is now 

being lifted onto a truck, which will remove it. The crate is supported by 

a vertical cable that is joined at A to two ropes, which pass over pulleys 

attached to the buildings at B and C. We want to determine the tension in 

each of the ropes AB and AC.

In order to solve this problem, we first draw a free-body diagram 

showing a particle in equilibrium. Since we are interested in the rope ten-

sions, the free-body diagram should include at least one of these tensions or, 

if possible, both tensions. You can see that point A is a good free body for 

this problem. The free-body diagram of point A is shown in Fig. 2.24b. It 

shows point A and the forces exerted on A by the vertical cable and the two 

ropes. The force exerted by the cable is directed downward, and its magni-

tude is equal to the weight W of the crate. Recalling Eq. (1.4), we write

W 5 mg 5 (75 kg)(9.81 m/s2) 5 736 N

and indicate this value in the free-body diagram. The forces exerted by 

the two ropes are not known. Since they are respectively equal in magni-

tude to the tensions in rope AB and rope AC, we denote them by TAB and 

TAC and draw them away from A in the directions shown in the space 

diagram. No other detail is included in the free-body diagram.

Since point A is in equilibrium, the three forces acting on it must 

form a closed triangle when drawn in tip-to-tail fashion. We have drawn 

this force triangle in Fig. 2.24c. The values TAB and TAC of the tensions 

in the ropes may be found graphically if the triangle is drawn to scale, or 

they may be found by trigonometry. If we choose trigonometry, we use 

the law of sines: 

TAB

 sin 608
5

TAC

 sin 408
5

736 N

 sin 808

TAB 5 647 N TAC 5 480 N

When a particle is in equilibrium under three forces, you can solve 

the problem by drawing a force triangle. When a particle is in equilibrium 

under more than three forces, you can solve the problem graphically by 

drawing a force polygon. If you need an analytic solution, you should 

solve the equations of equilibrium given in Sec. 2.3A:

 oFx 5 0 oFy 5 0  (2.15)

These equations can be solved for no more than two unknowns. Similarly, 

the force triangle used in the case of equilibrium under three forces can 

be solved for only two unknowns.

The most common types of problems are those in which the two 

unknowns represent (1) the two components (or the magnitude and direc-

tion) of a single force or (2) the magnitudes of two forces, each of known 

direction. Problems involving the determination of the maximum or mini-

mum value of the magnitude of a force are also encountered (see Probs. 2.57 

through 2.61).

TAB
TAC

A

A

B

C

50º 30º

50º 30º

(a) Space diagram

(b) Free-body diagram (c) Force triangle

736 N

TAB

TAC

736 N

40º

60º
80º

Fig. 2.24 (a) The space diagram shows the 
physical situation of the problem; (b) the 
free-body diagram shows one central particle 
and the forces acting on it; (c) the force 
triangle can be solved with the law of sines. 
Note that the forces form a closed triangle 
because the particle is in equilibrium and the 
resultant force is zero.

Photo 2.3 As illustrated in Fig. 2.24, it is 
possible to determine the tensions in the 
cables supporting the shaft shown by 
treating the hook as a particle and then 
applying the equations of equilibrium to the 
forces acting on the hook.
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42 Statics of Particles

Sample Problem 2.4

In a ship-unloading operation, a 3500-lb automobile is supported by a 

cable. A worker ties a rope to the cable at A and pulls on it in order to 

center the automobile over its intended position on the dock. At the 

moment illustrated, the automobile is stationary, the angle between the 

cable and the vertical is 2°, and the angle between the rope and the hori-

zontal is 30°. What are the tensions in the rope and cable?

STRATEGY: This is a problem of equilibrium under three coplanar 

forces. You can treat point A as a particle and solve the problem using a 

force triangle.

MODELING and ANALYSIS:

Free-Body Diagram. Choose point A as the particle and draw the 

complete free-body diagram (Fig. 1). TAB is the tension in the cable AB, 

and TAC is the tension in the rope.

Equilibrium Condition. Since only three forces act on point A, draw 

a force triangle to express that it is in equilibrium (Fig. 2). Using the law 

of sines, 

TAB

 sin 1208
5

TAC

 sin 28
5

3500 lb

 sin 588

 With a calculator, compute and store the value of the last quotient. 

Multiplying this value successively by sin 120° and sin 2°, you obtain

TAB 5 3570 lb   TAC 5 144 lb b

REFLECT and THINK: This is a common problem of knowing one 

force in a three-force equilibrium problem and calculating the other forces 

from the given geometry. This basic type of problem will occur often as 

part of more complicated situations in this text.

2°

30°
A

C

B

TAB

TAC

2°

30°
A

3500 lb

Fig. 1 Free-body 
diagram of particle A.

TAB

TAC

2°

3500 lb

120°

58°

Fig. 2 Force triangle of the 
forces acting on particle A.
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2.3 Forces and Equilibrium in a Plane 43

Sample Problem 2.5

Determine the magnitude and direction of the smallest force F that main-

tains the 30-kg package shown in equilibrium. Note that the force exerted 

by the rollers on the package is perpendicular to the incline.

STRATEGY: This is an equilibrium problem with three coplanar forces 

that you can solve with a force triangle. The new wrinkle is to determine 

a minimum force. You can approach this part of the solution in a way 

similar to Sample Problem 2.2.

MODELING and ANALYSIS:

Free-Body Diagram. Choose the package as a free body, assuming 

that it can be treated as a particle. Then draw the corresponding free-body 

diagram (Fig. 1).

Equilibrium Condition. Since only three forces act on the free body, 

draw a force triangle to express that it is in equilibrium (Fig. 2). Line 1-19 

represents the known direction of P. In order to obtain the minimum value 

of the force F, choose the direction of F to be perpendicular to that of P. 

From the geometry of this triangle, 

F 5 (294 N) sin 15° 5 76.1 N   α 5 15°

F 5 76.1 N b15° b

REFLECT and THINK: Determining maximum and minimum forces 

to maintain equilibrium is a common practical problem. Here the force 

needed is about 25% of the weight of the package, which seems reason-

able for an incline of 15°.

Sample Problem 2.6

For a new sailboat, a designer wants to determine the drag force that may 

be expected at a given speed. To do so, she places a model of the proposed 

hull in a test channel and uses three cables to keep its bow on the center-

line of the channel. Dynamometer readings indicate that for a given speed, 

the tension is 40 lb in cable AB and 60 lb in cable AE. Determine the 

drag force exerted on the hull and the tension in cable AC.

STRATEGY: The cables all connect at point A, so you can treat that as 

a particle in equilibrium. Because four forces act at A (tensions in three 

cables and the drag force), you should use the equilibrium conditions and 

sum forces by components to solve for the unknown forces.

15°

30 kg F
�

15°

FP

W = (30 kg)(9.81 m/s2)
     = 294 N

�

Fig. 1 Free-body diagram 
of package, treated as a 
particle.

F

P

15°

1

1'

294 N

�

Fig. 2 Force triangle of the 
forces acting on package.

Flow A

B C

E

4 ft

4 ft

7 ft 1.5 ft

a
b

(continued)
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44 Statics of Particles

MODELING and ANALYSIS: 

Determining the Angles. First, determine the angles α and β defin-

ing the direction of cables AB and AC:

 tan α 5
7 ft

4 ft
5 1.75         tan β 5

1.5 ft

4 ft
5 0.375

       α 5 60.268         β 5 20.568

Free-Body Diagram. Choosing point A as a free body, draw the free-

body diagram (Fig. 1). It includes the forces exerted by the three cables 

on the hull, as well as the drag force FD exerted by the flow.

Equilibrium Condition. Because point A is in equilibrium, the resul-

tant of all forces is zero:

 R 5 TAB 1 TAC 1 TAE 1 FD 5 0 (1)

Because more than three forces are involved, resolve the forces into x and 

y components (Fig. 2):

 TAB 5 2(40 lb) sin 60.26°i 1 (40 lb) cos 60.26°j

 5 2(34.73 lb)i 1 (19.84 lb)j

 TAC 5 TAC sin 20.56°i 1 TAC cos 20.56°j

 5 0.3512TAC i 1 0.9363TAC j

 TAE 5 2(60 lb)j

 FD 5 FDi

Substituting these expressions into Eq. (1) and factoring the unit vectors i 
and j, you have

(234.73 lb 1 0.3512TAC 1 FD)i 1 (19.84 lb 1 0.9363TAC 2 60 lb)j 5 0

This equation is satisfied if, and only if, the coefficients of i and j are 

each equal to zero. You obtain the following two equilibrium equations, 

which express, respectively, that the sum of the x components and the sum 

of the y components of the given forces must be zero.

 (oFx 5 0:)  234.73 lb 1 0.3512TAC 1 FD 5 0 (2)

 (oFy 5 0:)  19.84 lb 1 0.9363TAC 2 60 lb 5 0 (3)

From Eq. (3), you find  

TAC 5 142.9 lb b
Substituting this value into Eq. (2) yields  

FD 5 119.66 lb b

REFLECT and THINK: In drawing the free-body diagram, you assumed 

a sense for each unknown force. A positive sign in the answer indicates 

that the assumed sense is correct. You can draw the complete force poly-

gon (Fig. 3) to check the results.

TAC

FD

TAB = 40 lb

TAE = 60 lb

a = 60.26°

b = 20.56°

A

Fig. 1 Free-body diagram of 
particle A.

FDi

TAC sin 20.56°i

TAC cos 20.56°j

20.56°
60.26°

(40 lb) cos 60.26°j

–(40 lb) sin 60.26°i

–(60 lb)j

y

xA

Fig. 2 Rectangular components of 
forces acting on particle A.

TAC = 42.9 lb

TAE = 60 lb

TAB = 40 lb

FD = 19.66 lb

b = 20.56°

a = 60.26°

Fig. 3 Force polygon of forces 
acting on particle A.
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45 45

When a particle is in equilibrium, the resultant of the forces acting on the particle 

must be zero. Expressing this fact in the case of a particle under coplanar 
forces provides you with two relations among these forces. As in the preceding sample 

problems, you can use these relations to determine two unknowns—such as the mag-

nitude and direction of one force or the magnitudes of two forces.

Drawing a clear and accurate free-body diagram is a must in the solution of any 
equilibrium problem. This diagram shows the particle and all of the forces acting 

on it. Indicate in your free-body diagram the magnitudes of known forces, as well as 

any angle or dimensions that define the direction of a force. Any unknown magnitude 

or angle should be denoted by an appropriate symbol. Nothing else should be included 

in the free-body diagram. Skipping this step might save you pencil and paper, but it 

is very likely to lead you to a wrong solution.

Case 1. If the free-body diagram involves only three forces, the rest of the solution 

is best carried out by drawing these forces in tip-to-tail fashion to form a force 
triangle. You can solve this triangle graphically or by trigonometry for no more than 

two unknowns [Sample Probs. 2.4 and 2.5].

Case 2. If the free-body diagram indicates more than three forces, it is most practi-

cal to use an analytic solution. Select x and y axes and resolve each of the forces into 

x and y components. Setting the sum of the x components and the sum of the y 

components of all the forces to zero, you obtain two equations that you can solve for 

no more than two unknowns [Sample Prob. 2.6].

We strongly recommend that, when using an analytic solution, you write the equations 

of equilibrium in the same form as Eqs. (2) and (3) of Sample Prob. 2.6. The practice 

adopted by some students of initially placing the unknowns on the left side of the 

equation and the known quantities on the right side may lead to confusion in assigning 

the appropriate sign to each term.

Regardless of the method used to solve a two-dimensional equilibrium problem, you 

can determine at most two unknowns. If a two-dimensional problem involves more 

than two unknowns, you must obtain one or more additional relations from the infor-

mation contained in the problem statement.

SOLVING PROBLEMS 
ON YOUR OWN
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FREE-BODY PRACTICE PROBLEMS
 2.F1 Two cables are tied together at C and loaded as shown. Draw the 

free-body diagram needed to determine the tension in AC and BC.

 2.F2 Two forces of magnitude TA 5 8 kips and TB 5 15 kips are applied 

as shown to a welded connection. Knowing that the connection is 

in equilibrium, draw the free-body diagram needed to determine the 

magnitudes of the forces TC and TD.

 2.F3 The 60-lb collar A can slide on a frictionless vertical rod and is 

connected as shown to a 65-lb counterweight C. Draw the free-body 

diagram needed to determine the value of h for which the system is 

in equilibrium.

 2.F4 A chairlift has been stopped in the position shown. Knowing that 

each chair weighs 250 N and that the skier in chair E weighs 765 N, 

draw the free-body diagrams needed to determine the weight of the 

skier in chair F.

Problems

A B

C

1600 kg

960 mm

1100 mm
400 mm

Fig. P2.F1

14 m 24 m 6 m

8.25 m

10 m

1.10 m

A

B

C

DF

E

Fig. P2.F4

40° TBTA

TC

TD

Fig. P2.F2

65 lb

60 lb

C

A

B

h

15 in.

Fig. P2.F3
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END-OF-SECTION PROBLEMS

 2.43 Two cables are tied together at C and are loaded as shown. Deter-

mine the tension (a) in cable AC, (b) in cable BC.

 2.44 Two cables are tied together at C and are loaded as shown. Knowing 

that α 5 30°, determine the tension (a) in cable AC, (b) in cable BC.

2.45 Two cables are tied together at C and loaded as shown. Determine 

the tension (a) in cable AC, (b) in cable BC.

 2.46 Two cables are tied together at C and are loaded as shown. Knowing 

that P 5 500 N and α 5 60°, determine the tension in (a) in cable 

AC, (b) in cable BC.

2.47 Two cables are tied together at C and are loaded as shown. Deter-

mine the tension (a) in cable AC, (b) in cable BC.

Fig. P2.43

A B

C

400 lb

50° 30°

Fig. P2.44

A

B

C

6 kN55°

α

Fig. P2.45

3.4 m
2 m

4.8 m 3 m

1.98 kN

A B

C 3.6 m

Fig. P2.46

45º

A B

C

P

25º

a

Fig. P2.47

75°

75°

200 kg

C

A

B
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 2.48 Knowing that α 5 20°, determine the tension (a) in cable AC, (b) in 

rope BC.

 2.49 Two cables are tied together at C and are loaded as shown. Knowing 

that P 5 300 N, determine the tension in cables AC and BC.

 2.50 Two cables are tied together at C and are loaded as shown. Deter-

mine the range of values of P for which both cables remain taut.

 2.51 Two forces P and Q are applied as shown to an aircraft connection. 

Knowing that the connection is in equilibrium and that P 5 500 lb 

and Q 5 650 lb, determine the magnitudes of the forces exerted on 

rods A and B.

Fig. P2.48

5°

A

C

B

α

1200 lb

Fig. P2.49 and P2.50

A B

C 45°

30°30°

200 N

P

50°

40°

A

B

P

Q

FA

FB

Fig. P2.51 and P2.52

FD

FC

FA

FB

B

A

D

C

3
4

Fig. P2.53 and P2.54

 2.52 Two forces P and Q are applied as shown to an aircraft connection. 

Knowing that the connection is in equilibrium and that the magni-

tudes of the forces exerted on rods A and B are FA 5 750 lb and 

FB 5 400 lb, determine the magnitudes of P and Q.

 2.53 A welded connection is in equilibrium under the action of the four 

forces shown. Knowing that FA 5 8 kN and FB 5 16 kN, determine 

the magnitudes of the other two forces.

 2.54 A welded connection is in equilibrium under the action of the four 

forces shown. Knowing that FA 5 5 kN and FD 5 6 kN, determine 

the magnitudes of the other two forces.
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 2.55 A sailor is being rescued using a boatswain’s chair that is suspended 

from a pulley that can roll freely on the support cable ACB and is 

pulled at a constant speed by cable CD. Knowing that α 5 30° and 

β 5 10° and that the combined weight of the boatswain’s chair and 

the sailor is 200 lb, determine the tension (a) in the support cable ACB, 

(b) in the traction cable CD.

 2.56 A sailor is being rescued using a boatswain’s chair that is suspended 

from a pulley that can roll freely on the support cable ACB and is 

pulled at a constant speed by cable CD. Knowing that α 5 25° and 

β 5 15° and that the tension in cable CD is 20 lb, determine (a) the 

combined weight of the boatswain’s chair and the sailor, (b) the ten-

sion in the support cable ACB.

 2.57 For the cables of Prob. 2.44, find the value of α for which the ten-

sion is as small as possible (a) in cable BC, (b) in both cables simul-

taneously. In each case determine the tension in each cable.

 2.58 For the cables of Prob. 2.46, it is known that the maximum allowable 

tension is 600 N in cable AC and 750 N in cable BC. Determine 

(a) the maximum force P that can be applied at C, (b) the corre-

sponding value of α.

 2.59 For the situation described in Fig. P2.48, determine (a) the value of 

α for which the tension in rope BC is as small as possible, (b) the 

corresponding value of the tension.

 2.60 Two cables tied together at C are loaded as shown. Determine the 

range of values of Q for which the tension will not exceed 60 lb in 

either cable.

A
B

Ca
b

D

Fig. P2.55 and P2.56

A

B

C

P = 75 lb

30º

30º

60º

Q

Fig. P2.60

 2.61 A movable bin and its contents have a combined weight of 2.8 kN. 

Determine the shortest chain sling ACB that can be used to lift the 

loaded bin if the tension in the chain is not to exceed 5 kN.

A

C

0.7 m

B

1.2 m

Fig. P2.61
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 2.62 For W 5 800 N, P 5 200 N, and d 5 600 mm, determine the value 

of h consistent with equilibrium. 

500 N

150 N

150 N

50°

30°
A

α

Fig. P2.65

P W

d

h

d

Fig. P2.62

50 lb

x

C

B

A

P

20 in.

Fig. P2.63 and P2.64

 2.64 Collar A is connected as shown to a 50-lb load and can slide on a 

frictionless horizontal rod. Determine the distance x for which the 

collar is in equilibrium when P 5 48 lb.

 2.65 Three forces are applied to a bracket as shown. The directions of the 

two 150-N forces may vary, but the angle between these forces is 

always 50°. Determine the range of values of α for which the mag-

nitude of the resultant of the forces acting at A is less than 600 N. 

 2.63 Collar A is connected as shown to a 50-lb load and can slide on a 

frictionless horizontal rod. Determine the magnitude of the force P
required to maintain the equilibrium of the collar when (a) x 5 4.5 in., 

(b) x 5 15 in.
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2.66 A 200-kg crate is to be supported by the rope-and-pulley arrange-

ment shown. Determine the magnitude and direction of the force P
that must be exerted on the free end of the rope to maintain equilib-

rium. (Hint: The tension in the rope is the same on each side of a 

simple pulley. This can be proved by the methods of Chap. 4.)

2.4 m

P

A

α

200 kg

0.75 m

B

Fig. P2.66

T

T
T T T

(a) (b) (c) (d) (e)

Fig. P2.67

A

D

B

C

P

25°

55°

Q

Fig. P2.69 and P2.70

 2.67 A 600-lb crate is supported by several rope-and-pulley arrangements 

as shown. Determine for each arrangement the tension in the rope. 

(See the hint for Prob. 2.66.)

 2.68 Solve parts b and d of Prob. 2.67, assuming that the free end of the 

rope is attached to the crate.

 2.69 A load Q is applied to pulley C, which can roll on the cable ACB. 

The pulley is held in the position shown by a second cable CAD, 

which passes over the pulley A and supports a load P. Knowing that 

P 5 750 N, determine (a) the tension in cable ACB, (b) the magni-

tude of load Q.

 2.70 An 1800-N load Q is applied to pulley C, which can roll on the 

cable ACB. The pulley is held in the position shown by a second cable 

CAD, which passes over the pulley A and supports a load P. Deter-

mine (a) the tension in cable ACB, (b) the magnitude of load P.
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52 Statics of Particles

 2.4 ADDING FORCES IN SPACE
The problems considered in the first part of this chapter involved only two 

dimensions; they were formulated and solved in a single plane. In the last 

part of this chapter, we discuss problems involving the three dimensions 

of space.

2.4A  Rectangular Components of a 
Force in Space

Consider a force F acting at the origin O of the system of rectangular 

coordinates x, y, and z. To define the direction of F, we draw the vertical 

plane OBAC containing F (Fig. 2.25a). This plane passes through the 

vertical y axis; its orientation is defined by the angle ϕ it forms with the 

xy plane. The direction of F within the plane is defined by the angle θy

that F forms with the y axis. We can resolve the force F into a vertical 

component Fy and a horizontal component Fh; this operation, shown in 

Fig. 2.25b, is carried out in plane OBAC according to the rules developed 

earlier. The corresponding scalar components are

 Fy 5 F cos θy   Fh 5 F sin θy (2.16)

However, we can also resolve Fh into two rectangular components Fx and 

Fz along the x and z axes, respectively. This operation, shown in Fig. 2.25c, 

is carried out in the xz plane. We obtain the following expressions for the 

corresponding scalar components:

Fx 5 Fh cos ϕ 5 F sin θy cos ϕ

  Fz 5 Fh sin ϕ 5 F sin θy sin ϕ (2.17)

The given force F thus has been resolved into three rectangular vector 

components Fx , Fy , Fz , which are directed along the three coordinate axes.

We can now apply the Pythagorean theorem to the triangles OAB
and OCD of Fig. 2.25:

F 
2 5 (OA)2 5 (OB)2 1 (BA)2 5 F 

2
y 1 F  

2
h

F 
2
h 5 (OC)2 5 (OD)2 1 (DC)2 5 F 

2
x 1 F 

2
z

Eliminating F 
2
h from these two equations and solving for F, we obtain the 

following relation between the magnitude of F and its rectangular scalar 

components:

Magnitude of a
force in space F 5 2F 

2
x 1 F 

2
y 1 F 

2
z  (2.18)

The relationship between the force F and its three components Fx , 

Fy , and Fz is more easily visualized if we draw a “box” having Fx , Fy , 

and Fz for edges, as shown in Fig. 2.26. The force F is then represented 

by the main diagonal OA of this box. Figure 2.26b shows the right triangle 

F 5 2F22 2
x 1 F 2

y 1 F 2
z2

(a)

A

B

C

z

y

x
O

F

�

�y

(b)

Fh

Fy A

B

C

z

y

x
O

F�y

(c)

Fh

Fy

Fx

Fz

E

D

B

C
z

y

x
O

�

Fig. 2.25 (a) A force F in an xyz coordinate 
system; (b) components of F along the y axis 
and in the xz plane; (c) components of F 
along the three rectangular axes.
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2.4 Adding Forces in Space 53

OAB used to derive the first of the formulas (2.16): Fy 5 F cos θy . In 

Fig. 2.26a and c, two other right triangles have also been drawn: OAD 

and OAE. These triangles occupy positions in the box comparable with 

that of triangle OAB. Denoting by θx and θz , respectively, the angles that 

F forms with the x and z axes, we can derive two formulas similar to 

Fy 5 F cos θy . We thus write

Scalar components
of a force F

 Fx 5 F cos θx  Fy 5 F cos θy  Fz 5 F cos θz (2.19)

The three angles θx , θy, and θz define the direction of the force F; they 

are more commonly used for this purpose than the angles θy and ϕ intro-

duced at the beginning of this section. The cosines of θx, θy, and θz are 

known as the direction cosines of the force F.

Introducing the unit vectors i, j, and k, which are directed respec-

tively along the x, y, and z axes (Fig. 2.27), we can express F in the form

Vector expression
of a force F F 5 F x i 1 F y j 1 F z k (2.20)

where the scalar components Fx, Fy, and Fz are defined by the relations 

in Eq. (2.19).

FxF 5 F cosF θxθ  x FyFF 5 F cosF θyθθ   FzF 5 F cosF θzθ

F 5 F x i 1 F y j 1 F z k

Fig. 2.26 (a) Force F in a three-dimensional box, showing its angle with the x axis; (b) force F and its angle with 
the y axis; (c) force F and its angle with the z axis.

Fx

Fy

Fz

F �x
x

y

A

D

E

O

B

C
z

(a)

Fx

Fy

Fz

F
x

y

A

D

E

O

B

C
z

(b)

�y

Fx

Fy

Fz

F

�z

x

y

A

D

E

O

B

C
z

(c)

Fig. 2.27 The three unit vectors i, j, k lie 
along the three coordinate axes x, y, z, 
respectively.

y

x

z

ik

j
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54 Statics of Particles

Concept Application 2.4

A force of 500 N forms angles of 60°, 45°, and 120°, respectively, with 

the x, y, and z axes. Find the components Fx, Fy, and Fz of the force and 

express the force in terms of unit vectors.

Solution

Substitute F 5 500 N, θx 5 60°, θy 5 45°, and θz 5 120° into formulas 

(2.19). The scalar components of F are then

Fx 5 (500 N) cos 60° 5 1250 N

Fy 5 (500 N) cos 45° 5 1354 N

Fz 5 (500 N) cos 120° 5 2250 N

Carrying these values into Eq. (2.20), you have

F 5 (250 N)i 1 (354 N)j 2 (250 N)k

As in the case of two-dimensional problems, a plus sign indicates that the 

component has the same sense as the corresponding axis, and a minus 

sign indicates that it has the opposite sense.

The angle a force F forms with an axis should be measured from 

the positive side of the axis and is always between 0 and 180°. An angle θx

smaller than 90° (acute) indicates that F (assumed attached to O) is on 

the same side of the yz plane as the positive x axis; cos θx and Fx are then 

positive. An angle θx larger than 90° (obtuse) indicates that F is on the 

other side of the yz plane; cos θx and Fx are then negative. In Concept 

Application 2.4, the angles θx and θy are acute and θz is obtuse; conse-

quently, Fx and Fy are positive and Fz is negative.

Substituting into Eq. (2.20) the expressions obtained for Fx, Fy, and 

Fz in Eq. (2.19), we have

 F 5 F (cos θx i 1 cos θy j 1 cos θz k) (2.21)

This equation shows that the force F can be expressed as the product of 

the scalar F and the vector

l 5 cos θx i 1 cos θy j 1 cos θz k (2.22)

Clearly, the vector l is a vector whose magnitude is equal to 1 and whose 

direction is the same as that of F (Fig. 2.33). The vector l is referred to 

as the unit vector along the line of action of F. It follows from Eq. (2.22) 

that the components of the unit vector l are respectively equal to the 

direction cosines of the line of action of F:

 lx 5 cos θx   ly 5 cos θy   lz 5 cos θz (2.23)

Fig. 2.28 Force F can be expressed as the 
product of its magnitude F and a unit vector 
l in the direction of F. Also shown are the 
components of F and its unit vector.

x

y

z

λλ (Magnitude = 1)

F = F λλ

Fy j

Fxi

Fzk

cos �y j

cos �zk

cos �xi
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2.4 Adding Forces in Space 55

Note that the values of the three angles θx, θy, and θz are not inde-

pendent. Recalling that the sum of the squares of the components of a 

vector is equal to the square of its magnitude, we can write

l2
x 1 l2

y 1 l2
z 5 1

Substituting for lx, ly, and lz from Eq. (2.23), we obtain

Relationship among
direction cosines  cos 

2
θx 1  cos 

2
θy 1  cos 

2
θz 5 1 (2.24)

In Concept Application 2.4, for instance, once the values θx 5 60° and 

θy 5 45° have been selected, the value of θz must be equal to 60° or 120° 

in order to satisfy the identity in Eq. (2.24).

When the components Fx, Fy, and Fz of a force F are given, we can 

obtain the magnitude F of the force from Eq. (2.18). We can then solve 

relations in Eq. (2.19) for the direction cosines as

  cos θx 5
Fx

F
     cos θy 5

Fy

F
     cos θz 5

Fz

F
 (2.25)

From the direction cosines, we can find the angles θx, θy, and θz character-

izing the direction of F.

cos2
θxθ 1 cos2

θyθθ 1 cos2
θzθ 5 1

Concept Application 2.5 

A force F has the components Fx 5 20 lb, Fy 5 230 lb, and Fz 5 60 lb. 

Determine its magnitude F and the angles θx, θy, and θz it forms with the 

coordinate axes.

Solution

You can obtain the magnitude of F from formula (2.18):

F 5 2F 
2
x 1 F 

2
y 1 F 

2
z

5 2(20 lb)2 1 (230 lb)2 1 (60 lb)2

5 24900 lb 5 70 lb

Substituting the values of the components and magnitude of F into 

Eqs. (2.25), the direction cosines are

 cos θx 5
Fx

F
5

20 lb

70 lb
        cos θy 5

Fy

F
5

230 lb

70 lb
        cos θz 5

Fz

F
5

60 lb

70 lb

Calculating each quotient and its arc cosine gives you

θx 5 73.4°   θy 5 115.4°   θz 5 31.0°

These computations can be carried out easily with a calculator.
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56 Statics of Particles

2.4B  Force Defined by its Magnitude 
and Two Points on its Line 
of Action

In many applications, the direction of a force F is defined by the coordi-

nates of two points, M(x1, y1, z1) and N(x2, y2, z2), located on its line of 

action (Fig. 2.29). Consider the vector MN
�

 joining M and N and of the same 

Fig. 2.29 A case where the line of action of force F is 
determined by the two points M and N. We can 
calculate the components of F and its direction cosines 
from the vector MN

�

.

y

x

z

O

M(x1, y1, z1)

N(x2, y2, z2)

dy = y2 –  y1

dz = z2 –  z1 < 0

d x = x2 –  x1

F

λ

sense as a force F. Denoting its scalar components by dx, dy, and dz, 

respectively, we write

MN
�

5 dxi 1 dy 
j 1 dzk (2.26)

We can obtain a unit vector l along the line of action of F (i.e., along 

the line MN) by dividing the vector MN
�

 by its magnitude MN. Substituting 

for MN
�

 from Eq. (2.26) and observing that MN is equal to the distance d
from M to N, we have

l 5
MN
¡

MN
5

1

d
1dxi 1 dy 

j 1 dzk2 (2.27)

Recalling that F is equal to the product of F and l, we have

F 5 Fl 5
F

d
 1d x 

i 1 d y 
j 1 d z 

k2 (2.28)

It follows that the scalar components of F are, respectively,

Scalar components 
of force F

Fx 5
Fdx

d
       Fy 5

Fdy

d
       Fz 5

Fdz

d
 (2.29)

The relations in Eq. (2.29) considerably simplify the determination 

of the components of a force F of given magnitude F when the line of 

action of F is defined by two points M and N. The calculation consists of 

FxF 5
FdFF xd

d
FyFF 5

FdFF ydd

d
FzF 5

FdFF zd

d
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2.4 Adding Forces in Space 57

first subtracting the coordinates of M from those of N, then determining 

the components of the vector MN
�

 and the distance d from M to N. Thus,

dx 5 x 2 2 x1   dy 5 y2 2 y1   dz 5 z 2 2 z1

d 5 2d 
2
x 1 d 

2
y 1 d 

2
z

Substituting for F and for dx, dy, dz, and d into the relations in Eq. (2.29), 

we obtain the components Fx, Fy, and Fz of the force.

We can then obtain the angles θx, θy, and θz that F forms with the 

coordinate axes from Eqs. (2.25). Comparing Eqs. (2.22) and (2.27), we 

can write

Direction cosines
of force F

  cos θx 5
dx

d
         cos θy 5

dy

d
         cos θz 5

dz

d
 (2.30)

In other words, we can determine the angles θx, θy, and θz directly from 

the components and the magnitude of the vector MN
�

.

2.4C  Addition of Concurrent Forces 
in Space

We can determine the resultant R of two or more forces in space by sum-

ming their rectangular components. Graphical or trigonometric methods 

are generally not practical in the case of forces in space.

The method followed here is similar to that used in Sec. 2.2B with 

coplanar forces. Setting

R 5 oF

we resolve each force into its rectangular components:

Rxi 1 Ry j 1 Rzk 5 o (Fxi 1 Fy j 1 Fzk)

5 (oFx)i 1 (oFy)j 1 (oFz)k

From this equation, it follows that

Rectangular components
of the resultant

 Rx 5 oFx   R y 5 oFy   Rz 5 oFz (2.31)

The magnitude of the resultant and the angles θx, θy, and θz that the resul-

tant forms with the coordinate axes are obtained using the method dis-

cussed earlier in this section. We end up with

Resultant of concurrent
forces in space 

R 5 2R 
2
x 1 R 

2
y 1 R 

2
z

 

(2.32)

 cos θx 5
Rx

R
   cos θy 5

Ry

R
   cos θz 5

Rz

R
 (2.33)

cosθxθ 5
dxd

d
cosθyθθ 5

dydd

d
cosθzθ 5

dzd

d

Rx 5 oFxF   x R y 5 oFyFF    Rz 5 oFzF

R 5 2R22 2
x 1 R 2

y 1 R 2
z2

cosθxθ 5
Rx

R
cosθyθθ 5

Ry

R
cosθzθ 5

Rz

R
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58 Statics of Particles

Sample Problem 2.7

A tower guy wire is anchored by means of a bolt at A. The tension in the 

wire is 2500 N. Determine (a) the components Fx, Fy, and Fz of the force 

acting on the bolt and (b) the angles θx, θy, and θz defining the direction 

of the force.

STRATEGY: From the given distances, we can determine the length of 

the wire and the direction of a unit vector along it. From that, we can find 

the components of the tension and the angles defining its direction.

MODELING and ANALYSIS: 

 a. Components of the Force. The line of action of the force 

acting on the bolt passes through points A and B, and the force is directed 

from A to B. The components of the vector AB
�

, which has the same 

direction as the force, are

dx 5 240 m   dy 5 180 m   dz 5 130 m

The total distance from A to B is

AB 5 d 5 2d 
2
x 1 d 

2
y 1 d 

2
z 5 94.3 m

 Denoting the unit vectors along the coordinate axes by i, j, and k, 

you have

AB
�

5 2(40 m)i 1 (80 m)j 1 (30 m)k

Introducing the unit vector λ 5 AB
�

/AB (Fig. 1), you can express F in 

terms of AB
→

 as

F 5 Fλ 5 F  

AB
�

AB
5

2500 N

94.3 m
 AB
�

Substituting the expression for AB
�

 gives you

F 5
2500 N

94.3 m
 32(40 m)i 1 (80 m)j 1 (30 m)k4

    5 2(1060 N)i 1 (2120 N)j 1 (795 N)k

The components of F, therefore, are

 Fx 5 21060 N   Fy 5 12120 N   Fz 5 1795 N b

 b. Direction of the Force. Using Eqs. (2.25), you can write the 

direction cosines directly (Fig. 2):

 cos θx 5
Fx

F
5

21060 N

2500 N
        cos θy 5

Fy

F
5

12120 N

2500 N

 cos θz 5
Fz

F
5

1795 N

2500 N

A

B

80 m 40 m

30 m

A

B

F

y

z

x
k

j

i

80 m 40 m

30 m

λ

Fig. 1 Cable force acting on bolt at A, 
and its unit vector.

A

B

y

z

x

qy

qx

qz

Fig. 2 Direction angles for cable AB.
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2.4 Adding Forces in Space 59

Calculating each quotient and its arc cosine, you obtain

θx 5 115.1°   θy 5 32.0°   θz 5 71.5° b

(Note. You could have obtained this same result by using the components 

and magnitude of the vector AB
�

 rather than those of the force F.)

REFLECT and THINK: It makes sense that, for a given geometry, only 

a certain set of components and angles characterize a given resultant force. 

The methods in this section allow you to translate back and forth between 

forces and geometry.

Sample Problem 2.8

A wall section of precast concrete is temporarily held in place by the 

cables shown. If the tension is 840 lb in cable AB and 1200 lb in cable 

AC, determine the magnitude and direction of the resultant of the forces 

exerted by cables AB and AC on stake A.

STRATEGY: This is a problem in adding concurrent forces in space. 

The simplest approach is to first resolve the forces into components and 

to then sum the components and find the resultant.

MODELING and ANALYSIS: 

Components of the Forces. First resolve the force exerted by each 

cable on stake A into x, y, and z components. To do this, determine the 

components and magnitude of the vectors AB
�

 and AC
�

, measuring them 

from A toward the wall section (Fig. 1). Denoting the unit vectors along 

the coordinate axes by i, j, k, these vectors are

AB
�

5 2(16 ft)i 1 (8 ft)j 1 (11 ft)k        AB 5 21 ft

AC
�

5 2(16 ft)i 1 (8 ft)j 2 (16 ft)k        AC 5 24 ft

27 ft

C

D

A

B

8 ft

16 ft

11 ft

Fig. 1 Cable forces acting on stake at A, and 
their unit vectors.

C

B

A

16 ft

16 ft
8 ft

11 ft

y

z

x

ik

j
TAB = (840 lb) λλAB

TAC = (1200 lb) λλAC

λλAB

λλAC
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60 Statics of Particles

Denoting by lAB the unit vector along AB, the tension in AB is

TAB 5 TABlAB 5 TAB 

AB
¡

AB
5

840 lb

21 ft
 AB
¡

Substituting the expression found for AB
�

, the tension becomes

TAB 5
840 lb

21 ft
 32(16 ft)i 1 (8 ft)j 1 (11 ft)k4

TAB 5 2(640 lb)i 1 (320 lb)j 1 (440 lb)k

Similarly, denoting by lAC the unit vector along AC, the tension in AC is

TAC 5 TAClAC 5 TAC 
AC
¡

AC
5

1200 lb

24 ft
 AC
¡

 

TAC 5 2(800 lb)i 1 (400 lb)j 2 (800 lb)k

Resultant of the Forces. The resultant R of the forces exerted by 

the two cables is

R 5 TAB 1 TAC 5 2(1440 lb)i 1 (720 lb)j 2 (360 lb)k

You can now determine the magnitude and direction of the resultant as

 R 5 2R2
x 1 R2

y 1 R2
z 5 2(21440)2 1 (720)2 1 (2300)2

R 5 1650 lb b

The direction cosines come from Eqs. (2.33):

 cos θx 5
Rx

R
5

21440 lb

1650 lb
         cos θy 5

Ry

R
5

1720 lb

1650 lb

 cos θz 5
Rz

R
5

2360 lb

1650 lb

Calculating each quotient and its arc cosine, the angles are

θx 5 150.8°   θy 5 64.1°   θz 5 102.6° b

REFLECT and THINK: Based on visual examination of the cable 

forces, you might have anticipated that θx for the resultant should be 

obtuse and θy should be acute. The outcome of θz was not as apparent.
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61 61

SOLVING PROBLEMS 
ON YOUR OWN

In this section, we saw that we can define a force in space by its magnitude and 

direction or by the three rectangular components Fx, Fy, and Fz.

A. When a force is defined by its magnitude and direction, you can find its rect-

angular components Fx, Fy, and Fz as follows.

Case 1. If the direction of the force F is defined by the angles θy and f shown in 

Fig. 2.25, projections of F through these angles or their complements will yield the 

components of F [Eqs. (2.17)]. Note that to find the x and z components of F, first 

project F onto the horizontal plane; the projection Fh obtained in this way is then 

resolved into the components Fx and Fz (Fig. 2.25c).

Case 2. If the direction of the force F is defined by the angles θx, θy, and θz that 

F forms with the coordinate axes, you can obtain each component by multiplying 

the magnitude F of the force by the cosine of the corresponding angle [Concept 

Application 2.4]:

Fx 5 F cos θx   Fy 5 F cos θy   Fz 5 F cos θz

Case 3. If the direction of the force F is defined by two points M and N located on 

its line of action (Fig. 2.29), first express the vector MN
�

 drawn from M to N in terms 

of its components dx, dy, and dz and the unit vectors i, j, and k:

MN
�

5 dxi 1 dy 
j 1 dzk 

Then determine the unit vector l along the line of action of F by dividing the vector 

MN
�

 by its magnitude MN. Multiplying l by the magnitude of F gives you the desired 

expression for F in terms of its rectangular components [Sample Prob. 2.7]:

F 5 Fl 5
F

d
 1d x 

i 1 d y 
j 1 d z 

k2 

It is helpful to use a consistent and meaningful system of notation when determining 

the rectangular components of a force. The method used in this text is illustrated in 

Sample Prob. 2.8, where the force TAB acts from stake A toward point B. Note that 

the subscripts have been ordered to agree with the direction of the force. We recom-

mend that you adopt the same notation, as it will help you identify point 1 (the first 

subscript) and point 2 (the second subscript).

When calculating the vector defining the line of action of a force, you might think of 

its scalar components as the number of steps you must take in each coordinate direc-

tion to go from point 1 to point 2. It is essential that you always remember to assign 

the correct sign to each of the components.
(continued)
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62

B. When a force is defined by its rectangular components Fx, Fy, and Fz, you can 

obtain its magnitude F from

F 5 2F 
2
x 1 F 

2
y 1 F 

2
z 

You can determine the direction cosines of the line of action of F by dividing the 

components of the force by F:

 cos θx 5
Fx

F
   cos θy 5

Fy

F
   cos θz 5

Fz

F
 

From the direction cosines, you can obtain the angles θx, θy, and θz that F forms with 

the coordinate axes [Concept Application 2.5].

C. To determine the resultant R of two or more forces in three-dimensional space, 

first determine the rectangular components of each force by one of the procedures 

described previously. Adding these components will yield the components Rx, Ry, and 

Rz of the resultant. You can then obtain the magnitude and direction of the resultant 

as indicated previously for a force F [Sample Prob. 2.8].
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63

Problems
END-OF-SECTION PROBLEMS

 2.71 Determine (a) the x, y, and z components of the 600-N force, (b) the 

angles θx, θy, and θz that the force forms with the coordinate axes.

 2.72 Determine (a) the x, y, and z components of the 450-N force, (b) the 

angles θx, θy, and θz that the force forms with the coordinate axes.

 2.73 A gun is aimed at a point A located 35° east of north. Knowing that 

the barrel of the gun forms an angle of 40° with the horizontal and 

that the maximum recoil force is 400 N, determine (a) the x, y, 

and z components of that force, (b) the values of the angles θx, θy, 

and θz defining the direction of the recoil force. (Assume that the 

x, y, and z axes are directed, respectively, east, up, and south.)

 2.74 Solve Prob. 2.73 assuming that point A is located 15° north of west 

and that the barrel of the gun forms an angle of 25° with the 

horizontal.

 2.75 The angle between spring AB and the post DA is 30°. Knowing that 

the tension in the spring is 50 lb, determine (a) the x, y, and z com-

ponents of the force exerted on the circular plate at B, (b) the angles 

θx, θy, and θz defining the direction of the force at B.

 2.76 The angle between spring AC and the post DA is 30°. Knowing that 

the tension in the spring is 40 lb, determine (a) the x, y, and z com-

ponents of the force exerted on the circular plate at C, (b) the angles 

θx, θy, and θz defining the direction of the force at C.

 2.77 Cable AB is 65 ft long, and the tension in that cable is 3900 lb. 

Determine (a) the x, y, and z components of the force exerted by the 

cable on the anchor B, (b) the angles θx, θy, and θz defining the direc-

tion of that force.

 2.78 Cable AC is 70 ft long, and the tension in that cable is 5250 lb. Deter-

mine (a) the x, y, and z components of the force exerted by the cable 

on the anchor C, (b) the angles θx, θy, and θz defining the direction 

of that force.

 2.79 Determine the magnitude and direction of the force F 5 (240 N)i 
– (270 N)j 1 (680 N)k.

 2.80 Determine the magnitude and direction of the force F 5 (320 N)i 
1 (400 N)j – (250 N)k.

 2.81 A force acts at the origin of a coordinate system in a direction 

defined by the angles θx 5 69.3° and θz 5 57.9°. Knowing that the 

y component of the force is –174.0 lb, determine (a) the angle θy, 

(b) the other components and the magnitude of the force.

y

x

z

600 N

450 N

25º

30º
40º

35º

Fig. P2.71 and P2.72

z

x
35°35°

D
BC

y

A

Fig. P2.75 and P2.76

x

D

A

y

56 ft

α
O

50°

20°
B

Cz

Fig. P2.77 and P2.78

bee87302_ch02_015-081.indd   63bee87302_ch02_015-081.indd   63 11/8/14   9:44 AM11/8/14   9:44 AM

UPLOADED BY AHMAD T JUNDI



64

 2.82 A force acts at the origin of a coordinate system in a direction 

defined by the angles θx 5 70.9° and θy 5 144.9°. Knowing that the 

z component of the force is 252.0 lb, determine (a) the angle θz, 

(b) the other components and the magnitude of the force.

 2.83 A force F of magnitude 210 N acts at the origin of a coordinate 

system. Knowing that Fx 5 80 N, θz 5 151.2°, and Fy < 0, determine 

(a) the components Fy and Fz, (b) the angles θx and θy.

 2.84 A force F of magnitude 1200 N acts at the origin of a coordinate 

system. Knowing that θx 5 65°, θy 5 40°, and Fz > 0, determine 

(a) the components of the force, (b) the angle θz.

 2.85 A frame ABC is supported in part by cable DBE that passes through 

a frictionless ring at B. Knowing that the tension in the cable is 

385 N, determine the components of the force exerted by the cable 

on the support at D.

 2.86 For the frame and cable of Prob. 2.85, determine the components of 

the force exerted by the cable on the support at E.

 2.87 In order to move a wrecked truck, two cables are attached at A and 

pulled by winches B and C as shown. Knowing that the tension in 

cable AB is 2 kips, determine the components of the force exerted 

at A by the cable.

 2.88 In order to move a wrecked truck, two cables are attached at A and 

pulled by winches B and C as shown. Knowing that the tension in 

cable AC is 1.5 kips, determine the components of the force exerted 

at A by the cable.

 2.89 A rectangular plate is supported by three cables as shown. Knowing 

that the tension in cable AB is 408 N, determine the components of 

the force exerted on the plate at B.

y

x
z

A

B

E
D

C

O

600 mm

400 mm

480 mm

510 mm

280 mm
210 mm

Fig. P2.85

36 ft

28.8 ft

18 ft

45 ft

54 ft

30°

A

B

C

Fig. P2.87 and P2.88

x

y

z

A

B

C

DO

250

130
360

360

320
450

480

Dimensions in mm

Fig. P2.89 and P2.90

 2.90 A rectangular plate is supported by three cables as shown. Knowing 

that the tension in cable AD is 429 N, determine the components of 

the force exerted on the plate at D.
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 2.91 Find the magnitude and direction of the resultant of the two forces 

shown knowing that P 5 300 N and Q 5 400 N.

 2.92 Find the magnitude and direction of the resultant of the two forces 

shown knowing that P 5 400 N and Q 5 300 N.

 2.93 Knowing that the tension is 425 lb in cable AB and 510 lb in cable 

AC, determine the magnitude and direction of the resultant of the 

forces exerted at A by the two cables.

z

x

y

30°

20°

15°

50°P

Q

Fig. P2.91 and P2.92

y

xz

A

B

C

D

O

40 in.

60 in.

60 in.
45 in.

Fig. P2.93 and P2.94

z

24 in.

29 in.

25 in.

48 in.
A

C

B

O

y

36 in.

x

P
Fig. P2.97

 2.94 Knowing that the tension is 510 lb in cable AB and 425 lb in cable 

AC, determine the magnitude and direction of the resultant of the 

forces exerted at A by the two cables.

 2.95 For the frame of Prob. 2.85, determine the magnitude and direction 

of the resultant of the forces exerted by the cable at B knowing that 

the tension in the cable is 385 N.

 2.96 For the plate of Prob. 2.89, determine the tensions in cables AB and 

AD knowing that the tension in cable AC is 54 N and that the resul-

tant of the forces exerted by the three cables at A must be vertical.

 2.97 The boom OA carries a load P and is supported by two cables as 

shown. Knowing that the tension in cable AB is 183 lb and that the 

resultant of the load P and of the forces exerted at A by the two 

cables must be directed along OA, determine the tension in cable AC.

 2.98 For the boom and loading of Prob. 2.97, determine the magnitude of 

the load P.
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66 Statics of Particles

2.5  FORCES AND EQUILIBRIUM 
IN SPACE

According to the definition given in Sec. 2.3, a particle A is in equilibrium 

if the resultant of all the forces acting on A is zero. The components Rx, 

Ry, and Rz of the resultant of forces in space are given by equations (2.31); 

when the components of the resultant are zero, we have

oFx 5 0   oFy 5 0   oFz 5 0 (2.34)

Equations (2.34) represent the necessary and sufficient conditions for the 

equilibrium of a particle in space. We can use them to solve problems 

dealing with the equilibrium of a particle involving no more than three 

unknowns.

The first step in solving three-dimensional equilibrium problems is 

to draw a free-body diagram showing the particle in equilibrium and all
of the forces acting on it. You can then write the equations of equilibrium 

(2.34) and solve them for three unknowns. In the more common types of 

problems, these unknowns will represent (1) the three components of 

a  single force or (2) the magnitude of three forces, each of known 

direction.

Photo 2.4 Although we cannot determine 
the tension in the four cables supporting the 
car by using the three equations (2.34), we 
can obtain a relation among the tensions by 
analyzing the equilibrium of the hook.
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2.5 Forces and Equilibrium in Space 67

Sample Problem 2.9

A 200-kg cylinder is hung by means of two cables AB and AC that are 

attached to the top of a vertical wall. A horizontal force P perpendicular 

to the wall holds the cylinder in the position shown. Determine the mag-

nitude of P and the tension in each cable.

STRATEGY: Connection point A is acted upon by four forces, including 

the weight of the cylinder. You can use the given geometry to express the 

force components of the cables and then apply equilibrium conditions to 

calculate the tensions.

MODELING and ANALYSIS: 

Free-Body Diagram. Choose point A as a free body; this point is 

subjected to four forces, three of which are of unknown magnitude. 

Introducing the unit vectors i, j, and k, resolve each force into rectangular 

components (Fig. 1): 

 P 5 Pi

 W 5 2mgj 5 2(200 kg)(9.81 m/s2)j 5 2(1962 N)j (1)

A

B

C

P

8 m

10 m

1.2 m

2 m200kg
12 m

W

12 m

C

B

z

y

x

A
O

P

8 m

10 m

1.2 m

2 m

TAB

j
TAC

k

i

�AB

��AC

Fig. 1 Free-body diagram of particle A.
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68 Statics of Particles

For TAB and TAC, it is first necessary to determine the components and 

magnitudes of the vectors AB
�

 and AC
�

. Denoting the unit vector along 

AB by lAB, you can write TAB as

 

 AB
¡

5 211.2 m2i 1 110 m2j 1 18 m2k    AB 5 12.862 m

lAB 5
AB
¡

12.862 m
5 20.09330i 1 0.7775j 1 0.6220k

TAB 5 TABlAB 5 20.09330TABi 1 0.7775TAB 
j 1 0.6220TABk  (2)

Similarly, denoting the unit vector along AC by lAC, you have for TAC

 

 
AC
¡

5 211.2 m2i 1 110 m2j 2 110 m2k    AC 5 14.193 m

 lAC 5
      AC

¡

14.193 m
5 20.08455i 1 0.7046j 2 0.7046k

TAC 5 TAClAC 5 20.08455TACi 1 0.7046TAC 
j 2 0.7046TACk

 (3)

Equilibrium Condition. Since A is in equilibrium, you must have

oF 5 0: TAB 1 TAC 1 P 1 W 5 0

or substituting from Eqs. (1), (2), and (3) for the forces and factoring i, 
j, and k, you have

(20.09330TAB 2 0.08455TAC 1 P)i

1 (0.7775TAB 1 0.7046TAC 2 1962 N)j

1 (0.6220TAB 2 0.7046TAC)k 5 0

Setting the coefficients of i, j, and k equal to zero, you can write three 

scalar equations, which express that the sums of the x, y, and z components 

of the forces are respectively equal to zero.

(o Fx 5 0:)   20.09330TAB 2 0.08455TAC 1 P 5 0

(o Fy 5 0:)   10.7775TAB 1 0.7046TAC 2 1962 N 5 0

(o Fz 5 0:)   10.6220TAB 2 0.7046TAC 5 0

Solving these equations, you obtain

P 5 235 N   TAB 5 1402 N   TAC 5 1238 N b

REFLECT and THINK: The solution of the three unknown forces 

yielded positive results, which is completely consistent with the physical 

situation of this problem. Conversely, if one of the cable force results had 

been negative, thereby reflecting compression instead of tension, you 

should recognize that the solution is in error.
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69 69

We saw earlier that when a particle is in equilibrium, the resultant of the forces 

acting on the particle must be zero. In the case of the equilibrium of a particle 

in three-dimensional space, this equilibrium condition provides you with three rela-

tions among the forces acting on the particle. These relations may be used to deter-

mine three unknowns—usually the magnitudes of three forces.

The solution usually consists of the following steps:

1. Draw a free-body diagram of the particle. This diagram shows the particle and 

all the forces acting on it. Indicate on the diagram the magnitudes of known forces, 

as well as any angles or dimensions that define the direction of a force. Any unknown 

magnitude or angle should be denoted by an appropriate symbol. Nothing else should 

be included in the free-body diagram.

2. Resolve each force into rectangular components. Following the method used 

earlier, determine for each force F the unit vector l defining the direction of that 

force, and express F as the product of its magnitude F and l. You will obtain an 

expression of the form

F 5 Fλ 5
F

d
(dxi 1 dy 

j 1 dzk) 

where d, dx, dy, and dz are dimensions obtained from the free-body diagram of the 

particle. If you know the magnitude as well as the direction of the force, then F is 

known and the expression obtained for F is well defined; otherwise F is one of the 

three unknowns that should be determined.

3. Set the resultant, or sum, of the forces exerted on the particle equal to zero. You 

will obtain a vector equation consisting of terms containing the unit vectors i, j, or k. 

Group the terms containing the same unit vector and factor that vector. For the vector 

equation to be satisfied, you must set the coefficient of each of the unit vectors equal 

to zero. This yields three scalar equations that you can solve for no more than three 

unknowns [Sample Prob. 2.9].

SOLVING PROBLEMS 
ON YOUR OWN
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70

Problems
FREE-BODY PRACTICE PROBLEMS

 2.F5 Three cables are used to tether a balloon as shown. Knowing that the 

tension in cable AC is 444 N, draw the free-body diagram needed to 

determine the vertical force P exerted by the balloon at A.

 2.F6 A container of mass m 5 120 kg is supported by three cables as 

shown. Draw the free-body diagram needed to determine the tension 

in each cable.

 2.F7 A 150-lb cylinder is supported by two cables AC and BC that are 

attached to the top of vertical posts. A horizontal force P, which is 

perpendicular to the plane containing the posts, holds the cylinder 

in the position shown. Draw the free-body diagram needed to deter-

mine the magnitude of P and the force in each cable.

 2.F8 A transmission tower is held by three guy wires attached to a pin at 

A and anchored by bolts at B, C, and D. Knowing that the tension in 

wire AB is 630 lb, draw the free-body diagram needed to determine 

the vertical force P exerted by the tower on the pin at A. 

A

B

C

D

O
4.20 m

4.20 m

3.30 m

5.60 m

2.40 m
x

y

z

Fig. P2.F5

x

y

z

A

B

D

C

O

600 mm

320 mm

360 mm

500 mm

450 mm

Fig. P2.F6

y

A
90 ft

30 ft

O
B

30 ft

20 ft

45 ft

z

D

C

60 ft

65 ft
x

Fig. P2.F8

O

B

C

A

y

x
z

15 ft

7.2 ft

3.6 ft

10.8 ft
10.8 ft

P

Fig. P2.F7
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71

END-OF-SECTION PROBLEMS

 2.99 A container is supported by three cables that are attached to a ceiling 

as shown. Determine the weight W of the container knowing that the 

tension in cable AB is 6 kN.

 2.100 A container is supported by three cables that are attached to a ceiling 

as shown. Determine the weight W of the container, knowing that 

the tension in cable AD is 4.3 kN.

 2.101 Three cables are used to tether a balloon as shown. Determine the 

vertical force P exerted by the balloon at A knowing that the tension 

in cable AD is 481 N.

Fig. P2.99 and P2.100

y

x

z

450 mm 500 mm

360 mm

320 mm

600 mm

A

C

D

B

Fig. P2.101 and P2.102

A

B

C

D

O
4.20 m

4.20 m

3.30 m

5.60 m

2.40 m
x

y

z

Fig. P2.105 and P2.106

x

y

z

A

B

C

D
O

36 in.

27 in.

60 in.

32 in.

40 in.

Fig. P2.103

y

16 in.
8 in.

a
a

24 in.

A
C

D

B

x

z

 2.102 Three cables are used to tether a balloon as shown. Knowing that 

the balloon exerts an 800-N vertical force at A, determine the tension 

in each cable.

 2.103 A 36-lb triangular plate is supported by three wires as shown. Deter-

mine the tension in each wire, knowing that a 5 6 in.

 2.104 Solve Prob. 2.103, assuming that a 5 8 in.

 2.105 A crate is supported by three cables as shown. Determine the weight 

of the crate knowing that the tension in cable AC is 544 lb.

 2.106 A 1600-lb crate is supported by three cables as shown. Determine 

the tension in each cable.
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 2.107 Three cables are connected at A, where the forces P and Q are 

applied as shown. Knowing that Q 5 0, find the value of P for which 

the tension in cable AD is 305 N.

Fig. P2.107 and P2.108

y

x

z

220 mm

240 mm

960 mm

Q

P

A
B

C

D

O

380 mm

320 mm

960 mm

x

y

z

A

B

C

DO

250

130
360

360

320
450

480

Dimensions in mm

Fig. P2.109 and P2.110

y

A

100 ft

B

C

O

D

60 ft
z

x

74 ft

18 ft

20 ft

25 ft

20 ft

Fig. P2.111 and P2.112

 2.108 Three cables are connected at A, where the forces P and Q are 

applied as shown. Knowing that P 5 1200 N, determine the values 

of Q for which cable AD is taut.

 2.109 A rectangular plate is supported by three cables as shown. Knowing 

that the tension in cable AC is 60 N, determine the weight of the 

plate.

 2.110 A rectangular plate is supported by three cables as shown. Knowing 

that the tension in cable AD is 520 N, determine the weight of the 

plate.

 2.111 A transmission tower is held by three guy wires attached to a pin 

at A and anchored by bolts at B, C, and D. If the tension in wire AB
is 840 lb, determine the vertical force P exerted by the tower on the 

pin at A.

 2.112 A transmission tower is held by three guy wires attached to a pin 

at A and anchored by bolts at B, C, and D. If the tension in wire AC
is 590 lb, determine the vertical force P exerted by the tower on the 

pin at A.
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 2.113 In trying to move across a slippery icy surface, a 175-lb man uses 

two ropes AB and AC. Knowing that the force exerted on the man 

by the icy surface is perpendicular to that surface, determine the 

tension in each rope.

z
16 ft

8 ft

B

A

C
O

x

y

4 ft

30 ft

32 ft

12 ft

Fig. P2.113

180 lb

D

A

B

C

18 in.

16 in.

22 in.

24 in.

24 in.

Fig. P2.120

 2.114 Solve Prob. 2.113 assuming that a friend is helping the man at A by 

pulling on him with a force P 5 2(45 lb)k.

 2.115 For the rectangular plate of Probs. 2.109 and 2.110, determine the 

tension in each of the three cables knowing that the weight of the 

plate is 792 N.

 2.116 For the cable system of Probs. 2.107 and 2.108, determine the ten-

sion in each cable knowing that P 5 2880 N and Q 5 0.

 2.117 For the cable system of Probs. 2.107 and 2.108, determine the ten-

sion in each cable knowing that P 5 2880 N and Q 5 576 N.

 2.118 For the cable system of Probs. 2.107 and 2.108, determine the ten-

sion in each cable knowing that P 5 2880 N and Q 5 –576 N (Q is 

directed downward).

 2.119 For the transmission tower of Probs. 2.111 and 2.112, determine the 

tension in each guy wire knowing that the tower exerts on the pin 

at A an upward vertical force of 1800 lb.

 2.120 Three wires are connected at point D, which is located 18 in. below 

the T-shaped pipe support ABC. Determine the tension in each wire 

when a 180-lb cylinder is suspended from point D as shown.
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 2.121 A container of weight W is suspended from ring A, to which cables 

AC and AE are attached. A force P is applied to the end F of a third 

cable that passes over a pulley at B and through ring A and that is 

attached to a support at D. Knowing that W 5 1000 N, determine 

the magnitude of P. (Hint: The tension is the same in all portions 

of cable FBAD.)

200 mm

x

y

y

z zB

Q

P

A

O

Fig. P2.125

D

x

E
OB

25 in.

17.5 in. 45 in.

60 in.

80 in.

y

C

A

z

P

Fig. P2.123
 2.122 Knowing that the tension in cable AC of the system described in Prob. 

2.121 is 150 N, determine (a) the magnitude of the force P, (b) the 

weight W of the container.

 2.123 Cable BAC passes through a frictionless ring A and is attached to 

fixed supports at B and C, while cables AD and AE are both tied to 

the ring and are attached, respectively, to supports at D and E. Know-

ing that a 200-lb vertical load P is applied to ring A, determine the 

tension in each of the three cables.

 2.124 Knowing that the tension in cable AE of Prob. 2.123 is 75 lb, deter-

mine (a) the magnitude of the load P, (b) the tension in cables BAC 
and AD.

 2.125 Collars A and B are connected by a 525-mm-long wire and can slide 

freely on frictionless rods. If a force P 5 (341 N)j is applied to 

collar A, determine (a) the tension in the wire when y 5 155 mm, 

(b) the magnitude of the force Q required to maintain the equilibrium 

of the system.

 2.126 Solve Prob. 2.125 assuming that y 5 275 mm.

y

xz

0.78 m

0.40 m

0.40 m
P

O

B

F

E

C

W

A

D

1.60 m

0.86 m

1.20 m

1.30 m

Fig. P2.121
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In this chapter, we have studied the effect of forces on particles, i.e., on bodies 

of such shape and size that we may assume all forces acting on them apply 

at the same point.

Resultant of Two Forces
Forces are vector quantities; they are characterized by a point of application, 

a magnitude, and a direction, and they add according to the parallelogram law 

(Fig. 2.30). We can determine the magnitude and direction of the resultant R
of two forces P and Q either graphically or by trigonometry using the law of 

cosines and the law of sines [Sample Prob. 2.1].

Components of a Force
Any given force acting on a particle can be resolved into two or more com-

ponents, i.e., it can be replaced by two or more forces that have the same 

effect on the particle. A force F can be resolved into two components P and Q
by drawing a parallelogram with F for its diagonal; the components P and Q
are then represented by the two adjacent sides of the parallelogram (Fig. 2.31). 

Again, we can determine the components either graphically or by trigonom-

etry [Sec. 2.1E].

Review and Summary

Q

R

P

A

Fig. 2.30

Q
F

P

A

Fig. 2.31

F

x

y

Fy = Fy j

Fx = Fx i

j

i

�

Fig. 2.32

Rectangular Components; Unit Vectors
A force F is resolved into two rectangular components if its components Fx

and Fy are perpendicular to each other and are directed along the coordinate 

axes (Fig. 2.32). Introducing the unit vectors i and j along the x and y axes, 

respectively, we can write the components and the vector as [Sec. 2.2A]

Fx 5 Fxi   Fy 5 Fy j (2.6)

and

F 5 Fxi 1 Fyj (2.7)

where Fx and Fy are the scalar components of F. These components, which 

can be positive or negative, are defined by the relations

Fx 5 F cos θ   Fy 5 F sin θ (2.8)
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 When the rectangular components Fx and Fy of a force F are given, we 

can obtain the angle θ defining the direction of the force from

  tan θ 5
Fy

Fx
 (2.9)

We can obtain the magnitude F of the force by solving one of the equations 

(2.8) for F or by applying the Pythagorean theorem:

 F 5 2F x
2 1 F y

2 (2.10)

Resultant of Several Coplanar Forces
When three or more coplanar forces act on a particle, we can obtain the 

rectangular components of their resultant R by adding the corresponding com-

ponents of the given forces algebraically [Sec. 2.2B]:

 Rx 5 oFx   Ry 5 oFy (2.13)

The magnitude and direction of R then can be determined from relations 

similar to Eqs. (2.9) and (2.10) [Sample Prob. 2.3].

Forces in Space
A force F in three-dimensional space can be resolved into  rectangular com-

ponents Fx, Fy, and Fz [Sec. 2.4A]. Denoting by θx, θy, and θz, respectively, 

the angles that F forms with the x, y, and z axes (Fig. 2.33), we have

 Fx 5 F cos θx   Fy 5 F cos θy   Fz 5 F cos θz (2.19)

Direction Cosines
The cosines of θx, θy, and θz are known as the direction cosines of the force F. 

Introducing the unit vectors i, j, and k along the coordinate axes, we can write 

F as

 F 5 Fxi 1 Fy j 1 Fzk (2.20)

or

 F 5 F(cos θxi 1 cos θy j 1 cos θzk) (2.21)

Fig. 2.33

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

�x

�y

�z

(a)

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

(b) (c)

OOO
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This last equation shows (Fig. 2.34) that F is the product of its magnitude F
and the unit vector expressed by

l 5 cos θxi 1 cos θy j 1 cos θzk

Since the magnitude of l is equal to unity, we must have

 cos2 θx 1 cos2 θy 1 cos2 θz 5 1 (2.24)

 When we are given the rectangular components Fx, Fy, and Fz of a force 

F, we can find the magnitude F of the force by 

F 5 2F 
2
x 1 F 

2
y 1 F 

2
z (2.18)

and the direction cosines of F are obtained from Eqs. (2.19). We have

 cos θx 5
Fx

F
         cos θy 5

Fy

F
         cos θz 5

Fz

F
 (2.25)

 When a force F is defined in three-dimensional space by its magnitude F
and two points M and N on its line of action [Sec. 2.4B], we can obtain its 

rectangular components by first expressing the vector MN
�

 joining points M
and N in terms of its components dx, dy, and dz (Fig. 2.35): 

MN
�

5 dxi 1 dyj 1 dzk  (2.26)

We next determine the unit vector l along the line of action of F by dividing 

MN
�

 by its magnitude MN 5 d:

 l 5
MN
y

MN
5

1

d
 1dxi 1 dy 

j 1 dzk2 (2.27)

Recalling that F is equal to the product of F and l, we have

F 5 Fl 5
F

d
 1dxi 1 dy 

j 1 dzk2 (2.28)

x

y

z

λλ (Magnitude = 1)

F = F λλ

Fy j

Fxi

Fzk

cos �y j

cos �zk

cos �xi

Fig. 2.34

x

y

z

F

O

M(x1, y1, z1)  

N(x2, y2, z2)  

dy = y2 – y1  

dx = x2 – x1  

dz = z2 – z1 < 0  λ

Fig. 2.35
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From this equation it follows [Sample Probs. 2.7 and 2.8] that the scalar 

components of F are, respectively,

 Fx 5
Fdx

d
        Fy 5

Fdy

d
        Fz 5

Fdz

d
  (2.29)

Resultant of Forces in Space
When two or more forces act on a particle in three-dimensional space, we can 

obtain the rectangular components of their resultant R by adding the corre-

sponding components of the given forces algebraically [Sec. 2.4C]. We have

 Rx 5 oFx   Ry 5 oFy   Rz 5 oFz (2.31)

We can then determine the magnitude and direction of R from relations simi-

lar to Eqs. (2.18) and (2.25) [Sample Prob. 2.8].

Equilibrium of a Particle
A particle is said to be in equilibrium when the resultant of all the forces 

acting on it is zero [Sec. 2.3A]. The particle remains at rest (if originally at 

rest) or moves with constant speed in a straight line (if originally in motion) 

[Sec. 2.3B].

Free-Body Diagram
To solve a problem involving a particle in equilibrium, first draw a free-body 

diagram of the particle showing all of the forces acting on it [Sec. 2.3C]. If 

only three coplanar forces act on the particle, you can draw a force triangle 

to express that the particle is in equilibrium. Using graphical methods of 

trigonometry, you can solve this triangle for no more than two unknowns 

[Sample Prob. 2.4]. If more than three coplanar forces are involved, you 

should use the equations of equilibrium:

 oFx 5 0   oFy 5 0 (2.15)

These equations can be solved for no more than two unknowns [Sample 

Prob. 2.6].

Equilibrium in Space
When a particle is in equilibrium in three-dimensional space [Sec. 2.5], use 

the three equations of equilibrium:

 oFx 5 0   oFy 5 0   oFz 5 0 (2.34)

These equations can be solved for no more than three unknowns [Sample 

Prob. 2.9].
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2.127 Two structural members A and B are bolted to a bracket as shown. 

Knowing that both members are in compression and that the force 

is 15 kN in member A and 10 kN in member B, determine by trigo-

nometry the magnitude and direction of the resultant of the forces 

applied to the bracket by members A and B.

2.128 Determine the x and y components of each of the forces shown.

Review Problems

A B

40° 20°

Fig. P2.127

106 lb102 lb

200 lb x

y

24 in. 28 in.

45 in.

40 in.

30 in.

O

Fig. P2.128

a

a

200 lb
400 lb

P

Fig. P2.129
30° 20°

α

300 lb

A

B

C

Fig. P2.130

2.129 A hoist trolley is subjected to the three forces shown. Knowing that 

α 5 40°, determine (a) the required magnitude of the force P if the 

resultant of the three forces is to be vertical, (b) the corresponding 

magnitude of the resultant.

2.130 Knowing that α 5 55° and that boom AC exerts on pin C a force 

directed along line AC, determine (a) the magnitude of that force, 

(b) the tension in cable BC.
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 2.131 Two cables are tied together at C and loaded as shown. Knowing that 

P 5 360 N, determine the tension (a) in cable AC, (b) in cable BC.

A B

P

Q = 480 N

C

3
4

600 mm

250 mm

Fig. P2.131

35º
A B

C

P

50º

a

Fig. P2.132

36°
60°

48°

20°
x

y

z

A

B
C

E

D

Fig. P2.133

x

y

z

A

B

D

C

O

600 mm

920 mm

360 mm

900 mm

Fig. P2.134

 2.132 Two cables tied together at C are loaded as shown. Knowing that 

the maximum allowable tension in each cable is 800 N, determine 

(a) the magnitude of the largest force P that can be applied at C, 

(b) the corresponding value of α.

 2.133 The end of the coaxial cable AE is attached to the pole AB, which 

is strengthened by the guy wires AC and AD. Knowing that the 

tension in wire AC is 120 lb, determine (a) the components of the 

force exerted by this wire on the pole, (b) the angles θx, θy, and θz 

that the force forms with the coordinate axes. 

 2.134 Knowing that the tension in cable AC is 2130 N, determine the 

components of the force exerted on the plate at C.
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2.135 Find the magnitude and direction of the resultant of the two forces 

shown knowing that P 5 600 N and Q 5 450 N.

 2.136 A container of weight W is suspended from ring A. Cable BAC
passes through the ring and is attached to fixed supports at B and 

C. Two forces P 5 Pi and Q 5 Qk are applied to the ring to main-

tain the container in the position shown. Knowing that W 5 376 N, 

determine P and Q. (Hint: The tension is the same in both portions 

of cable BAC.)

z

xO

y

30°

25°

40°

55°
P

Q

Fig. P2.135

Q
P

O

A

C

B

y

x
z

W

160 mm

400 mm

130 mm

150 mm

240 mm

Fig. P2.136

20 in.

x

x

y

z

z

B
Q

P

A

O

Fig. P2.137 and P2.138

2.137 Collars A and B are connected by a 25-in.-long wire and can slide 

freely on frictionless rods. If a 60-lb force Q is applied to collar B as 

shown, determine (a) the tension in the wire when x 5 9 in., (b) the 

corresponding magnitude of the force P required to maintain the 

equilibrium of the system.

 2.138 Collars A and B are connected by a 25-in.-long wire and can slide 

freely on frictionless rods. Determine the distances x and z for which 

the equilibrium of the system is maintained when P 5 120 lb and 

Q 5 60 lb.
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Four tugboats work together to free the oil tanker Coastal Eagle 

Point that ran aground while attempting to navigate a channel 

in Tampa Bay. It will be shown in this chapter that the forces 

exerted on the ship by the tugboats could be replaced by an 

equivalent force exerted by a single, more powerful, tugboat.

t b t k t th t f th il t k C t l E l

Rigid Bodies: Equivalent 
Systems of Forces

3
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Introduction 83

Introduction
In Chapter 2, we assumed that each of the bodies considered could be 

treated as a single particle. Such a view, however, is not always possible. 

In general, a body should be treated as a combination of a large number 

of particles. In this case, we need to consider the size of the body as well 

as the fact that forces act on different parts of the body and thus have 

different points of application.

Most of the bodies considered in elementary mechanics are assumed 

to be rigid. We define a rigid body as one that does not deform. Actual 

structures and machines are never absolutely rigid and deform under the 

loads to which they are subjected. However, these deformations are usu-

ally small and do not appreciably affect the conditions of equilibrium or 

the motion of the structure under consideration. They are important, 

though, as far as the resistance of the structure to failure is concerned and 

are considered in the study of mechanics of materials.

In this chapter, you will study the effect of forces exerted on a rigid 

body, and you will learn how to replace a given system of forces by a 

simpler equivalent system. This analysis rests on the fundamental assump-

tion that the effect of a given force on a rigid body remains unchanged if 

that force is moved along its line of action (principle of transmissibility). 

It follows that forces acting on a rigid body can be represented by sliding 
vectors, as indicated earlier in Sec. 2.1B.

Two important concepts associated with the effect of a force on a 

rigid body are the moment of a force about a point (Sec. 3.1E) and the 

 Introduction

 3.1 FORCES AND MOMENTS
3.1A External and Internal Forces
3.1B Principle of Transmissibility: 

Equivalent Forces
3.1C Vector Products 
3.1D Rectangular Components of 

Vector Products 
3.1E Moment of a Force about a 

Point
 3.1F Rectangular Components of 

the Moment of a Force

 3.2 MOMENT OF A FORCE 
ABOUT AN AXIS

 3.2A Scalar Products 
3.2B Mixed Triple Products 
3.2C Moment of a Force about a 

Given Axis

 3.3 COUPLES AND FORCE-
COUPLE SYSTEMS

3.3A Moment of a Couple
3.3B Equivalent Couples
3.3C Addition of Couples
3.3D Couple Vectors
3.3E Resolution of a Given Force 

into a Force at O and a Couple

 3.4 SIMPLIFYING SYSTEMS 
OF FORCES

3.4A Reducing a System of Forces 
to a Force-Couple System

3.4B Equivalent and Equipollent 
Systems of Forces

3.4C Further Reduction of a System 
of Forces

*3.4D Reduction of a System of 
Forces to a Wrench

 Review and Summary

Objectives
• Discuss the principle of transmissibility that enables a 

force to be treated as a sliding vector.

• Define the moment of a force about a point.

• Examine vector and scalar products, useful in analysis 
involving moments.

• Apply Varignon’s Theorem to simplify certain moment 
analyses.

• Define the mixed triple product and use it to 
determine the moment of a force about an axis.

• Define the moment of a couple, and consider the 
particular properties of couples.

• Resolve a given force into an equivalent force-couple 
system at another point.

• Reduce a system of forces into an equivalent force-
couple system.

• Examine circumstances where a system of forces can 
be reduced to a single force.

• Define a wrench and consider how any general 
system of forces can be reduced to a wrench. 
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84 Rigid Bodies: Equivalent Systems of Forces

moment of a force about an axis (Sec. 3.2C). The determination of these 

quantities involves computing vector products and scalar products of two 

vectors, so in this chapter, we introduce the fundamentals of vector algebra 

and apply them to the solution of problems involving forces acting on 

rigid bodies.

Another concept introduced in this chapter is that of a couple, i.e., 

the combination of two forces that have the same magnitude, parallel lines 

of action, and opposite sense (Sec. 3.3A). As you will see, we can replace 

any system of forces acting on a rigid body by an equivalent system con-

sisting of one force acting at a given point and one couple. This basic 

combination is called a force-couple system. In the case of concurrent, 

coplanar, or parallel forces, we can further reduce the equivalent force-

couple system to a single force, called the resultant of the system, or to 

a single couple, called the resultant couple of the system.

3.1 FORCES AND MOMENTS
The basic definition of a force does not change if the force acts on a point 

or on a rigid body. However, the effects of the force can be very different, 

depending on factors such as the point of application or line of action of 

that force. As a result, calculations involving forces acting on a rigid body 

are generally more complicated than situations involving forces acting on 

a point. We begin by examining some general classifications of forces 

acting on rigid bodies.

3.1A External and Internal Forces
Forces acting on rigid bodies can be separated into two groups: (1) external 
forces and (2) internal forces.

 1. External forces are exerted by other bodies on the rigid body under 

consideration. They are entirely responsible for the external behavior of 

the rigid body, either causing it to move or ensuring that it remains at 

rest. We shall be concerned only with external forces in this chapter and 

in Chaps. 4 and 5.

 2. Internal forces hold together the particles forming the rigid body. If 

the rigid body is structurally composed of several parts, the forces hold-

ing the component parts together are also defined as internal forces. We 

will consider internal forces in Chaps. 6 and 7.

As an example of external forces, consider the forces acting on a 

disabled truck that three people are pulling forward by means of a rope 

attached to the front bumper (Fig. 3.1a). The external forces acting on the 

truck are shown in a free-body diagram (Fig.  3.1b). Note that this free-

body diagram shows the entire object, not just a particle representing the 

object. Let us first consider the weight of the truck. Although it embodies 

the effect of the earth’s pull on each of the particles forming the truck, the 

weight can be represented by the single force W. The point of application
of this force––that is, the point at which the force acts––is defined as the 

center of gravity of the truck. (In Chap. 5, we will show how to determine 

the location of centers of gravity.) The weight W tends to make the truck 

move vertically downward. In fact, it would actually cause the truck to 

W

F

R1 R2

(a)

(b)

Fig. 3.1 (a) Three people pulling on a truck 
with a rope; (b) free-body diagram of the 
truck, shown as a rigid body instead of a 
particle.
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3.1 Forces and Moments 85

move downward, i.e., to fall, if it were not for the presence of the ground. 

The ground opposes the downward motion of the truck by means of 

the reactions R1 and R2. These forces are exerted by the ground on the 

truck and must therefore be included among the external forces acting 

on the truck.

The people pulling on the rope exert the force F. The point of appli-

cation of F is on the front bumper. The force F tends to make the truck 

move forward in a straight line and does actually make it move, since no 

external force opposes this motion. (We are ignoring rolling resistance 

here for simplicity.) This forward motion of the truck, during which each 

straight line keeps its original orientation (the floor of the truck remains 

horizontal, and the walls remain vertical), is known as a translation. 

Other forces might cause the truck to move differently. For example, the 

force exerted by a jack placed under the front axle would cause the truck 

to pivot about its rear axle. Such a motion is a rotation. We conclude, 

therefore, that each external force acting on a rigid body can, if unop-

posed, impart to the rigid body a motion of translation or rotation, or both.

3.1B  Principle of Transmissibility: 
Equivalent Forces

The principle of transmissibility states that the conditions of equilibrium 

or motion of a rigid body remain unchanged if a force F acting at a given 

point of the rigid body is replaced by a force F9 of the same magnitude 

and same direction, but acting at a different point, provided that the two 
forces have the same line of action (Fig.  3.2). The two forces F and F9 

have the same effect on the rigid body and are said to be equivalent 
forces. This principle, which states that the action of a force may be 

transmitted along its line of action, is based on experimental evidence. It 

cannot be derived from the properties established so far in this text and 

therefore must be accepted as an experimental law. (You will see in 

Sec. 16.1D that we can derive the principle of transmissibility from the 

study of the dynamics of rigid bodies, but this study requires the use of 

Newton’s second and third laws and of several other concepts as well.) 

Therefore, our study of the statics of rigid bodies is based on the three 

principles introduced so far: the parallelogram law of vector addition, 

Newton’s first law, and the principle of transmissibility.

We indicated in Chap. 2 that we could represent the forces acting 

on a particle by vectors. These vectors had a well-defined point of 

application––namely, the particle itself––and were therefore fixed, or 

bound, vectors. In the case of forces acting on a rigid body, however, the 

point of application of the force does not matter, as long as the line of 

action remains unchanged. Thus, forces acting on a rigid body must be 

represented by a different kind of vector, known as a sliding vector, since 

forces are allowed to slide along their lines of action. Note that all of the 

properties we derive in the following sections for the forces acting on a 

rigid body are valid more generally for any system of sliding vectors. In 

order to keep our presentation more intuitive, however, we will carry it 

out in terms of physical forces rather than in terms of mathematical sliding 

vectors.

Returning to the example of the truck, we first observe that the line 

of action of the force F is a horizontal line passing through both the front 

=

F

F'

Fig. 3.2 Two forces F and F9 are equivalent 
if they have the same magnitude and 
direction and the same line of action, 
even if they act at different points.
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86 Rigid Bodies: Equivalent Systems of Forces

and rear bumpers of the truck (Fig. 3.3). Using the principle of transmis-

sibility, we can therefore replace F by an equivalent force F9 acting on 

the rear bumper. In other words, the conditions of motion are unaffected, 

and all of the other external forces acting on the truck (W, R1, R2) remain 

unchanged if the people push on the rear bumper instead of pulling on 

the front bumper.

The principle of transmissibility and the concept of equivalent forces 

have limitations. Consider, for example, a short bar AB acted upon by 

equal and opposite axial forces P1 and P2, as shown in Fig. 3.4a. According 

W

F F′

Equivalent
forces

R1 R2

W
R1 R2

=

Fig. 3.3 Force F9 is equivalent to force F, so the motion of the truck is 
the same whether you pull it or push it.

=P1 P2

A B

(a)

=P1
P'2

A B

(b)

A B

(c)

=P1P2

A B

(d)

=P1

P'2

A B

(e)

A B

( f )

Fig. 3.4 (a–c) A set of equivalent forces acting on bar AB; (d–f ) another 
set of equivalent forces acting on bar AB. Both sets produce the same 
external effect (equilibrium in this case) but different internal forces and 
deformations.

to the principle of transmissibility, we can replace force P2 by a force P92 

having the same magnitude, the same direction, and the same line of 

action but acting at A instead of B (Fig. 3.4b). The forces P1 and P92 acting 

on the same particle can be added according to the rules of Chap. 2, and 

since these forces are equal and opposite, their sum is equal to zero. Thus, 

in terms of the external behavior of the bar, the original system of forces 

shown in Fig. 3.4a is equivalent to no force at all (Fig. 3.4c).

Consider now the two equal and opposite forces P1 and P2 acting on 

the bar AB as shown in Fig. 3.4d. We can replace the force P2 by a force 

P92 having the same magnitude, the same direction, and the same line of 

action but acting at B instead of at A (Fig. 3.4e). We can add forces P1 and 

P92, and their sum is again zero (Fig. 3.4f ). From the point of view of the 

mechanics of rigid bodies, the systems shown in Fig. 3.4a and d are thus 

equivalent. However, the internal forces and deformations produced by the 

two systems are clearly different. The bar of Fig. 3.4a is in tension and, if 

not absolutely rigid, increases in length slightly; the bar of Fig. 3.4d is in 

compression and, if not absolutely rigid, decreases in length slightly. Thus, 

although we can use the principle of transmissibility to determine the 
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3.1 Forces and Moments 87

conditions of motion or equilibrium of rigid bodies and to compute the 

external forces acting on these bodies, it should be avoided, or at least used 

with care, in determining internal forces and deformations.

3.1C Vector Products 
In order to gain a better understanding of the effect of a force on a rigid 

body, we need to introduce a new concept, the moment of a force about 
a point. However, this concept is more clearly understood and is applied 

more effectively if we first add to the mathematical tools at our disposal 

the vector product of two vectors.

The vector product of two vectors P and Q is defined as the vector V
that satisfies the following conditions.

 1. The line of action of V is perpendicular to the plane containing P and 

Q (Fig. 3.5a).

 2. The magnitude of V is the product of the magnitudes of P and Q and 

of the sine of the angle θ formed by P and Q (the measure of which is 

always 180° or less). We thus have

  Magnitude of a
vector product

 V 5 PQ sin θ (3.1)

 3. The direction of V is obtained from the right-hand rule. Close your 

right hand and hold it so that your fingers are curled in the same sense 

as the rotation through θ that brings the vector P in line with the 

vector Q. Your thumb then indicates the direction of the vector V 

(Fig. 3.5b). Note that if P and Q do not have a common point of appli-

cation, you should first redraw them from the same point. The three 

vectors P, Q, and V—taken in that order—are said to form a right-
handed triad.†

As stated previously, the vector V satisfying these three conditions 

(which define it uniquely) is referred to as the vector product of P and Q. 

It is represented by the mathematical expression

Vector product

 V 5 P 3 Q (3.2)

Because of this notation, the vector product of two vectors P and Q is 

also referred to as the cross product of P and Q.

It follows from Eq. (3.1) that if the vectors P and Q have either the 

same direction or opposite directions, their vector product is zero. In the 

general case when the angle θ formed by the two vectors is neither 0° nor 

180°, Eq. (3.1) has a simple geometric interpretation: The magnitude V of 

the vector product of P and Q is equal to the area of the parallelogram 

that has P and Q for sides (Fig.  3.6). The vector product P 3 Q is 

V 5 PQ sin θ

†Note that the x, y, and z axes used in Chap. 2 form a right-handed system of orthogonal axes 

and that the unit vectors i, j, and k defined in Sec. 2.4A form a right-handed orthogonal triad. 

V 5 P 3 Q

Q

P

V = P × Q

q

(a)

V
V points in the
direction of the
thumb

Fingers curl
in the direction
from P to Q

(b)

Fig. 3.5 (a) The vector product V has the 
magnitude PQ sin θ and is perpendicular 
to the plane of P and Q; (b) you can 
determine the direction of V by using the 
right-hand rule.

Q
Q'

P

V

Fig. 3.6 The magnitude of the vector 
product V equals the area of the 
parallelogram formed by P and Q. If you 
change Q to Q9 in such a way that the 
parallelogram changes shape but P and the 
area are still the same, then the magnitude 
of V remains the same.
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88 Rigid Bodies: Equivalent Systems of Forces

therefore unchanged if we replace Q by a vector Q9 that is coplanar with 

P and Q such that the line joining the tips of Q and Q9 is parallel to P: 

 V 5 P 3 Q 5 P 3 Q9 (3.3)

From the third condition used to define the vector product V of P
and Q––namely, that P, Q, and V must form a right-handed triad––it fol-

lows that vector products are not commutative; i.e., Q 3 P is not equal 

to P 3 Q. Indeed, we can easily check that Q 3 P is represented by the 

vector 2V, which is equal and opposite to V:

Q 3 P 5 2(P 3 Q) (3.4)

Concept Application 3.1

Let us compute the vector product V 5 P 3 Q, where the vector P
is of magnitude 6 and lies in the zx plane at an angle of 30° with the 

x axis, and where the vector Q is of magnitude 4 and lies along the 

x axis (Fig. 3.7).

Solution

It follows immediately from the definition of the vector product that 

the vector V must lie along the y axis, directed upward, with the 

magnitude

V 5 PQ sin θ 5 (6)(4) sin 30° 5 12 �

y

x

z

Q

P
60°

30°

Fig. 3.7 Two vectors P and Q with angle 
between them.

We saw that the commutative property does not apply to vector 

products. However, it can be demonstrated that the distributive property

P 3 (Q1 1 Q2) 5 P 3 Q1 1 P 3 Q2 (3.5)

does hold.

A third property, the associative property, does not apply to vector 

products; we have in general

 (P 3 Q) 3 S Þ P 3 (Q 3 S) (3.6)

3.1D  Rectangular Components 
of Vector Products 

Before we turn back to forces acting on rigid bodes, let’s look at a more 

convenient way to express vector products using rectangular components. 

To do this, we use the unit vectors i, j, and k that were defined in Chap. 2.

Consider first the vector product i 3 j (Fig. 3.8a). Since both vectors 

have a magnitude equal to 1 and since they are at a right angle to each 

other, their vector product is also a unit vector. This unit vector must be 

k, since the vectors i, j, and k are mutually perpendicular and form a 

y

x

z

i

j

i × j = k

(a)

y

x

z

i

j

(b)

j × i = –k

Fig. 3.8 (a) The vector product of the i and 
j unit vectors is the k unit vector; (b) the 
vector product of the j and i unit vectors is 
the 2k unit vector.
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3.1 Forces and Moments 89

right-handed triad. Similarly, it follows from the right-hand rule given in 

Sec. 3.1C that the product j 3 i is equal to 2k (Fig. 3.8b). Finally, note 

that the vector product of a unit vector with itself, such as i 3 i, is equal 

to zero, since both vectors have the same direction. Thus, we can list the 

vector products of all the various possible pairs of unit vectors:

 i 3 i 5 0 j 3 i 5 2k k 3 i 5 j

 i 3 j 5 k j 3 j 5 0 k 3 j 5 2i (3.7)

 i 3 k 5 2j j 3 k 5 i k 3 k 5 0

We can determine the sign of the vector product of two unit vectors simply 

by arranging them in a circle and reading them in the order of the multi-

plication (Fig.  3.9). The product is positive if they follow each other in 

counterclockwise order and is negative if they follow each other in clock-

wise order.

j 
Unit vector

products read
in this direction

are positive

Unit vector
products read
in this direction
are negative

ik

Fig. 3.9 Arrange the three letters i, j, k in a 
counterclockwise circle. You can use the order of 
letters for the three unit vectors in a vector 
product to determine its sign.

We can now easily express the vector product V of two given vectors P 

and Q in terms of the rectangular components of these vectors. Resolving 

P and Q into components, we first write

V 5 P 3 Q 5 (Pxi 1 Py j 1 Pz k) 3 (Qxi 1 Qy j 1 Qz k)

Making use of the distributive property, we express V as the sum of vector 

products, such as Px i 3 Q y j. We find that each of the expressions obtained 

is equal to the vector product of two unit vectors, such as i 3 j, multiplied 

by the product of two scalars, such as Px Qy. Recalling the identities of 

Eq. (3.7) and factoring out i, j, and k, we obtain

 V 5 (PyQz 2 PzQy)i 1 (PzQx 2 PxQz)j 1 (PxQy 2 PyQx)k (3.8)

Thus, the rectangular components of the vector product V are 

Rectangular components
of a vector product

Vx 5 PyQz 2 PzQy

 Vy 5 PzQx 2 PxQz (3.9)

 Vz 5 PxQy 2 PyQx

VxVV 5 PyP Qz 2 PzQy

VyVV 5 PzQx 2 PxP Qz 

VzVV 5 PxP Qy 2 PyP Qx
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90 Rigid Bodies: Equivalent Systems of Forces

Returning to Eq. (3.8), notice that the right-hand side represents the expan-

sion of a determinant. Thus, we can express the vector product V in the 

following form, which is more easily memorized:†

Rectangular components
of a vector product (determinant form)

 V 5 †
i j k

Px Py Pz

Qx Qy Qz

†  (3.10)

3.1E Moment of a Force about a Point
We are now ready to consider a force F acting on a rigid body (Fig. 3.10a). 

As we know, the force F is represented by a vector that defines its mag-

nitude and direction. However, the effect of the force on the rigid body 

depends also upon its point of application A. The position of A can be 

conveniently defined by the vector r that joins the fixed reference point 

O with A; this vector is known as the position vector of A. The position 

vector r and the force F define the plane shown in Fig. 3.10a.
We define the moment of F about O as the vector product of r and F:

Moment of a force
about a point O

 MO 5 r 3 F (3.11)

According to the definition of the vector product given in Sec. 3.1C, 

the moment MO must be perpendicular to the plane containing O and force F. 

The sense of MO is defined by the sense of the rotation that will bring vector r
in line with vector F; this rotation is observed as counterclockwise by an 

observer located at the tip of MO. Another way of defining the sense of MO

is furnished by a variation of the right-hand rule: Close your right hand and 

hold it so that your fingers curl in the sense of the rotation that F would 

impart to the rigid body about a fixed axis directed along the line of action 

of MO. Then your thumb indicates the sense of the moment MO (Fig. 3.10b).

Finally, denoting by θ the angle between the lines of action of the 

position vector r and the force F, we find that the magnitude of the 

moment of F about O is

Magnitude of the
moment of a force

 MO 5 rF sin θ 5 Fd (3.12)

V 5 †
i j k

PxP PyP Pz

Qx Qy Qz

†

MO 5 r 3 F

MOM 5 rF sin θ 5 Fd

†Any determinant consisting of three rows and three columns can be evaluated by repeating 

the first and second columns and forming products along each diagonal line. The sum of 

the products obtained along the red lines is then subtracted from the sum of the products 

obtained along the black lines.

i j k i j

Px Py Pz Px Py

Qx Qy Qz Qx Qy

MO

d A

F

r
q

O

(a)

MO

Vector MO
points in the
direction of
the thumb

Fingers curl
in the direction
from r to F

(b)

Fig. 3.10 Moment of a force about a point. 
(a) The moment MO is the vector product of 
the position vector r and the force F; (b) a 
right-hand rule indicates the sense of MO.
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3.1 Forces and Moments 91

where d represents the perpendicular distance from O to the line of action 

of F (see Fig. 3.10). Experimentally, the tendency of a force F to make a 

rigid body rotate about a fixed axis perpendicular to the force depends upon 

the distance of F from that axis, as well as upon the magnitude of F. For 

example, a child’s breath can exert enough force to make a toy propeller 

spin (Fig.  3.11a), but a wind turbine requires the force of a substantial 

wind to rotate the blades and generate electrical power (Fig. 3.11b). How-

ever, the perpendicular distance between the rotation point and the line of 

action of the force (often called the moment arm) is just as important. 

If you want to apply a small moment to turn a nut on a pipe without break-

ing it, you might use a small pipe wrench that gives you a small moment 

Fig. 3.11 (a, b) The moment of a force depends on the magnitude of the force; (c, d) it 
also depends on the length of the moment arm.

(c) Small moment arm (d) Large moment arm

(b) Large force(a) Small force
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92 Rigid Bodies: Equivalent Systems of Forces

arm (Fig. 3.11c). But if you need a larger moment, you could use a large 

wrench with a long moment arm (Fig. 3.11d). Therefore, 

The magnitude of MO measures the tendency of the force F to make 
the rigid body rotate about a fixed axis directed along MO.

In the SI system of units, where a force is expressed in newtons (N) 

and a distance in meters (m), the moment of a force is expressed in 

newton-meters (N?m). In the U.S. customary system of units, where a 

force is expressed in pounds and a distance in feet or inches, the moment 

of a force is expressed in lb?ft or lb?in.

Note that although the moment MO of a force about a point depends 

upon the magnitude, the line of action, and the sense of the force, it does 

not depend upon the actual position of the point of application of the force 

along its line of action. Conversely, the moment MO of a force F does not 

characterize the position of the point of application of F.

However, as we will see shortly, the moment MO of a force F of a 

given magnitude and direction completely defines the line of action of F. 

Indeed, the line of action of F must lie in a plane through O perpendicular 

to the moment MO; its distance d from O must be equal to the quotient 

MO /F of the magnitudes of MO and F; and the sense of MO determines 

whether the line of action of F occurs on one side or the other of the point O.
Recall from Sec. 3.1B that the principle of transmissibility states 

that two forces F and F9 are equivalent (i.e., have the same effect on a 

rigid body) if they have the same magnitude, same direction, and same 

line of action. We can now restate this principle: 

Two forces F and F9 are equivalent if, and only if, they are equal (i.e., 
have the same magnitude and same direction) and have equal 
moments about a given point O. 

The necessary and sufficient conditions for two forces F and F9 to be 

equivalent are thus

 F 5 F9   and   MO 5 M9O (3.13)

We should observe that if the relations of Eqs. (3.13) hold for a given 

point O, they hold for any other point.

Two-Dimensional Problems. Many applications in statics deal 

with two-dimensional structures. Such structures have length and breadth 

but only negligible depth. Often, they are subjected to forces contained in 

the plane of the structure. We can easily represent two-dimensional struc-

tures and the forces acting on them on a sheet of paper or on a blackboard. 

Their analysis is therefore considerably simpler than that of three-dimensional 

structures and forces.

Consider, for example, a rigid slab acted upon by a force F in the 

plane of the slab (Fig. 3.12). The moment of F about a point O, which is 

chosen in the plane of the figure, is represented by a vector MO perpen-

dicular to that plane and of magnitude Fd. In the case of Fig. 3.12a, the 

vector MO points out of the page, whereas in the case of Fig.  3.12b, it 

points into the page. As we look at the figure, we observe in the first case 

F 5 F9   and   MO 5 M9O

MO

F

d

O

(a) MO = + Fd

F

(b) MO = – Fd

MO

d

O

Fig. 3.12 (a) A moment that tends to 
produce a counterclockwise rotation is 
positive; (b) a moment that tends to produce 
a clockwise rotation is negative.
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3.1 Forces and Moments 93

that F tends to rotate the slab counterclockwise and in the second case 

that it tends to rotate the slab clockwise. Therefore, it is natural to refer 

to the sense of the moment of F about O in Fig. 3.12a as counterclockwise l, 

and in Fig. 3.12b as clockwise i.

Since the moment of a force F acting in the plane of the figure must 

be perpendicular to that plane, we need only specify the magnitude and 

the sense of the moment of F about O. We do this by assigning to the 

magnitude MO of the moment a positive or negative sign according to 

whether the vector MO points out of or into the page.

3.1F  Rectangular Components of the 
Moment of a Force

We can use the distributive property of vector products to determine the 

moment of the resultant of several concurrent forces. If several forces F1, 

F2, . . . are applied at the same point A (Fig. 3.13) and if we denote by r
the position vector of A, it follows immediately from Eq. (3.5) that

r 3 (F1 1 F2 1 . . .) 5 r 3 F1 1 r 3 F2 1 . . . (3.14)

In words, 

The moment about a given point O of the resultant of several 
concurrent forces is equal to the sum of the moments of the various 
forces about the same point O.

This property, which was originally established by the French mathemati-

cian Pierre Varignon (1654–1722) long before the introduction of vector 

algebra, is known as Varignon’s theorem.
The relation in Eq. (3.14) makes it possible to replace the direct 

deter mination of the moment of a force F by determining the moments of 

two or more component forces. As you will see shortly, F is generally 

resolved into components parallel to the coordinate axes. However, it may 

be more expeditious in some instances to resolve F into components that 

are not parallel to the coordinate axes (see Sample Prob. 3.3).

In general, determining the moment of a force in space is consider-

ably simplified if the force and the position vector of its point of application 

are resolved into rectangular x, y, and z components. Consider, for example, 

the moment MO about O of a force F whose components are Fx, Fy, and 

Fz and that is applied at a point A with coordinates x, y, and z (Fig. 3.14). 

Since the components of the position vector r are respectively equal to the 

coordinates x, y, and z of the point A, we can write r and F as

  r 5 xi 1 yj 1 zk (3.15)
  F 5 Fxi 1 Fyj 1 Fzk (3.16)

Substituting for r and F from Eqs. (3.15) and (3.16) into

 MO 5 r 3 F (3.11)

and recalling Eqs. (3.8) and (3.9), we can write the moment MO of F 

about O in the form

 MO 5 Mxi 1 My j 1 Mzk (3.17)

where the components Mx, My, and Mz are defined by the relations

r 3 (F1 1 F2 1 . . .) 5 r 3 F1 1 r 3 F2 1 . . .

y

x

z

O

A

r
F1

F2

F3
F4

Fig. 3.13 Varignon’s theorem says that the 
moment about point O of the resultant of 
these four forces equals the sum of the 
moments about point O of the individual 
forces.

Fz k
x

y

z

O

zk

y j

x i
r

A (x, y, z)

Fy j

Fx i

Fig. 3.14 The moment MO about point O 
of a force F applied at point A is the vector 
product of the position vector r and the 
force F, which can both be expressed in 
rectangular components.
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94 Rigid Bodies: Equivalent Systems of Forces

Rectangular components
of a moment

Mx 5 yFz 2 zFy

My 5 zFx 2 xFz

Mz 5 xFy 2 yFx

 (3.18)

As you will see in Sec. 3.2C, the scalar components Mx, My, and Mz of 

the moment MO measure the tendency of the force F to impart to a rigid 

body a rotation about the x, y, and z axes, respectively. Substituting from 

Eq. (3.18) into Eq. (3.17), we can also write MO in the form of the deter-

minant, as

 MO 5 †
i j k
x y z

Fx Fy Fz

†  (3.19)

To compute the moment MB about an arbitrary point B of a force 

F applied at A (Fig.  3.15), we must replace the position vector r in 

Eq. (3.11) by a vector drawn from B to A. This vector is the position 
vector of A relative to B, denoted by rA/B. Observing that rA/B can be 

obtained by subtracting rB from rA, we write

 MB 5 rA/B 3 F 5 (rA 2 rB) 3 F (3.20)

or using the determinant form,

MB 5 †
i j k

xA/B yA/B zA/B

Fx Fy Fz

†  (3.21)

where xA/B, yA/B, and zA/B denote the components of the vector rA/B:

xA/B 5 xA 2 xB    yA/B 5 yA 2 yB    zA/B 5 zA 2 zB

In the case of two-dimensional problems, we can assume without 

loss of generality that the force F lies in the xy plane (Fig. 3.16). Setting

z 5 0 and Fz 5 0 in Eq. (3.19), we obtain

MO 5 (xFy 2 yFx)k

We can verify that the moment of F about O is perpendicular to the plane 

of the figure and that it is completely defined by the scalar

 MO 5 Mz 5 xFy 2 yFx (3.22)

As noted earlier, a positive value for MO indicates that the vector MO points 

out of the paper (the force F tends to rotate the body counter clockwise 

about O), and a negative value indicates that the vector MO points into the 

paper (the force F tends to rotate the body clockwise about O).

To compute the moment about B(xB, yB) of a force lying in the 

xy plane and applied at A(xA, yA) (Fig. 3.17), we set zA/B 5 0 and Fz 5 0 

in Eq. (3.21) and note that the vector MB is perpendicular to the xy plane 

and is defined in magnitude and sense by the scalar

 MB 5 (xA 2 xB)Fy 2 (yA 2 yB)Fx (3.23)

MxM 5 yFzF 2 zFyFF
MyMM 5 zFxF 2 xFzF
MzM 5 xFyFF 2 yFxF

MO 5 †
i j k
x y z

FxF FyFF FzF

†

MB 5 †
i j k

xAx /B// yAyy /B// zAz /B//

FxF FyFF FzF

†

Fz k

x

y

z

B

O

ArA/B

(xA – xB)i

(zA – zB)k

(yA – yB)j
Fy j

Fx i

Fig. 3.15 The moment MB about the 
point B of a force F applied at point A is 
the vector product of the position vector rA/B 
and force F.

y

x

z

O

Fy j

Fx i

F

xi

y j
r

MO = Mzk

A (x, y,0)

Fig. 3.16 In a two-dimensional problem, 
the moment MO of a force F applied at A 
in the xy plane reduces to the z component 
of the vector product of r with F.

y

x

z

O
B

Fy j

Fx i

F

A

(yA – yB)j

(xA – xB)i

rA/B

MB = MB k

Fig. 3.17 In a two-dimensional problem, 
the moment MB about a point B of a force F 
applied at A in the xy plane reduces to the 
z component of the vector product of rA/B 
with F.
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3.1 Forces and Moments 95

Sample Problem 3.1

A 100-lb vertical force is applied to the end of a lever, which is attached 

to a shaft at O. Determine (a) the moment of the 100-lb force about O; 

(b) the horizontal force applied at A that creates the same moment 

about O; (c) the smallest force applied at A that creates the same moment 

about O; (d) how far from the shaft a 240-lb vertical force must act to 

create the same moment about O; (e) whether any one of the forces 

obtained in parts b, c, or d is equivalent to the original force.

100 lb

60°

A

O

24 in.

STRATEGY: The calculations asked for all involve variations on the 

basic defining equation of a moment, MO 5 Fd.

MODELING and ANALYSIS:

 a. Moment about O. The perpendicular distance from O to the 

line of action of the 100-lb force (Fig. 1) is

d 5 (24 in.) cos 60° 5 12 in.

The magnitude of the moment about O of the 100-lb force is

MO 5 Fd 5 (100 lb)(12 in.) 5 1200 lb?in.

Since the force tends to rotate the lever clockwise about O, represent the 

moment by a vector MO perpendicular to the plane of the figure and point-

ing into the paper. You can express this fact with the notation

 MO 5 1200 lb?in. i b

 b. Horizontal Force. In this case, you have (Fig. 2)

d 5 (24 in.) sin 60° 5 20.8 in.

Since the moment about O must be 1200 lb?in., you obtain

MO 5 Fd

1200 lb?in. 5 F(20.8 in.)

 F 5 57.7 lb F 5 57.7 lb y b

 c. Smallest Force. Since MO 5 Fd, the smallest value of F occurs 

when d is maximum. Choose the force perpendicular to OA and note that 

d 5 24 in. (Fig. 3); thus

MO 5 Fd

1200 lb?in. 5 F(24 in.)

 F 5 50 lb F 5 50 lb c30° b

(continued)

Fig. 2 Determination of 
horizontal force at A that creates 
same moment about O.

F

60°

MO

A

O

24 in.
d

Fig. 3 Determination of smallest 
force at A that creates same 
moment about O.

F

MO

60°

A

O

24 in.

60°

MO

100 lb

A

O

24 in.

d

Fig. 1 Determination of the 
moment of the 100-lb force about 
O using perpendicular distance d.
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96 Rigid Bodies: Equivalent Systems of Forces

d. 240-lb Vertical Force. In this case (Fig. 4), MO 5 Fd yields

1200 lb?in. 5 (240 lb)d   d 5 5 in.

but

OB cos 60° 5 d 

so OB 5 10 in. b

 e. None of the forces considered in parts b, c, or d is equivalent to the 

original 100-lb force. Although they have the same moment about O, they 

have different x and y components. In other words, although each force 

tends to rotate the shaft in the same direction, each causes the lever to 

pull on the shaft in a different way.

REFLECT and THINK: Various combinations of force and lever arm can 

produce equivalent moments, but the system of force and moment pro-

duces a different overall effect in each case. 

Sample Problem 3.2

A force of 800 N acts on a bracket as shown. Determine the moment of 

the force about B.

STRATEGY: You can resolve both the force and the position vector 

from B to A into rectangular components and then use a vector approach 

to complete the solution.

MODELING and ANALYSIS: Obtain the moment MB of the force F 

about B by forming the vector product

MB 5 rA/B 3 F

where rA/B is the vector drawn from B to A (Fig. 1). Resolving rA/B and F 

into rectangular components, you have

 rA/B 5 2(0.2 m)i 1 (0.16 m)j

F 5 (800 N) cos 60°i 1 (800 N) sin 60°j

 5 (400 N)i 1 (693 N)j

Recalling the relations in Eq. (3.7) for the cross products of unit vectors 

(Sec. 3.5), you obtain

MB 5 rA/B 3 F 5 [2(0.2 m)i 1 (0.16 m)j] 3 [(400 N)i 1 (693 N)j]

 5 2(138.6 N?m)k 2 (64.0 N?m)k

 5 2(202.6 N?m)k MB 5 203 N?m i b

The moment MB is a vector perpendicular to the plane of the figure and 

pointing into the page.

(continued)

Fig. 4 Position of vertical 240-lb 
force that creates same moment 
about O.

240 lb

MO
60°

A

B

O
d

800 N

60°

B

A

160 mm

200 mm

60°

Fy = (693 N) j

Fx = (400 N) i

rA/B

MB

F = 800 N

+ (0.16 m) j

– (0.2 m) i

A

B

Fig. 1 The moment MB is 
determined from the vector product 
of position vector rA/B and force 
vector F.
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3.1 Forces and Moments 97

REFLECT and THINK: We can also use a scalar approach to solve this 

problem using the components for the force F and the position vector rA/B. 

Following the right-hand rule for assigning signs, we have

1lMB 5 oMB 5 oFd 5 2(400 N)(0.16 m) 2 (693 N)(0.2 m) 5 2202.6 N?m

MB 5 203 N?m i b

Sample Problem 3.3

A 30-lb force acts on the end of the 3-ft lever as shown. Determine the 

moment of the force about O.

STRATEGY: Resolving the force into components that are perpendicu-

lar and parallel to the axis of the lever greatly simplifies the moment 

calculation.

MODELING and ANALYSIS: Replace the force by two components: 

one component P in the direction of OA and one component Q perpendicu-

lar to OA (Fig. 1). Since O is on the line of action of P, the moment of P
about O is zero. Thus, the moment of the 30-lb force reduces to the moment 

of Q, which is clockwise and can be represented by a negative scalar.

Q 5 (30 lb) sin 20° 5 10.26 lb

MO 5 2Q(3 ft) 5 2(10.26 lb)(3 ft) 5 230.8 lb?ft

Since the value obtained for the scalar MO is negative, the moment MO 

points into the page. You can write it as

 MO 5 30.8 lb?ft i b

REFLECT and THINK: Always be alert for simplifications that can 

reduce the amount of computation.

A

O

20°

50°

30 lb

3 ft

Fig. 1 30-lb force at A resolved into 
components P and Q to simplify the 
determination of the moment MO.

MO

P

Q

A

O

20° 30 lb

3 ft

Sample Problem 3.4

A rectangular plate is supported by brackets at A and B and by a wire CD. 

If the tension in the wire is 200 N, determine the moment about A of the 

force exerted by the wire on point C.

STRATEGY: The solution requires resolving the tension in the wire and 

the position vector from A to C into rectangular components. You will 

need a unit vector approach to determine the force components.

MODELING and ANALYSIS: Obtain the moment MA about A of the 

force F exerted by the wire on point C by forming the vector product

 MA 5 rC/A 3 F (1)

(continued)

80 mm

80 mm

A

B

C

D

240 mm

240 mm

300 mm
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98 Rigid Bodies: Equivalent Systems of Forces

where rC/A is the vector from A to C

 rC/A 5 AC
�

5 (0.3 m)i 1 (0.08 m)k (2)

and F is the 200-N force directed along CD (Fig. 1). Introducing the unit 

vector 

l 5 CD
�

/CD,

you can express F as

F 5 Fλ 5 (200 N) 
CD
�

CD
 (3)

Resolving the vector CD
�

 into rectangular components, you have

CD
�

5 2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k    CD 5 0 .50 m

Substituting into (3) gives you 

 F 5
200

 
N

0.50m
 [2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k]

  5 2(120 N)i 1 (96 N)j 2 (128 N)k  (4)

Substituting for rC/A and F from (2) and (4) into (1) and recalling the 

relations in Eq. (3.7) of Sec. 3.1D, you obtain (Fig. 2)

MA 5 rC/A 3 F 5 (0.3i 1 0.08k) 3 (2120i 1 96j 2 128k)  

  5 (0.3)(96)k 1 (0.3)(2128)(2j) 1 (0.08)(2120)j 1 (0.08)(96)(2i)  

MA 5 2(7.68 N?m)i 1 (28.8 N?m)j 1 (28.8 N?m)k b

Fig. 2 Components of moment MA 
applied at A.

A

C

D

(28.8 N•m) j

(28.8 N•m) k

– (7.68 N•m) i

F = (200 N)�

Alternative Solution. As indicated in Sec. 3.1F, you can also express 

the moment MA in the form of a determinant:

MA 5 †
i j k

xC 2 xA yC 2 yA zC 2 zA

Fx Fy Fz

† 5 †
i j k

0.3 0 0.08

2120 96 2128

†

MA 5 2(7.68 N?m)i 1 (28.8 N?m)j 1 (28.8 N?m)k b

REFLECT and THINK: Two-dimensional problems often are solved eas-

ily using a scalar approach, but the versatility of a vector analysis is quite 

apparent in a three-dimensional problem such as this.

Fig. 1 The moment MA is determined 
from position vector rC/A and force 
vector F.

rC/A

A

B

C

D

x

y

z

O0.08 m

0.08 m 0.3 m

200 N
0.24 m

0.24 m
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99 99

In this section, we introduced the vector product or cross product of two vectors. In 

the following problems, you will use the vector product to compute the moment of 
a force about a point and also to determine the perpendicular distance from a point 

to a line.

We defined the moment of the force F about the point O of a rigid body as

 MO 5 r 3 F (3.11)

where r is the position vector from O to any point on the line of action of F. Since 

the vector product is not commutative, it is absolutely necessary when computing such 

a product that you place the vectors in the proper order and that each vector have the 

correct sense. The moment MO is important because its magnitude is a measure of 

the tendency of the force F to cause the rigid body to rotate about an axis directed 

along MO.

1. Computing the moment MO of a force in two dimensions. You can use one of 

the following procedures:

a. Use Eq. (3.12), MO 5 Fd, which expresses the magnitude of the moment 

as the product of the magnitude of F and the perpendicular distance d from O to the 

line of action of F [Sample Prob. 3.1].

b. Express r and F in component form and formally evaluate the vector product 

MO 5 r 3 F [Sample Prob. 3.2].

 c. Resolve F into components respectively parallel and perpendicular to the 

position vector r. Only the perpendicular component contributes to the moment of F
[Sample Prob. 3.3].

d. Use Eq. (3.22), MO 5 Mz 5 xFy 2 yFx. When applying this method, the 

simplest approach is to treat the scalar components of r and F as positive and then 

to assign, by observation, the proper sign to the moment produced by each force 

component [Sample Prob. 3.2].

2. Computing the moment MO of a force F in three dimensions. Following the 

method of Sample Prob. 3.4, the first step in the calculation is to select the most 

convenient (simplest) position vector r. You should next express F in terms of its 

rectangular components. The final step is to evaluate the vector product r 3 F to 

determine the moment. In most three-dimensional problems you will find it easiest to 

calculate the vector product using a determinant.

3.  Determining the perpendicular distance d from a point A to a given line. First 

assume that a force F of known magnitude F lies along the given line. Next determine 

its moment about A by forming the vector product MA 5 r 3 F, and calculate this 

product as indicated above. Then compute its magnitude MA. Finally, substitute the 

values of F and MA into the equation MA 5 Fd and solve for d.

SOLVING PROBLEMS 
ON YOUR OWN
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100

Problems
 3.1 A crate of mass 80 kg is held in the position shown. Determine 

(a) the moment produced by the weight W of the crate about E, 

(b) the smallest force applied at B that creates a moment of equal 

magnitude and opposite sense about E.

 3.2 A crate of mass 80 kg is held in the position shown. Determine 

(a) the moment produced by the weight W of the crate about E, 

(b) the smallest force applied at A that creates a moment of equal 

magnitude and opposite sense about E, (c) the magnitude, sense, and 

point of application on the bottom of the crate of the smallest vertical 

force that creates a moment of equal magnitude and opposite sense 

about E.

 3.3 It is known that a vertical force of 200 lb is required to remove the 

nail at C from the board. As the nail first starts moving, determine 

(a) the moment about B of the force exerted on the nail, (b) the 

magnitude of the force P that creates the same moment about B if 

α 5 10°, and (c) the smallest force P that creates the same moment 

about B.

4 in.

A

B

P

18 in.

C

a

70°

Fig. P3.3

 3.4 A 300-N force is applied at A as shown. Determine (a) the moment 

of the 300-N force about D, (b) the smallest force applied at B that 

creates the same moment about D.

 3.5 A 300-N force is applied at A as shown. Determine (a) the moment 

of the 300-N force about D, (b) the magnitude and sense of the 

horizontal force applied at C that creates the same moment about D, 

(c) the smallest force applied at C that creates the same moment 

about D.

A B

C
E

W

0.85 m

0.5 m

0.6 m 0.6 m

D

Fig. P3.1 and P3.2

300 N
A B

D

C

25°

100 mm 200 mm

200 mm

125 mm

Fig. P3.4 and P3.5
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101

 3.6 A 20-lb force is applied to the control rod AB as shown. Knowing 

that the length of the rod is 9 in. and that α 5 25°, determine the 

moment of the force about point B by resolving the force into hori-

zontal and vertical components.

 3.7 A 20-lb force is applied to the control rod AB as shown. Knowing 

that the length of the rod is 9 in. and that α 5 25°, determine the 

moment of the force about point B by resolving the force into com-

ponents along AB and in a direction perpendicular to AB.

3.8 A 20-lb force is applied to the control rod AB as shown. Knowing 

that the length of the rod is 9 in. and that the moment of the force 

about B is 120 lb∙in. clockwise, determine the value of α.

 3.9 Rod AB is held in place by the cord AC. Knowing that the tension 

in the cord is 1350 N and that c 5 360 mm, determine the moment 

about B of the force exerted by the cord at point A by resolving that 

force into horizontal and vertical components applied (a) at point A, 

(b) at point C.

 3.10 Rod AB is held in place by the cord AC. Knowing that c 5 840 mm 

and that the moment about B of the force exerted by the cord at 

point A is 756 N∙m, determine the tension in the cord.

    3.11 and 3.12  The tailgate of a car is supported by the hydraulic lift BC. 

If the lift exerts a 125-lb force directed along its centerline on the 

ball and socket at B, determine the moment of the force about A.

A

B
C

15.3 in.

12.0 in.

12.0 in.

2.33 in.

Fig. P3.11

17.2 in.

4.38 in.

7.62 in.

20.5 in.

A

B
C

Fig. P3.12

A

B

20 lb

65°

a

Fig. P3.6 through P3.8

A

B

C

240 mm

c

450 mm

Fig. P3.9 and P3.10
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102

     3.13 and 3.14  It is known that the connecting rod AB exerts on the crank 

BC a 2.5-kN force directed down and to the left along the centerline 

of AB. Determine the moment of the force about C.

B

C

A

42 mm

144 mm

56 mm

Fig. P3.13

A

B

C

88 mm

56 mm

42 mm

Fig. P3.14

 3.15 Form the vector products B 3 C and B9 3 C, where B 5 B9, and 

use the results obtained to prove the identity 

sin α cos β 5 
1
2 sin (α 1 β) 1 

1
2 sin (α 2 β).

y

x

C

B

B'

a

b
b

Fig. P3.15

 3.16 The vectors P and Q are two adjacent sides of a parallelogram. 

Determine the area of the parallelogram when (a) P 5 28i 1 4j 2 4k 

and Q 5 3i 1 3j 1 6k, (b) P 5 7i 2 6j 2 3k and Q 5 23i 1 6j 2 2k.

 3.17 A plane contains the vectors A and B. Determine the unit vector 

normal to the plane when A and B are equal to, respectively, (a) 2i 1
3j 2 6k and 5i 2 8j 2 6k, (b) 4i 2 4j 1 3k and 23i 1 7j 2 5k. 

 3.18 A line passes through the points (12 m, 8 m) and (23 m, 25 m). 

Determine the perpendicular distance d from the line to the origin O
of the system of coordinates.

3.19 Determine the moment about the origin O of the force F 5 4i 2 3j 1
5k that acts at a point A. Assume that the position vector of A is 

(a) r 5 2i 1 3j 2 4k, (b) r 5 28i 1 6j 2 10k, (c) r 5 8i 2 6j 1 5k.
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 3.20 Determine the moment about the origin O of the force F 5 2i 1

3j 2 4k that acts at a point A. Assume that the position vector of A is 

(a) r 5 3i 2 6j 1 5k, (b) r 5 i 2 4j 2 2k, (c) r 5 4i 1 6j 2 8k.

 3.21 Before the trunk of a large tree is felled, cables AB and BC are 

attached as shown. Knowing that the tensions in cables AB and BC 
are 555 N and 660 N, respectively, determine the moment about O 

of the resultant force exerted on the tree by the cables at B.

 3.22 The 12-ft boom AB has a fixed end A. A steel cable is stretched from 

the free end B of the boom to a point C located on the vertical wall. 

If the tension in the cable is 380 lb, determine the moment about A 

of the force exerted by the cable at B.

B

C

A

x

y

z

4.8 ft

12 ft

8 ft

Fig. P3.22

 3.23 A 200-N force is applied as shown to the bracket ABC. Determine 

the moment of the force about A.

B

A

x

y

z
50 mm

60 mm

25 mm

200 N

30°
60°

C

Fig. P3.23

 3.24 The wire AE is stretched between the corners A and E of a bent 

plate. Knowing that the tension in the wire is 435 N, determine the 

moment about O of the force exerted by the wire (a) on corner A, 

(b) on corner E.

y

B

A
C

O

1 m

4.25 m

7 m

6 m

0.75 m

xz

Fig. P3.21

y

z
x

B

D

O

E

C

A

160 mm

90 mm

120 mm

120 mm

Fig. P3.24
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104

 3.25 A 6-ft-long fishing rod AB is securely anchored in the sand of a beach. 

After a fish takes the bait, the resulting force in the line is 6 lb. Deter-

mine the moment about A of the force exerted by the line at B.

x

y

z

A

B

D

C

45°
30°

8°

Fig. P3.25

 3.26 A precast concrete wall section is temporarily held by two cables as 

shown. Knowing that the tension in cable BD is 900 N, determine 

the moment about point O of the force exerted by the cable at B.

 3.27 In Prob. 3.22, determine the perpendicular distance from point A to 

cable BC.

 3.28 In Prob. 3.24, determine the perpendicular distance from point O to 

wire AE.

 3.29 In Prob. 3.24, determine the perpendicular distance from point B to 

wire AE.

 3.30 In Prob. 3.25, determine the perpendicular distance from point A to 

a line drawn through points B and C.

 3.31 In Prob. 3.25, determine the perpendicular distance from point D to 

a line drawn through points B and C.

 3.32 In Prob. 3.26, determine the perpendicular distance from point O to 

cable BD.

 3.33 In Prob. 3.26, determine the perpendicular distance from point C to 

cable BD.

 3.34 Determine the value of a that minimizes the perpendicular distance from 

point C to a section of pipeline that passes through points A and B.

A

O

B

E

C
D

2 m

2.5 m

2 m
1 m

y

z x

Fig. P3.26

x

y

z

A

B

C

8 ft
3 ft
2 ft

10 ft

a

24 ft

18 ft

16 ft

Fig. P3.34
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3.2 Moment of a Force about an Axis 105

3.2  MOMENT OF A FORCE 
ABOUT AN AXIS

We want to extend the idea of the moment about a point to the often use-

ful concept of the moment about an axis. However, first we need to intro-

duce another tool of vector mathematics. We have seen that the vector 

product multiplies two vectors together and produces a new vector. Here 

we examine the scalar product, which multiplies two vectors together and 

produces a scalar quantity.

3.2A Scalar Products
The scalar product of two vectors P and Q is defined as the product of 

the magnitudes of P and Q and of the cosine of the angle θ formed between 

them (Fig. 3.18). The scalar product of P and Q is denoted by P ? Q. 

Scalar product P ? Q 5 PQ cos θ (3.24)

Note that this expression is not a vector but a  scalar, which explains the 

name scalar product. Because of the notation used, P ? Q is also referred 

to as the dot product of the vectors P and Q.

It follows from its very definition that the scalar product of two 

vectors is commutative, i.e., that

 P ? Q 5 Q ? P (3.25)

It can also be proven that the scalar product is distributive, as shown by 

 P ? (Q1 1 Q2) 5 P ? Q1 1 P ? Q2 (3.26)

As far as the associative property is concerned, this property cannot apply 

to scalar products. Indeed, (P ? Q) ? S has no meaning, because P ? Q is 

not a vector but a scalar.

We can also express the scalar product of two vectors P and Q in 

terms of their rectangular components. Resolving P and Q into compo-

nents, we first write

P ? Q 5 (Pxi 1 Pyj 1 Pzk) ? (Qxi 1 Qyj 1 Qzk)

Making use of the distributive property, we express P ? Q as the sum of 

scalar products, such as Pxi ? Qxi and Pxi ? Qyj. However, from the defini-

tion of the scalar product, it follows that the scalar products of the unit 

vectors are either zero or one.

 

i ? i 5 1
  

j ? j
  

5 1
 
 k ? k 5 1

i ? j 5 0
 
 j ? k 5 0   k ? i 5 0 (3.27)

Thus, the expression for P ? Q reduces to

Scalar product

P ? Q 5 PxQx 1 PyQy 1 PzQz (3.28)

P ? Q 5 PQcosθ

P ? Q 5 PxP Qx 1 PyP Qy 1 PzQz

Q

P

q

Fig. 3.18 Two vectors P and Q and the 
angle θ between them.
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106 Rigid Bodies: Equivalent Systems of Forces

In the particular case when P and Q are equal, we note that

P ? P 5 P2
x 1 P2

y 1 P2
z 5 P2 (3.29)

Applications of the Scalar Product

1. Angle formed by two given vectors. Let two vectors be given in terms 

of their components:

 P 5 Pxi 1 Py 
j 1 Pzk

 Q 5 Qxi 1 Qy j 1 Qzk

To determine the angle formed by the two vectors, we equate the 

expressions obtained in Eqs. (3.24) and (3.28) for their scalar product, 

PQ cos θ 5 PxQx 1 PyQy 1 PzQz

  Solving for cos θ, we have

 cos θ 5
PxQx 1 PyQy 1 PzQz

PQ
 (3.30)

 2. Projection of a vector on a given axis. Consider a vector P forming 

an angle θ with an axis, or directed line, OL (Fig.  3.19a). We define 

the projection of P on the axis OL as the scalar

 POL 5 P cos θ (3.31)

The projection POL is equal in absolute value to the length of the seg-

ment OA. It is positive if OA has the same sense as the axis OL––that 

is, if θ is acute––and negative otherwise. If P and OL are at a right 

angle, the projection of P on OL is zero.

   Now consider a vector Q directed along OL and of the same sense 

as OL (Fig. 3.19b). We can express the scalar product of P and Q as

P ? Q 5 PQ cos θ 5 POLQ (3.32)

from which it follows that

 POL 5
P ? Q

Q
5

PxQx 1 PyQy 1 PzQz

Q
 (3.33)

In the particular case when the vector selected along OL is the unit 

vector l (Fig. 3.19c), we have

 POL 5 P ? l (3.34)

Recall from Sec. 2.4A that the components of l along the coordinate 

axes are respectively equal to the direction cosines of OL. Resolving P
and l into rectangular components, we can express the projection of P
on OL as

 POL 5 Px cos θx 1 Py cos θy 1 Pz cos θz (3.35)

where θx, θy, and θz denote the angles that the axis OL forms with the 

coordinate axes.

POL 5 P ? l

y

x

z

O

A

P

L

q

y

x

z

A

P

L

q

Q

O

y

x

z

O

A

P

L

� qx

qy

qz

(a)

(b)

(c)

Fig. 3.19 (a) The projection of vector P at 
an angle θ to a line OL; (b) the projection of 
P and a vector Q along OL; (c) the projection 
of P, a unit vector λ along OL, and the angles 
of OL with the coordinate axes.
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3.2 Moment of a Force about an Axis 107

3.2B Mixed Triple Products
We have now seen both forms of multiplying two vectors together: the 

vector product and the scalar product. Here we define the mixed triple 
product of the three vectors S, P, and Q as the scalar expression

Mixed triple product

S ? (P 3 Q) (3.36)

This is obtained by forming the scalar product of S with the vector product 

of P and Q. [In Chapter 15, we will introduce another kind of triple 

product, called the vector triple product, S 3 (P 3 Q).]
The mixed triple product of S, P, and Q has a simple geometrical 

interpretation (Fig. 3.20a). Recall from Sec. 3.4 that the vector P 3 Q is 

perpendicular to the plane containing P and Q and that its magnitude is 

equal to the area of the parallelogram that has P and Q for sides. Also, 

Eq. (3.32) indicates that we can obtain the scalar product of S and P 3 Q 

by multiplying the magnitude of P 3 Q (i.e., the area of the parallelogram 

defined by P and Q) by the projection of S on the vector P 3 Q (i.e., by 

the projection of S on the normal to the plane containing the parallelo-

gram). The mixed triple product is thus equal, in absolute value, to the 

volume of the parallelepiped having the vectors S, P, and Q for sides 

(Fig. 3.20b). The sign of the mixed triple product is positive if S, P, and 

Q form a right-handed triad and negative if they form a left-handed triad. 

[That is, S ? (P 3 Q) is negative if the rotation that brings P into line with 

Q is observed as clockwise from the tip of S]. The mixed triple product 

is zero if S, P, and Q are coplanar.

Since the parallelepiped defined in this way is independent of the 

order in which the three vectors are taken, the six mixed triple products 

that can be formed with S, P, and Q all have the same absolute value, 

although not the same sign. It is easily shown that

S ? (P 3 Q) 5 P ? (Q 3 S) 5 Q ? (S 3 P)

 5 2S ? (Q 3 P) 5 2P ? (S 3 Q) 5 2Q ? (P 3 S) (3.37)

Arranging the letters representing the three vectors counterclockwise in a 

circle (Fig.  3.21), we observe that the sign of the mixed triple product 

remains unchanged if the vectors are permuted in such a way that they 

still read in counterclockwise order. Such a permutation is said to be a 

circular permutation. It also follows from Eq. (3.37) and from the com-

mutative property of scalar products that the mixed triple product of S, P, 

and Q can be defined equally well as S ? (P 3 Q) or (S 3 P) ? Q.

We can also express the mixed triple product of the vectors S, P, 

and Q in terms of the rectangular components of these vectors. Denoting 

P 3 Q by V and using formula (3.28) to express the scalar product of S 

and V, we have

S ? (P 3 Q) 5 S ? V 5 SxVx 1 SyVy 1 SzVz 

Substituting from the relations in Eq. (3.9) for the components of V, we obtain

  S ? (P 3  Q) 5 Sx(PyQz 2 PzQy) 1 Sy(PzQx 2 PxQz)

 1 Sz(PxQy 2 PyQx) (3.38)  

S ? (P 3 Q)

S

P

Q

P × Q

S

P

Q

(a)

(b)

Fig. 3.20 (a) The mixed triple product is 
equal to the magnitude of the cross product 
of two vectors multiplied by the projection 
of the third vector onto that cross product; 
(b) the result equals the volume of the 
parallelepiped formed by the three vectors. 

S

P

Q

Fig. 3.21 Counterclockwise arrangement for 
determining the sign of the mixed triple 
product of three vectors P, Q, and S.
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108 Rigid Bodies: Equivalent Systems of Forces

We can write this expression in a more compact form if we observe that 

it represents the expansion of a determinant:

Mixed triple product, 
determinant form

S ? (P 3 Q) 5 †
Sx Sy Sz

Px Py Pz

Qx Qy Qz

†  (3.39)

By applying the rules governing the permutation of rows in a determinant, 

we could easily verify the relations in Eq. (3.37), which we derived earlier 

from geometrical considerations.

3.2C  Moment of a Force about 
a Given Axis

Now that we have the necessary mathematical tools, we can introduce the 

concept of moment of a force about an axis. Consider again a force F
acting on a rigid body and the moment MO of that force about O (Fig. 3.22). 

Let OL be an axis through O. 

We define the moment MOL of F about OL as the projection OC of 
the moment MO onto the axis OL. 

y

x

z

r

L

A

C

O

MO
F

��

Fig. 3.22 The moment MOL of a force F 
about the axis OL is the projection on OL 
of the moment MO. The calculation involves 
the unit vector l along OL and the position 
vector r from O to A, the point upon which 
the force F acts.

Suppose we denote the unit vector along OL by l and recall the expres-

sions (3.34) and (3.11) for the projection of a vector on a given axis and 

for the moment MO of a force F. Then we can express MOL as

Moment about an axis 
through the origin

MOL 5 λ ? MO 5 λ ? (r 3 F) (3.40)

S ? (P 3 Q) 5 †
SxS SyS SzS

PxP PyP Pz

Qx Qy Qz

†

MOL 5 λ ? MO 5 λ ? (r 3 F)
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3.2 Moment of a Force about an Axis 109

This shows that the moment MOL of F about the axis OL is the scalar 

obtained by forming the mixed triple product of l, r, and F. We can also 

express MOL in the form of a determinant, 

MOL 5 †
λx λy λz

x y z

Fx Fy Fz

†  (3.41)

where lx, ly, lz 5 direction cosines of axis OL

 x, y, z 5 coordinates of point of application of F
 Fx, Fy, Fz 5 components of force F

The physical significance of the moment MOL of a force F about a 

fixed axis OL becomes more apparent if we resolve F into two rectangular 

components F1 and F2, with F1 parallel to OL and F2 lying in a plane P
perpendicular to OL (Fig.  3.23). Resolving r similarly into two compo-

nents r1 and r2 and substituting for F and r into Eq. (3.40), we get

MOL 5 l ? [(r1 1 r2) 3 (F1 1 F2)]  

 5 l ? (r1 3 F1) 1 l ? (r1 3 F2) 1 l ? (r2 3 F1) 1 l ? (r2 3 F2)  

Note that all of the mixed triple products except the last one are equal to 

zero because they involve vectors that are coplanar when drawn from a 

common origin (Sec. 3.2B). Therefore, this expression reduces to

 MOL 5 l ? (r2 3 F2) (3.42)

The vector product r2 3 F2 is perpendicular to the plane P and represents 

the moment of the component F2 of F about the point Q where OL inter-

sects P. Therefore, the scalar MOL, which is positive if r2 3 F2 and OL
have the same sense and is negative otherwise, measures the tendency of 

F2 to make the rigid body rotate about the fixed axis OL. The other com-

ponent F1 of F does not tend to make the body rotate about OL, because 

F1 and OL are parallel. Therefore, we conclude that 

The moment MOL of F about OL measures the tendency of the force F 
to impart to the rigid body a rotation about the fixed axis OL.

From the definition of the moment of a force about an axis, it follows 

that the moment of F about a coordinate axis is equal to the component 

of MO along that axis. If we substitute each of the unit vectors i, j, and k
for l in Eq. (3.40), we obtain expressions for the moments of F about the 
coordinate axes. These expressions are respectively equal to those obtained 

earlier for the components of the moment MO of F about O:

 

Mx 5 yFz 2 zFy

My 5 zFx 2 xFz

Mz 5 xFy 2 yFx

 (3.18)

Just as the components Fx, Fy, and Fz of a force F acting on a rigid body 

measure, respectively, the tendency of F to move the rigid body in the 

x, y, and z directions, the moments Mx, My, and Mz of F about the coor-

dinate axes measure the tendency of F to impart to the rigid body a rota-

tion about the x, y, and z axes, respectively.

MOL 5 †
λx λy λz

x y z

FxF FyFF FzF

†

MxM 5 yFzF 2 zFyFF

MyMM 5 zFxF 2 xFzF

MzM 5 xFyFF 2 yFxF

r

r1 r2

F1

F2

P
Q

L

A

O

F

�

Fig. 3.23 By resolving the force F into 
components parallel to the axis OL and in 
a plane perpendicular to the axis, we can 
show that the moment MOL of F about OL 
measures the tendency of F to rotate the 
rigid body about the axis.
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110 Rigid Bodies: Equivalent Systems of Forces

y

x

z

L

A
B

O

F

C

rA/B = rA – rB

�

Fig. 3.24 The moment of a force about an axis or line L 
can be found by evaluating the mixed triple product at a 
point B on the line. The choice of B is arbitrary, since using 
any other point on the line, such as C, yields the same result.

More generally, we can obtain the moment of a force F applied at 

A about an axis that does not pass through the origin by choosing an 

arbitrary point B on the axis (Fig.  3.24) and determining the projection 

on the axis BL of the moment MB of F about B. The equation for this 

projection is given here.

Moment about an 
arbitrary axis

 MBL 5 l ? MB 5 l ? (rA/B 3 F) (3.43)

where rA/B 5 rA 2 rB represents the vector drawn from B to A. Expressing 

MBL in the form of a determinant, we have

 MBL 5 †
lx ly lz

xA/B yA/B zA/B

Fx Fy Fz

†  (3.44)

where lx, ly, lz 5 direction cosines of axis BL

 xA/B 5 xA 2 xB  yA/B 5 yA 2 yB  zA/B 5 zA 2 zB

 Fx, Fy, Fz 5 components of force F

Note that this result is independent of the choice of the point B on the 

given axis. Indeed, denoting by MCL the moment obtained with a different 

point C, we have

MCL 5 l ? [(rA 2 rC) 3 F]

5 l ? [(rA 2 rB) 3 F] 1 l ? [(rB 2 rC) 3 F]

However, since the vectors l and rB 2 rC lie along the same line, the 

volume of the parallelepiped having the vectors l, rB 2 rC, and F for 

sides is zero, as is the mixed triple product of these three vectors 

(Sec. 3.2B). The expression obtained for MCL thus reduces to its first term, 

which is the expression used earlier to define MBL. In addition, it follows 

from Sec. 3.1E that, when computing the moment of F about the given 

axis, A can be any point on the line of action of F.

MBL M 5 l ? MB 5 l ? (rA/B r 3 F)

MBM L 5 †
lx ly lz

xAx /B// yAyy /B// zAz /B//

FxF FyFF FzF

†
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3.2 Moment of a Force about an Axis 111

Sample Problem 3.5

A cube of side a is acted upon by a force P along the diagonal of a face, 

as shown. Determine the moment of P (a) about A, (b) about the edge 

AB, (c) about the diagonal AG of the cube. (d) Using the result of part c, 

determine the perpendicular distance between AG and FC.

A
B

CD

E F

G

a
P

STRATEGY: Use the equations presented in this section to compute the 

moments asked for. You can find the distance between AG and FC from 

the expression for the moment MAG.

MODELING and ANALYSIS:

a. Moment about A. Choosing x, y, and z axes as shown (Fig. 1), 

resolve into rectangular components the force P and the vector rF/A 5 AF
�

 

drawn from A to the point of application F of P.

 rF/A 5 ai 2 aj 5 a(i 2 j)

 P 5 (P/12)j 2 (P/12)k 5 (P/12)(j 2 k)

Fig. 1 Position vector rF/A and force vector P 
relative to chosen coordinate system.

i
k

j

A
B

CD

E
F

G
x

y

z

a

a

a

P

rF/A

O

The moment of P about A is the vector product of these two vectors:

MA 5 rF/A 3 P 5 a(i 2 j) 3 (P/12)(j 2 k)

MA 5 (aP/12)(i 1 j 1 k) b

b. Moment about AB. You want the projection of MA on AB: 

MAB 5 i ? MA 5 i ? (aP/12)(i 1 j 1 k)

MAB 5 aP/12 b

(continued)
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112 Rigid Bodies: Equivalent Systems of Forces

You can verify that since AB is parallel to the x axis, MAB is also the x
component of the moment MA.

c. Moment about diagonal AG. You obtain the moment of P
about AG by projecting MA on AG. If you denote the unit vector along 

AG by l (Fig. 2), the calculation looks like this:

λ 5
AG
�

AG
5

ai 2 aj 2 ak

a13
5 (1/13)(i 2 j 2 k)

MAG 5 l ? MA 5 (1/13)(i 2 j 2 k)?(aP/12)(i 1 j 1 k)

MAG 5 (aP/16)(1 2 1 2 1)  MAG 5 2aP/16 b

Alternative Method. You can also calculate the moment of P about 

AG from the determinant form:

MAG 5 †
lx ly lz

xF/A yF/A zF/A

Fx Fy Fz

† 5 †
1/13 21/13 21/13

a 2a 0

0 P/12 2P/12

† 5 2aP/16

d. Perpendicular Distance between AG and FC. First note that 

P is perpendicular to the diagonal AG. You can check this by forming the 

scalar product P ? l and verifying that it is zero:

P ? λ 5 (P/12)(j 2 k) ? (1/13)(i 2 j 2 k) 5 (P16)(0 2 1 1 1) 5 0

You can then express the moment MAG as 2Pd, where d is the perpen-

dicular distance from AG to FC (Fig.  3). (The negative sign is needed 

because the rotation imparted to the cube by P appears as clockwise to 

an observer at G.) Using the value found for MAG in part c,

 MAG 5 2Pd 5 2aP/16 d 5 a/16 b

Fig. 3 Perpendicular distance d from AG 
to FC.

O

A
B

CD

E F

G

d P

REFLECT and THINK: In a problem like this, it is important to visual-

ize the forces and moments in three dimensions so you can choose the 

appropriate equations for finding them and also recognize the geometric 

relationships between them.

Fig. 2 Unit vector l used to determine 
moment of P about AG.

A B

CD

E
F

G
x

y

z

O

� P
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113 113

SOLVING PROBLEMS
ON YOUR OWN

In the problems for this section, you will apply the scalar product (or dot product) 
of two vectors to determine the angle formed by two given vectors and the projec-

tion of a force on a given axis. You will also use the mixed triple product of three 

vectors to find the moment of a force about a given axis and the perpendicular dis-
tance between two lines.

1. Calculating the angle formed by two given vectors. First express the vectors in 

terms of their components and determine the magnitudes of the two vectors. Then 

find the cosine of the desired angle by dividing the scalar product of the two vectors 

by the product of their magnitudes [Eq. (3.30)].

2. Computing the projection of a vector P on a given axis OL. In general, begin 

by expressing P and the unit vector l, which defines the direction of the axis, in 

component form. Take care that l has the correct sense (that is, l is directed from 

O to L). The required projection is then equal to the scalar product P ? l. However, 

if you know the angle θ formed by P and l, the projection is also given by P cos θ.

3. Determining the moment MOL of a force about a given axis OL. We defined 

MOL as

 MOL 5 l ? MO 5 l ? (r 3 F) (3.40)

where l is the unit vector along OL and r is a position vector from any point on the 

line OL to any point on the line of action of F. As was the case for the moment of 

a force about a point, choosing the most convenient position vector will simplify your 

calculations. Also, recall the warning of the preceding section: The vectors r and F 

must have the correct sense, and they must be placed in the proper order. The proce-

dure you should follow when computing the moment of a force about an axis is 

illustrated in part c of Sample Prob. 3.5. The two essential steps in this procedure are 

(1) express l, r, and F in terms of their rectangular components and (2) evaluate the 

mixed triple product l ? (r 3 F) to determine the moment about the axis. In most 

three-dimensional problems, the most convenient way to compute the mixed triple 

product is by using a determinant.

As noted in the text, when l is directed along one of the coordinate axes, MOL is 

equal to the scalar component of MO along that axis.

4. Determining the perpendicular distance between two lines.  Remember that it 

is the perpendicular component F2 of the force F that tends to make a body rotate 

about a given axis OL (Fig. 3.23). It then follows that

MOL 5 F2 d
(continued)
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114

where MOL is the moment of F about axis OL and d is the perpendicular distance 

between OL and the line of action of F. This last equation provides a simple technique 

for determining d. First assume that a force F of known magnitude F lies along 

one of the given lines and that the unit vector l lies along the other line. Next compute 

the moment MOL of the force F about the second line using the method discussed 

above. The magnitude of the parallel component, F1, of F is obtained using the scalar 

product:

F1 5 F ? l

The value of F2 is then determined from

F2 5 2F2 2 F2
1

Finally, substitute the values of MOL and F2 into the equation MOL 5 F2 d and solve 

for d.

You should now realize that the calculation of the perpendicular distance in part d of 

Sample Prob. 3.5 was simplified by P being perpendicular to the diagonal AG. In 

general, the two given lines will not be perpendicular, so you will have to use the 

technique just outlined when determining the perpendicular distance between them.
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Problems
 3.35 Given the vectors P 5 2i 1 3j 2 k, Q 5 5i 2 4j 1 3k, and S 5 

23i 1 2j 2 5k, compute the scalar products P ? Q, P ? S, and Q ? S.

 3.36 Form the scalar product B ? C and use the result obtained to prove 

the identity

cos (α – β) 5 cos α cos β 1 sin α sin β 

B

C

y

x

a

b

Fig. P3.36

 3.37 Three cables are used to support a container as shown. Determine 

the angle formed by cables AB and AD.

 3.38 Three cables are used to support a container as shown. Determine the 

angle formed by cables AC and AD.

 3.39 Knowing that the tension in cable AC is 280 lb, determine (a) the 

angle between cable AC and the boom AB, (b) the projection on AB 

of the force exerted by cable AC at point A.

3 ft

6 ft

7.5 ft

A

P
4.5 ft

6 ft

B

C

D

y

x
z

6.5 ft

Fig. P3.39 and P3.40

 3.40 Knowing that the tension in cable AD is 180 lb, determine (a) the 

angle between cable AD and the boom AB, (b) the projection on AB 

of the force exerted by cable AD at point A.

x

y

z

A

B

D

C

O

600 mm

320 mm

360 mm

500 mm

450 mm

Fig. P3.37 and P3.38
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 3.41 Ropes AB and BC are two of the ropes used to support a tent. The 

two ropes are attached to a stake at B. If the tension in rope AB is 

540 N, determine (a) the angle between rope AB and the stake, 

(b) the projection on the stake of the force exerted by rope AB at 

point B.

xz

3 m

3 m

1 m

0.38 m

0.08 m
0.16 m

Detail of the stake at B

1.5 m

A

B

C D

B

y

Fig. P3.41 and P3.42

 3.42 Ropes AB and BC are two of the ropes used to support a tent. The 

two ropes are attached to a stake at B. If the tension in rope BC is 

490 N, determine (a) the angle between rope BC and the stake, 

(b) the projection on the stake of the force exerted by rope BC at 

point B.

 3.43 The 20-in. tube AB can slide along a horizontal rod. The ends A and 

B of the tube are connected by elastic cords to the fixed point C. For 

the position corresponding to x 5 11 in., determine the angle formed 

by the two cords, (a) using Eq. (3.30), (b) applying the law of 

cosines to triangle ABC.

 3.44 Solve Prob. 3.43 for the position corresponding to x 5 4 in.

 3.45 Determine the volume of the parallelepiped of Fig.  3.20b when 

(a) P 5 4i 2 3j 1 2k, Q 5 22i 2 5j 1 k, and S 5 7i 1 j 2 k, 

(b) P 5 5i 2 j 1 6k, Q 5 2i 1 3j 1 k, and S 5 23i 2 2j 1 4k.

 3.46 Given the vectors P 5 3i 2 j 1 k, Q 5 4i 1 Qyj 2 2k, and 

S 5 2i 2 2j 1 2k, determine the value of Qy for which the three 

vectors are coplanar.

 3.47 A crane is oriented so that the end of the 25-m boom AO lies in the 

yz plane. At the instant shown, the tension in cable AB is 4 kN. 

Determine the moment about each of the coordinate axes of the force 

exerted on A by cable AB.

 3.48 The 25-m crane boom AO lies in the yz plane. Determine the maxi-

mum permissible tension in cable AB if the absolute value of 

moments about the coordinate axes of the force exerted on A by 

cable AB must be 

|Mx| # 60 kN?m, |My| # 12 kN?m, |Mz| # 8 kN?m

y

z
x

x

C

O
A

B

12 in.
24 in.

20 in.

Fig. P3.43

Fig. P3.47 and P3.48

A

C B

y

2.5 m

15 m

O
x

z
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 3.49 To loosen a frozen valve, a force F with a magnitude of 70 lb is 

applied to the handle of the valve. Knowing that θ 5 25°, Mx 5 

261 lb?ft, and Mz 5 243 lb?ft, determine ϕ and d.

x

y

d  

z

B

A

q

F

4 in.

11 in.

f

Fig. P3.49 and P3.50

3.50 When a force F is applied to the handle of the valve shown, its 

moments about the x and z axes are Mx 5 277 lb?ft and Mz 5

281 lb?ft, respectively. For d 5 27 in., determine the moment My

of F about the y axis.

3.51 To lift a heavy crate, a man uses a block and tackle attached to the 

bottom of an I-beam at hook B. Knowing that the moments about the y
and the z axes of the force exerted at B by portion AB of the rope are, 

respectively, 120 N?m and 2460 N?m, determine the distance a.

x

y

z

A

B

C

D

O

a

1.6 m
2.2 m

4.8 m

Fig. P3.51 and P3.52

 3.52 To lift a heavy crate, a man uses a block and tackle attached to the 

bottom of an I-beam at hook B. Knowing that the man applies a 

195-N force to end A of the rope and that the moment of that force 

about the y axis is 132 N?m, determine the distance a.
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 3.53 A farmer uses cables and winch pullers B and E to plumb one side 

of a small barn. If it is known that the sum of the moments about 

the x axis of the forces exerted by the cables on the barn at points A
and D is equal to 4728 lb?ft, determine the magnitude of TDE when 

TAB 5 255 lb.

3.54 Solve Prob. 3.53 when the tension in cable AB is 306 lb.

 3.55 The 23-in. vertical rod CD is welded to the midpoint C of the 50-in. 

rod AB. Determine the moment about AB of the 235-lb force P.

z

y

x

O

H

D

Q
P

C

A

B

24 in.

21 in. 18 in.

12 in.
16 in.

17 in.
30 in.

32 in.

G

Fig. P3.55 and P3.56

 3.56 The 23-in. vertical rod CD is welded to the midpoint C of the 50-in. 

rod AB. Determine the moment about AB of the 174-lb force Q.

 3.57 The frame ACD is hinged at A and D and is supported by a cable 
that passes through a ring at B and is attached to hooks at G and H. 

Knowing that the tension in the cable is 450 N, determine the 

moment about the diagonal AD of the force exerted on the frame by 

portion BH of the cable.

x

y

z

A

B
C

D

G

O

P

H

0.35 m

0.875 m

0.75 m

0.75 m

0.925 m

0.5 m
0.5 m

Fig. P3.57

E

B
z

y

x

C
D

A

F

12 ft

12 ft
1.5 ft

1 ft

14 ft

Fig. P3.53
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 3.58 In Prob. 3.57, determine the moment about the diagonal AD of the 

force exerted on the frame by portion BG of the cable.

 3.59 The triangular plate ABC is supported by ball-and-socket joints at B
and D and is held in the position shown by cables AE and CF. If 

the force exerted by cable AE at A is 55 N, determine the moment 

of that force about the line joining points D and B.

 3.60 The triangular plate ABC is supported by ball-and-socket joints at B 

and D and is held in the position shown by cables AE and CF. If 

the force exerted by cable CF at C is 33 N, determine the moment 

of that force about the line joining points D and B.

 3.61 A regular tetrahedron has six edges of length a. A force P is directed 

as shown along edge BC. Determine the moment of P about edge OA.

x

y

z

O

A

B

C

P

Fig. P3.61 and P3.62

 3.62 A regular tetrahedron has six edges of length a. (a) Show that two 

opposite edges, such as OA and BC, are perpendicular to each other. 

(b) Use this property and the result obtained in Prob. 3.61 to deter-

mine the perpendicular distance between edges OA and BC.

 3.63 Two forces F1 and F2 in space have the same magnitude F. Prove 

that the moment of F1 about the line of action of F2 is equal to the 

moment of F2 about the line of action of F1.

 *3.64 In Prob. 3.55, determine the perpendicular distance between rod AB 

and the line of action of P.

 *3.65 In Prob. 3.56, determine the perpendicular distance between rod AB 

and the line of action of Q.

 *3.66 In Prob. 3.57, determine the perpendicular distance between portion BH 

of the cable and the diagonal AD.

 *3.67 In Prob. 3.58, determine the perpendicular distance between portion BG 

of the cable and the diagonal AD.

 *3.68 In Prob. 3.59, determine the perpendicular distance between cable AE 

and the line joining points D and B.

 *3.69 In Prob. 3.60, determine the perpendicular distance between cable CF 

and the line joining points D and B.

y

z

x

A

E
B

D
C

0.6 m

0.6 m

0.6 m

0.9 m

0.9 m

0.3 m

0.4 m

0.4 m

0.7 m

0.2 m

0.35 m

F

Fig. P3.59 and P3.60
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120 Rigid Bodies: Equivalent Systems of Forces

3.3  COUPLES AND FORCE-
COUPLE SYSTEMS

Now that we have studied the effects of forces and moments on a rigid 

body, we can ask if it is possible to simplify a system of forces and 

moments without changing these effects. It turns out that we can replace 

a system of forces and moments with a simpler and equivalent system. 

One of the key ideas used in such a transformation is called a couple. 

3.3A Moment of a Couple
Two forces F and 2F, having the same magnitude, parallel lines of action, 
and opposite sense, are said to form a couple (Fig.  3.25). Clearly, the 

sum of the components of the two forces in any direction is zero. The 

sum of the moments of the two forces about a given point, however, is 

not zero. The two forces do not cause the body on which they act to move 

along a line (translation), but they do tend to make it rotate.

Let us denote the position vectors of the points of application of F
and 2F by rA and rB, respectively (Fig. 3.26). The sum of the moments 

of the two forces about O is

rA 3 F 1 rB 3 (2F) 5 (rA 2 rB) 3 F

Setting rA 2 rB 5 r, where r is the vector joining the points of application 

of the two forces, we conclude that the sum of the moments of F and 2F 

about O is represented by the vector

 M 5 r 3 F (3.45)

The vector M is called the moment of the couple. It is perpendicular to 

the plane containing the two forces, and its magnitude is

 M 5 rF sin θ 5 Fd (3.46)

where d is the perpendicular distance between the lines of action of F and 

2F and θ is the angle between F (or 2F) and r. The sense of M is defined 

by the right-hand rule.

Note that the vector r in Eq. (3.45) is independent of the choice of 

the origin O of the coordinate axes. Therefore, we would obtain the same 

result if the moments of F and 2F had been computed about a different 

point O9. Thus, the moment M of a couple is a free vector (Sec. 2.1B), 

which can be applied at any point (Fig. 3.27).

M 5 r 3 F

M 5 rF sinF θ 5 Fd

–F

F

Fig. 3.25 A couple consists of two forces 
with equal magnitude, parallel lines of 
action, and opposite sense.

–F

F

y

x

z

A

O

d

M
r

rB

rA

B

q

Fig. 3.26 The moment M of the couple 
about O is the sum of the moments of F and 
of 2F about O.

–F

F
d

M

Fig. 3.27 The moment M of a couple equals 
the product of F and d, is perpendicular to 
the plane of the couple, and may be applied 
at any point of that plane.

–F

F

Photo 3.1 The parallel upward and 
downward forces of equal magnitude exerted 
on the arms of the lug nut wrench are an 
example of a couple.
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3.3 Couples and Force-Couple Systems 121

From the definition of the moment of a couple, it also follows that 

two couples––one consisting of the forces F1 and 2F1, the other of the 

forces F2 and 2F2 (Fig. 3.28)––have equal moments if

 F1d1 5 F2d2 (3.47)

provided that the two couples lie in parallel planes (or in the same plane) 

and have the same sense (i.e., clockwise or counterclockwise).

3.3B Equivalent Couples
Imagine that three couples act successively on the same rectangular box 

(Fig. 3.29). As we have just seen, the only motion a couple can impart to 

a rigid body is a rotation. Since each of the three couples shown has the 

same moment M (same direction and same magnitude M 5 120 lb?in.), 

we can expect each couple to have the same effect on the box.

– F1

F1

d1

– F2

F2
d2

Fig. 3.28 Two couples have the same 
moment if they lie in parallel planes, have 
the same sense, and if F1d1 5 F2d2.

y

x

z

20 lb
20 lb

(a) (b) (c)

6 in.

4 in.

4 in.

M

y

x

z

30 lb

30 lb

4 in.

M

y

x

z

30 lb

30 lb

4 in.

M

Fig. 3.29 Three equivalent couples. (a) A couple acting on the bottom of the box, acting counterclockwise viewed from 
above; (b) a couple in the same plane and with the same sense but larger forces than in (a); (c) a couple acting in a different 
plane but same sense.

As reasonable as this conclusion appears, we should not accept it 

hastily. Although intuition is of great help in the study of mechanics, it 

should not be accepted as a substitute for logical reasoning. Before stating 

that two systems (or groups) of forces have the same effect on a rigid 

body, we should prove that fact on the basis of the experimental evidence 

introduced so far. This evidence consists of the parallelogram law for the 

addition of two forces (Sec. 2.1A) and the principle of transmissibility 

(Sec. 3.1B). Therefore, we state that two systems of forces are equivalent 
(i.e., they have the same effect on a rigid body) if we can transform one 
of them into the other by means of one or several of the following 
operations: (1) replacing two forces acting on the same particle by their 

resultant; (2) resolving a force into two components; (3) canceling two 

equal and opposite forces acting on the same particle; (4) attaching to the 

same particle two equal and opposite forces; and (5) moving a force along 

its line of action. Each of these operations is easily justified on the basis 

of the parallelogram law or the principle of transmissibility.

Let us now prove that two couples having the same moment M are 
equivalent. First consider two couples contained in the same plane, and 
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122 Rigid Bodies: Equivalent Systems of Forces

assume that this plane coincides with the plane of the figure (Fig.  3.30). 

The first couple consists of the forces F1 and 2F1 of magnitude F1, located 

at a distance d1 from each other (Fig.  3.30a). The second couple consists 

of the forces F2 and 2F2 of magnitude F2, located at a distance d2 from 

each other (Fig. 3.30d). Since the two couples have the same moment M, 

which is perpendicular to the plane of the figure, they must have the same 

sense (assumed here to be counterclockwise), and the relation

 F1d1 5 F2d2 (3.47)

must be satisfied. To prove that they are equivalent, we shall show that 

the first couple can be transformed into the second by means of the opera-

tions listed previously.

Let us denote by A, B, C, and D the points of intersection of the lines 

of action of the two couples. We first slide the forces F1 and 2F1 until they 

are attached, respectively, at A and B, as shown in Fig. 3.30b. We then resolve 

force F1 into a component P along line AB and a component Q along AC 

(Fig. 3.30c). Similarly, we resolve force 2F1 into 2P along AB and 2Q along 

BD. The forces P and 2P have the same magnitude, the same line of action, 

and opposite sense; we can move them along their common line of action 

until they are applied at the same point and may then be canceled. Thus, the 

couple formed by F1 and 2F1 reduces to a couple consisting of Q and 2Q.

We now show that the forces Q and 2Q are respectively equal to the 

forces 2F2 and F2. We obtain the moment of the couple formed by Q and 

2Q by computing the moment of Q about B. Similarly, the moment of the 

couple formed by F1 and 2F1 is the moment of F1 about B. However, by 

Varignon’s theorem, the moment of F1 is equal to the sum of the moments 

of its components P and Q. Since the moment of P about B is zero, the 

moment of the couple formed by Q and 2Q must be equal to the moment 

of the couple formed by F1 and 2F1. Recalling Eq. (3.47), we have

Qd2 5 F1d1 5 F2d2   and   Q 5 F2

Thus, the forces Q and 2Q are respectively equal to the forces 2F2 and 

F2, and the couple of Fig. 3.30a is equivalent to the couple of Fig. 3.30d.

Now consider two couples contained in parallel planes P1 and P2. 

We prove that they are equivalent if they have the same moment. In view 

of the preceding discussion, we can assume that the couples consist of 

forces of the same magnitude F acting along parallel lines (Fig. 3.31a and d). 

We propose to show that the couple contained in plane P1 can be trans-

formed into the couple contained in plane P2 by means of the standard 

operations listed previously.

–F1

F1

d1
–F1

F1

–F1

F1

–F2

F2

d2

(a) (b) (c) (d )

A

B

C

D
Q

– Q

P

A
B

C

D

– P

= = =

Fig. 3.30 Four steps in transforming one couple to another couple in the same plane by 
using simple operations. (a) Starting couple; (b) label points of intersection of lines of action 
of the two couples; (c) resolve forces from first couple into components; (d) final couple.

–F1

F1

P1

P2

(a)

–F2

F2

P2

P1

(d)

(b)

(c)

–F3
F3

–F1

F1

–F2

F2

–F3
F3

Fig. 3.31 Four steps in transforming one 
couple to another couple in a parallel plane 
by using simple operations. (a) Initial 
couple; (b) add a force pair along the line 
of intersection of two diagonal planes; 
(c) replace two couples with equivalent 
couples in the same planes; (d) final couple.
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3.3 Couples and Force-Couple Systems 123

Let us consider the two diagonal planes defined respectively by the 

lines of action of F1 and 2F2 and by those of 2F1 and F2 (Fig. 3.31b). At 

a point on their line of intersection, we attach two forces F3 and 2F3, which 

are respectively equal to F1 and 2F1. The couple formed by F1 and 2F3 

can be replaced by a couple consisting of F3 and 2F2 (Fig. 3.31c), because 

both couples clearly have the same moment and are contained in the same 

diagonal plane. Similarly, the couple formed by 2F1 and F3 can be replaced 

by a couple consisting of 2F3 and F2. Canceling the two equal and opposite 

forces F3 and 2F3, we obtain the desired couple in plane P2 (Fig. 3.31d). 

Thus, we conclude that two couples having the same moment M are equiva-

lent, whether they are contained in the same plane or in parallel planes.

The property we have just established is very important for the correct 

understanding of the mechanics of rigid bodies. It indicates that when a 

couple acts on a rigid body, it does not matter where the two forces forming 

the couple act or what magnitude and direction they have. The only thing 

that counts is the moment of the couple (magnitude and direction). Couples 

with the same moment have the same effect on the rigid body.

3.3C Addition of Couples
Consider two intersecting planes P1 and P2 and two couples acting respec-

tively in P1 and P2. Recall that each couple is a free vector in its respective 

plane and can be represented within this plane by any combination of equal, 

opposite, and parallel forces and of perpendicular distance of separation 

that provides the same sense and magnitude for this couple. Thus, we can 

assume, without any loss of generality, that the couple in P1 consists of two 

forces F1 and 2F1 perpendicular to the line of intersection of the two planes 

and acting respectively at A and B (Fig. 3.32a). Similarly, we can assume 

that the couple in P2 consists of two forces F2 and 2F2 perpendicular to 

AB and acting respectively at A and B. It is clear that the resultant R of F1 

and F2 and the resultant 2R of 2F1 and 2F2 form a couple. Denoting the 

vector joining B to A by r and recalling the definition of the moment of a 

couple (Sec. 3.3A), we express the moment M of the resulting couple as 

M 5 r 3 R 5 r 3 (F1 1 F2)

By Varignon’s theorem, we can expand this expression as

M 5 r 3 F1 1 r 3 F2

The first term in this expression represents the moment M1 of the couple 

in P1, and the second term represents the moment M2 of the couple in P2. 

Therefore, we have

 M 5 M1 1 M2 (3.48)

We conclude that the sum of two couples of moments M1 and M2 is a 

couple of moment M equal to the vector sum of M1 and M2 (Fig. 3.32b). 

We can extend this conclusion to state that any number of couples can be 

added to produce one resultant couple, as

M 5 oM 5 o(r 3 F)

3.3D Couple Vectors
We have seen that couples with the same moment, whether they act in the 

same plane or in parallel planes, are equivalent. Therefore, we have no need 

to draw the actual forces forming a given couple in order to define its effect 

–F1

–F2
–R  

F1

F2

M1

M2

P1

P2

(a)

(b)

r
A

B

O

R

M

Fig. 3.32 (a) We can add two couples, each 
acting in one of two intersecting planes, to 
form a new couple. (b) The moment of the 
resultant couple is the vector sum of the 
moments of the component couples.
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124 Rigid Bodies: Equivalent Systems of Forces

y

x

z

–F

F

(a) (b) (c) (d)

d

O

y

x

z

O

y

x

z

O
x

O

M

M

My

MxMz

(M = Fd) 
y

z

= = =

Fig. 3.33 (a) A couple formed by two forces can be represented by (b) a couple vector, oriented 
perpendicular to the plane of the couple. (c) The couple vector is a free vector and can be moved 
to other points of application, such as the origin. (d) A couple vector can be resolved into 
components along the coordinate axes.

on a rigid body (Fig. 3.33a). It is sufficient to draw an arrow equal in mag-

nitude and direction to the moment M of the couple (Fig. 3.33b). We have 

also seen that the sum of two couples is itself a couple and that we can 

obtain the moment M of the resultant couple by forming the vector sum of 

the moments M1 and M2 of the given couples. Thus, couples obey the law 

of addition of vectors, so the arrow used in Fig. 3.33b to represent the couple 

defined in Fig. 3.33a truly can be considered a vector.

The vector representing a couple is called a couple vector. Note 

that, in Fig.  3.33, we use a red arrow to distinguish the couple vector, 

which represents the couple itself, from the moment of the couple, which 

was represented by a green arrow in earlier figures. Also note that we 

added the symbol l to this red arrow to avoid any confusion with vectors 

representing forces. A couple vector, like the moment of a couple, is a 

free vector. Therefore, we can choose its point of application at the origin 

of the system of coordinates, if so desired (Fig. 3.33c). Furthermore, we 

can resolve the couple vector M into component vectors Mx, My, and Mz 

that are directed along the coordinate axes (Fig. 3.33d). These component 

vectors represent couples acting, respectively, in the yz, zx, and xy planes.

3.3E  Resolution of a Given Force into 
a Force at O and a Couple

Consider a force F acting on a rigid body at a point A defined by the 

position vector r (Fig.  3.34a). Suppose that for some reason it would 

simplify the analysis to have the force act at point O instead. Although 

we can move F along its line of action (principle of transmissibility), we 

cannot move it to a point O that does not lie on the original line of action 

without modifying the action of F on the rigid body.

–F

F

(a) (b) (c)

==O

MO

r

F
F

O r

A
A

F

O

A

Fig. 3.34 Replacing a force with a force and a couple. (a) Initial 
force F acting at point A; (b) attaching equal and opposite forces 
at O; (c) force F acting at point O and a couple.
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3.3 Couples and Force-Couple Systems 125

We can, however, attach two forces at point O, one equal to F and 

the other equal to 2F, without modifying the action of the original force 

on the rigid body (Fig. 3.34b). As a result of this transforma tion, we now 

have a force F applied at O; the other two forces form a couple of moment 

MO 5 r 3 F. Thus, 

Any force F acting on a rigid body can be moved to an arbitrary 
point O provided that we add a couple whose moment is equal to 
the moment of F about O. 

The couple tends to impart to the rigid body the same rotational motion 

about O that force F tended to produce before it was transferred to O. We 

represent the couple by a couple vector MO  that is perpendicular to the 

plane containing r and F. Since MO is a free vector, it may be applied 

anywhere; for convenience, however, the couple vector is usually attached 

at O together with F. This combination is referred to as a force-couple 
system (Fig. 3.34c).

OO

r A

O'

s
r'

F

(a)

MO

r
A F

(b) (c)

MO'

O'

s
r' = = O

r
A

O'

s
r'

F

Fig. 3.35 Moving a force to different points. (a) Initial force F acting 
at A; (b) force F acting at O and a couple; (c) force F acting at O9 and 
a different couple.

If we move force F from A to a different point O9 (Fig. 3.35a and c), 

we have to compute the moment MO9 5 r9 3 F of F about O9 and add a 

new force-couple system consisting of F and the couple vector MO9 at O9. 

We can obtain the relation between the moments of F about O and O9 as

MO9 5 r9 3 F 5 (r 1 s) 3 F 5 r 3 F 1 s 3 F

 MO9 5 MO 1 s 3 F (3.49)

where s is the vector joining O9 to O. Thus, we obtain the moment MO9 of 

F about O9 by adding to the moment MO of F about O the vector product 

s 3 F, representing the moment about O9 of the force F applied at O.

We also could have established this result by observing that, in order 

to transfer to O9 the force-couple system attached at O (Fig. 3.35b and c), 

we could freely move the couple vector MO to O9. However, to move 

force F from O to O9, we need to add to F a couple vector whose moment 

is equal to the moment about O9 of force F applied at O. Thus, the couple 

vector MO9 must be the sum of MO and the vector s 3 F.

As noted here, the force-couple system obtained by transferring a 

force F from a point A to a point O consists of F and a couple vector MO 

perpendicular to F. Conversely, any force-couple system consisting of a 

force F and a couple vector MO that are mutually perpendicular can be 

replaced by a single equivalent force. This is done by moving force F in 

the plane perpendicular to MO until its moment about O is equal to the 

moment of the couple being replaced.

MO9 5 MO 1 s 3 F 

Photo 3.2 The force exerted by each 
hand on the wrench could be replaced with 
an equivalent force-couple system acting on 
the nut.
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126 Rigid Bodies: Equivalent Systems of Forces

Sample Problem 3.6

Determine the components of the single couple equivalent to the two 

 couples shown.

STRATEGY: Look for ways to add equal and opposite forces to the 

diagram that, along with already known perpendicular distances, will pro-

duce new couples with moments along the coordinate axes. These can be 

combined into a single equivalent couple.

MODELING: You can simplify the computations by attaching two 

equal and opposite 20-lb forces at A (Fig. 1). This enables you to replace 

the original 20-lb-force couple by two new 20-lb-force couples: one lying 

in the zx plane and the other in a plane parallel to the xy plane. 

ANALYSIS: You can represent these three couples by three couple vec-

tors Mx, My, and Mz directed along the coordinate axes (Fig. 2). The 

corresponding moments are

Mx 5 2(30 lb)(18 in.) 5 2540 lb?in.

My 5 1(20 lb)(12 in.) 5 1240 lb?in.

Mz 5 1(20 lb)(9 in.) 5 1180 lb?in.

These three moments represent the components of the single couple M 

equivalent to the two given couples. You can write M as

M 5 2(540 lb?in.)i 1 (240 lb?in.)j 1 (180 lb?in.)k b

REFLECT and THINK: You can also obtain the components of the equiva-

lent single couple M by computing the sum of the moments of the four given 

forces about an arbitrary point. Selecting point D, the moment is (Fig. 3)

M 5 MD 5 (18 in.)j 3 (230 lb)k 1 [(9 in.)j 2 (12 in.)k] 3 (220 lb)i

After computing the various cross products, you get the same result, as

M 5 2(540 lb?in.)i 1 (240 lb?in.)j 1 (180 lb?in.)k b

y

x

A

B

C

D

E

30 lb

30 lb

12 in.

7 in.

20 lb
z

9 in.

9 in.

20 lb

Fig. 1 Placing two equal and opposite 
20-lb forces at A to simplify calculations.

y

x

A

B

C

D

E

30 lb

30 lb

12 in.

7 in.

20 lb

20 lb

20 lb
20 lb

z

9 in.

9 in.

Fig. 2 The three couples represented 
as couple vectors.

y

x

z

My = +(240 lb•in.)j

Mx = –(540 lb•in.)i

Mz = +(180 lb•in.)k

Fig. 3 Using the given force system, the 
equivalent single couple can also be 
determined from the sum of moments of the 
forces about any point, such as point D.

z

y

x

A

B

C

D

E

30 lb

30 lb

12 in.

7 in.

20 lb

20 lb

9 in.

9 in.
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3.3 Couples and Force-Couple Systems 127

Sample Problem 3.7

Replace the couple and force shown by an equivalent single force applied 

to the lever. Determine the distance from the shaft to the point of applica-

tion of this equivalent force.

STRATEGY: First replace the given force and couple by an equivalent 

force-couple system at O. By moving the force of this force-couple system 

a distance that creates the same moment as the couple, you can then 

replace the system with one equivalent force.

MODELING and ANALYSIS: To replace the given force and couple, 

move the force F 5 2(400 N)j to O, and at the same time, add a couple 

of moment MO that is equal to the moment about O of the force in its 

original position (Fig. 1). Thus, 

 MO 5 OB
�

3 F 5 [(0.150  m)i 1 (0.260  m)j] 3 (2400  N)j
 5 2(60 N?m)k

Fig. 1 Replacing given force and couple 
with an equivalent force-couple at O.

=
B

150 mm

O

F = – (400 N) j

– (400 N) j

– (24 N•m) k
– (24 N•m) k – (60 N•m) k

O

260 mm

When you add this new couple to the couple of moment 2(24 N?m)k 

formed by the two 200-N forces, you obtain a couple of moment 

2(84 N?m)k (Fig. 2). You can replace this last couple by applying F at a 

point C chosen in such a way that

 2(84  N ? m)k 5 OC
�

3 F
 5 [(OC) cos 608 i 1 (OC) sin 608 j] 3 (2400  N)j
 5 2(OC)cos 608(400  N)k

The result is

 (OC) cos 60° 5 0.210 m 5 210 mm OC 5 420 mm b

REFLECT and THINK: Since the effect of a couple does not depend 

on its location, you can move the couple of moment 2(24 N?m)k to B, 

obtaining a force-couple system at B (Fig. 3). Now you can eliminate this 

couple by applying F at a point C chosen in such a way that

 2(24 N?m)k 5 BC
�

3 F
 5 2(BC) cos 608(400  N)k

The conclusion is

(BC) cos 60° 5 0.060 m 5 60 mm   BC 5 120 mm

 OC 5 OB 1 BC 5 300 mm 1 120 mm OC 5 420 mm b

B

400 N

200 N

200 N

150 mm

60 mm
O

60°

300 mm

Fig. 2 Resultant couple eliminated 
by moving force F.

=
C

– (400 N) j

– (400 N) j

– (84 N•m) k

O O

60°

Fig. 3 Couple can be moved to B with 
no change in effect. This couple can 
then be eliminated by moving force F.

=
–(400 N)j –(400 N)j

–(24 N•m)k

–(24 N•m)k

B

150 mm

O

B

O

=
C

–(400 N)j
–(400 N)j

–(24 N•m)k
B

O O

B

60°
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128128

SOLVING PROBLEMS
ON YOUR OWN

In this section, we discussed the properties of couples. To solve the following 

problems, remember that the net effect of a couple is to produce a moment M. 

Since this moment is independent of the point about which it is computed, M is a 

free vector and remains unchanged if you move it from point to point. Also, two 

couples are equivalent (that is, they have the same effect on a given rigid body) if 

they produce the same moment.

When determining the moment of a couple, all previous techniques for computing 

moments apply. Also, since the moment of a couple is a free vector, you should 

compute its value relative to the most convenient point.

Because the only effect of a couple is to produce a moment, it is possible to represent 

a couple with a vector, called the couple vector, that is equal to the moment of the 

couple. The couple vector is a free vector and is represented by a special symbol, , 

to distinguish it from force vectors. 

In solving the problems in this section, you will be called upon to perform the 

following operations:

1. Adding two or more couples. This results in a new couple, the moment of 

which is obtained by adding vectorially the moments of the given couples [Sample 

Prob. 3.6].

2. Replacing a force with an equivalent force-couple system at a specified 
point. As explained in Sec. 3.3E, the force of a force-couple system is equal to the 

original force, whereas the required couple vector is equal to the moment of the 

original force about the given point. In addition, it is important to note that the force 

and the couple vector are perpendicular to each other. Conversely, it follows that a 

force-couple system can be reduced to a single force only if the force and couple 

vector are mutually perpendicular (see the next paragraph).

3. Replacing a force-couple system (with F perpendicular to M) with a single 
equivalent force. The requirement that F and M be mutually perpendicular is satis-

fied in all two-dimensional problems. The single equivalent force is equal to F and 

is applied in such a way that its moment about the original point of application is 

equal to M [Sample Prob. 3.7].

bee87302_ch03_082-168.indd   128bee87302_ch03_082-168.indd   128 11/8/14   9:54 AM11/8/14   9:54 AM

UPLOADED BY AHMAD T JUNDI



129

Problems
 3.70 Two 80-N forces are applied as shown to the corners B and D of a 

rectangular plate. (a) Determine the moment of the couple formed 

by the two forces by resolving each force into horizontal and vertical 

components and adding the moments of the two resulting couples. 

(b) Use the result obtained to determine the perpendicular distance 

between lines BE and DF.

 3.71 Two parallel 40-N forces are applied to a lever as shown. Determine 

the moment of the couple formed by the two forces (a) by resolving 

each force into horizontal and vertical components and adding the 

moments of the two resulting couples, (b) by using the perpendicular 

distance between the two forces, (c) by summing the moments of 

the two forces about point A.

A

B

C

40 N

40 N

20°

55°

270 mm

390 mm

Fig. P3.71

 3.72 Four 1
1
2-in.-diameter pegs are attached to a board as shown. Two 

strings are passed around the pegs and pulled with the forces indi-

cated. (a) Determine the resultant couple acting on the board. (b) If 

only one string is used, around which pegs should it pass and in 

what directions should it be pulled to create the same couple with 

the minimum tension in the string? (c) What is the value of that 

minimum tension?

 3.73 Four pegs of the same diameter are attached to a board as shown. 

Two strings are passed around the pegs and pulled with the forces 

indicated. Determine the diameter of the pegs knowing that the resul-

tant couple applied to the board is 1132.5 lb?in. counterclockwise.

D

A F

E
C

B

80 N

80 N

500 mm

300 mm

50°

50°

Fig. P3.70

A B

C D
60 lb

60 lb

40 lb

40 lb

9 in.

12 in.

Fig. P3.72 and P3.73
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 3.74 A piece of plywood in which several holes are being drilled succes-

sively has been secured to a workbench by means of two nails. 

Knowing that the drill exerts a 12-N∙m couple on the piece of 

plywood, determine the magnitude of the resulting forces applied to 

the nails if they are located (a) at A and B, (b) at B and C, (c) at A and C.

A

B

C

450 mm
240 mm

Fig. P3.74

3.75 The two shafts of a speed-reducer unit are subjected to couples of 

magnitude M1 5 15 lb∙ft and M2 5 3 lb∙ft, respectively. Replace the 

two couples with a single equivalent couple, specifying its magnitude 

and the direction of its axis.

 3.76 If P 5 0 in the figure, replace the two remaining couples with a 

single equivalent couple, specifying its magnitude and the direction 

of its axis.

x

y

z

B

C
D

A

E

–P
P

16 lb

16 lb

40 lb

40 lb

15 in.

15 in.

10 in.

10 in.

10 in.

Fig. P3.76 and P3.77

 3.77 If P 5 20 lb in the figure, replace the three couples with a single 

equivalent couple, specifying its magnitude and the direction of its axis.

3.78 Replace the two couples shown with a single equivalent couple, 

specifying its magnitude and the direction of its axis.

 3.79 Solve Prob. 3.78, assuming that two 10-N vertical forces have been 

added, one acting upward at C and the other downward at B.

M2M1

y

z

x

Fig. P3.75

144 mm

160 mm

192 mm

120 mm

y

xz

120 mm

50 N

50 N
12.5 N

12.5 N

A

B

E

C

F

D

Fig. P3.78
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 3.80 Shafts A and B connect the gear box to the wheel assemblies of a 

tractor, and shaft C connects it to the engine. Shafts A and B lie in 

the vertical yz plane, while shaft C is directed along the x axis. 

Replace the couples applied to the shafts by a single equivalent 

couple, specifying its magnitude and the direction of its axis.

x
z

y

C

B

A

20°

20°

900 lb·ft

840 lb·ft

1200 lb·ft

Fig. P3.80

3.81 A 500-N force is applied to a bent plate as shown. Determine (a) an 

equivalent force-couple system at B, (b) an equivalent system formed 

by a vertical force at A and a force at B.

B

A

500 N

30°

300 mm
125 mm

175 mm

75 mm

Fig. P3.81

 3.82 The tension in the cable attached to the end C of an adjustable boom 

ABC is 560 lb. Replace the force exerted by the cable at C with an 

equivalent force-couple system (a) at A, (b) at B.

10 ft
20°

30°
A

B

C

T

8 ft

Fig. P3.82
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 3.83 A dirigible is tethered by a cable attached to its cabin at B. If the 

tension in the cable is 1040 N, replace the force exerted by the cable 

at B with an equivalent system formed by two parallel forces applied 

at A and C.

A B C

D
60°

6.7 m 4 m

Fig. P3.83

 3.84 A 30-lb vertical force P is applied at A to the bracket shown, which 

is held by screws at B and C. (a) Replace P with an equivalent force-

couple system at B. (b) Find the two horizontal forces at B and C 

that are equivalent to the couple obtained in part a.

 3.85 A worker tries to move a rock by applying a 360-N force to a steel 

bar as shown. (a) Replace that force with an equivalent force-couple 

system at D. (b) Two workers attempt to move the same rock by 

applying a vertical force at A and another force at D. Determine these 

two forces if they are to be equivalent to the single force of part a.

A

B

C
D

360 N

0.4 m

0.35 m

2.4 m

0.3 m

40°

30°

Fig. P3.85 and P3.86

 3.86 A worker tries to move a rock by applying a 360-N force to a steel bar 

as shown. If two workers attempt to move the same rock by applying 

a force at A and a parallel force at C, determine these two forces so that 

they will be equivalent to the single 360-N force shown in the figure.

 3.87 The shearing forces exerted on the cross section of a steel channel 

can be represented by a 900-N vertical force and two 250-N hori-

zontal forces as shown. Replace this force and couple with a single 

force F applied at point C, and determine the distance x from C to 

line BD. (Point C is defined as the shear center of the section.)

P
5 in.

2 in.A

B

C

3 in.

Fig. P3.84

A

D

B

C

E

900 N

250 N

250 N

120 mm

90 mm

90 mm

x

Fig. P3.87
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3.88 A force and a couple are applied as shown to the end of a cantilever 

beam. (a) Replace this system with a single force F applied at 

point C, and determine the distance d from C to a line drawn through 

points D and E. (b) Solve part a if the directions of the two 360-N 

forces are reversed.

 3.89 Three control rods attached to a lever ABC exert on it the forces 

shown. (a) Replace the three forces with an equivalent force-couple 

system at B. (b) Determine the single force that is equivalent to the 

force-couple system obtained in part a, and specify its point of appli-

cation on the lever.

20 lb

20 lb

30º
20º20º

48 lb

A

C

B
40 in.

30 in.

55º

Fig. P3.89

 3.90 A rectangular plate is acted upon by the force and couple shown. 

This system is to be replaced with a single equivalent force. (a) For 

α 5 40°, specify the magnitude and line of action of the equivalent 

force. (b) Specify the value of α if the line of action of the equivalent 

force is to intersect line CD 300 mm to the right of D.

 3.91 While tapping a hole, a machinist applies the horizontal forces 

shown to the handle of the tap wrench. Show that these forces are 

equivalent to a single force, and specify, if possible, the point of 

application of the single force on the handle.

 3.92 A hexagonal plate is acted upon by the force P and the couple shown. 

Determine the magnitude and the direction of the smallest force P for 

which this system can be replaced with a single force at E.

a

A

B C

D

EF

300 N

300 N

P

0.2 m

Fig. P3.92

450 mm

150 mm

360 N

360 N

B

d
D

600 N

E

C

A

y

xz

Fig. P3.88

a

a

A
B

CD

15 N

15 N

48 N

240 mm

400 mm

Fig. P3.90

A

B

C
3.2 in.

2.8 in.

2.9 lb

2.65 lb 25°

25°

x

y

z

D

Fig. P3.91
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 3.93 Replace the 250-kN force P with an equivalent force-couple system 

at G.

 3.94 A 2.6-kip force is applied at point D of the cast-iron post shown. 

Replace that force with an equivalent force-couple system at the 

center A of the base section.

6 in. 5 in.

12 in.

x

z

y

B

A

D

E

2.6 kips

Fig. P3.94

 3.95 Replace the 150-N force with an equivalent force-couple system at A.

 3.96 To keep a door closed, a wooden stick is wedged between the floor and 

the doorknob. The stick exerts at B a 175-N force directed along line AB. 

Replace that force with an equivalent force-couple system at C.

z

990 mm

594 mm

100 mm

O

A

B

C

y

750 mm

67 mm

x

1850 mm

Fig. P3.96

P

y

A
G

z

x
60 mm

30 mm

Fig. P3.93

x

y

z

A

C

120 mm

40 mm
60 mm20 mm

35°

150 N D

B

200 mm

Fig. P3.95
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 3.97 A 46-lb force F and a 2120-lb?in. couple M are applied to corner A
of the block shown. Replace the given force-couple system with an 

equivalent force-couple system at corner H.

M

F

3 in.

x

y

z
A

B

C

D

E

F

H

J

14 in.

18 in.

25 in.

45 in.

Fig. P3.97

 3.98 A 110-N force acting in a vertical plane parallel to the yz plane is 

applied to the 220-mm-long horizontal handle AB of a socket wrench. 

Replace the force with an equivalent force-couple system at the 

origin O of the coordinate system.

 3.99 An antenna is guyed by three cables as shown. Knowing that the 

tension in cable AB is 288 lb, replace the force exerted at A by cable 

AB with an equivalent force-couple system at the center O of the 

base of the antenna.

16 ft

x

y

z

O

A

B

C

D
128 ft

96 ft

128 ft

64 ft

Fig. P3.99 and P3.100

 3.100 An antenna is guyed by three cables as shown. Knowing that the 

tension in cable AD is 270 lb, replace the force exerted at A by cable 

AD with an equivalent force-couple system at the center O of the 

base of the antenna.

150 mm

110 N

A

B

x

y

z

O

35°

15°

Fig. P3.98
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136 Rigid Bodies: Equivalent Systems of Forces

3.4  SIMPLIFYING SYSTEMS 
OF FORCES

We saw in the preceding section that we can replace a force acting on a rigid 

body with a force-couple system that may be easier to analyze. However, 

the true value of a force-couple system is that we can use it to replace not 

just one force but a system of forces to simplify analysis and calculations.

3.4A  Reducing a System of Forces 
to a Force-Couple System

Consider a system of forces F1, F2, F3, . . . , acting on a rigid body at the 

points A1, A2, A3, . . . , defined by the position vectors r1, r2, r3, etc. 

(Fig.  3.36a). As seen in the preceding section, we can move F1 from A1

to a given point O if we add a couple of moment M1 equal to the moment 

r1 3 F1 of F1 about O. Repeating this procedure with F2, F3, . . . , we 

obtain the system shown in Fig.  3.36b, which consists of the original 

forces, now acting at O, and the added couple vectors. Since the forces 

are now concurrent, they can be added vectorially and replaced by their 

resultant R. Similarly, the couple vectors M1, M2, M3, . . . , can be added

vectorially and replaced by a single couple vector MR
O. Thus, 

We can reduce any system of forces, however complex, to an 
equivalent force-couple system acting at a given point O. 

Note that, although each of the couple vectors M1, M2, M3, . . . in 

Fig. 3.36b is perpendicular to its corresponding force, the resultant force R 

and the resultant couple vector MR
O shown in Fig. 3.36c are not, in general, 

perpendicular to each other.

(a)

F1

F2

F3r2
r3

A2

A3

=
O

r1

A1

(b)

F1

F2

M1

M2

M3

=O

F3

(c)

R

MO
R

O

Fig. 3.36 Reducing a system of forces to a force-couple system. (a) Initial 
system of forces; (b) all the forces moved to act at point O, with couple 
vectors added; (c) all the forces reduced to a resultant force vector and all the 
couple vectors reduced to a resultant couple vector.

The equivalent force-couple system is defined by 

Force-couple system

 R 5 oF   MR
O 5 oMO 5 o(r 3 F) (3.50)

These equations state that we obtain force R by adding all of the forces 

of the system, whereas we obtain the moment of the resultant couple 

vector MR
O, called the moment resultant of the system, by adding the 

moments about O of all the forces of the system.

R 5 oF   MR
O 5 oMO 5 o(r 3 F) 
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3.4 Simplifying Systems of Forces 137

Once we have reduced a given system of forces to a force and a 

couple at a point O, we can replace it with a force and a couple at another 

point O9. The resultant force R will remain unchanged, whereas the new 

moment resultant MR
O9 will be equal to the sum of MR

O and the moment 

about O9 of force R attached at O (Fig. 3.37). We have

 MR
O9 5 MR

O 1 s 3 R (3.51)

In practice, the reduction of a given system of forces to a single 

force R at O and a couple vector MR
O is carried out in terms of compo-

nents. Resolving each position vector r and each force F of the system 

into rectangular components, we have

 r 5 xi 1 yj 1 zk (3.52)

 F 5 Fxi 1 Fy j 1 Fzk (3.53)

Substituting for r and F in Eq. (3.50) and factoring out the unit vectors 

i, j, and k, we obtain R and MR
O in the form

 R 5 Rxi 1 Ryj 1 Rzk  MR
O 5 Mx

Ri 1 My
Rj 1 Mz

Rk (3.54)

The components Rx, Ry, and Rz represent, respectively, the sums of the x, 

y, and z components of the given forces and measure the tendency of the 

system to impart to the rigid body a translation in the x, y, or z direction. 

Similarly, the components MR
x, M

R
y, and MR

z represent, respectively, the sum 

of the moments of the given forces about the x, y, and z axes and measure 

the tendency of the system to impart to the rigid body a rotation about 

the x, y, or z axis.

If we need to know the magnitude and direction of force R, we can 

obtain them from the components Rx, Ry, and Rz by means of the relations 

in Eqs. (2.18) and (2.19) of Sec. 2.4A. Similar computations yield the 

magnitude and direction of the couple vector MR
O.

3.4B  Equivalent and Equipollent 
Systems of Forces

We have just seen that any system of forces acting on a rigid body can 

be reduced to a force-couple system at a given point O. This equivalent 

force-couple system characterizes completely the effect of the given force 

system on the rigid body. 

Two systems of forces are equivalent if they can be reduced to the 
same force-couple system at a given point O. 

Recall that the force-couple system at O is defined by the relations in 

Eq. (3.50). Therefore, we can state that 

Two systems of forces, F1, F2, F3, . . . , and F91, F92, F93, . . . , that act 
on the same rigid body are equivalent if, and only if, the sums of 
the forces and the sums of the moments about a given point O of 
the forces of the two systems are, respectively, equal. 

Mathematically, the necessary and sufficient conditions for the two sys-

tems of forces to be equivalent are

Conditions for equivalent systems of forces

 oF 5 oF9   and   oMO 5 oM9O (3.55)

MR
O9 5 MR

O 1 s 3 R 

oF 5 oF9   and   oMO 5 oM9O

O

O'

s

O

O'
s

R

R

MO
R

MO'
R

=

Fig. 3.37 Once a system of forces has been 
reduced to a force-couple system at one 
point, we can replace it with an equivalent 
force-couple system at another point. The 
force resultant stays the same, but we have to 
add the moment of the resultant force about 
the new point to the resultant couple vector.
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138 Rigid Bodies: Equivalent Systems of Forces

Note that to prove that two systems of forces are equivalent, we must establish 

the second of the relations in Eq. (3.55) with respect to only one point O. It will 

hold, however, with respect to any point if the two systems are equivalent.

Resolving the forces and moments in Eqs. (3.55) into their rectan-

gular components, we can express the necessary and sufficient conditions 

for the equivalence of two systems of forces acting on a rigid body as 

oFx 5 oF9x     oFy 5 oF9y    oFz 5 oF9z

 oMx 5 oM9x   oMy 5 oM9y   oMz 5 oM9z 

(3.56)

These equations have a simple physical significance. They express that 

Two systems of forces are equivalent if they tend to impart to the rigid 
body (1) the same translation in the x, y, and z directions, respectively, 
and (2) the same rotation about the x, y, and z axes, respectively.

In general, when two systems of vectors satisfy Eqs. (3.55) or (3.56), 

i.e., when their resultants and their moment resultants about an arbitrary 

point O are respectively equal, the two systems are said to be equipollent. 
The result just established can thus be restated as 

If two systems of forces acting on a rigid body are equipollent, they 
are also equivalent.

It is important to note that this statement does not apply to any system of 

vectors. Consider, for example, a system of forces acting on a set of 

independent particles that do not form a rigid body. A different system of 

forces acting on the same particles may happen to be equipollent to the 

first one; i.e., it may have the same resultant and the same moment resul-

tant. Yet, since different forces now act on the various particles, their 

effects on these particles are  different; the two systems of forces, while 

equipollent, are not equivalent.

3.4C  Further Reduction of a System 
of Forces

We have now seen that any given system of forces acting on a rigid body 

can be reduced to an equivalent force-couple system at O, consisting of a 

force R equal to the sum of the forces of the system, and a couple vector 

MR
O of moment equal to the moment resultant of the system.

When R 5 0, the force-couple system reduces to the couple vector 

MR
O. The given system of forces then can be reduced to a single couple 

called the resultant couple of the system.

What are the conditions under which a given system of forces can be 

reduced to a single force? It follows from the preceding section that we can 

replace the force-couple system at O by a single force R acting along a new 

line of action if R and MR
O are mutually perpendicular. The systems of forces 

that can be reduced to a single force, or resultant, are therefore the systems 

for which force R and the couple vector MR
O are mutually perpendicular. 

This condition is generally not satisfied by systems of forces in space, but 

it is satisfied by systems consisting of (1) concurrent forces, (2) coplanar 

forces, or (3) parallel forces. Let’s look at each case separately.

 1. Concurrent forces act at the same point; therefore, we can add them 

directly to obtain their resultant R. Thus, they always reduce to a single 

force. Concurrent forces were discussed in detail in Chap. 2.

oFxF 5 oF9xF     x oFyFF 5 oF9yF     oFzF 5 oF9zF

oMxM 5 oM9xM  x oMyMM 5 oM9yM    oMzM 5 oM9zM

Fpush

Force-couple

Fpull

Photo 3.3 The forces exerted by the 
children upon the wagon can be replaced 
with an equivalent force-couple system when 
analyzing the motion of the wagon.
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3.4 Simplifying Systems of Forces 139

 2. Coplanar forces act in the same plane, which we assume to be the 

plane of the figure (Fig. 3.38a). The sum R of the forces of the system 

also lies in the plane of the figure, whereas the moment of each force 

about O and thus the moment resultant MR
O are perpendicular to that 

plane. The force-couple system at O consists, therefore, of a force R 

and a couple vector MR
O that are mutually perpendicular (Fig. 3.38b).† 

We can reduce them to a single force R by moving R in the plane of 

the figure until its moment about O becomes equal to MR
O. The distance 

from O to the line of action of R is d 5 MR
O/R (Fig. 3.38c).

F1

F2

F3

x

y

O

(a)

=
x

y

O

(b)

MO
R

R

=
x

y

O

(c)

R

A

d = MO/RR

Fig. 3.38 Reducing a system of coplanar forces. (a) Initial system of forces; 
(b) equivalent force-couple system at O; (c) moving the resultant force to a 
point A such that the moment of R about O equals the couple vector.

†Because the couple vector MR
O is perpendicular to the plane of the figure, we represent it 

by the symbol l . A counterclockwise couple l represents a vector pointing out of the page 

and a clockwise couple i represents a vector pointing into the page.

x

y

O

(a)

MO
R

Rx

Ry
R

=
x

y

O

(b)

Rx

Ry

R

=
B

x = MO /Ry
R

x

y

O

(c)

Rx

Ry R

y = – MO /Rx
R

C

Fig. 3.39 Reducing a system of coplanar forces by using rectangular 
components. (a) From Fig. 3.38(b), resolve the resultant into components 
along the x and y axes; (b) determining the x intercept of the final line of 
action of the resultant; (c) determining the y intercept of the final line of 
action of the resultant.

   As noted earlier, the reduction of a system of forces is consider-

ably simplified if we resolve the forces into rectangular components. 

The force-couple system at O is then characterized by the components 

(Fig. 3.39a)

 Rx 5 oFx   Ry 5 oFy   Mz
R 5 MO

R 5 oMO (3.57)
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140 Rigid Bodies: Equivalent Systems of Forces

  To reduce the system to a single force R, the moment of R about O 
must be equal to MR

O. If we denote the coordinates of the point of 

application of the resultant by x and y and apply equation (3.22) of 

Sec. 3.1F, we have

xRy 2 yRx 5 MR
O

  This represents the equation of the line of action of R. We can also 

determine the x and y intercepts of the line of action of the resultant 

directly by noting that MR
O must be equal to the moment about O of the 

y component of R when R is attached at B (Fig.  3.39b) and to the 

moment of its x component when R is attached at C (Fig. 3.39c).

 3. Parallel forces have parallel lines of action and may or may not have 

the same sense. Assuming here that the forces are parallel to the y axis 

(Fig.  3.40a), we note that their sum R is also parallel to the y axis. 

y

x

z

F1

F2

F3

O

(a)

=

y

x

z

O

(b)

MO
R

Mz
R k

Mx
R i

R

=

y

x

z

O

(c)

r
A

x

z

R

Fig. 3.40 Reducing a system of parallel forces. (a) Initial system of forces; 
(b) equivalent force-couple system at O, resolved into components; 
(c) moving R to point A, chosen so that the moment of R about O 
equals the resultant moment about O.

On the other hand, since the moment of a given force must be perpen-

dicular to that force, the moment about O of each force of the system 

and thus the moment resultant MR
O lie in the zx plane. The force-couple 

system at O consists,  therefore, of a force R and a couple vector MR
O that 

are mutually perpendicular (Fig. 3.40b). We can reduce them to a single 

force R (Fig. 3.40c) or, if R 5 0, to a single couple of moment MR
O.

In practice, the force-couple system at O is characterized by the 

components

 Ry 5 oFy   MR
x 5 oMx   MR

z 5 oMz (3.58)

The reduction of the system to a single force can be carried out by moving 

R to a new point of application A(x, 0, z), which is chosen so that the 

moment of R about O is equal to MR
O.

r 3 R 5 MR
O

(xi 1 zk) 3 Ry j 5 Mx
Ri 1 Mz

Rk

Photo 3.4 The parallel wind forces acting 
on the highway signs can be reduced to a 
single equivalent force. Determining this 
force can simplify the calculation of the 
forces acting on the supports of the frame to 
which the signs are attached.
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3.4 Simplifying Systems of Forces 141

By computing the vector products and equating the coefficients of the 

corresponding unit vectors in both sides of the equation, we obtain two 

scalar equations that define the coordinates of A:

2zRy 5 MR
x and xRy 5 MR

z

These equations express the fact that the moments of R about the x and 

z axes must be equal, respectively, to MR
x and MR

z.

*3.4D  Reduction of a System 
of Forces to a Wrench

In the general case of a system of forces in space, the equivalent force-

couple system at O consists of a force R and a couple vector MR
O that are 

not perpendicular and where neither is zero (Fig. 3.41a). This system of 

forces cannot be reduced to a single force or to a single couple. However, 

we still have a way of simplifying this system further.

The simplification method consists of first replacing the couple vec-

tor by two other couple vectors that are obtained by resolving MR
O into a 

component M1 along R and a component M2 in a plane perpendicular to 

R (Fig.  3.41b). Then we can replace the couple vector M2 and force R 

by a single force R acting along a new line of action. The original system 

of forces thus reduces to R and to the couple vector M1 (Fig. 3.41c), i.e., 

to R and a couple acting in the plane perpendicular to R. 

(a)

O

MO
R

=

R

M2

(b)

O =

M1

R

(c)

O

M1

R

A

Fig. 3.41 Reducing a system of forces to a wrench. (a) General force 
system reduced to a single force and a couple vector, not perpendicular to 
each other; (b) resolving the couple vector into components along the line 
of action of the force and perpendicular to it; (c) moving the force and 
collinear couple vector (the wrench) to eliminate the couple vector 
perpendicular to the force.

This particular force-couple system is called a wrench because the 

resulting combination of push and twist is the same as that caused by an 

actual wrench. The line of action of R is known as the axis of the wrench,
and the ratio p 5 M1/R is called the pitch of the wrench. A wrench there-

fore consists of two collinear vectors: a force R and a couple vector

 M1 5 pR (3.59)M1 5 pR 
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142 Rigid Bodies: Equivalent Systems of Forces

Recall the expression in Eq. (3.33) for the projection of a vector on the 

line of action of another vector. Using this equation, we note that the 

projection of MR
O on the line of action of R is

M1 5
R ? MR

O

R

Thus, we can express the pitch of the wrench as†

 p 5
M1

R
5

R ? MR
O

R2  (3.60)

To define the axis of the wrench, we can write a relation involving 

the position vector r of an arbitrary point P located on that axis. We first 

attach the resultant force R and couple vector M1 at P (Fig. 3.42). Then, 

since the moment about O of this force-couple system must be equal to 

the moment resultant MR
O of the original force system, we have

 M1 1 r 3 R 5 MR
O (3.61)

Alternatively, using Eq. (3.59), we have

 pR 1 r 3 R 5 MR
O (3.62)

p 5
M1

R
5

R ? MR
O

R2

†The expressions obtained for the projection of the couple vector on the line of action of R
and for the pitch of the wrench are independent of the choice of point O. Using the relation 

(3.51) of Sec. 3.4A, we note that if a different point  O 9 had been used, the numerator in 

(3.60) would have been

R ? MR
O9 5 R ? (MR

O 1 s 3 R) 5 R ? MR
O 1 R ? (s 3 R)

Since the mixed triple product R ? (s 3 R ) is identically equal to zero, we have

R ? MR
O9 5 R ? MR

O

Thus, the scalar product R ? MR
O is independent of the choice of point O. 

O

MO
R

R

M1

O= R

Axis of wrench

P

r

Fig. 3.42 By finding the position vector r that 
locates any arbitrary point on the axis of the 
wrench, you can define the axis.

R

M1

Photo 3.5 The pushing-turning action 
associated with the tightening of a screw 
illustrates the collinear lines of action of 
the force and couple vector that constitute 
a wrench.
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3.4 Simplifying Systems of Forces 143

Sample Problem 3.8

A 4.80-m-long beam is subjected to the forces shown. Reduce the given 

system of forces to (a) an equivalent force-couple system at A, (b) an 

equivalent force-couple system at B, (c) a single force or resultant. Note:
Since the reactions at the supports are not included in the given system 

of forces, the given system will not maintain the beam in equilibrium.

STRATEGY: The force part of an equivalent force-couple system is 

simply the sum of the forces involved. The couple part is the sum of the 

moments caused by each force relative to the point of interest. Once you 

find the equivalent force-couple at one point, you can transfer it to any 

other point by a moment calculation.

MODELING and ANALYSIS: 

a. Force-Couple System at A. The force-couple system at A equiv-

alent to the given system of forces consists of a force R and a couple MR
A

defined as (Fig. 1):

R 5 oF

5 (150 N)j 2 (600 N)j 1 (100 N)j 2 (250 N)j 5 2(600 N)j

MR
A 5 o(r 3 F)

5 (1.6i) 3 (2600j) 1 (2.8i) 3 (100j) 1 (4.8i) 3 (2250j)

5 2(1880 N?m)k

The equivalent force-couple system at A is thus

R 5 600 Nw   MR
A 5 1880 N?m i b

b. Force-Couple System at B. You want to find a force-couple 

system at B equivalent to the force-couple system at A determined in 

part a. The force R is unchanged, but you must determine a new couple 

MR
B, the moment of which is equal to the moment about B of the force-

couple system determined in part a (Fig. 2). You have 

 MR
B 5 MR

A 1 BA
�

3 R
 5 2(1880  N?m)k 1 (24.8  m)i 3 (2600  N)j
 5 2(1880  N?m)k 1 (2880  N?m)k 5 1(1000  N?m)k

The equivalent force-couple system at B is thus

R 5 600 Nw   MR
B 5 1000 N?m l b

c. Single Force or Resultant. The resultant of the given system of 

forces is equal to R, and its point of application must be such that the 

moment of R about A is equal to MR
A (Fig. 3). This equality of moments 

leads to

r 3 R 5 MR
A

xi 3 (2600 N)j 5 2(1880 N?m)k

2x(600 N)k 5 2(1880 N?m)k

150 N 600 N 100 N 250 N

A B

1.6 m 1.2 m 2 m

Fig. 1 Force-couple system at A 
that is equivalent to given system 
of forces.

A B

150 j – 600 j 100 j – 250 j

1.6 i
2.8 i

4.8 i

A B

– (600 N) j

– (1880 N•m) k

Fig. 2 Finding force-couple system 
at B equivalent to that determined 
in part a.

A B

– (600 N) j
– (1880 N•m) k

(2880 N•m) k4.8 m

A

– (600 N) j

(1000 N•m) k
B

Fig. 3 Single force that is equivalent 
to given system of forces.

A
B

– (600 N) j

x

(continued)
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144 Rigid Bodies: Equivalent Systems of Forces

Solving for x, you get x 5 3.13 m. Thus, the single force equivalent to 

the given system is defined as

R 5 600 Nw   x 5 3.13 m b

REFLECT and THINK: This reduction of a given system of forces to 

a single equivalent force uses the same principles that you will use later 

for finding centers of gravity and centers of mass, which are important 

parameters in engineering mechanics.

Sample Problem 3.9

Four tugboats are bringing an ocean liner to its pier. Each tugboat exerts 

a 5000-lb force in the direction shown. Determine (a) the equivalent force-

couple system at the foremast O, (b) the point on the hull where a single, 

more powerful tugboat should push to produce the same effect as the 

original four tugboats.

STRATEGY: The equivalent force-couple system is defined by the sum 

of the given forces and the sum of the moments of those forces at a par-

ticular point. A single tugboat could produce this system by exerting the 

resultant force at a point of application that produces an equivalent moment.

MODELING and ANALYSIS:

a. Force-Couple System at O. Resolve each of the given forces 

into components, as in Fig. 1 (kip units are used). The force-couple system 

at O equivalent to the given system of forces consists of a force R and a 

couple MR
O defined as 

 R 5 oF
 5 (2.50i 2 4.33j) 1 (3.00i 2 4.00j) 1 (25.00j) 1 (3.54i 1 3.54j)
 5 9.04i 2 9.79j

 MR
O 5 o(r 3 F)

 5 (290i 1 50j) 3 (2.50i 2 4.33j)
  1 (100i 1 70j) 3 (3.00i 2 4.00j)
  1 (400i 1 70j) 3 (25.00j)
  1 (300i 2 70j) 3 (3.54i 1 3.54j)
 5 (390 2 125 2 400 2 210 2 2000 1 1062 1 248)k
 5 21035k

The equivalent force-couple system at O is thus (Fig. 2)

R 5 (9.04 kips)i 2 (9.79 kips)j   MR
O 5 2(1035 kip?ft)k

or

 R 5 13.33 kips c47.3°   MR
O 5 1035 kip?ft i b

3
2 3

4

1

4

60°

50 ft 90 ft

110 ft

200 ft
O

70 ft

45°

100

ft

100

ft

100

ft

Fig. 1 Given forces resolved into 
components.

– 4.33 j – 4 j – 5 j
F1

F2 F3

F4

3 i

3.54 j

3.54 i

2.5i
50 ft

110 ft

200 ft
O

70 ft90 ft 100

ft

100

ft

100

ft

Fig. 2 Equivalent force-couple 
system at O.

MO =  –1035 kR

9.04 i

–9.79 j

47.3°

R

O

(continued)
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3.4 Simplifying Systems of Forces 145

 Remark: Since all the forces are contained in the plane of the figure, 

you would expect the sum of their moments to be perpendicular to that 

plane. Note that you could obtain the moment of each force component 

directly from the diagram by first forming the product of its magnitude 

and perpendicular distance to O and then assigning to this product a posi-

tive or a negative sign, depending upon the sense of the moment.

b. Single Tugboat. The force exerted by a single tugboat must be equal 

to R, and its point of application A must be such that the moment of R
about O is equal to MR

O (Fig. 3). Observing that the position vector of A is

r 5 xi 1 70j

you have

r 3 R 5 MR
O

(xi 1 70j) 3 (9.04i 2 9.79j) 5 21035k

2x(9.79)k 2 633k 5 21035k  x 5 41.1 ft b

REFLECT and THINK: Reducing the given situation to that of a single 

force makes it easier to visualize the overall effect of the tugboats in 

maneuvering the ocean liner. But in practical terms, having four boats 

applying force allows for greater control in slowing and turning a large 

ship in a crowded harbor.

Fig. 3 Point of application of 
single tugboat to create same 
effect as given force system.

70 ft

x

9.04 i

– 9.79 jR

A

O

Sample Problem 3.10

Three cables are attached to a bracket as shown. Replace the forces 

exerted by the cables with an equivalent force-couple system at A.

STRATEGY: First determine the relative position vectors drawn from 

point A to the points of application of the various forces and resolve the 

forces into rectangular components. Then sum the forces and moments.

MODELING and ANALYSIS: Note that FB 5 (700 N)lBE where

lBE 5
BE
�

BE
5

75i 2 150j 1 50k

175

Using meters and newtons, the position and force vectors are

 rB/A 5 AB
�

5 0.075i 1 0.050k     FB 5 300i 2 600j 1 200k

 rC/A 5 AC
�

5 0.075i 2 0.050k     FC 5 707i  2 707k

 rD/A 5 AD
�

5 0.100i 2 0.100j     FD 5 600i 1 1039j

 The force-couple system at A equivalent to the given forces con-

sists of a force R 5 oF and a couple MR
A 5 o(r 3 F). Obtain the 

force R by adding respectively the x, y, and z components of the forces:

 R 5 oF 5 (1607 N)i 1 (439 N)j 2 (507 N)k b

(continued)

50 mm

50 mm

100 mm

100 mm

75 mm 1000 N

1200 N
700 N

x

y

z

O

A
B

C

D

45º

45º

30º

60º

E(150 mm, –50 mm, 100 mm)
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146 Rigid Bodies: Equivalent Systems of Forces

The computation of MR
A is facilitated by expressing the moments of the 

forces in the form of determinants (Sec. 3.1F). Thus, 

 rByA 3 FB 5
 

†
i j k

0.075

 
0 0.050

300

 
2600 200

†
 
5 30i  245k

 rCyA 3 FC 5
 

†
i j k

0.075

 
0 20.050

707

 
0 2707

†
 
5 17.68j

 rDyA 3 FD 5
 

† i j   k
0.100 20.100   0

600 1039   0

  
†
 
5 163.9k

Adding these expressions, you have

MA
R 5 o(r 3 F) 5 (30 N?m)i 1 (17.68 N?m)j 1 (118.9 N?m)k b

Figure 1 shows the rectangular components of the force R and the couple MR
A.

REFLECT and THINK: The determinant approach to calculating 

moments shows its advantages in a general three-dimensional problem 

such as this.

x

y

z

O

(17.68 N•m)j

(439 N)j –(507 N)k

(1607 N)i
(118.9 N•m)k

(30 N•m)i

Fig. 1 Rectangular components of 
equivalent force-couple system at A.

Sample Problem 3.11

A square foundation mat supports the four columns shown. Determine the 

magnitude and point of application of the resultant of the four loads.

A

B

C

4 ft
5 ft

5 ft

6 ft

40 kips

20 kips

12 kips

x

z

O
8 kips

y

STRATEGY: Start by reducing the given system of forces to a force-

couple system at the origin O of the coordinate system. Then reduce the 

system further to a single force applied at a point with coordinates x, z.

MODELING: The force-couple system consists of a force R and a 

couple vector MR
O defined as 

R 5 oF   MR
O 5 o(r 3 F)

(continued)
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3.4 Simplifying Systems of Forces 147

ANALYSIS: After determining the position vectors of the points of 

application of the various forces, you may find it convenient to arrange 

the computations in tabular form. The results are shown in Fig. 1.

r, ft F, kips r 3 F, kip?ft

0 240j 0

10i 212j 2 120k
10i 1 5k  28j 40i 2 80k
 4i 1 10k 220j 200i 2 80k

 R 5 280j MR
O 5 240i 2 280k

The force R and the couple vector MR
O are mutually perpendicular, 

so you can reduce the force-couple system further to a single force R. 

Select the new point of application of R in the plane of the mat and in 

such a way that the moment of R about O is equal to MR
O. Denote the 

position vector of the desired point of application by r and its coordinates 

by x and z (Fig. 2). Then

r 3 R 5 MR
O

(xi 1 zk) 3 (280j) 5 240i 2 280k

280xk 1 80zi 5 240i 2 280k

It follows that

280x 5 2280    80z 5 240

x 5 3.50 ft       z 5 3.00 ft

The resultant of the given system of forces is

R 5 80 kipsw   at x 5 3.50 ft, z 5 3.00 ft b

REFLECT and THINK: The fact that the given forces are all parallel 

simplifies the calculations, so the final step becomes just a two-dimensional 

analysis.

Fig. 1 Force-couple system at O that 
is equivalent to given force system.

x

z

O–(280 kip•ft)k

–(80 kips)j

(240 kip•ft)i

y

Fig. 2 Single force that is equivalent 
to given force system.

x

y

z

O

–(80 kips)j

xi

zk

y

x
z

A

B

C

D
E

O

F1 = Pi
F2 = Pj

a

a

a

Sample Problem 3.12

Two forces of the same magnitude P act on a cube of side a as shown. 

Replace the two forces by an equivalent wrench, and determine (a) the 

magnitude and direction of the resultant force R, (b) the pitch of the 

wrench, (c) the point where the axis of the wrench intersects the yz plane.

STRATEGY: The first step is to determine the equivalent force-couple 

system at the origin O. Then you can reduce this system to a wrench and 

determine its properties.

(continued)

bee87302_ch03_082-168.indd   147bee87302_ch03_082-168.indd   147 11/8/14   9:55 AM11/8/14   9:55 AM

UPLOADED BY AHMAD T JUNDI



148 Rigid Bodies: Equivalent Systems of Forces

MODELING and ANALYSIS: 

Equivalent Force-Couple System at O. The position vectors of 

the points of application E and D of the two given forces are rE 5 ai 1 

aj and rD 5 aj 1 ak. The resultant R of the two forces and their moment 

resultant MR
O about O are (Fig. 1)

 R 5 F1 1 F2 5 Pi 1 Pj 5 P(i 1 j) (1)

MR
O 5 rE 3 F1 1 rD 3 F2 5 (ai 1 aj) 3 Pi 1 (aj 1 ak) 3 Pj

 5 2Pak 2 Pai 5 2Pa(i 1 k) (2)

a. Resultant Force R. It follows from Eq. (1) and Fig. 1 that the resul-

tant force R has a magnitude of R 5 P22, lies in the xy plane, and forms 

angles of 45° with the x and y axes. Thus

R 5 P12   θx 5 θy 5 458   θz 5 908 b

b. Pitch of the Wrench. Using equation (3.60) of Sec. 3.4D and 

Eqs. (1) and (2) above, the pitch p of the wrench is

p 5
R ?  MR

O

R2
5

P(i 1 j) ?  (2Pa)(i 1 k)

(P22)2
5

2P2a(1 1 0 1 0)

2P2
   p 5 2

a

2
 b

c. Axis of the Wrench. From the pitch and from Eq. (3.59), the 

wrench consists of the force R found in Eq. (1) and the couple vector

M1 5 pR 5 2 

a

2
P(i 1 j) 5 2 

Pa

2
 (i 1 j) (3)

To find the point where the axis of the wrench intersects the yz plane, set 

the moment of the wrench about O equal to the moment resultant MR
O of 

the original system:

M1 1 r 3 R 5 MR
O

Alternatively, noting that r 5 yj 1 zk (Fig. 2) and substituting for R, MR
O, 

and M1 from Eqs. (1), (2), and (3), we have

 2
 

Pa

2
(i 1 j) 1 (yj 1 zk) 3 P(i 1 j) 5 2Pa(i 1 k)

 2
 

Pa

2
 i 2

Pa

2
j 2 Pyk 1 Pzj 2 Pzi 5 2Pai 2 Pak

Equating the coefficients of k and then the coefficients of j, the final result is

y 5 a   z 5 a/2 b

REFLECT and THINK: Conceptually, reducing a system of forces to 

a wrench is simply an additional application of finding an equivalent 

force-couple system.

y

x
z

MO
R

R

O
Pi

Pj

– Pai

– Pak

Fig. 1 Force-couple system 
at O that is equivalent to the 
given force system.

y

x
z

R

O
r

M1 = pR

yj

zk

Fig. 2 Wrench that is equivalent 
to the given force system.
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149 149

SOLVING PROBLEMS
ON YOUR OWN

In this section you studied the reduction and simplification of force systems. In 

solving the problems that follow, you will be asked to perform the following 

operations.

1. Reducing a force system to a force and a couple at a given point A.
The force is the resultant R of the system that is obtained by adding the various 

forces. The moment of the couple is the moment resultant of the system that is 

obtained by adding the moments about A of the various forces. We have

R 5 oF   MR
A 5 o(r 3 F)

where the position vector r is drawn from A to any point on the line of action of F.

2. Moving a force-couple system from point A to point B. If you wish to reduce 

a given force system to a force-couple system at point B, you need not recompute the 

moments of the forces about B after you have reduced it to a force-couple system at 

point A. The resultant R remains unchanged, and you can obtain the new moment 

resultant MR
B by adding the moment about B of the force R applied at A to MR

A 

[Sample Prob. 3.8]. Denoting the vector drawn from B to A as s, you have

MR
B 5 MR

A 1 s 3 R

3. Checking whether two force systems are equivalent. First reduce each force 

system to a force-couple system at the same, but arbitrary, point A (as explained in 

the first operation). The two force systems are equivalent (that is, they have the same 

effect on the given rigid body) if the two reduced force-couple systems are identical; 

that is, if

oF 5 oF9   and   oMA 5 oM9A

You should recognize that if the first of these equations is not satisfied––that is, if the 

two systems do not have the same resultant R––the two systems cannot be equivalent, 

and there is no need to check whether or not the second equation is satisfied.

4. Reducing a given force system to a single force. First reduce the given system 

to a force-couple system consisting of the resultant R and the couple vector MR
A at 

(continued)
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some convenient point A (as explained in the first operation). Recall from Section 3.4 

that further reduction to a single force is possible only if the force R and the couple 
vector MR

A are mutually perpendicular. This will certainly be the case for systems of 

forces that are either concurrent, coplanar, or parallel. You can then obtain the 

required single force by moving R until its moment about A is equal to MR
A, as you 

did in several problems in Section 3.4. More formally, the position vector r drawn 

from A to any point on the line of action of the single force R must satisfy the 

equation

r 3 R 5 MR
A

This procedure was illustrated in Sample Probs. 3.8, 3.9, and 3.11.

5. Reducing a given force system to a wrench. If the given system includes forces 

that are not concurrent, coplanar, or parallel, the equivalent force-couple system at a 

point A will consist of a force R and a couple vector MR
A that, in general, are not 

mutually perpendicular. (To check whether R and MR
A are mutually perpendicular, 

form their scalar product. If this product is zero, they are mutually perpendicular; 

otherwise, they are not.) If R and MR
A are not mutually perpendicular, the force-couple 

system (and thus the given system of forces) cannot be reduced to a single force. 

However, the system can be reduced to a wrench—the combination of a force R and 

a couple vector M1 directed along a common line of action called the axis of the 
wrench (Fig. 3.42). The ratio p 5 M1/R is called the pitch of the wrench.

To reduce a given force system to a wrench, you should follow these steps,

 a.  Reduce the given system to an equivalent force-couple system (R, MR
O), 

typically located at the origin O.

 b. Determine the pitch p from Eq. (3.60),

p 5
M1

R
5

R ? MR
O

R2

  and the couple vector from M1 5 pR.

 c.  Set the moment about O of the wrench equal to the moment resultant MR
O 

of the force-couple system at O:

 M1 1 r 3 R 5 MR
O (3.61)

This equation allows you to determine the point where the line of action of the wrench 

intersects a specified plane, since the position vector r is directed from O to that point. 

These steps are illustrated in Sample Prob. 3.12. Although determining a wrench and 

the point where its axis intersects a plane may appear difficult, the process is simply 

the application of several of the ideas and techniques developed in this chapter. Once 

you have mastered the wrench, you can feel confident that you understand much of 

Chap. 3.
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Problems

 3.101 A 3-m-long beam is subjected to a variety of loadings. (a) Replace 

each loading with an equivalent force-couple system at end A of the 

beam. (b) Which of the loadings are equivalent?

 3.102 A 3-m-long beam is loaded as shown. Determine the loading of 

Prob. 3.101 that is equivalent to this loading.

3.103 Determine the single equivalent force and the distance from point A
to its line of action for the beam and loading of (a) Prob. 3.101a, 

(b) Prob. 3.101b, (c) Prob. 3.102.

 3.104 Five separate force-couple systems act at the corners of a piece of 

sheet metal that has been bent into the shape shown. Determine which 

of these systems is equivalent to a force F 5 (10 lb)i and a couple of 

moment M 5 (15 lb?ft)j 1 (15 lb?ft)k located at the origin.

5 lb•ft

5 lb•ft
15 lb•ft

5 lb•ft

15 lb•ft

15 lb•ft

15 lb•ft

15 lb•ft

80 lb•ft
25 lb•ft

10 lb

10 lb

10 lb

10 lb

10 lb

y

z

O

H

A

C

J

I

B
D

G

x

F

E

2 ft

2 ft
2 ft

1 ft

2.5 ft

Fig. P3.104

A B

200 N

400 N•m

3 m
300 N

300 N

400 N•m

200 N
(a)

300 N

400 N•m

200 N

(c)

500 N

400 N•m

(d)(b)

800 N
400 N•m

1000 N•m 1000 N•m
300 N

200 N

400 N•m

300 N

(e)

300 N

400 N•m
800 N

(g)

250 N

400 N•m

(h)( f )

1000 N•m

250 N

Fig. P3.101

A B

300 N

500 N•m 200 N•m

3 m
200 N

Fig. P3.102
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 3.105 The weights of two children sitting at ends A and B of a seesaw are 

84 lb and 64 lb, respectively. Where should a third child sit so that 

the resultant of the weights of the three children will pass through 

C if she weighs (a) 60 lb, (b) 52 lb?

 3.106 Three stage lights are mounted on a pipe as shown. The lights at A
and B each weigh 4.1 lb, while the one at C weighs 3.5 lb. (a) If 

d 5 25 in., determine the distance from D to the line of action of 

the resultant of the weights of the three lights. (b) Determine the 

value of d so that the resultant of the weights passes through the 

midpoint of the pipe.

D

B

C

E

d

34 in.

10 in.

84 in.

A

Fig. P3.106

3.107 A beam supports three loads of given magnitude and a fourth load 

whose magnitude is a function of position. If b 5 1.5 m and the 

loads are to be replaced with a single equivalent force, determine 

(a) the value of a so that the distance from support A to the line of 

action of the equivalent force is maximum, (b) the magnitude of the 

equivalent force and its point of application on the beam.

ba

A B

1300 N 400 N 600 N

a
2

a
b

400     N

9 m

Fig. P3.107

 3.108 A 6 3 12-in. plate is subjected to four loads as shown. Find the 

resultant of the four loads and the two points at which the line of 

action of the resultant intersects the edge of the plate.

A

B

C

6 ft

6 ft

Fig. P3.105

A B C

F E D

6 in.

6 in.

6 in.

50 lb

50 lb

20 lb
40 lb

Fig. P3.108
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3.109 A 32-lb motor is mounted on the floor. Find the resultant of the 

weight and the forces exerted on the belt, and determine where the 

line of action of the resultant intersects the floor.

 3.110 To test the strength of a 625 3 500-mm suitcase, forces are applied 

as shown. If P 5 88 N, (a) determine the resultant of the applied 

forces, (b) locate the two points where the line of action of the 

resultant intersects the edge of the suitcase.

450 mm
100 mm

80 mm

280 mm

180 N

212 N

100 N

P

D C

A B

Fig. P3.110

 3.111 Solve Prob. 3.110, assuming that P 5 138 N.

 3.112 Pulleys A and B are mounted on bracket CDEF. The tension on each 

side of the two belts is as shown. Replace the four forces with a 

single equivalent force, and determine where its line of action inter-

sects the bottom edge of the bracket.

 3.113 A truss supports the loading shown. Determine the equivalent force 

acting on the truss and the point of intersection of its line of action 

with a line drawn through points A and G.

C

A

B D F

E

G

240 lb 160 lb 300 lb

40°

180 lb

70°

x

y
4 ft

8 ft 8 ft

8 ft 8 ft 8 ft

6 ft

Fig. P3.113

 3.114 A couple of magnitude M 5 80 lb?in. and the three forces shown 

are applied to an angle bracket. (a) Find the resultant of this system 

of forces. (b) Locate the points where the line of action of the resul-

tant intersects line AB and line BC.

 3.115 A couple M and the three forces shown are applied to an angle bracket. 

Find the moment of the couple if the line of action of the resultant of 

the force system is to pass through (a) point A, (b) point B, (c) point C.

140 lb

30°

60 lb

O

W

2 in.

2 in.

Fig. P3.109

2 in.

1 in.

210 lb

150 lb
25°

25°

4 in.

120 lb 160 lb

A B

C D

EF

r = 2 in. r = 1   in.1
2

6 in.6 in.

Fig. P3.112

A B

C

10 lb 25 lb

60°
12 in.

40 lb

M 8 in.

Fig. P3.114 and P3.115
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 3.116 A machine component is subjected to the forces and couples shown. 

The component is to be held in place by a single rivet that can resist 

a force but not a couple. For P 5 0, determine the location of the 

rivet hole if it is to be located (a) on line FG, (b) on line GH.

 3.117 Solve Prob. 3.116, assuming that P 5 60 N.

 3.118 As follower AB rolls along the surface of member C, it exerts a 

constant force F perpendicular to the surface. (a) Replace F with an 

equivalent force-couple system at the point D obtained by drawing 

the perpendicular from the point of contact to the x axis. (b) For 

a 5 1 m and b 5 2 m, determine the value of x for which the 

moment of the equivalent force-couple system at D is maximum.

y

b

a

C

B

A

F

D x

y = b(1 –  )x2

a2

Fig. P3.118

 3.119 A machine component is subjected to the forces shown, each of 

which is parallel to one of the coordinate axes. Replace these forces 

with an equivalent force-couple system at A.

 3.120 Two 150-mm-diameter pulleys are mounted on line shaft AD. The 

belts at B and C lie in vertical planes parallel to the yz plane. Replace 

the belt forces shown with an equivalent force-couple system at A.

A

B

C

D

x

y

z

20º

10º

10º 155 N

240 N

145 N

215 N

180 mm

225 mm

225 mm

Fig. P3.120

C

A B

D
F

E

G H

P

200 N
240 mm

120 N

70°
15°

50 mm

50 mm

50 mm

80 N
42 N•m

40 N•m 180 mm

640 mm

520 mm

Fig. P3.116

Fig. P3.119

30 mm

90 mm
50 mm

60 mm

75 mm

x

x

y

C

D

O

B

A

150 N

300 N

125 N

240 N
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3.121 As an adjustable brace BC is used to bring a wall into plumb, the 

force-couple system shown is exerted on the wall. Replace this force-

couple system with an equivalent force-couple system at A if 

R 5 21.2 lb and M 5 13.25 lb?ft.

A

B

R

M

C
x

y

z

64 in.

96 in.

42 in.

48 in.

Fig. P3.121
 3.122 In order to unscrew the tapped faucet A, a plumber uses two pipe 

wrenches as shown. By exerting a 40-lb force on each wrench at a 

distance of 10 in. from the axis of the pipe and in a direction per-

pendicular to the pipe and to the wrench, he prevents the pipe from 

rotating, and thus he avoids loosening or further tightening the joint 

between the pipe and the tapped elbow C. Determine (a) the angle θ

that the wrench at A should form with the vertical if elbow C is not 

to rotate about the vertical, (b) the force-couple system at C equiva-

lent to the two 40-lb forces when this condition is satisfied.

40 lb

40 lb

y

x
z

25 in.

18 in.

7.5 in.

10 in.

�

10 in.

A

B

C

D

E

F

7.5 in.

Fig. P3.122
3.123 Assuming θ 5 60° in Prob. 3.122, replace the two 40-lb forces with an 

equivalent force-couple system at D and determine whether the plumber’s 

action tends to tighten or loosen the joint between (a) pipe CD and elbow 

D, (b) elbow D and pipe DE. Assume all threads to be right-handed.
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 3.124 Four forces are applied to the machine component ABDE as shown. 

Replace these forces with an equivalent force-couple system at A.

z

200 mm

40 mm

160 mm

100 mm

20 mm

x

50 N

250 N

120 N

300 N

y

B

E

D

A

Fig. P3.124

 3.125 A blade held in a brace is used to tighten a screw at A. (a) Determine 

the forces exerted at B and C, knowing that these forces are equiva-

lent to a force-couple system at A consisting of R 5 2(25 N)i 1

Ry j 1 Rzk and MR
A 5 2(13.5 N?m)i. (b) Find the corresponding 

values of Ry and Rz. (c) What is the orientation of the slot in the 

head of the screw for which the blade is least likely to slip when the 

brace is in the position shown?

x

B

Czk

Cxi

Cyj

–B k

240 mm

240 mm

180 mm

y

z

A

C

Fig. P3.125

 3.126 A mechanic uses a crowfoot wrench to loosen a bolt at C. The 

mechanic holds the socket wrench handle at points A and B and 

applies forces at these points. Knowing that these forces are equiva-

lent to a force-couple system at C consisting of the force C 5

2(8 lb)i 1 (4 lb)k and the couple MC 5 (360 lb?in.)i, determine the 

forces applied at A and at B when Az 5 2 lb.

2 in.

8 in.

10 in.

Ax

Ay

Az

Bx

By

Bz

A

Bx

y

C

z

Fig. P3.126

bee87302_ch03_082-168.indd   156bee87302_ch03_082-168.indd   156 11/8/14   9:55 AM11/8/14   9:55 AM

UPLOADED BY AHMAD T JUNDI



157

 3.127 Three children are standing on a 5 3 5-m raft. If the weights of the 

children at points A, B, and C are 375 N, 260 N, and 400 N, respec-

tively, determine the magnitude and the point of application of the 

resultant of the three weights.

 3.128 Three children are standing on a 5 3 5-m raft. The weights of the 

children at points A, B, and C are 375 N, 260 N, and 400 N, respec-

tively. If a fourth child weighing 425 N climbs onto the raft, deter-

mine where she should stand if the other children remain in the 

positions shown and if the line of action of the resultant of the four 

weights is to pass through the center of the raft.

 3.129 Four signs are mounted on a frame spanning a highway, and the 

magnitudes of the horizontal wind forces acting on the signs are as 

shown. Determine the magnitude and the point of application of the 

resultant of the four wind forces when a 5 1 ft and b 5 12 ft.

D

A

B

C x

y

z

E

F

G

H

a

2.5 ft

90 lb

160 lb

50 lb

105 lb

9 ft

5.5 ft

b

5 ft

8 ft

3 ft

Fig. P3.129 and P3.130

 3.130 Four signs are mounted on a frame spanning a highway, and the 

magnitudes of the horizontal wind forces acting on the signs are as 

shown. Determine a and b so that the point of application of the 

resultant of the four forces is at G.

3.131 A concrete foundation mat of 5-m radius supports four equally 

spaced columns, each of which is located 4 m from the center of the 

mat. Determine the magnitude and the point of application of the 

resultant of the four loads.

3.132 Determine the magnitude and the point of application of the smallest 

additional load that must be applied to the foundation mat of 

Prob. 3.131 if the resultant of the five loads is to pass through the 

center of the mat.

A
B

C
x

y

z

E

F

G

O
0.5 m

0.25 m 0.25 m

1.5 m

1 m

2 m

Fig. P3.127 and P3.128

z

x

y
125 kN

25 kN

75 kN

100 kN

5 m
O

Fig. P3.131
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 *3.133 Three forces of the same magnitude P act on a cube of side a as 

shown. Replace the three forces with an equivalent wrench and deter-

mine (a) the magnitude and direction of the resultant force R, (b) the 

pitch of the wrench, (c) the axis of the wrench.

 *3.134 A piece of sheet metal is bent into the shape shown and is acted 

upon by three forces. If the forces have the same magnitude P, 

replace them with an equivalent wrench and determine (a) the mag-

nitude and the direction of the resultant force R, (b) the pitch of the 

wrench, (c) the axis of the wrench.

A

B

C

D

E

F
G

H
O

x

y

z

F1

F2

F3

a

a

a

3
2 a

a

Fig. P3.134

 *3.135 and *3.136  The forces and couples shown are applied to two screws 

as a piece of sheet metal is fastened to a block of wood. Reduce the 

forces and the couples to an equivalent wrench and determine (a) 

the resultant force R, (b) the pitch of the wrench, (c) the point where 

the axis of the wrench intersects the xz plane.

11 lb
6 lb•in.

6 lb•in.

10 lb

15 in.

x

z

y

A

B

O

20 in.

Fig. P3.136

y

x

z

A

B

C

D

O

F1
F2

F3

a

a

a

Fig. P3.133

1 N•m

4 N•m

15 N

20 N

100 mm

x

z

y

A

O

Fig. P3.135

bee87302_ch03_082-168.indd   158bee87302_ch03_082-168.indd   158 11/8/14   9:55 AM11/8/14   9:55 AM

UPLOADED BY AHMAD T JUNDI



159

 *3.137 and *3.138  Two bolts at A and B are tightened by applying the 

forces and couples shown. Replace the two wrenches with a single 

equivalent wrench and determine (a) the resultant R, (b) the pitch of 

the single equivalent wrench, (c) the point where the axis of the 

wrench intersects the xz plane.

0.1 m

0.3 m

0.6 m

x

z

y

A

B

0.4 m

30 N•m

84 N

32 N•m

80 N

Fig. P3.137

 *3.139 Two ropes attached at A and B are used to move the trunk of a fallen 

tree. Replace the forces exerted by the ropes with an equivalent 

wrench and determine (a) the resultant force R, (b) the pitch of the 

wrench, (c) the point where the axis of the wrench intersects the 

yz plane. 

 *3.140 A flagpole is guyed by three cables. If the tensions in the cables 

have the same magnitude P, replace the forces exerted on the pole 

with an equivalent wrench and determine (a) the resultant force R, 

(b) the pitch of the wrench, (c) the point where the axis of the 

wrench intersects the xz plane.

A

B

x

y

z

C

D

E O

4a

20a

12a

18a

15a

9a

Fig. P3.140

10 in.
10 in.

10 in.

30 in.

16 in.

x

z

y

A

B

238 lb•in.

17 lb

26.4 lb

220 lb•in.

Fig. P3.138

5 m2 m 2 m6 m
x

y

z

O

A
B

C D
1650 N

1500 N

14 m

9 m12 m

9 m

Fig. P3.139
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 *3.141 and *3.142  Determine whether the force-and-couple system shown 

can be reduced to a single equivalent force R. If it can, determine 

R and the point where the line of action of R intersects the yz plane. 

If it cannot be reduced, replace the given system with an equivalent 

wrench and determine its resultant, its pitch, and the point where its 

axis intersects the yz plane.

x

y

z

A
B

C

D

E

FG

H

I

160 lb•in.

34 lb

30 lb

K

12 in.

6 in.

6 in.

6 in.

3 in.
8 in.

18 in.18 in.

Fig. P3.142

 *3.143 Replace the wrench shown with an equivalent system consisting of 

two forces perpendicular to the y axis and applied respectively at A
and B.

x

y

z

B

A

O
M

R

b

a

Fig. P3.143

 *3.144 Show that, in general, a wrench can be replaced with two forces 

chosen in such a way that one force passes through a given point 

while the other force lies in a given plane.

 *3.145 Show that a wrench can be replaced with two perpendicular forces, 

one of which is applied at a given point.

 *3.146 Show that a wrench can be replaced with two forces, one of which 

has a prescribed line of action.

160 mm

120 mm

120 mm

60 mm

60 mm

40 mm

40 mm

50 N

70 NB
C H

D

I

y

A

E

z F
G

x

10 N•m

14 N•m

Fig. P3.141
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Review and Summary
Principle of Transmissibility
In this chapter, we presented the effects of forces exerted on a rigid body. We 

began by distinguishing between external and internal forces [Sec. 3.1A]. 

We then explained that, according to the principle of transmissibility, the 

effect of an external force on a rigid body remains unchanged if we move that 

force along its line of action [Sec. 3.1B]. In other words, two forces F and 

F9 acting on a rigid body at two different points have the same effect on that 

body if they have the same magnitude, same direction, and same line of action 

(Fig. 3.43). Two such forces are said to be equivalent.

Vector Product
Before proceeding with the discussion of equivalent systems of forces, we 

introduced the concept of the vector product of two vectors [Sec. 3.1C]. We 

defined the vector product

V 5 P 3 Q

of the vectors P and Q as a vector perpendicular to the plane containing P and 

Q (Fig. 3.44) with a magnitude of 

 V 5 PQ sin θ (3.1)

and directed in such a way that a person located at the tip of V will observe 

the rotation to be counterclockwise through θ, bringing the vector P in line 

with the vector Q. The three vectors P, Q, and V—taken in that order—are 

said to form a right-handed triad. It follows that the vector products Q 3 P 

and P 3 Q are represented by equal and opposite vectors: 

 Q 3 P 5 2(P 3 Q) (3.4)

It also follows from the definition of the vector product of two vectors that 

the vector products of the unit vectors i, j, and k are

i 3 i 5 0   i 3 j 5 k   j 3 i 5 2k

and so on. You can determine the sign of the vector product of two unit vec-

tors by arranging in a circle and in counterclockwise order the three letters 

representing the unit vectors (Fig. 3.45): The vector product of two unit vec-

tors is positive if they follow each other in counterclockwise order and nega-

tive if they follow each other in clockwise order.

Rectangular Components of Vector Product
The rectangular components of the vector product V of two vectors P and 

Q are expressed [Sec. 3.1D] as

Vx 5 PyQz 2 PzQy

 Vy 5 PzQx 2 PxQz (3.9)
Vz 5 PxQy 2 PyQx

F

F'

=

Fig. 3.43

Q

P

V = P × Q

q

(a)

V

(b)

Fig. 3.44

i

j

k

Fig. 3.45
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We can also express the components of a vector product as a determinant:

V 5 †
i j k

Px Py Pz

Qx Qy Qz

†  (3.10)

Moment of a Force about a Point
We defined the moment of a force F about a point O [Sec. 3.1E] as the 

vector product

 MO 5 r 3 F (3.11)

where r is the position vector drawn from O to the point of application A of 

the force F (Fig.  3.46). Denoting the angle between the lines of action of r
and F as θ, we found that the magnitude of the moment of F about O is

 MO 5 rF sin θ 5 Fd (3.12)

where d represents the perpendicular distance from O to the line of action of F.

Rectangular Components of Moment
The rectangular components of the moment MO of a force F [Sec. 3.1F] are

Mx 5 yFz 2 zFy

 My 5 zFx 2 xFz (3.18)
Mz 5 xFy 2 yFx

where x, y, and z are the components of the position vector r (Fig.  3.47). 

Using a determinant form, we also wrote

 MO 5 †
i j k
x y z

Fx Fy Fz

†  (3.19)

In the more general case of the moment about an arbitrary point B of a force 

F applied at A, we had

 MB 5 †
i j k

xA/B yA/B zA/B

Fx Fy Fz

†  (3.21)

where xA/B, yA/B, and zA/B denote the components of the vector rA/B:

xA/B 5 xA 2 xB   yA/B 5 yA 2 yB   zA/B 5 zA 2 zB

In the case of problems involving only two dimensions, we can assume the force F 

lies in the xy plane. Its moment MB about a point B in the same plane is 

perpendicular to that plane (Fig. 3.48) and is completely defined by the scalar

 MB 5 (xA 2 xB)Fy 2 (yA 2 yB)Fx (3.23)

Various methods for computing the moment of a force about a point were 

illustrated in Sample Probs. 3.1 through 3.4.

Scalar Product of Two Vectors
The scalar product of two vectors P and Q [Sec. 3.2A], denoted by P ? Q, 

is defined as the scalar quantity

 P ? Q 5 PQ cos θ (3.24)

MO

d A

F

r
θ

O

Fig. 3.46

Fy j

Fx i

Fz k

x

y

z

O

zk

y j

x i
r

A (x, y, z)

Fig. 3.47

y

x

z

O
B

Fy j

Fx i

F

A

(yA – yB)j

(xA – xB)i

rA/B

MB = MB k

Fig. 3.48
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where θ is the angle between P and Q (Fig. 3.49). By expressing the scalar 

product of P and Q in terms of the rectangular components of the two vectors, 

we determined that

 P ? Q 5 PxQx 1 PyQy 1 PzQz (3.28)

Projection of a Vector on an Axis
We obtain the projection of a vector P on an axis OL (Fig. 3.50) by forming 

the scalar product of P and the unit vector l along OL. We have

 POL 5 P ? l (3.34)

Using rectangular components, this becomes

 POL 5 Px cos θx 1 Py cos θy 1 Pz cos θz (3.35)

where θx, θy, and θz denote the angles that the axis OL forms with the coor-

dinate axes.

Mixed Triple Product of Three Vectors
We defined the mixed triple product of the three vectors S, P, and Q as the 

scalar expression

 S ? (P 3 Q) (3.36)

obtained by forming the scalar product of S with the vector product of P and 

Q [Sec. 3.2B]. We showed that

 S ? (P 3 Q) 5 †
Sx Sy Sz

Px Py Pz

Qx Qy Qz

†  (3.39)

where the elements of the determinant are the rectangular components of the 

three vectors.

Moment of a Force about an Axis
We defined the moment of a force F about an axis OL [Sec. 3.2C] as the 

projection OC on OL of the moment MO of the force F (Fig.  3.51), i.e., as 

the mixed triple product of the unit vector l, the position vector r, and the 

force F:

 MOL 5 l ? MO 5 l ? (r 3 F) (3.40)

y

x

z

r

L

A

C

O

MO
F

�

Fig. 3.51

Q

P

q

Fig. 3.49

y

x

z

O

A

P

L

� qx

qy

qz

Fig. 3.50
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Force-Couple System
Any force F acting at a point A of a rigid body can be replaced by a force-
couple system at an arbitrary point O consisting of the force F applied at O

The determinant form for the mixed triple product is

MOL 5 † lx
ly lz

x y z

Fx Fy Fz

†  (3.41)

where

lx, ly, lz 5 direction cosines of axis OL
x, y, z 5 components of r

 Fx, Fy, Fz 5 components of F

An example of determining the moment of a force about a skew axis appears 

in Sample Prob. 3.5.

Couples
Two forces F and 2F having the same magnitude, parallel lines of action, 
and opposite sense are said to form a couple [Sec. 3.3A]. The moment of a 

couple is independent of the point about which it is computed; it is a vector M
perpendicular to the plane of the couple and equal in magnitude to the product 

of the common magnitude F of the forces and the perpendicular distance d
between their lines of action (Fig. 3.52).

–F

F
d

M

Fig. 3.52

Two couples having the same moment M are equivalent, i.e., they have the 

same effect on a given rigid body [Sec. 3.3B]. The sum of two couples is 

itself a couple [Sec. 3.3C], and we can obtain the moment M of the resultant 

couple by adding vectorially the moments M1 and M2 of the original couples 

[Sample Prob. 3.6]. It follows that we can represent a couple by a vector, 

called a couple vector, equal in magnitude and direction to the moment M
of the couple [Sec. 3.3D]. A couple vector is a free vector that can be attached 

to the origin O if so desired and resolved into components (Fig. 3.53).

y

x

z

–F

F

(a)

d

O
=

(b)

y

x

z

O

M
(M = Fd) 

=

(c)

y

x

z

O

M

=

(d)

x
O

My

MxMz

y

z

Fig. 3.53
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and a couple of moment MO, which is equal to the moment about O of the 

force F in its original position [Sec. 3.3E]. Note that the force F and the 

couple vector MO are always perpendicular to each other (Fig. 3.54).

O

MO

r

A A

F
F

O=
Fig. 3.54

Reduction of a System of Forces to a Force-Couple 
System
It follows [Sec. 3.4A] that any system of forces can be reduced to a force-
couple system at a given point O by first replacing each of the forces of the 

system by an equivalent force-couple system at O (Fig. 3.55) and then adding 

all of the forces and all of the couples to obtain a resultant force R and a 

resultant couple vector MR
O [Sample Probs. 3.8 through 3.11]. In general, the 

resultant R and the couple vector MR
O will not be perpendicular to each other.

(a)

F1

F2

F3r2
r3

A2

A3

=
O

r1

A1

(b)

F1

F2

M1

M2

M3

=O

F3

(c)

R

MO
R

O

Fig. 3.55

Equivalent Systems of Forces
We concluded [Sec. 3.4B] that, as far as rigid  bodies are concerned, two 
systems of forces, F1, F2, F3, . . . and F91, F92, F93, . . . , are equivalent if, and 
only if,

 oF 5 oF9   and   oMO 5 oM9O (3.55)

Further Reduction of a System of Forces
If the resultant force R and the resultant couple vector MR

O are perpendicular 

to each other, we can further reduce the force-couple system at O to a single 

resultant force [Sec. 3.4C]. This is the case for systems consisting of 

(a) concurrent forces (cf. Chap. 2), (b) coplanar forces [Sample Probs. 3.8 

and 3.9], or (c) parallel forces [Sample Prob. 3.11]. If the resultant R and the 

couple vector MR
O are not perpendicular to each other, the system cannot be 

reduced to a single force. We can, however, reduce it to a special type of 

force-couple system called a wrench, consisting of the resultant R and a cou-

ple vector M1 directed along R [Sec. 3.4D and Sample Prob. 3.12].
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Review Problems
3.147 A 300-N force P is applied at point A of the bell crank shown. 

(a) Compute the moment of the force P about O by resolving it into 

horizontal and vertical components. (b) Using the result of part a, 

determine the perpendicular distance from O to the line of action of P.

3.148 A winch puller AB is used to straighten a fence post. Knowing that 

the tension in cable BC is 1040 N and length d is 1.90 m, determine 

the moment about D of the force exerted by the cable at C by resolv-

ing that force into horizontal and vertical components applied (a) at 

point C, (b) at point E.

A

B

C

D

E

d

0.875 m

0.2 m

Fig. P3.148

 3.149 A small boat hangs from two davits, one of which is shown in the 

figure. The tension in line ABAD is 82 lb. Determine the moment 

about C of the resultant force RA exerted on the davit at A.

 3.150 Consider the volleyball net shown. Determine the angle formed by 

guy wires AB and AC.

x

y

z

A

B

C
D

2 ft

1 ft

8 ft

6.5 ft

4 ft

6 ft

Fig. P3.150

A

P
30°

B

O

40°
120 mm

48°
200 mm

Fig. P3.147

3 ft

x

y

z

A

C

D7.75 ft

6 ft

B

Fig. P3.149
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3.151 A single force P acts at C in a direction perpendicular to the handle 

BC of the crank shown. Determine the moment Mx of P about the 

x axis when θ 5 65°, knowing that My 5 215 N?m and Mz 5 236 N?m.

3.152 A small boat hangs from two davits, one of which is shown in the 

figure. It is known that the moment about the z axis of the resul-

tant force RA exerted on the davit at A must not exceed 279 lb?ft 

in absolute value. Determine the largest allowable tension in line 

ABAD when x 5 6 ft.

3 ft

x

y

z

A

C

D7.75 ft

x

B

Fig. P3.152

 3.153 In a manufacturing operation, three holes are drilled simultaneously 

in a workpiece. If the holes are perpendicular to the surfaces of the 

workpiece, replace the couples applied to the drills with a single 

equivalent couple, specifying its magnitude and the direction of 

its axis.

x

y

z

20°

25°
1.75 N • m

1.5 N • m

1.5 N • m

Fig. P3.153

 3.154 A 260-lb force is applied at A to the rolled-steel section shown. 

Replace that force with an equivalent force-couple system at the 

center C of the section.

 3.155 The force and couple shown are to be replaced by an equivalent 

single force. Knowing that P 5 2Q, determine the required value 

of α if the line of action of the single equivalent force is to pass 

through (a) point A, (b) point C.

O

y

z 150 mm

CB

A

f

q

x

P

200 mm

100 mm

Fig. P3.151

A B

DC

a

�a

–Q

Q

P

Fig. P3.155

A

B

C

260 lb

2 in.

2.5 in.

4 in.

4 in.

Fig. P3.154
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3.156 A 77-N force F1 and a 31-N?m couple M1 are applied to corner E of 

the bent plate shown. If F1 and M1 are to be replaced with an equiva-

lent force-couple system (F2, M2) at corner B and if (M2)z 5 0, 

determine (a) the distance d, (b) F2 and M2.

x

z

y

B
A

C

E
D

G

H

J

F1

70 mm

30 mm

30 mm

d

60 mm

83.3 mm

250 mm

M1
Fig. P3.156

 3.157 Three horizontal forces are applied as shown to a vertical cast-iron 

arm. Determine the resultant of the forces and the distance from the 

ground to its line of action when (a) P 5 200 N, (b) P 5 2400 N, 

(c) P 5 1000 N.

 3.158 While using a pencil sharpener, a student applies the forces and 

couple shown. (a) Determine the forces exerted at B and C know-

ing that these forces and the couple are equivalent to a force-couple 

system at A consisting of the force R 5 (2.6 lb)i 1 Ry j 2 (0.7 lb)k 

and the couple MR
A 5 Mxi 1 (1.0 lb?ft)j 2 (0.72 lb?ft)k. (b) Find the 

corresponding values of Ry and Mx.

B

B

1 lb•ft

3.5 in.

1.75 in.

2 in.

x

y

z

A

C
Cxi

–Czk

–Cyj

Fig. P3.158

600 N

400 N

A

B

C

D

P

150 mm

150 mm

150 mm

Fig. P3.157
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The Tianjin Eye is a Ferris wheel that straddles a bridge over the 

Hai River in China. The structure is designed so that the support 

reactions at the wheel bearings as well as those at the base of 

the frame maintain equilibrium under the effects of vertical 

gravity and horizontal wind forces.

Equilibrium of Rigid 
Bodies

4
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170 Equilibrium of Rigid Bodies

Introduction
We saw in Chapter 3 how to reduce the external forces acting on a rigid 

body to a force-couple system at some arbitrary point O. When the force 

and the couple are both equal to zero, the external forces form a system 

equivalent to zero, and the rigid body is said to be in equilibrium. 
We can obtain the necessary and sufficient conditions for the equi-

librium of a rigid body by setting R and MR
O equal to zero in the relations 

of Eq. (3.50) of Sec. 3.4A:

 oF 5 0   oMO 5 o (r 3 F) 5 0 (4.1)

Resolving each force and each moment into its rectangular components, 

we can replace these vector equations for the equilibrium of a rigid body 

with the following six scalar equations:

 oFx 5 0 oFy 5 0 oFz 5 0 (4.2)
oMx 5 0   oMy 5 0   oMz 5 0 (4.3)

We can use these equations to determine unknown forces applied to the 

rigid body or unknown reactions exerted on it by its supports. Note that 

Eqs. (4.2) express the fact that the components of the external forces in 

the x, y, and z directions are balanced; Eqs. (4.3) express the fact that the 

moments of the external forces about the x, y, and z axes are balanced. 

Therefore, for a rigid body in equilibrium, the system of external forces 

imparts no translational or rotational motion to the body.

In order to write the equations of equilibrium for a rigid body, we 

must first identify all of the forces acting on that body and then draw the 

corresponding free-body diagram. In this chapter, we first consider the 

equilibrium of two-dimensional structures subjected to forces contained in 

their planes and study how to draw their free-body diagrams. In addition to 

the forces applied to a structure, we must also consider the reactions exerted 

on the structure by its supports. A specific reaction is associated with each 

type of support. You will see how to determine whether the structure is 

properly supported, so that you can know in advance whether you can solve 

the equations of equilibrium for the unknown forces and reactions.

oF 5 0  oMO 5 o (r 3 F) 5 0

oFxF 5 0 oFyFF 5 0 oFzF 5 0

oMxMM 5 0   oMyMM 5 0   oMzM 5 0 

Introduction

Free-Body Diagrams

 4.1 EQUILIBRIUM IN TWO 
DIMENSIONS

4.1A Reactions for a Two-
Dimensional Structure

4.1B Rigid-Body Equilibrium 
in Two Dimensions

4.1C Statically Indeterminate 
Reactions and Partial 
Constraints

 4.2 TWO SPECIAL CASES
4.2A Equilibrium of a Two-Force 

Body
4.2B Equilibrium of a Three-Force 

Body

 4.3 EQUILIBRIUM IN THREE 
DIMENSIONS

4.3A Rigid-Body Equilibrium 
in Three Dimensions

4.3B Reactions for a Three-
Dimensional Structure

Objectives
• Analyze the static equilibrium of rigid bodies in two 

and three dimensions.

• Consider the attributes of a properly drawn free-body 
diagram, an essential tool for the equilibrium analysis 
of rigid bodies.

• Examine rigid bodies supported by statically indeter-
minate reactions and partial constraints.

• Study two cases of particular interest: the equilibrium 
of two-force and three-force bodies.
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Later in this chapter, we consider the equilibrium of three-dimensional 

structures, and we provide the same kind of analysis to these structures and 

their supports.

Free-Body Diagrams
In solving a problem concerning a rigid body in equilibrium, it is essential 

to consider all of the forces acting on the body. It is equally important to 

exclude any force that is not directly applied to the body. Omitting a force 

or adding an extraneous one would destroy the conditions of equilibrium. 

Therefore, the first step in solving the problem is to draw a free-body 
diagram of the rigid body under consideration. 

We have already used free-body diagrams on many occasions in 

Chap. 2. However, in view of their importance to the solution of equilib-

rium problems, we summarize here the steps you must follow in drawing 

a correct free-body diagram.

 1. Start with a clear decision regarding the choice of the free body to be 

analyzed. Mentally, you need to detach this body from the ground and 

separate it from all other bodies. Then you can sketch the contour of 

this isolated body.

 2. Indicate all external forces on the free-body diagram. These forces rep-

resent the actions exerted on the free body by the ground and by the 

bodies that have been detached. In the diagram, apply these forces at 

the various points where the free body was supported by the ground or 

Photo 4.1 A tractor supporting a bucket load. As shown, its 
free-body diagram should include all external forces acting on 
the tractor.

LoadBoom weightAxes

Body

y

Body weight

Reactions

Front wheel reactionRear wheel reaction, vertical

Rear wheel reaction, horizontal

x
Bucket load

Tractor weight

Photo 4.2 Tractor bucket and boom. In 
Chap. 6, we will see how to determine the 
internal forces associated with interconnected 
members such as these using free-body 
diagrams like the one shown.

Load

Boom weight

Piston reaction

Body

Body weight

Reactions

Bucket load

Boom reaction, vertical

Boom reaction, horizontal

Free-Body Diagrams 171
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172 Equilibrium of Rigid Bodies

was connected to the other bodies. Generally, you should include the 

weight of the free body among the external forces, since it represents 

the attraction exerted by the earth on the various particles forming the 

free body. You will see in Chapter 5 that you should draw the weight 

so it acts at the center of gravity of the body. If the free body is made 

of several parts, do not include the forces the various parts exert on each 

other among the external forces. These forces are internal forces as 

far as the free body is concerned.

 3. Clearly mark the magnitudes and directions of the known external forces
on the free-body diagram. Recall that when indicating the directions 

of these forces, the forces are those exerted on, and not by, the free 

body. Known external forces generally include the weight of the free 

body and forces applied for a given purpose.

 4. Unknown external forces usually consist of the reactions through which 

the ground and other bodies oppose a possible motion of the free body. 

The reactions constrain the free body to remain in the same position; 

for that reason, they are sometimes called constraining forces. Reactions 

are exerted at the points where the free body is supported by or con-
nected to other bodies; you should clearly indicate these points. Reac-

tions are discussed in detail in Secs. 4.1 and 4.3.

 5. The free-body diagram should also include dimensions, since these may 

be needed for computing moments of forces. Any other detail, however, 

should be omitted.

4.1  EQUILIBRIUM IN TWO 
DIMENSIONS

In the first part of this chapter, we consider the equilibrium of two-dimensional 

structures; i.e., we assume that the structure being analyzed and the forces 

applied to it are contained in the same plane. Clearly, the reactions needed 

to maintain the structure in the same position are also contained in this plane.

4.1A  Reactions for a Two-Dimensional 
Structure

The reactions exerted on a two-dimensional structure fall into three cat-

egories that correspond to three types of supports or connections.

 1. Reactions Equivalent to a Force with a Known Line of Action. Sup-

ports and connections causing reactions of this type include rollers, 
rockers, frictionless surfaces, short links and cables, collars on friction-
less rods, and frictionless pins in slots. Each of these supports and 

connections can prevent motion in one direction only. Figure 4.1 shows 

these supports and connections together with the reactions they produce. 

Each reaction involves one unknown––specifically, the magnitude of the 

reaction. In problem solving, you should denote this magnitude by an 

appropriate letter. The line of action of the reaction is known and should 

be indicated clearly in the free-body diagram. 

   The sense of the reaction must be as shown in Fig. 4.1 for cases of 

a frictionless surface (toward the free body) or a cable (away from the 

free body). The reaction can be directed either way in the cases of 

double-track rollers, links, collars on rods, or pins in slots. Generally, we 
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4.1 Equilibrium in Two Dimensions 173

assume that single-track rollers and rockers are reversible, so the cor-

responding reactions can be directed either way.

 2. Reactions Equivalent to a Force of Unknown Direction and Magni-
tude. Supports and connections causing reactions of this type include 

frictionless pins in fitted holes, hinges, and rough surfaces. They can 

prevent translation of the free body in all directions, but they cannot 

prevent the body from rotating about the connection. Reactions of this 

group involve two unknowns and are usually represented by their x and 

Fig. 4.1 Reactions of supports and connections in two dimensions.

Support or Connection Reaction Number of
Unknowns

Rollers Rocker Frictionless
surface

Force with known
line of action
perpendicular

to surface

Force with known
line of action

along cable or link

Force with known
line of action
perpendicular
to rod or slot

1

1

1

Short cable Short link

Collar on
frictionless rod Frictionless pin in slot

90º

Frictionless pin
or hinge

Rough surface Force of unknown
direction

or

or

2

Fixed support Force and couple

This rocker bearing
supports the weight
of a bridge. The
convex surface of
the rocker allows the
bridge to move
slightly horizontally.

Links are often used
to support suspended
spans of highway
bridges.

Force applied to the
slider exerts a
normal force on the
rod, causing the
window to open.

Pin supports are
common on bridges
and overpasses.

This cantilever 
support is fixed at one
end and extends out
into space at the
other end.

3

a

a

bee87302_ch04_169-229.indd   173bee87302_ch04_169-229.indd   173 11/8/14   10:05 AM11/8/14   10:05 AM

UPLOADED BY AHMAD T JUNDI



174 Equilibrium of Rigid Bodies

y components. In the case of a rough surface, the component normal to 

the surface must be directed away from the surface.

 3. Reactions Equivalent to a Force and a Couple. These reactions are 

caused by fixed supports that oppose any motion of the free body and 

thus constrain it completely. Fixed supports actually produce forces over 

the entire surface of contact; these forces, however, form a system that 

can be reduced to a force and a couple. Reactions of this group involve 

three unknowns usually consisting of the two components of the force 

and the moment of the couple.

When the sense of an unknown force or couple is not readily appar-

ent, do not attempt to determine it. Instead, arbitrarily assume the sense 

of the force or couple; the sign of the answer will indicate whether the 

assumption is correct or not. (A positive answer means the assumption is 

correct, while a negative answer means the assumption is incorrect.)

4.1B  Rigid-Body Equilibrium 
in Two Dimensions

The conditions stated in Sec. 4.1A for the equilibrium of a rigid body 

become considerably simpler for the case of a two-dimensional structure. 

Choosing the x and y axes to be in the plane of the structure, we have

Fz 5 0   Mx 5 My 5 0   Mz 5 MO

for each of the forces applied to the structure. Thus, the six equations of 

equilibrium stated in Sec. 4.1 reduce to three equations:

 oFx 5 0   oFy 5 0   oMO 5 0 (4.4)

Since oMO 5 0 must be satisfied regardless of the choice of the origin O, 

we can write the equations of equilibrium for a two-dimensional structure 

in the more general form

Equations of equilibrium in two dimensions

 oFx 5 0   oFy 5 0   oMA 5 0 (4.5)

where A is any point in the plane of the structure. These three equations 

can be solved for no more than three unknowns.
You have just seen that unknown forces include reactions and that 

the number of unknowns corresponding to a given reaction depends upon 

the type of support or connection causing that reaction. Referring to 

Fig. 4.1, note that you can use the equilibrium equations (4.5) to determine 

the reactions associated with two rollers and one cable, or one fixed 

support, or one roller and one pin in a fitted hole, etc.

For example, consider Fig. 4.2a, in which the truss shown is in equi-

librium and is subjected to the given forces P, Q, and S. The truss is held 

in place by a pin at A and a roller at B. The pin prevents point A from moving 

by exerting a force on the truss that can be resolved into the components Ax 

and Ay. The roller keeps the truss from rotating about A by exerting the 

vertical force B. The free-body diagram of the truss is shown in Fig. 4.2b; 

it includes the reactions Ax, Ay, and B as well as the applied forces P, Q,

and S (in x and y component form) and the weight W of the truss. 

Since the truss is in equilibrium, the sum of the moments about A
of all of the forces shown in Fig. 4.2b is zero, or oMA 5 0. We can use 

oFxF 5 0   oFyFF 5 0  oMAM 5 0

C

A B

D

P Q S

(a)

C

A B

D

(b)

Py Qy Qx

Sy
Sx

W

Px

B

Ax

Ay

Fig. 4.2 (a) A truss supported by a pin and 
a roller; (b) free-body diagram of the truss.
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4.1 Equilibrium in Two Dimensions 175

this equation to determine the magnitude B because the equation does not 

contain Ax or Ay. Then, since the sum of the x components and the sum 

of the y components of the forces are zero, we write the equations oFx 5 0 

and oFy 5 0. From these equations, we can obtain the components Ax 

and Ay, respectively.

We could obtain an additional equation by noting that the sum of 

the moments of the external forces about a point other than A is zero. We 

could write, for instance, oMB 5 0. This equation, however, does not 

contain any new information, because we have already established that the 

system of forces shown in Fig. 4.2b is equivalent to zero. The additional 

equation is not independent and cannot be used to determine a fourth 

unknown. It can be useful, however, for checking the solution obtained 

from the original three equations of equilibrium.

Although the three equations of equilibrium cannot be augmented 

by additional equations, any of them can be replaced by another equation. 

Properly chosen, the new system of equations still describes the equilib-

rium conditions but may be easier to work with. For example, an alterna-

tive system of equations for equilibrium is

 oFx 5 0   oMA 5 0   oMB 5 0 (4.6)

Here the second point about which the moments are summed (in this case, 

point B) cannot lie on the line parallel to the y axis that passes through 

point A (Fig. 4.2b). These equations are sufficient conditions for the equi-

librium of the truss. The first two equations indicate that the external forces 

must reduce to a single vertical force at A. Since the third equation requires 

that the moment of this force be zero about a point B that is not on its line 

of action, the force must be zero, and the rigid body is in equilibrium.

A third possible set of equilibrium equations is

 oMA 5 0   oMB 5 0   oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line (Fig. 4.2b). The first 

equation requires that the external forces reduce to a single force at A; the 

second equation requires that this force pass through B; and the third equation 

requires that it pass through C. Since the points A, B, C do not lie in a straight 

line, the force must be zero, and the rigid body is in equilibrium.

Notice that the equation oMA 5 0, stating that the sum of the moments 

of the forces about pin A is zero, possesses a more definite physical meaning 

than either of the other two equations (4.7). These two equations express a 

similar idea of balance but with respect to points about which the rigid body 

is not actually hinged. They are, however, as useful as the first equation. The 

choice of equilibrium equations should not be unduly influenced by their 

physical meaning. Indeed, in practice, it is desirable to choose equations of 

equilibrium containing only one unknown, since this eliminates the necessity 

of solving simulta neous equations. You can obtain equations containing only 

one unknown by summing moments about the point of intersection of the lines 

of action of two unknown forces or, if these forces are parallel, by summing 

force components in a direction perpendicular to their common direction. 

For example, in Fig. 4.3, in which the truss shown is held by rollers 

at A and B and a short link at D, we can eliminate the reactions at A and 

B by summing x components. We can eliminate the reactions at A and D 

oFxF 5 0   oMAM 5 0  oMBM 5 0

oMAM 5 0  oMBM 5 0  oMC 5 0

C

A B

D

D

P Q S

(a)

C

A B

D

(b)

Py Qy
Qx

Sy
Sx

A

W

Px

B

Fig. 4.3 (a) A truss supported by two rollers 
and a short link; (b) free-body diagram of 
the truss.
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176 Equilibrium of Rigid Bodies

by summing moments about C and the reactions at B and D by summing 

moments about D. The resulting equations are

oFx 5 0   oMC 5 0   oMD 5 0

Each of these equations contains only one unknown.

 4.1C  Statically Indeterminate Reactions 
and Partial Constraints

In the two examples considered in Figs. 4.2 and 4.3, the types of supports 

used were such that the rigid body could not possibly move under the 

given loads or under any other loading conditions. In such cases, the rigid 

body is said to be completely constrained. Recall that the reactions cor-

responding to these supports involved three unknowns and could be deter-

mined by solving the three equations of equilibrium. When such a situation 

exists, the reactions are said to be statically determinate.
Consider Fig.  4.4a, in which the truss shown is held by pins at A 

and B. These supports provide more constraints than are necessary to keep 

the truss from moving under the given loads or under any other loading 

conditions. Note from the free-body diagram of Fig.  4.4b that the corre-

sponding reactions involve four unknowns. We pointed out in Sec. 4.1D 

that only three independent equilibrium equations are available; therefore, 

in this case, we have more unknowns than equations. As a result, we cannot 

determine all of the unknowns. The equations oMA 5 0 and oMB 5 0 

yield the vertical components By and Ay, respectively, but the equation 

oFx 5 0 gives only the sum Ax 1 Bx of the horizontal components of the 

reactions at A and B. The components Ax and Bx are statically indeterminate. 
We could determine their magnitudes by considering the deformations pro-

duced in the truss by the given loading, but this method is beyond the scope 

of statics and belongs to the study of mechanics of materials.

Let’s consider the opposite situation. The supports holding the truss 

shown in Fig.  4.5a consist of rollers at A and B. Clearly, the constraints 

provided by these supports are not sufficient to keep the truss from mov-

ing. Although they prevent any vertical motion, the truss is free to move 

horizontally. The truss is said to be partially constrained.† From 

the free-body diagram in Fig.  4.5b, note that the reactions at A and B 

involve only two unknowns. Since three equations of equilibrium must still 

be satisfied, we have fewer unknowns than equations. In such a case, one 

of the equilibrium equations will not be satisfied in general. The equations 

oMA 5 0 and oMB 5 0 can be satisfied by a proper choice of reactions 

at A and B, but the equation oFx 5 0 is not satisfied unless the sum of 

the horizontal components of the applied forces happens to be zero. We 

thus observe that the equilibrium of the truss of Fig. 4.5 cannot be main-

tained under general loading conditions.

From these examples, it would appear that, if a rigid body is to be 

completely constrained and if the reactions at its supports are to be statically 

determinate, there must be as many unknowns as there are equations of 
equilibrium. When this condition is not satisfied, we can be certain that either 

the rigid body is not completely constrained or that the reactions at its supports 

†Partially constrained bodies are often referred to as unstable. However, to avoid confusion 

between this type of instability, due to insufficient constraints, and the type of instability 

considered in Chap. 10, which relates to the behavior of a rigid body when its equilibrium 

is disturbed, we shall restrict the use of the words stable and unstable to the latter case.

C

A B

D

P Q S

(a)

C

A B

D

(b)

Py Qy
Qx

Sy
Sx

Bx

By

Ax

Ay

W

Px

Fig. 4.4 (a) Truss with statically 
indeterminate reactions; (b) free-body 
diagram.

C

A B

D

P Q S

(a)

C

A B

D

(b)

Py Qy
Qx

Sy
Sx

A

W

Px

B

Fig. 4.5 (a) Truss with partial constraints; 
(b) free-body diagram.
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4.1 Equilibrium in Two Dimensions 177

are not statically determinate. It is also possible that the rigid body is not 

completely constrained and that the reactions are statically indeterminate.

You should note, however, that, although this condition is necessary, it 
is not sufficient. In other words, the fact that the number of unknowns is equal 

to the number of equations is no guarantee that a body is completely con-

strained or that the reactions at its supports are statically determinate. Consider 

Fig. 4.6a, which shows a truss held by rollers at A, B, and E. We have three 

unknown reactions of A, B, and E (Fig. 4.6b), but the equation oFx 5 0 is 

not satisfied unless the sum of the horizontal components of the applied forces 

happens to be zero. Although there are a sufficient number of constraints, these 

constraints are not properly arranged, so the truss is free to move horizontally. 

We say that the truss is improperly constrained. Since only two equilibrium 

equations are left for determining three unknowns, the reactions are statically 

indeterminate. Thus, improper constraints also produce static indeterminacy.

The truss shown in Fig. 4.7 is another example of improper constraints—

and of static indeterminacy. This truss is held by a pin at A and by rollers 

at B and C, which altogether involve four unknowns. Since only three inde-

pendent equilibrium equations are available, the reactions at the supports are 

statically indeterminate. On the other hand, we note that the equation 

oMA 5 0 cannot be satisfied under general loading conditions, since the lines 

of action of the reactions B and C pass through A. We conclude that the 

truss can rotate about A and that it is improperly constrained.†

The examples of Figs. 4.6 and 4.7 lead us to conclude that 

A rigid body is improperly constrained whenever the supports (even 
though they may provide a sufficient number of reactions) are arranged 
in such a way that the reactions must be either concurrent or parallel.‡

In summary, to be sure that a two-dimensional rigid body is com-

pletely constrained and that the reactions at its supports are statically 

determinate, you should verify that the reactions involve three—and only 

three—unknowns and that the supports are arranged in such a way that 

they do not require the reactions to be either concurrent or parallel.

Supports involving statically indeterminate reactions should be used 

with care in the design of structures and only with a full knowledge of 

the problems they may cause. On the other hand, the analysis of structures 

possessing statically indeterminate reactions often can be partially carried 

out by the methods of statics. In the case of the truss of Fig.  4.4, for 

example, we can determine the vertical components of the reactions at A 

and B from the equilibrium equations.

For obvious reasons, supports producing partial or improper constraints 

should be avoided in the design of stationary structures. However, a partially 

or improperly constrained structure will not necessarily collapse; under par-

ticular loading conditions, equilibrium can be maintained. For example, the 

trusses of Figs. 4.5 and 4.6 will be in equilibrium if the applied forces P, Q, 

and S are vertical. Besides, structures designed to move should be only 

partially constrained. A railroad car, for instance, would be of little use if it 

were completely constrained by having its brakes applied permanently.

†Rotation of the truss about A requires some “play” in the supports at B and C. In practice 

such play will always exist. In addition, we note that if the play is kept small, the displacements 

of the rollers B and C and, thus, the distances from A to the lines of action of the reactions B 

and C will also be small. The equation oMA 5 0 then requires that B and C be very large, a 

situation which can result in the failure of the supports at B and C.
‡Because this situation arises from an inadequate arrangement or geometry of the supports, 

it is often referred to as geometric instability.
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A B
E

E

D

P Q S

(a)

C

A B

D

(b)

Py Qy
Qx

Sy
Sx

A

W

Px

BE

Fig. 4.6 (a) Truss with improper constraints; 
(b) free-body diagram.
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W
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Fig. 4.7 (a) Truss with improper constraints; 
(b) free-body diagram.
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178 Equilibrium of Rigid Bodies

Sample Problem 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate. 

It is held in place by a pin at A and a rocker at B. The center of gravity 

of the crane is located at G. Determine the components of the reactions 

at A and B.

STRATEGY: Draw a free-body diagram to show all of the forces acting 

on the crane, then use the equilibrium equations to calculate the values of 

the unknown forces.

MODELING:

Free-Body Diagram. By multiplying the masses of the crane and of 

the crate by g 5 9.81 m/s2, you obtain the corresponding weights––that is, 

9810 N or 9.81 kN, and 23 500 N or 23.5 kN (Fig. 1). The reaction at pin 

A is a force of unknown direction; you can represent it by components Ax

and Ay. The reaction at the rocker B is perpendicular to the rocker surface; 

thus, it is horizontal. Assume that Ax, Ay, and B act in the directions shown.

ANALYSIS:

Determination of B. The sum of the moments of all external forces 

about point A is zero. The equation for this sum contains neither Ax nor 

Ay, since the moments of Ax and Ay about A are zero. Multiplying the 

magnitude of each force by its perpendicular distance from A, you have

1loMA 5 0:   1B(1.5 m) 2 (9.81 kN)(2 m) 2 (23.5 kN)(6 m) 5 0

 B 5 1107.1 kN B 5 107.1 kN y b

Since the result is positive, the reaction is directed as assumed.

Determination of Ax. Determine the magnitude of Ax by setting the 

sum of the horizontal components of all external forces to zero.

y
1 oFx 5 0:   Ax 1 B 5 0

Ax 1 107.1 kN 5 0

 Ax 5 2107.1 kN Ax 5 107.1 kN z b

Since the result is negative, the sense of Ax is opposite to that assumed 

originally.

Determination of Ay. The sum of the vertical components must also 

equal zero. Therefore, 

1xoFy 5 0:   Ay 2 9.81 kN 2 23.5 kN 5 0

Ay 5 133.3 kN Ay 5 33.3 kNx b

 Adding the components Ax and Ay vectorially, you can find that the 

reaction at A is 112.2 kN b17.3°.

REFLECT and THINK: You can check the values obtained for the 

reactions by recalling that the sum of the moments of all the external 

forces about any point must be zero. For example, considering point B 
(Fig. 2), you can show

1loMB 5 2(9.81 kN)(2 m) 2 (23.5 kN)(6 m) 1 (107.1 kN)(1.5 m) 5 0

2400 kg
A

B

G

4 m2 m

1.5 m

Fig. 1 Free-body diagram of crane.

A

BB

23.5 kN

Ay

Ax

9.81 kN

1.5 m

4 m2 m

Fig. 2 Free-body diagram of crane 
with solved reactions.

33.3 kN

107.1 kN

107.1 kN

A

B

23.5 kN

9.81 kN

4 m2 m

1.5 m
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4.1 Equilibrium in Two Dimensions 179

Sample Problem 4.2

Three loads are applied to a beam as shown. The beam is supported by a 

roller at A and by a pin at B. Neglecting the weight of the beam, determine 

the reactions at A and B when P 5 15 kips.

STRATEGY: Draw a free-body diagram of the beam, then write the 

equilibrium equations, first summing forces in the x direction and then 

summing moments at A and at B.

MODELING: 

Free-Body Diagram. The reaction at A is vertical and is denoted by 

A (Fig. 1). Represent the reaction at B by components Bx and By. Assume 

that each component acts in the direction shown.

ANALYSIS:

Equilibrium Equations. Write the three equilibrium equations and 

solve for the reactions indicated:

y
1 oFx 5 0: Bx 5 0 Bx 5 0 b

1loMA 5 0:

 2(15 kips)(3 ft) 1 By(9 ft) 2 (6 kips)(11 ft) 2 (6 kips)(13 ft) 5 0

    By 5 121.0 kips By 5 21.0 kipsx  b

1loMB 5 0:

 2A(9 ft) 1 (15 kips)(6 ft) 2 (6 kips)(2 ft) 2 (6 kips)(4 ft) 5 0

    A 5 16.00 kips A 5 6.00 kipsx  b

REFLECT and THINK: Check the results by adding the vertical com-

ponents of all of the external forces:

1xoFy 5 16.00 kips 2 15 kips 1 21.0 kips 2 6 kips 2 6 kips 5 0

Remark. In this problem, the reactions at both A and B are vertical; 

however, these reactions are vertical for different reasons. At A, the beam 

is supported by a roller; hence, the reaction cannot have any horizontal 

component. At B, the horizontal component of the reaction is zero because 

it must satisfy the equilibrium equation oFx 5 0 and none of the other 

forces acting on the beam has a horizontal component.

You might have noticed at first glance that the reaction at B was 

vertical and dispensed with the horizontal component Bx. This, however, 

is bad practice. In following it, you run the risk of forgetting the compo-

nent Bx when the loading conditions require such a component (i.e., when 

a horizontal load is included). Also, you found the component Bx to be 

zero by using and solving an equilibrium equation, oFx 5 0. By setting 

Bx equal to zero immediately, you might not realize that you actually made 

use of this equation. Thus, you might lose track of the number of equa-

tions available for solving the problem.

3 ft 2 ft 2 ft

6 kips 6 kipsP

6 ft

A B

Fig.1 Free-body diagram of beam.

3 ft 2 ft 2 ft

6 kips15 kips 6 kips

6 ft

By

BxA
A

B
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180 Equilibrium of Rigid Bodies

Sample Problem 4.3

A loading car is at rest on a track forming an angle of 25° with the verti-

cal. The gross weight of the car and its load is 5500 lb, and it acts at a 

point 30 in. from the track, halfway between the two axles. The car is 

held by a cable attached 24 in. from the track. Determine the tension in 

the cable and the reaction at each pair of wheels.

STRATEGY: Draw a free-body diagram of the car to determine the 

unknown forces, and write equilibrium equations to find their values, sum-

ming moments at A and B and then summing forces.

MODELING: 

Free-Body Diagram. The reaction at each wheel is perpendicular to 

the track, and the tension force T is parallel to the track. Therefore, for 

convenience, choose the x axis parallel to the track and the y axis perpen-

dicular to the track (Fig.  1). Then resolve the 5500-lb weight into x and 

y components.

Wx 5 1(5500 lb) cos 25° 5 14980 lb

Wy 5 2(5500 lb) sin 25° 5 22320 lb

ANALYSIS: 

Equilibrium Equations. Take moments about A to eliminate T and R1 

from the computation.

1loMA 5 0: 2(2320 lb)(25 in.) 2 (4980 lb)(6 in.) 1 R2(50 in.) 5 0

 R2 5 11758 lb R2 5 1758 lb w b

Then take moments about B to eliminate T and R2 from the computation. 

1loMB 5 0: (2320 lb)(25 in.) 2 (4980 lb)(6 in.) 2 R1(50 in.) 5 0

 R1 5 1562 lb R1 5 1562 lb w b

Determine the value of T by summing forces in the x direction.

w1oFx 5 0:   14980 lb 2 T 5 0

 T 5 14980 lb T 5 4980 lb

w

 b

Figure 2 shows the computed values of the reactions.

REFLECT and THINK: You can verify the computations by summing 

forces in the y direction.

w1oFy 5 1562 lb 1 1758 lb 2 2320 lb 5 0

You could also check the solution by computing moments about any point 

other than A or B.

24 in.

25º
G

25 in.

25 in.
30 in.

y

x

R1

R2

2320 lb 6 in.

A

T

B

G

25 in.

25 in.

4980 lb

Fig. 1 Free-body diagram of car.

562 lb

1758 lb

y

x

4980 lb

25 in.

25 in.

2320 lb
6 in.

A

B

G

4980 lb

Fig. 2 Free-body diagram 
of car with solved reactions.
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4.1 Equilibrium in Two Dimensions 181

Sample Problem 4.4

The frame shown supports part of the roof of a small building. Knowing 

that the tension in the cable is 150 kN, determine the reaction at the 

fixed end E.

STRATEGY: Draw a free-body diagram of the frame and of the cable 

BDF. The support at E is fixed, so the reactions here include a moment; 

to determine its value, sum moments about point E.

MODELING: 

Free-Body Diagram. Represent the reaction at the fixed end E by 

the force components Ex and Ey and the couple ME (Fig. 1). The other 

forces acting on the free body are the four 20-kN loads and the 150-kN 

force exerted at end F of the cable.

Fig. 1 Free-body diagram of frame.

6 m

150 kNEy

Ex

ME

20 kN 20 kN 20 kN 20 kN

A B
C

D

E F

4.5 m

1.8 m 1.8 m 1.8 m 1.8 m

ANALYSIS: 

Equilibrium Equations. First note that

DF 5 2(4.5 m)2 1 (6 m)2 5 7.5 m

Then you can write the three equilibrium equations and solve for the 

reactions at E.

y
1 oFx 5 0: Ex 1

4.5

7.5
(150 kN) 5 0

Ex 5 290.0 kN Ex 5 90.0 kN z b

1xoFy 5 0:  Ey 2 4(20 kN) 2
6

7.5
(150 kN) 5 0

Ey 5 1200 kN Ey 5 200 kNx b

1loME 5 0: (20 kN)(7.2 m) 1 (20 kN)(5.4 m) 1 (20 kN)(3.6 m)

 1(20 kN)(1.8 m) 2 
6

7.5
(150 kN)(4.5 m) 1 ME 5 0

 ME 5 1180.0 kN?m ME 5 180.0 kN?m l b

REFLECT and THINK: The cable provides a fourth constraint, making 

this situation statically indeterminate. This problem therefore gave us the 

value of the cable tension, which would have been determined by means 

other than statics. We could then use the three available independent static 

equilibrium equations to solve for the remaining three reactions.

20 kN 20 kN 20 kN 20 kN

A B

C

D

E F1.8 m 1.8 m 1.8 m 1.8 m

2.25 m

3.75 m

4.5 m
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182 Equilibrium of Rigid Bodies

Sample Problem 4.5

A 400-lb weight is attached at A to the lever shown. The constant of the 

spring BC is k 5 250 lb/in., and the spring is unstretched when θ 5 0. 

Determine the position of equilibrium.

A
B C

O

k = 250 lb/in.

r = 3 in.

l = 8 in.

W = 400 lb

q

STRATEGY: Draw a free-body diagram of the lever and cylinder to 

show all forces acting on the body (Fig. 1), then sum moments about O. 

Your final answer should be the angle θ.

MODELING: 

Free-Body Diagram.  Denote by s the deflection of the spring from 

its unstretched position and note that s 5 rθ. Then F 5 ks 5 krθ.

ANALYSIS: 

Equilibrium Equation. Sum the moments of W and F about O to 

eliminate the reactions supporting the cylinder. The result is

1loMO 5 0:   Wl sin θ 2 r(krθ) 5 0   sin θ 5 
kr

 

2

Wl
 θ 

Substituting the given data yields

sin θ 5
(250 lb/in.)(3 in.)2

(400 lb)(8 in.)
 θ  sin θ 5 0.703 θ

Solving by trial and error, the angle is  θ 5 0   θ 5 80.3˚ b

REFLECT and THINK: The weight could represent any vertical force 

acting on the lever. The key to the problem is to express the spring force 

as a function of the angle θ. 

Fig. 1 Free-body diagram of the lever 
and cylinder.

A
s

O
W

F = ks

Ry

R x

Unstretched
position

q

r

l sin q
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183 183

You saw that, for a rigid body in equilibrium, the system of external forces is 

equivalent to zero. To solve an equilibrium problem, your first task is to draw a 

neat, reasonably large free-body diagram on which you show all external forces. You 

should include both known and unknown forces.

For a two-dimensional rigid body, the reactions at the supports can involve one, 

two, or three unknowns, depending on the type of support (Fig. 4.1). A correct free-

body diagram is essential for the successful solution of a problem. Never proceed 

with the solution of a problem until you are sure that your free-body diagram includes 

all loads, all reactions, and the weight of the body (if appropriate).

 1. You can write three equilibrium equations and solve them for three unknowns.
The three equations might be

oFx 5 0   oFy 5 0   oMO 5 0

However, usually several alternative sets of equations are possible, such as

oFx 5 0   oMA 5 0   oMB 5 0

where point B is chosen in such a way that the line AB is not parallel to the y axis, 

or

oMA 5 0   oMB 5 0   oMC 5 0

where the points A, B, and C do not lie along a straight line.

2. To simplify your solution, it may be helpful to use one of the following solution 

techniques.

 a. By summing moments about the point of intersection of the lines of action 

of two unknown forces, you obtain an equation in a single unknown.

 b. By summing components in a direction perpendicular to two unknown 
parallel forces, you also obtain an equation in a single unknown.

3. After drawing your free-body diagram, you may find that one of the following 

special situations arises.

 a. The reactions involve fewer than three unknowns. The body is said to be 

partially constrained and motion of the body is possible.

 b. The reactions involve more than three unknowns. The reactions are said to 

be statically indeterminate. Although you may be able to calculate one or two reac-

tions, you cannot determine all of them.

 c. The reactions pass through a single point or are parallel. The body is

said to be improperly constrained and motion can occur under a general loading 

condition.

SOLVING PROBLEMS 
ON YOUR OWN

bee87302_ch04_169-229.indd   183bee87302_ch04_169-229.indd   183 11/8/14   10:06 AM11/8/14   10:06 AM

UPLOADED BY AHMAD T JUNDI



184

Problems
FREE-BODY PRACTICE PROBLEMS

 4.F1 Two crates, each of mass 350 kg, are placed as shown in the bed of 

a 1400-kg pick-up truck. Draw the free-body diagram needed to 

determine the reactions at each of the two rear wheels A and front 

wheels B.

 4.F2 A lever AB is hinged at C and attached to a control cable at A. If 

the lever is subjected to a 75-lb vertical force at B, draw the free-

body diagram needed to determine the tension in the cable and the 

reaction at C.

A

B

D

12 in.

20°

75 lb

C10 in.

15 in.

Fig. P4.F2

 4.F3 A light rod AD is supported by frictionless pegs at B and C and rests 

against a frictionless wall at A. A vertical 120-lb force is applied 

at D. Draw the free-body diagram needed to determine the reactions 

at A, B, and C.

 4.F4 A tension of 20 N is maintained in a tape as it passes through the 

support system shown. Knowing that the radius of each pulley is 

10 mm, draw the free-body diagram needed to determine the reac-

tion at C.

C

20 N

20 N

75 mm

45 mm

A B

75 mm

Fig. P4.F4

C D

G

1.7 m 2.8 m

A B

1.8 m 1.2 m 0.75 m

Fig. P4.F1

120 lb

30°

A

B
C

D

8 in.

8 in.

8 in.

Fig. P4.F3
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END-OF-SECTION PROBLEMS

 4.1 A gardener uses a 60-N wheelbarrow to transport a 250-N bag of 

fertilizer. What force must she exert on each handle?

 4.2 The gardener of Prob. 4.1 wishes to transport a second 250-N bag 

of fertilizer at the same time as the first one. Determine the maxi-

mum allowable horizontal distance from the axle A of the wheelbar-

row to the center of gravity of the second bag if she can hold only 

75 N with each arm.

 4.3 A 2100-lb tractor is used to lift 900 lb of gravel. Determine the 

reaction at each of the two (a) rear wheels A, (b) front wheels B.

20 in. 40 in. 50 in.

900 lb

A B

G

Fig. P4.3

 4.4 For the beam and loading shown, determine (a) the reaction at A, 

(b) the tension in cable BC.

 4.5 A load of lumber of weight W 5 25 kN is being raised by a mobile 

crane. The weight of boom ABC and the combined weight of 

the truck and driver are as shown. Determine the reaction at each of 

the two (a) front wheels H, (b) rear wheels K.

 4.6 A load of lumber of weight W 5 25 kN is being raised by a mobile 

crane. Knowing that the tension is 25 kN in all portions of cable 

AEF and that the weight of boom ABC is 3 kN, determine (a) the 

tension in rod CD, (b) the reaction at pin B.

 4.7 A T-shaped bracket supports the four loads shown. Determine the 

reactions at A and B (a) if a 5 10 in., (b) if a 5 7 in.

6 in. 6 in. 8 in.

10 lb30 lb50 lb40 lb

A

B

a

Fig. P4.7

 4.8 For the bracket and loading of Prob. 4.7, determine the smallest 

distance a if the bracket is not to move.

0.15 m 0.15 m

60 N

250 N

A

0.7 m

Fig. P4.1

A

C

B

15 lb 20 lb 35 lb 15 lb20 lb

6 in. 8 in. 8 in. 6 in.

Fig. P4.4

2.0 m

2.0 m

2.0 m 0.5 m

0.3 m

0.4 m0.6 m

0.9 m

A B

C

D
E

F

50 kN

3 kN

W

KH

Fig. P4.5 and P4.6
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 4.9 Three loads are applied as shown to a light beam supported by cables 

attached at B and D. Neglecting the weight of the beam, determine 

the range of values of Q for which neither cable becomes slack when 

P 5 0.

 4.10 Three loads are applied as shown to a light beam supported by cables 

attached at B and D. Knowing that the maximum allowable tension in 

each cable is 12 kN and neglecting the weight of the beam, determine 

the range of values of Q for which the loading is safe when P 5 0.

 4.11 For the beam of Prob. 4.10, determine the range of values of Q for 

which the loading is safe when P 5 5 kN.

 4.12 For the beam of Sample Prob. 4.2, determine the range of values of 

P for which the beam will be safe, knowing that the maximum allow-

able value of each of the reactions is 25 kips and that the reaction 

at A must be directed upward.

 4.13 The maximum allowable value of each of the reactions is 180 N. 

Neglecting the weight of the beam, determine the range of the dis-

tance d for which the beam is safe.

 4.14 For the beam and loading shown, determine the range of the distance a 

for which the reaction at B does not exceed 100 lb downward or 

200 lb upward.

a

A
D C

B

6 in.
300 lb 300 lb

50 lb

8 in. 4 in. 12 in.

Fig. P4.14

 4.15 Two links AB and DE are connected by a bell crank as shown. 

Knowing that the tension in link AB is 720 N, determine (a) the 

tension in link DE, (b) the reaction at C.

A

B

E

D

C

90°60 mm
90 mm

80 mm 120 mm

Fig. P4.15 and P4.16

 4.16 Two links AB and DE are connected by a bell crank as shown. 

Determine the maximum force that can be safely exerted by link AB 

on the bell crank if the maximum allowable value for the reaction 

at C is 1600 N.

0.5 m 0.75 m 0.75 m
1.5 m

7.5 kN
P Q

A

B D

C
E

Fig. P4.9 and P4.10

50 N 100 N 150 N

450 mm

d

A

B

450 mm

Fig. P4.13
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 4.17 The required tension in cable AB is 200 lb. Determine (a) the vertical 

force P that must be applied to the pedal, (b) the corresponding 

reaction at C.

 4.18 Determine the maximum tension that can be developed in cable AB 

if the maximum allowable value of the reaction at C is 250 lb.

 4.19 The bracket BCD is hinged at C and attached to a control cable at 

B. For the loading shown, determine (a) the tension in the cable, 

(b) the reaction at C.

240 N 240 N

0.24 m
0.4 m 0.4 m

A

B

C
D

a = 0.18 m

Fig. P4.19

 4.20 Solve Prob. 4.19, assuming that a 5 0.32 m.

 4.21 The 40-ft boom AB weighs 2 kips; the distance from the axle A to 

the center of gravity G of the boom is 20 ft. For the position shown, 

determine (a) the tension T in the cable, (b) the reaction at A.

C 5 kips

2 kips30°

10°

T
B

A

G

Fig. P4.21

 4.22 A lever AB is hinged at C and attached to a control cable at A. If 

the lever is subjected to a 500-N horizontal force at B, determine 

(a) the tension in the cable, (b) the reaction at C.

B

D

30°

500 N

C

200 mm

250 mm

250 mm

A

Fig. P4.22

P

D

A B

C

15 in.

7 in.

60°

Fig. P4.17 and P4.18
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 4.23 and 4.24  For each of the plates and loadings shown, determine the 

reactions at A and B.

40 lb 40 lb

50 lb 50 lb

A
B

(a)

30°

10 in.

A
B

(b)

20 in.

10 in.

4 in. 4 in.

20 in.

Fig. P4.23

40 lb 40 lb

50 lb 50 lb

A
B

(a)

30º

20 in.

10 in.

A
B

(b)

20 in.

10 in.

4 in. 4 in.

Fig. P4.24

 4.25 A rod AB, hinged at A and attached at B to cable BD, supports the 

loads shown. Knowing that d 5 200 mm, determine (a) the tension 

in cable BD, (b) the reaction at A.

 4.26 A rod AB, hinged at A and attached at B to cable BD, supports the 

loads shown. Knowing that d 5 150 mm, determine (a) the tension 

in cable BD, (b) the reaction at A.

 4.27 Determine the reactions at A and B when (a) α 5 0, (b) α 5 90°, 

(c) α 5 30°.

10 in. 10 in.

12 in.

a

A

B

75 lb 

Fig. P4.27

90 N

100 mm

100 mm100 mm100 mm

A

B

d

D

90 N

Fig. P4.25 and P4.26
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 4.28 Determine the reactions at A and C when (a) α 5 0, (b) α 5 30°.

 4.29 Rod ABC is bent in the shape of an arc of circle of radius R. Know-

ing that θ 5 30°, determine the reaction (a) at B, (b) at C.

A

BC

R

P

q

Fig. P4.29 and P4.30

 4.30 Rod ABC is bent in the shape of an arc of circle of radius R. Know-

ing that θ 5 60°, determine the reaction (a) at B, (b) at C.

 4.31 Neglecting friction, determine the tension in cable ABD and the reac-

tion at C when θ 5 60°.

A

B

D

C

90°

P

q

a a

2a

Fig. P4.31 and P4.32

 4.32 Neglecting friction, determine the tension in cable ABD and the reac-

tion at C when θ 5 45°.

 4.33 A force P of magnitude 90 lb is applied to member ACDE that is 

supported by a frictionless pin at D and by the cable ABE. Since the 

cable passes over a small pulley at B, the tension may be assumed 

to be the same in portions AB and BE of the cable. For the case 

when a 5 3 in., determine (a) the tension in the cable, (b) the reac-

tion at D.

 4.34 Solve Prob. 4.33 for a 5 6 in.

800 mm

200 mm300 N

200 mm300 N

a

A
B

C

Fig. P4.28

C

E

A

D

P

a

7 in.5 in.

12 in.

B

Fig. P4.33
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 4.35 Bar AC supports two 400-N loads as shown. Rollers at A and C rest 

against frictionless surfaces and a cable BD is attached at B. Deter-

mine (a) the tension in cable BD, (b) the reaction at A, (c) the reac-

tion at C.

400 N

400 N

100 mm

150 mm

100 mm
300 mm

500 mm

A

B

C

D

250 mm

Fig. P4.35

 4.36 A light bar AD is suspended from a cable BE and supports a 20-kg 

block at C. The ends A and D of the bar are in contact with friction-

less vertical walls. Determine the tension in cable BE and the reac-

tions at A and D.

A
20 kg

B

C

D

E

125 mm

200 mm

175 mm75 mm

Fig. P4.36

4.37 The T-shaped bracket shown is supported by a small wheel at E and 

pegs at C and D. Neglecting the effect of friction, determine the 

reactions at C, D, and E when θ 5 30°.

 4.38 The T-shaped bracket shown is supported by a small wheel at E and 

pegs at C and D. Neglecting the effect of friction, determine (a) the 

smallest value of θ for which the equilibrium of the bracket is main-

tained, (b) the corresponding reactions at C, D, and E.

 4.39 A movable bracket is held at rest by a cable attached at C and by 

frictionless rollers at A and B. For the loading shown, determine 

(a) the tension in the cable, (b) the reactions at A and B.

A

B

C

600 N
475 mm

75 mm
50 mm

90 mm

Fig. P4.39

A B

C

D

E
3 in.

3 in.

2 in.

20 lb 40 lb

q

4 in. 4 in.

Fig. P4.37 and P4.38
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 4.40 A light bar AB supports a 15-kg block at its midpoint C. Rollers at 

A and B rest against frictionless surfaces, and a horizontal cable AD 

is attached at A. Determine (a) the tension in cable AD, (b) the reac-

tions at A and B.

250 mm 250 mm
B

C

D
A

350 mm

15 kg

Fig. P4.40

 4.41 Two slots have been cut in plate DEF, and the plate has been placed 

so that the slots fit two fixed, frictionless pins A and B. Knowing 

that P 5 15 lb, determine (a) the force each pin exerts on the plate, 

(b) the reaction at F.

P A

B

D E

F

4 in. 4 in. 7 in. 2 in.

30º

30 lb

3 in.

Fig. P4.41

 4.42 For the plate of Prob. 4.41, the reaction at F must be directed down-

ward, and its maximum value is 20 lb. Neglecting friction at the pins, 

determine the required range of values of P.

 4.43 The rig shown consists of a 1200-lb horizontal member ABC and a 

vertical member DBE welded together at B. The rig is being used to 

raise a 3600-lb crate at a distance x 5 12 ft from the vertical member 

DBE. If the tension in the cable is 4 kips, determine the reaction at E, 

assuming that the cable is (a) anchored at F as shown in the figure, 

(b) attached to the vertical member at a point located 1 ft above E.

 4.44 For the rig and crate of Prob. 4.43 and assuming that cable is 

anchored at F as shown, determine (a) the required tension in cable 

ADCF if the maximum value of the couple at E as x varies from 1.5 

to 17.5 ft is to be as small as possible, (b) the corresponding maxi-

mum value of the couple.

 4.45 A 175-kg utility pole is used to support at C the end of an electric 

wire. The tension in the wire is 600 N, and the wire forms an angle 

of 15° with the horizontal at C. Determine the largest and smallest 

allowable tensions in the guy cable BD if the magnitude of the cou-

ple at A may not exceed 500 N?m.

A

CB

FE

x

D

5 ft

10 ft

17.5 ft

6.5 ft

3.75 ft

W = 1200 lb

3600 lb

Fig. P4.43

AD

C

B

3.6 m

1.5 m

4.5 m

15°

Fig. P4.45
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 4.46 Knowing that the tension in wire BD is 1300 N, determine the reac-

tion at the fixed support C of the frame shown. 

 4.47 Determine the range of allowable values of the tension in wire BD
if the magnitude of the couple at the fixed support C is not to exceed 

100 N?m.

 4.48 Beam AD carries the two 40-lb loads shown. The beam is held by 

a fixed support at D and by the cable BE that is attached to the 

counterweight W. Determine the reaction at D when (a) W 5 100 lb, 

(b) W 5 90 lb.

A B C D

40 lb 40 lb

E5 ft

4 ft4 ft

W

Fig. P4.48 and P4.49

 4.49 For the beam and loading shown, determine the range of values of 

W for which the magnitude of the couple at D does not exceed 

40 lb?ft.

 4.50 An 8-kg mass can be supported in the three different ways shown. 

Knowing that the pulleys have a 100-mm radius, determine the reac-

tion at A in each case.

B

A A A

B B

8 kg 8 kg 8 kg

(a) (b) (c)

1.6 m 1.6 m 1.6 m

Fig. P4.50

 4.51 A uniform rod AB with a length of l and weight of W is suspended 

from two cords AC and BC of equal length. Determine the angle θ

corresponding to the equilibrium position when a couple M is 

applied to the rod.

A

B

C

a

a

q

W

M

Fig. P4.51

750 N

500 mm

150 mm
250 mm

600 mm

450 N
A

B

C D

400 mm

Fig. P4.46 and P4.47
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 4.52 Rod AD is acted upon by a vertical force P at end A and by two 

equal and opposite horizontal forces of magnitude Q at points B
and C. Neglecting the weight of the rod, express the angle θ cor-

responding to the equilibrium position in terms of P and Q.

B

C

A

D

q

P

−Q

Q

a

a

a

Fig. P4.52

 4.53 A slender rod AB with a weight of W is attached to blocks A and B 
that move freely in the guides shown. The blocks are connected by 

an elastic cord that passes over a pulley at C. (a) Express the tension 

in the cord in terms of W and θ. (b) Determine the value of θ for 

which the tension in the cord is equal to 3W.

A

B

C

W

q

l

Fig. P4.53

 4.54 and 4.55  A vertical load P is applied at end B of rod BC. 

(a) Neglecting the weight of the rod, express the angle θ corresponding 

to the equilibrium position in terms of P, l, and the counterweight W. 

(b) Determine the value of θ corresponding to equilibrium if P 5 2W.

B

A C
q

W

P

l

l

Fig. P4.54

P

B

C

l

l

q

W

A

Fig. P4.55
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4.56 A collar B with a weight of W can move freely along the vertical 

rod shown. The constant of the spring is k, and the spring is 

unstretched when θ 5 0. (a) Derive an equation in θ, W, k, and l
that must be satisfied when the collar is in equilibrium. (b) Knowing 

that W 5 300 N, l 5 500 mm, and k 5 800 N/m, determine the 

value of θ corresponding to equilibrium.

 4.57 Solve Sample Prob. 4.5, assuming that the spring is unstretched 

when θ 5 90°.

 4.58 A vertical load P is applied at end B of rod BC. The constant of the 

spring is k, and the spring is unstretched when θ 5 60°. (a) Neglect-

ing the weight of the rod, express the angle θ corresponding to the 

equilibrium position in terms of P, k, and l. (b) Determine the value 

of θ corresponding to equilibrium if P 5 
1
4 kl.

 4.59 Eight identical 500 3 750-mm rectangular plates, each of mass 

m 5 40 kg, are held in a vertical plane as shown. All connections 

consist of frictionless pins, rollers, or short links. In each case, deter-

mine whether (a) the plate is completely, partially, or improperly 

constrained, (b) the reactions are statically determinate or indetermi-

nate, (c) the equilibrium of the plate is maintained in the position 

shown. Also, wherever possible, compute the reactions.

A B

CD

1 2 3 4

5 6 7 8

Fig. P4.59

4.60 The bracket ABC can be supported in the eight different ways shown. 

All connections consist of smooth pins, rollers, or short links. For 

each case, answer the questions listed in Prob. 4.59, and, wherever 

possible, compute the reactions, assuming that the magnitude of the 

force P is 100 lb. 

B

A
C

13 ft

2 ft 2 ft

2 3
4

5 6 7 8

PPP

P P P P

P

Fig. P4.60

A

B

q

l

Fig. P4.56

B

C

l

A

q

l

P

Fig. P4.58
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4.2 Two Special Cases 195

4.2 TWO SPECIAL CASES
In practice, some simple cases of equilibrium occur quite often, either as 

part of a more complicated analysis or as the complete models of a situ-

ation. By understanding the characteristics of these cases, you can often 

simplify the overall analysis.

4.2A Equilibrium of a Two-Force Body
A particular case of equilibrium of considerable interest in practical appli-

cations is that of a rigid body subjected to two forces. Such a body is 

commonly called a two-force body. We show here that, if a two-force 
body is in equilibrium, the two forces must have the same magnitude, 
the same line of action, and opposite sense.

Consider a corner plate subjected to two forces F1 and F2 acting at 

A and B, respectively (Fig.  4.8a). If the plate is in equilibrium, the sum 

of the moments of F1 and F2 about any axis must be zero. First, we sum 

moments about A. Since the moment of F1 is obviously zero, the moment 

of F2 also must be zero and the line of action of F2 must pass through A
(Fig. 4.8b). Similarly, summing moments about B, we can show that the 

line of action of F1 must pass through B (Fig. 4.8c). Therefore, both forces 

have the same line of action (line AB). You can see from either of the 

equations oFx 5 0 and oFy 5 0 that they must also have the same mag-

nitude but opposite sense.

(c)

A

B

F1

F2

(b)

A

B

F2

(a)

A

B

F1

F2

F1

Fig. 4.8 A two-force body in equilibrium. (a) Forces act at two points of 
the body; (b) summing moments about point A shows that the line of action 
of F2 must pass through A; (c) summing moments about point B shows that 
the line of action of F1 must pass through B.

If several forces act at two points A and B, the forces acting at A
can be replaced by their resultant F1, and those acting at B can be replaced 

by their resultant F2. Thus, a two-force body can be more generally 

defined as a rigid body subjected to forces acting at only two points.
The resultants F1 and F2 then must have the same line of action, the same 

magnitude, and opposite sense (Fig. 4.8).

Later, in the study of structures, frames, and machines, you will see 

how the recognition of two-force bodies simplifies the solution of certain 

problems.
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196 Equilibrium of Rigid Bodies

4.2B  Equilibrium of a Three-Force Body
Another case of equilibrium that is of great practical interest is that of a 

three-force body, i.e., a rigid body subjected to three forces or, more 

generally, a rigid body subjected to forces acting at only three points. 
Consider a rigid body subjected to a system of forces that can be reduced 

to three forces F1, F2, and F3 acting at A, B, and C, respectively (Fig. 4.9a). 

We show that if the body is in equilibrium, the lines of action of the 
three forces must be either concurrent or parallel.

F2

F3

F1

B C

D
A

(a) (b) (c)

F2

F3

F1

B C

D
A

F2

F3

F1

B C

A

Fig. 4.9 A three-force body in equilibrium. (a–c) Demonstration that the lines of 
action of the three forces must be either concurrent or parallel.

Since the rigid body is in equilibrium, the sum of the moments of 

F1, F2, and F3 about any axis must be zero. Assuming that the lines of 

action of F1 and F2 intersect and denoting their point of intersection by 

D, we sum moments about D (Fig. 4.9b). Because the moments of F1 and 

F2 about D are zero, the moment of F3 about D also must be zero, and 

the line of action of F3 must pass through D (Fig.  4.9c). Therefore, the 

three lines of action are concurrent. The only exception occurs when none 

of the lines intersect; in this case, the lines of action are parallel.

Although problems concerning three-force bodies can be solved by 

the general methods of Sec. 4.1, we can use the property just established 

to solve these problems either graphically or mathematically using simple 

trigonometric or geometric relations (see Sample Problem 4.6).
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4.2 Two Special Cases 197

Sample Problem 4.6

A man raises a 10-kg joist with a length of 4 m by pulling on a rope. 

Find the tension T in the rope and the reaction at A.

STRATEGY: The joist is acted upon by three forces: its weight W, the 

force T exerted by the rope, and the reaction R of the ground at A. 

Therefore, it is a three-force body, and you can compute the forces by 

using a force triangle.

MODELING: First note that

W 5 mg 5 (10 kg)(9.81 m/s2) 5 98.1 N

Since the joist is a three-force body, the forces acting on it must be con-

current. The reaction R therefore must pass through the point of intersec-

tion C of the lines of action of the weight W and the tension force T, as 

shown in the free-body diagram (Fig. 1). You can use this fact to determine 

the angle α that R forms with the horizontal.

ANALYSIS: Draw the vertical line BF through B and the horizontal line 

CD through C (Fig. 2). Then

AF 5 BF 5 (AB) cos 458 5 (4 m) cos 458 5 2.828 m

CD 5 EF 5 AE 5 1
2(AF) 5 1.414 m

BD 5 (CD) cot (458 1 258) 5 (1.414 m) tan 208 5 0.515 m

CE 5 DF 5 BF 2 BD 5 2.828 m 2 0.515 m 5 2.313 m

Fig. 2 Geometry analysis of the lines of action for 
the three forces acting on joist, concurrent at point C.

45°

45°
4 m

A

B
C

G

D

E F

25°

a

From these calculations, you can determine the angle α as

tan α 5
CE

AE
5

2.313 m

1.414 m
5 1.636

 α 5 58.68 b

You now know the directions of all the forces acting on the joist.

Force Triangle. Draw a force triangle as shown (Fig. 3) with its inte-

rior angles computed from the known directions of the forces. You can 

then use the law of sines to find the unknown forces.

T

sin 31.48
5

R

sin 1108
5

98.1 N

sin 38.68

T 5 81.9 N b

R 5 147.8 N a58.68 b

REFLECT and THINK: In practice, three-force members occur often, 

so learning this method of analysis is useful in many situations.

Fig. 1 Free-body diagram of joist.

45°

25°
4 m

B

A

A

B

C

G

T

R

W = 98.1 Na

Fig. 3 Force triangle.

T

R98.1 N

110°

38.6°
20°

31.4°

a = 58.6°
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198198

SOLVING PROBLEMS 
ON YOUR OWN

This section covered two particular cases of equilibrium of a rigid

body.

1. A two-force body is subjected to forces at only two points. The resultants of the 

forces acting at each of these points must have the same magnitude, the same line of 
action, and opposite sense. This property allows you to simplify the solutions of some 

problems by replacing the two unknown components of a reaction by a single force 

of unknown magnitude but of known direction.

2. A three-force body is subjected to forces at only three points. The resultants of 

the forces acting at each of these points must be concurrent or parallel. To solve a 

problem involving a three-force body with concurrent forces, draw the free-body dia-

gram showing that these three forces pass through the same point. You may be able 

to complete the solution by using simple geometry, such as a force triangle and the 

law of sines [see Sample Prob. 4.6].

This method for solving problems involving three-force bodies is not difficult to 

understand, but in practice, it can be difficult to sketch the necessary geometric con-

structions. If you encounter difficulty, first draw a reasonably large free-body diagram 

and then seek a relation between known or easily calculated lengths and a dimension 

that involves an unknown. Sample Prob. 4.6 illustrates this technique, where we used 

the easily calculated dimensions AE and CE to determine the angle α.
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Problems
 4.61 A 500-lb cylindrical tank, 8 ft in diameter, is to be raised over a 2-ft 

obstruction. A cable is wrapped around the tank and pulled horizon-

tally as shown. Knowing that the corner of the obstruction at A is 

rough, find the required tension in the cable and the reaction at A.

A

B

G

2 ft

8 ft

T

Fig. P4.61

 4.62 Determine the reactions at A and B when a 5 180 mm.

 4.63 For the bracket and loading shown, determine the range of values of 

the distance a for which the magnitude of the reaction at B does not 

exceed 600 N.

4.64 The spanner shown is used to rotate a shaft. A pin fits in a hole at 

A, while a flat, frictionless surface rests against the shaft at B. If a 

60-lb force P is exerted on the spanner at D, find the reactions at A 

and B.

15 in.
3 in.

PA

B

C D
50º

Fig. P4.64

 4.65 Determine the reactions at B and C when a 5 30 mm.

100 mm40 mm60 mm

60 mm

250 N

A

C

B

D

a

Fig. P4.65

A
B

C

240 mm

300 N

a

Fig. P4.62 and P4.63
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 4.66 A 12-ft wooden beam weighing 80 lb is supported by a pin and 

bracket at A and by cable BC. Find the reaction at A and the tension 

in the cable.

 4.67 Determine the reactions at B and D when b 5 60 mm.

A B

C

D

75 mm80 N

90 mm

b

250 mm

Fig. P4.67

 4.68 For the frame and loading shown, determine the reactions at C and D.

 4.69 A 50-kg crate is attached to the trolley-beam system shown. Know-

ing that a 5 1.5 m, determine (a) the tension in cable CD, (b) the 

reaction at B.

A

B

C

D

55° 1.4 m

0.4 m

a

W

Fig. P4.69

 4.70 One end of rod AB rests in the corner A and the other end is attached 

to cord BD. If the rod supports a 150-N load at its midpoint C, find 

the reaction at A and the tension in the cord.

 4.71 For the boom and loading shown, determine (a) the tension in cord 

BD, (b) the reaction at C.

D

C

B
A

3 kips

32 in.16 in.

12 in.

32 in.

Fig. P4.71

C

A B

80 lb

8 ft

6 ft 6 ft

6 ft

Fig. P4.66

150 lb

3 ft 3 ft

1.5 ft

1.5 ft
D

BA

C

Fig. P4.68

150 NA

B

C

D

240 mm 240 mm

360 mm

200 mm

Fig. P4.70
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 4.72 A 40-lb roller of 8-in. diameter, which is to be used on a tile floor, 

is resting directly on the subflooring as shown. Knowing that the 

thickness of each tile is 0.3 in., determine the force P required to 

move the roller onto the tiles if the roller is (a) pushed to the left, 

(b) pulled to the right.

 4.73 A T-shaped bracket supports a 300-N load as shown. Determine the 

reactions at A and C when α 5 45°.

A

C

300 N

B

300 mm

250 mm
150 mm

α

Fig. P4.73 and P4.74

4.74 A T-shaped bracket supports a 300-N load as shown. Determine the 

reactions at A and C when α 5 60°.

 4.75 Rod AB is supported by a pin and bracket at A and rests against a 

frictionless peg at C. Determine the reactions at A and C when a 

170-N vertical force is applied at B.

4.76 Solve Prob. 4.75, assuming that the 170-N force applied at B is 

horizontal and directed to the left.

 4.77 Member ABC is supported by a pin and bracket at B and by an 

inextensible cord attached at A and C and passing over a frictionless 

pulley at D. The tension may be assumed to be the same in portions 

AD and CD of the cord. For the loading shown and neglecting the 

size of the pulley, determine the tension in the cord and the reaction 

at B.

A B

D

C

72 lb a = 12 in.

7 in.

24 in.

Fig. P4.77

 4.78 Using the method of Sec. 4.2B, solve Prob. 4.22.

 4.79 Knowing that θ 5 30°, determine the reaction (a) at B, (b) at C.

 4.80 Knowing that θ 5 60°, determine the reaction (a) at B, (b) at C.

Fig. P4.72

30°

P

A

B

C

170 N

150 mm

150 mm

160 mm

Fig. P4.75

A

BC

R

P

q

Fig. P4.79 and P4.80
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 4.81 Determine the reactions at A and B when β 5 50°.

A

B

C

100 N

250 mm

150 mm

25°

b

Fig. P4.81 and P4.82

 4.82 Determine the reactions at A and B when β 5 80°.

 4.83 Rod AB is bent into the shape of an arc of circle and is lodged 

between two pegs D and E. It supports a load P at end B. Neglecting 

friction and the weight of the rod, determine the distance c corre-

sponding to equilibrium when a 5 20 mm and R 5 100 mm.

P

A
R

C

D

E

a

a

c

B

Fig. P4.83

 4.84 A slender rod of length L is attached to collars that can slide freely 

along the guides shown. Knowing that the rod is in equilibrium, 

derive an expression for angle θ in terms of angle β.

A

B

q

b

L

Fig. P4.84 and P4.85

 4.85 An 8-kg slender rod of length L is attached to collars that can slide 

freely along the guides shown. Knowing that the rod is in equilibrium 

and that β 5 30°, determine (a) the angle θ that the rod forms with 

the vertical, (b) the reactions at A and B.
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 4.86 A uniform rod AB of length 2R rests inside a hemispherical bowl of 

radius R as shown. Neglecting friction, determine the angle θ cor-

responding to equilibrium.

4.87 A slender rod BC with a length of L and weight W is held by two 

cables as shown. Knowing that cable AB is horizontal and that the 

rod forms an angle of 40° with the horizontal, determine (a) the 

angle θ that cable CD forms with the horizontal, (b) the tension in 

each cable.

40°

C

B

D

L

q

A

Fig. P4.87

 4.88 A thin ring with a mass of 2 kg and radius r 5 140 mm is held 

against a frictionless wall by a 125-mm string AB. Determine (a) the 

distance d, (b) the tension in the string, (c) the reaction at C.

4.89 A slender rod with a length of L and weight W is attached to a collar 

at A and is fitted with a small wheel at B. Knowing that the wheel 

rolls freely along a cylindrical surface of radius R, and neglecting 

friction, derive an equation in θ, L, and R that must be satisfied when 

the rod is in equilibrium.

R

L
A

B

C

q

Fig. P4.89

 4.90 Knowing that for the rod of Prob. 4.89, L 5 15 in., R 5 20 in., and 

W 5 10 lb, determine (a) the angle θ corresponding to equilibrium, 

(b) the reactions at A and B.

A

B

q

2R

Fig. P4.86

140 mm

125 mm

d

A

B

C

Fig. P4.88
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204 Equilibrium of Rigid Bodies

4.3  EQUILIBRIUM IN THREE 
DIMENSIONS

The most general situation of rigid-body equilibrium occurs in three 

dimensions. The approach to modeling and analyzing these situations is 

the same as in two dimensions: Draw a free-body diagram and then write 

and solve the equilibrium equations. However, you now have more equa-

tions and more variables to deal with. In addition, reactions at supports 

and connections can be more varied, having as many as three force com-

ponents and three couples acting at one support. As you will see in the 

Sample Problems, you need to visualize clearly in three dimensions and 

recall the vector analysis from Chapters 2 and 3.

4.3A  Rigid-Body Equilibrium in Three 
Dimensions

We saw in Sec. 4.1 that six scalar equations are required to express the condi-

tions for the equilibrium of a rigid body in the general three-dimensional case:

oFx 5 0 oFy 5 0 oFz 5 0 (4.2)
oMx 5 0 oMy 5 0 oMz 5 0 (4.3)

We can solve these equations for no more than six unknowns, which gen-

erally represent reactions at supports or connections.

In most problems, we can obtain the scalar equations (4.2) and (4.3) 

more conveniently if we first write the conditions for the equilibrium of 

the rigid body considered in vector form: 

 oF 5 0   oMO 5 o(r 3 F) 5 0 (4.1)

Then we can express the forces F and position vectors r in terms of scalar 

components and unit vectors. This enables us to compute all vector prod-

ucts either by direct calculation or by means of determinants (see Sec. 3.1F). 

Note that we can eliminate as many as three unknown reaction components 

from these computations through a judicious choice of the point O. By 

equating to zero the coefficients of the unit vectors in each of the two 

relations in Eq. (4.1), we obtain the desired scalar equations.†

Some equilibrium problems and their associated free-body diagrams 

might involve individual couples Mi either as applied loads or as support 

reactions. In such situations, you can accommodate these couples by 

expressing the second part of Eq. (4.1) as

 oMO 5 o(r 3 F) 1 oMi 5 0 (4.19)

4.3B  Reactions for a Three-
Dimensional Structure

The reactions on a three-dimensional structure range from a single force of 

known direction exerted by a frictionless surface to a force-couple system 

oFxF 5 0 oFyFF 5 0 oFzF 5 0 

oMxM 5 0 oMyMM 5 0 oMzM 5 0

oF 5 0   oMO 5 o(r 3 F) 5 0

oMO 5 o(r 3 F) 1 oMi 5 0

†In some problems, it may be convenient to eliminate from the solution the reactions at two 

points A and B by writing the equilibrium equation oMAB 5 0. This involves determining 

the moments of the forces about the axis AB joining points A and B (see Sample Prob. 4.10). 
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4.3 Equilibrium in Three Dimensions 205

exerted by a fixed support. Consequently, in problems involving the equi-

librium of a three-dimensional structure, between one and six unknowns 

may be associated with the reaction at each support or connection. 

Figure 4.10 shows various types of supports and connections with 

their corresponding reactions. A simple way of determining the type of 

reaction corresponding to a given support or connection and the number 

of unknowns involved is to find which of the six fundamental motions 

(translation in the x, y, and z directions and rotation about the x, y, and 

z axes) are allowed and which motions are prevented. The number of 

motions prevented equals the number of reactions.

Ball supports, frictionless surfaces, and cables, for example, prevent 

translation in one direction only and thus exert a single force whose line of 

action is known. Therefore, each of these supports involves one unknown––

namely, the magnitude of the reaction. Rollers on rough surfaces and wheels 

on rails prevent translation in two directions; the corresponding reactions 

consist of two unknown force components. Rough surfaces in direct contact 

and ball-and-socket supports prevent translation in three directions while still 

allowing rotation; these supports involve three unknown force components.

Some supports and connections can prevent rotation as well as trans-

lation; the corresponding reactions include couples as well as forces. For 

example, the reaction at a fixed support, which prevents any motion (rota-

tion as well as translation) consists of three unknown forces and three 

unknown couples. A universal joint, which is designed to allow rotation 

about two axes, exerts a reaction consisting of three unknown force com-

ponents and one unknown couple.

Other supports and connections are primarily intended to prevent trans-

lation; their design, however, is such that they also prevent some rotations. 

The corresponding reactions consist essentially of force components but may 

also include couples. One group of supports of this type includes hinges and 

bearings designed to support radial loads only (for example, journal bearings 

or roller bearings). The corresponding reactions consist of two force com-

ponents but may also include two couples. Another group includes pin-and-

bracket supports, hinges, and bearings designed to support an axial thrust 

as well as a radial load (for example, ball bearings). The corresponding 

reactions consist of three force components but may include two couples. 

However, these supports do not exert any appreciable couples under normal 

conditions of use. Therefore, only force components should be included in 

their analysis unless it is clear that couples are necessary to maintain the 

equilibrium of the rigid body or unless the support is known to have been 

specifically designed to exert a couple (see Probs. 4.119 through 4.122).

If the reactions involve more than six unknowns, you have more 

unknowns than equations, and some of the reactions are statically 
indeterminate. If the reactions involve fewer than six unknowns, you have 

more equations than unknowns, and some of the equations of equilibrium 

cannot be satisfied under general loading conditions. In this case, the rigid 

body is only partially constrained. Under the particular loading conditions 

corresponding to a given problem, however, the extra equations often 

reduce to trivial identities, such as 0 5 0, and can be disregarded; although 

only partially constrained, the rigid body remains in equilibrium (see 

Sample Probs. 4.7 and 4.8). Even with six or more unknowns, it is possible 

that some equations of equilibrium are not satisfied. This can occur when 

the reactions associated with the given supports either are parallel or inter-

sect the same line; the rigid body is then improperly constrained.

Photo 4.3 Universal joints, seen on the 
drive shafts of rear-wheel-drive cars and 
trucks, allow rotational motion to be 
transferred between two noncollinear shafts.

Photo 4.4 This pillow block bearing 
supports the shaft of a fan used in an 
industrial facility.
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206 Equilibrium of Rigid Bodies

Ball Frictionless surface

Force with known
line of action,

perpendicular to
surface

(one unknown)

Force with known
line of action,
along cable

(one unknown)
Cable

F

F

Roller on
rough surface

Rough surface

Universal
joint

Hinge and bearing supporting radial load only

Wheel on rail

Two force components,
one perpendicular to

surface and one parallel
to axis of wheel

Three force components,
mutually perpendicular

at point of contact

Three force components,
one couple

Three force components,
three couples (no translation,

no rotation)

Three force components
and up to two couples

Two force components
and up to two couples

Fx

Fx

Mx

Fy

Fz
Fx

Fy

Fz

Fy

Fz

Fy

Fz

My

(Mz)

(My)

(Mz)

(My)

Mz

Ball and socket

Fixed support

Hinge and bearing supporting
axial thrust and radial loadPin and bracket

Fy

Fz

Fx

Mx

Fy

Fz

Fig. 4.10 Reactions at supports and connections in three dimensions.
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4.3 Equilibrium in Three Dimensions 207

Sample Problem 4.7

A 20-kg ladder used to reach high shelves in a storeroom is supported by 

two flanged wheels A and B mounted on a rail and by a flangeless wheel C
resting against a rail fixed to the wall. An 80-kg man stands on the ladder 

and leans to the right. The line of action of the combined weight W of 

the man and ladder intersects the floor at point D. Determine the reactions 

at A, B, and C.

STRATEGY: Draw a free-body diagram of the ladder, then write and 

solve the equilibrium equations in three dimensions.

MODELING:

Free-Body Diagram. The combined weight of the man and ladder is

W 5 2mgj 5 2(80 kg 1 20 kg)(9.81 m/s2)j 5 2(981 N)j

You have five unknown reaction components: two at each flanged wheel 

and one at the flangeless wheel (Fig. 1). The ladder is thus only partially 

constrained; it is free to roll along the rails. It is, however, in equilibrium 

under the given load because the equation oFx 5 0 is satisfied.

ANALYSIS:

Equilibrium Equations. The forces acting on the ladder form a sys-

tem equivalent to zero:

 oF 5 0:  Ayj 1 Azk 1 Byj 1 Bzk 2 (981 N)j 1 Ck 5 0

 (Ay 1 By 2 981 N)j 1 (Az 1 Bz 1 C)k 5 0 (1)

oMA 5 o(r 3 F) 5 0:   1.2i 3 (Byj 1 Bzk) 1 (0.9i 2 0.6k) 3 (2981j)
1 (0.6i 1 3j 2 1.2k) 3 Ck 5 0

Computing the vector products gives you†

 1.2Byk 2 1.2Bz j 2 882.9k 2 588.6i 2 0.6Cj 1 3Ci 5 0

 (3C 2 588.6)i 2 (1.2Bz 1 0.6C)j 1 (1.2By 2 882.9)k 5 0 (2)

Setting the coefficients of i, j, and k equal to zero in Eq. (2) produces 

the following three scalar equations, which state that the sum of the 

moments about each coordinate axis must be zero:

 3C 2 588.6 5 0 C 5 1196.2 N

 1.2Bz 1 0.6C 5 0 Bz 5 298.1 N

 1.2By 2 882.9 5 0 By 5 1736 N

The reactions at B and C are therefore

 B 5 1(736 N)j 2 (98.1 N)k  C 5 1(196.2 N)k b

†The moments in this sample problem, as well as in Sample Probs. 4.8 and 4.9, also can be 

expressed as determinants (see Sample Prob. 3.10).

A

B

C

D
0.6 m

0.6 m

0.9 m 0.3 m

W

3 m

Fig. 1 Free-body diagram of ladder.

A 0.6 m
0.6 m

0.9 m 0.3 m

x

y

z

Ck

–(981 N)j

Ayj

Azk

Bzk Byj

3 m
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208 Equilibrium of Rigid Bodies

Setting the coefficients of j and k equal to zero in Eq. (1), you obtain two 

scalar equations stating that the sums of the components in the y and z
directions are zero. Substitute the values above for By, Bz, and C to get

 Ay 1 By 2 981 5 0 Ay 1 736 2 981 5 0 Ay 5 1245 N

 Az 1 Bz 1 C 5 0 Az 2 98.1 1 196.2 5 0 Az 5 298.1 N

Therefore, the reaction at A is

 A 5 1(245 N)j 2 (98.1 N)k b

REFLECT and THINK: You summed moments about A as part of the 

analysis. As a check, you could now use these results and demonstrate 

that the sum of moments about any other point, such as point B, is also 

zero.

Sample Problem 4.8

A 5 3 8-ft sign of uniform density weighs 270 lb and is supported by a 

ball-and-socket joint at A and by two cables. Determine the tension in 

each cable and the reaction at A.

STRATEGY: Draw a free-body diagram of the sign, and express the 

unknown cable tensions as Cartesian vectors. Then determine the cable 

tensions and the reaction at A by writing and solving the equilibrium 

equations.

MODELING:

Free-Body Diagram. The forces acting on the sign are its weight W 5 

2(270 lb)j and the reactions at A, B, and E (Fig. 1). The reaction at A is 

a force of unknown direction represented by three unknown components. 

Since the directions of the forces exerted by the cables are known, these 

forces involve only one unknown each: specifically, the magnitudes TBD 

and TEC. The total of five unknowns means that the sign is partially con-

strained. It can rotate freely about the x axis; it is, however, in equilibrium 

under the given loading, since the equation oMx 5 0 is satisfied.

ANALYSIS: You can express the components of the forces TBD and TEC 

in terms of the unknown magnitudes TBD and TEC as follows:

 BD
�

5 2(8 ft)i 1 (4 ft)j 2 (8 ft)k    BD 5 12 ft

 EC
�

5 2(6 ft)i 1 (3 ft)j 1 (2 ft)k    EC 5 7 ft

 TBD 5 TBDaBD
�

BD
b 5 TBD(2

2
3i 1

1
3j 2

2
3k)

 TEC 5 TEC aEC
�

EC
b 5 TEC(2

6
7i 1

3
7j 2

2
7k)

A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft

5 ft

4 ft

8 ft

3 ft

Fig. 1 Free-body diagram of sign.

W = – (270 lb) j

A x i

Azk

A y j

TEC TBD
A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft
4 ft

4 ft
4 ft

8 ft

3 ft
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4.3 Equilibrium in Three Dimensions 209

Equilibrium Equations. The forces acting on the sign form a system 

equivalent to zero:

oF 5 0:  Axi 1 Ayj 1 Azk 1 TBD 1 TEC 2 (270 lb)j 5 0

(Ax 2
2
3 TBD 2

6
7 TEC)i 1 (Ay 1

1
3 TBD 1

3
7 TEC 2 270 lb)j

1 (Az 2
2
3 TBD 1

2
7 TEC)k 5 0 (1)

oMA 5 o(r 3 F) 5 0:

(8  ft)i 3 TBD(2
2
3 
i 1

1
3 
j 2

2
3 
k) 1 (6  ft)i 3 TEC(2

6
7 
i 1

3
7 
j 1

2
7 
k)

1 (4  ft)i 3 (2270  lb)j 5 0

(2.667TBD 1 2.571TEC 2 1080 lb)k 1 (5.333TBD 2 1.714TEC)j 5 0 (2)

Setting the coefficients of j and k equal to zero in Eq. (2) yields two scalar 

equations that can be solved for TBD and TEC:

TBD 5 101.3 lb   TEC 5 315 lb b

Setting the coefficients of i, j, and k equal to zero in Eq. (1) produces 

three more equations, which yield the components of A. 

 A 5 1(338 lb)i 1 (101.2 lb)j 2 (22.5 lb)k b

REFLECT and THINK: Cables can only act in tension, and the free-

body diagram and Cartesian vector expressions for the cables were con-

sistent with this. The solution yielded positive results for the cable forces, 

which confirms that they are in tension and validates the analysis.

 Sample Problem 4.9

A uniform pipe cover of radius r 5 240 mm and mass 30 kg is held in 

a horizontal position by the cable CD. Assuming that the bearing at B 

does not exert any axial thrust, determine the tension in the cable and the 

reactions at A and B.

r = 240 mm

A

B

C

D

160 mm

240 mm
240 mm

240 mm
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210 Equilibrium of Rigid Bodies

STRATEGY: Draw a free-body diagram with the coordinate axes shown 

(Fig. 1) and express the unknown cable tension as a Cartesian vector. Then 

apply the equilibrium equations to determine this tension and the support 

reactions.

MODELING:

Free-Body Diagram. The forces acting on the free body include its 

weight, which is

W 5 2mgj 5 2(30 kg)(9.81 m/s2)j 5 2(294 N)j

The reactions involve six unknowns: the magnitude of the force T exerted 

by the cable, three force components at hinge A, and two at hinge B. 

Express the components of T in terms of the unknown magnitude T by 

resolving the vector DC
�

 into rectangular components: 

DC
�

 5 2(480 mm)i 1 (240 mm)j 2 (160 mm)k  DC 5 560 mm

T 5 T  

DC
�

DC
5 2

6
7 T i 1

3
7 T j 2

2
7 T  k

ANALYSIS: 

Equilibrium Equations. The forces acting on the pipe cover form a 

system equivalent to zero. Thus, 

oF 5 0: Axi 1 Ayj 1 Azk 1 Bxi 1 Byj 1 T 2 (294 N)j 5 0

 (Ax 1 Bx 2 
6
7T )i 1 (Ay 1 By 1 

3
7T 2 294 N)j 1 (Az 2 

2
7T )k 5 0 (1)

oMB 5 o(r 3 F) 5 0:

2rk 3 (Axi 1 Ay j 1 Azk)

 1 (2r i 1 rk) 3 (2 
6
7T i 1 

3
7T j 2 

2
7T k)

  1 (r i 1 rk) 3 (2294 N)j 5 0

 (22Ay 2 
3
7T 1 294 N)r i 1 (2Ax 2 

2
7T )r j 1 ( 

6
7 T 2 294 N)rk 5 0 (2)

Setting the coefficients of the unit vectors equal to zero in Eq. (2) gives 

three scalar equations, which yield

 Ax 5 149.0 N  Ay 5 173.5 N  T 5 343 N b

Setting the coefficients of the unit vectors equal to zero in Eq. (1) produces 

three more scalar equations. After substituting the values of T, Ax, and Ay 

into these equations, you obtain

Az 5 198.0 N   Bx 5 1245 N   By 5 173.5 N

The reactions at A and B are therefore

 A 5 1(49.0 N)i 1 (73.5 N)j 1 (98.0 N)k b

 B 5 1(245 N)i 1 (73.5 N)j b

REFLECT and THINK: As a check, you can determine the tension in 

the cable using a scalar analysis. Assigning signs by the right-hand rule 

(rhr), we have

(1rhr) oMz 5 0: 
3
7T(0.48 m) 2 (294 N)(0.24 m) 5 0 T 5 343 N b

r = 240 mm

A

B

C

D

W = – (294 N) j

Bx i
By j

A x i
Ayj

Azk

160 mm

80 mm

Tr = 240 mm

r = 240 mm

x

y

z

240 mm

Fig. 1 Free-body diagram of pipe cover.
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4.3 Equilibrium in Three Dimensions 211

 Sample Problem 4.10

A 450-lb load hangs from the corner C of a rigid piece of pipe ABCD
that has been bent as shown. The pipe is supported by ball-and-socket 

joints A and D, which are fastened, respectively, to the floor and to a 

vertical wall, and by a cable attached at the midpoint E of the portion BC
of the pipe and at a point G on the wall. Determine (a) where G should 

be located if the tension in the cable is to be minimum, (b) the correspond-

ing minimum value of the tension.

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

STRATEGY: Draw the free-body diagram of the pipe showing the reac-

tions at A and D. Isolate the unknown tension T and the known weight W
by summing moments about the diagonal line AD, and compute values 

from the equilibrium equations.

MODELING and ANALYSIS: 

Free-Body Diagram. The free-body diagram of the pipe includes the 

load W 5 (2450 lb)j, the reactions at A and D, and the force T exerted by 

the cable (Fig. 1). To eliminate the reactions at A and D from the computations, 

take the sum of the moments of the forces about the line AD and set it equal 

to zero. Denote the unit vector along AD by λ, which enables you to write

 oMAD 5 0:    l ? (AE
�

3 T) 1 l ? (AC
�

3 W) 5 0 (1)

Fig. 1 Free-body diagram of pipe.

A

B C DE

x

y

z

T

�

Dxi

Dy j
Dzk

A x i

Ay j

Azk

W = –450 j

6 ft

6 ft

12 ft

12 ft

12 ft
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212 Equilibrium of Rigid Bodies

You can compute the second term in Eq. (1) as follows:

 AC
�

3 W 5 (12i 1 12j) 3 (2450j) 5 25400k

 l 5
AD
�

AD
5

12i 1 12j 2 6k

18
5

2
3 i 1

2
3 j 2

1
3 k

 l ? (AC
�

3 W) 5 (
2
3 
i 1

2
3 
j 2

1
3 
k) ? (25400k) 5 11800

Substituting this value into Eq. (1) gives 

l ? (AE
�

3 T) 5 21800 lb?ft (2)

Minimum Value of Tension. Recalling the commutative property 

for mixed triple products, you can rewrite Eq. (2) in the form

 T ? (l 3 AE
�

) 5 21800 lb?ft (3)

This shows that the projection of T on the vector λ 3 AE
�

 is a constant. 

It follows that T is minimum when it is parallel to the vector

l 3 AE
�

5 (
2
3 i 1

2
3 j 2

1
3 k) 3 (6i 1 12j) 5 4i 2 2j 1 4k

The corresponding unit vector is 
2
3 i 2

1
3 j 1

2
3 k, which gives

 Tmin 5 T(
2
3 i 2

1
3 j 1

2
3 k) (4)

Substituting for T and l 3 AE
�

 in Eq. (3) and computing the dot products 

yields 6T 5 21800 and, thus, T 5 2300. Carrying this value into Eq. (4) 

gives you

 Tmin 5 2200i 1 100j 2 200k   Tmin 5 300 lb b

Location of G. Since the vector EG
�

 and the force Tmin have the same 

direction, their components must be proportional. Denoting the coordi-

nates of G by x, y, and 0 (Fig. 2), you get

x 2 6

2200
5

y 2 12

1100
5

0 2 6

2200
    x 5 0    y 5 15 ft b

Fig. 2 Location of point G for minimum 
tension in cable.

A

B
C

D

G(x, y, 0)

E(6, 12, 6)

x

y

z

W

Tmin

REFLECT and THINK: Sometimes you have to rely on the vector 

analysis presented in Chapters 2 and 3 as much as on the conditions for 

equilibrium described in this chapter.
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213 213

SOLVING PROBLEMS 
ON YOUR OWN

In this section, you considered the equilibrium of a three-dimensional body. It is 

again most important that you draw a complete free-body diagram as the first step 

of your solution.

1. Pay particular attention to the reactions at the supports as you draw the free-

body diagram. The number of unknowns at a support can range from one to six 

(Fig. 4.10). To decide whether an unknown reaction or reaction component exists at 

a support, ask yourself whether the support prevents motion of the body in a certain 

direction or about a certain axis.

a. If motion is prevented in a certain direction, include in your free-body 

diagram an unknown reaction or reaction component that acts in the same 
direction.

 b. If a support prevents rotation about a certain axis, include in your free-body 

diagram a couple of unknown magnitude that acts about the same axis.

2. The external forces acting on a three-dimensional body form a system equiva-
lent to zero. Writing oF 5 0 and oMA 5 0 about an appropriate point A and setting 

the coefficients of i, j, k in both equations equal to zero provides you with six scalar 

equations. In general, these equations contain six unknowns and may be solved for 

these unknowns.

3. After completing your free-body diagram, you may want to seek equations 
involving as few unknowns as possible. The following strategies may help you.

 a. By summing moments about a ball-and-socket support or a hinge, you obtain 

equations from which three unknown reaction components have been eliminated 

[Sample Probs. 4.8 and 4.9].

 b. If you can draw an axis through the points of application of all but one of the 

unknown reactions, summing moments about that axis will yield an equation in a 

single unknown [Sample Prob. 4.10].

4. After drawing your free-body diagram, you may find that one of the  following 
situations exists.
 a. The reactions involve fewer than six unknowns. The body is partially con-

strained and motion of the body is possible. However, you may be able to determine 

the reactions for a given loading condition [Sample Prob. 4.7].

 b. The reactions involve more than six unknowns. The reactions are statically 

indeterminate. Although you may be able to calculate one or two reactions, you cannot 

determine all of them [Sample Prob. 4.10].

 c. The reactions are parallel or intersect the same line. The body is improperly 

constrained, and motion can occur under a general loading condition.
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Problems
FREE-BODY PRACTICE PROBLEMS

 4.F5 Two tape spools are attached to an axle supported by bearings at A
and D. The radius of spool B is 1.5 in. and the radius of spool C
is 2 in. Knowing that TB 5 20 lb and that the system rotates at a 

constant rate, draw the free-body diagram needed to determine the 

reactions at A and D. Assume that the bearing at A does not exert 

any axial thrust and neglect the weights of the spools and axle.

TB

x

D

C

B

A

z

y

4.5 in.

4.5 in.

6 in. TC

Fig. P4.F5

 4.F6 A 12-m pole supports a horizontal cable CD and is held by a ball 

and socket at A and two cables BE and BF. Knowing that the ten-

sion in cable CD is 14 kN and assuming that CD is parallel to the 

x axis (ϕ 5 0), draw the free-body diagram needed to determine 

the tension in cables BE and BF and the reaction at A.

 4.F7 A 20-kg cover for a roof opening is hinged at corners A and B. 

The roof forms an angle of 30° with the horizontal, and the cover 

is maintained in a horizontal position by the brace CE. Draw the 

free-body diagram needed to determine the magnitude of the force 

exerted by the brace and the reactions at the hinges. Assume that 

the hinge at A does not exert any axial thrust.

E

C

D

z

A

y

x

B

0.9 m

0.9 m0.6 m

30°

Fig. P4.F7

C

B

F

E

A

D

xz 6 m

6 m

8 m

12 m

7.5 m

y

f

Fig. P4.F6
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END-OF-SECTION PROBLEMS

 4.91 Two transmission belts pass over a double-sheaved pulley that is attached 

to an axle supported by bearings at A and D. The radius of the inner 

sheave is 125 mm and the radius of the outer sheave is 250 mm. Know-

ing that when the system is at rest, the tension is 90 N in both portions 

of belt B and 150 N in both portions of belt C, determine the reactions 

at A and D. Assume that the bearing at D does not exert any axial thrust.

 4.92 Solve Prob. 4.91, assuming that the pulley rotates at a constant rate 

and that TB 5 104 N, T 9B 5 84 N, and TC 5 175 N.

 4.93 A small winch is used to raise a 120-lb load. Find (a) the magnitude 

of the vertical force P that should be applied at C to maintain equi-

librium in the position shown, (b) the reactions at A and B, assuming 

that the bearing at B does not exert any axial thrust.

Fig. P4.93

120 lb

PA

B

C

x

y

z

10 in.

10 in.

9 in.

10 in.8 in.

3 in.

30°

 4.94 A 4 3 8-ft sheet of plywood weighing 34 lb has been temporarily placed 

among three pipe supports. The lower edge of the sheet rests on small 

collars at A and B and its upper edge leans against pipe C. Neglecting 

friction at all surfaces, determine the reactions at A, B, and C.

Fig. P4.94

4 ft

y

z

B

A

x

1 ft

3.75 ft
3 ft

5 ft

3 ft

4 ft

C

 4.95 A 250 3 400-mm plate of mass 12 kg and a 300-mm-diameter pulley 

are welded to axle AC that is supported by bearings at A and B. For 

β 5 30°, determine (a) the tension in the cable, (b) the reactions at A 

and B. Assume that the bearing at B does not exert any axial thrust.

 4.96 Solve Prob. 4.95 for β 5 60°.

Fig. P4.91

z

A

T9B

T9C

x

y

B

150 mm

200 mm

100 mm

TC

TB

C

D

T

B

A

z

y

x

D

C 150 mm

160 mm

160 mm

250 mm

200 mm

400 mm

b

Fig. P4.95
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 4.97 The 20 3 20-in. square plate shown weighs 56 lb and is supported 

by three vertical wires. Determine the tension in each wire.

4.98 The 20 3 20-in. square plate shown weighs 56 lb and is supported 

by three vertical wires. Determine the weight and location of the 

lightest block that should be placed on the plate if the tensions in 

the three wires are to be equal. 

 4.99 An opening in a floor is covered by a 1 3 1.2-m sheet of plywood 

with a mass of 18 kg. The sheet is hinged at A and B and is main-

tained in a position slightly above the floor by a small block C. 

Determine the vertical component of the reaction (a) at A, (b) at B, 

(c) at C.

y

z
x

A

B

E C

0.15 m

0.2 m

0.2 m
0.6 m

1.2 m

D

Fig. P4.99

 4.100 Solve Prob. 4.99, assuming that the small block C is moved and 

placed under edge DE at a point 0.15 m from corner E. 

 4.101 Two steel pipes AB and BC, each having a mass per unit length of 

8 kg/m, are welded together at B and supported by three vertical 

wires. Knowing that a 5 0.4 m, determine the tension in each wire.

B

A

C

D

y

x

z

a

1.2 m
0.6 m

Fig. P4.101

x

y

z

B

C

A
10 in.

10 in.
16 in. 4 in.

16 in.

Fig. P4.97 and P4.98
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 4.102 For the pipe assembly of Prob. 4.101, determine (a) the largest per-

missible value of a if the assembly is not to tip, (b) the corresponding 

tension in each wire.

 4.103 The 24-lb square plate shown is supported by three vertical wires. 

Determine (a) the tension in each wire when a 5 10 in., (b) the 

value of a for which the tension in each wire is 8 lb.

 4.104 The table shown weighs 30 lb and has a diameter of 4 ft. It is sup-

ported by three legs equally spaced around the edge. A vertical 

load P with a magnitude of 100 lb is applied to the top of the table 

at D. Determine the maximum value of a if the table is not to tip 

over. Show, on a sketch, the area of the table over which P can act 

without tipping the table.

A
B

C

D

aP

Fig. P4.104

 4.105 A 10-ft boom is acted upon by the 840-lb force shown. Determine the 

tension in each cable and the reaction at the ball-and-socket joint at A.

 4.106 The 6-m pole ABC is acted upon by a 455-N force as shown. The 

pole is held by a ball-and-socket joint at A and by two cables BD 
and BE. For a 5 3 m, determine the tension in each cable and the 

reaction at A.

A

B

C

F

x

y

z

D

E

455 N

1.5 m

1.5 m

a

2 m

3 m

3 m

3 m

3 m

Fig. P4.106

 4.107 Solve Prob. 4.106 for a 5 1.5 m.

 4.108 A 2.4-m boom is held by a ball-and-socket joint at C and by two cables 

AD and AE. Determine the tension in each cable and the reaction at C.

 4.109 Solve Prob. 4.108, assuming that the 3.6-kN load is applied at point A.

y

x

B C

A

a

30 in.

a

30 in.

z

Fig. P4.103

840 lb

x

y

z

E

A
B

C

D

4 ft
6 ft

7 ft

6 ft

6 ft

Fig. P4.105

A

B

C

x

y

z

D

E

3.6 kN

1.2 m

1.2 m

1.2 m

0.6 m

0.8 m

0.8 m

Fig. P4.108
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 4.110 The 10-ft flagpole AC forms an angle of 30° with the z axis. It is 

held by a ball-and-socket joint at C and by two thin braces BD and 

BE. Knowing that the distance BC is 3 ft, determine the tension in 

each brace and the reaction at C.

 4.111 A 48-in. boom is held by a ball-and-socket joint at C and by two 

cables BF and DAE; cable DAE passes around a frictionless pulley 

at A. For the loading shown, determine the tension in each cable and 

the reaction at C.

Fig. P4.111

A

B
C

F

x

y

z

D

E

20 in.

16 in.

320 lb

30 in.

20 in.

48 in.

 4.112 Solve Prob. 4.111, assuming that the 320-lb load is applied at A.

 4.113 A 10-kg storm window measuring 900 3 1500 mm is held by hinges 

at A and B. In the position shown, it is held away from the side of 

the house by a 600-mm stick CD. Assuming that the hinge at A does 

not exert any axial thrust, determine the magnitude of the force 

exerted by the stick and the components of the reactions at A and B.

Fig. P4.113

x

z

y

A

C
D

E

B

1500 mm

1500 mm

900 mm

4.114 The bent rod ABEF is supported by bearings at C and D and by wire 

AH. Knowing that portion AB of the rod is 250 mm long, determine 

(a) the tension in wire AH, (b) the reactions at C and D. Assume 

that the bearing at D does not exert any axial thrust.

z

x

y

A

3 ft

3 ft

30°
3 ft

75 lb B
C

D

E

Fig. P4.110

250 mm50 mm 300 mm

400 N

C

D

E

F x
z

50 mm

250 mm

A B

H

y

30°

Fig. P4.114
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 4.115 The horizontal platform ABCD weighs 60 lb and supports a 240-lb 

load at its center. The platform is normally held in position by hinges 

at A and B and by braces CE and DE. If brace DE is removed, 

determine the reactions at the hinges and the force exerted by the 

remaining brace CE. The hinge at A does not exert any axial thrust.

 4.116 The lid of a roof scuttle weighs 75 lb. It is hinged at corners A and 

B and maintained in the desired position by a rod CD pivoted at C. 

A pin at end D of the rod fits into one of several holes drilled in the 

edge of the lid. For α 5 50°, determine (a) the magnitude of the 

force exerted by rod CD, (b) the reactions at the hinges. Assume that 

the hinge at B does not exert any axial thrust.

x

y

B

A
D

z
26 in.

C
15 in.

7 in.

32 in.

α

Fig. P4.116

 4.117 A 100-kg uniform rectangular plate is supported in the position 

shown by hinges A and B and by cable DCE that passes over a 

frictionless hook at C. Assuming that the tension is the same in both 

parts of the cable, determine (a) the tension in the cable, (b) the 

reactions at A and B. Assume that the hinge at B does not exert any 

axial thrust.

690 mm

960 mm

x

y

z

E

D

A

B

C

675 mm
90 mm

450 mm

270 mm

90 mm

Fig. P4.117

 4.118 Solve Prob. 4.117, assuming that cable DCE is replaced by a cable 

attached to point E and hook C.

D

z

x

y

B

A

4 ft

2 ft

2 ft 3 ft

300 lb

E

C

Fig. P4.115
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 4.119 Solve Prob. 4.113, assuming that the hinge at A has been removed 

and that the hinge at B can exert couples about axes parallel to the 

x and y axes. 

 4.120 Solve Prob. 4.115, assuming that the hinge at B has been removed 

and that the hinge at A can exert an axial thrust, as well as couples 

about axes parallel to the x and y axes.

 4.121 The assembly shown is used to control the tension T in a tape that 

passes around a frictionless spool at E. Collar C is welded to rods 

ABC and CDE. It can rotate about shaft FG but its motion along the 

shaft is prevented by a washer S. For the loading shown, determine 

(a) the tension T in the tape, (b) the reaction at C.

 4.122 The assembly shown is welded to collar A that fits on the vertical 

pin shown. The pin can exert couples about the x and z axes but does 

not prevent motion about or along the y axis. For the loading shown, 

determine the tension in each cable and the reaction at A.

Fig. P4.122

480 N

A

C

D

E

F

x

y

z

60 mm

45 mm

90 mm

120 mm

80 mm

 4.123 The rigid L-shaped member ABC is supported by a ball-and-socket 

joint at A and by three cables. If a 1.8-kN load is applied at F, 

determine the tension in each cable.

Fig. P4.123

x

z

y

A

B

C

D

EF

1.8 kN

240 mm

320 mm
210 mm

210 mm

420 mm

420 mm

T

A

B

C

F

D

E

S

G

x

y

z

6 lb
2 in.

1.6 in.

4.2 in.

2.4 in.

T

Fig. P4.121
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 4.124 Solve Prob. 4.123, assuming that the 1.8-kN load is applied at C.

4.125 The rigid L-shaped member ABF is supported by a ball-and-socket 

joint at A and by three cables. For the loading shown, determine the 

tension in each cable and the reaction at A.

Fig. P4.125

x

y

z

A

B

C D

E F

G

J

H

24 lb

24 lb

9 in.

16 in.

16 in.

8 in.

12 in.

16 in.

8 in.

8 in.

8 in.

O

4.126 Solve Prob. 4.125, assuming that the load at C has been removed.

 4.127 Three rods are welded together to form a “corner” that is supported 

by three eyebolts. Neglecting friction, determine the reactions at A, 

B, and C when P 5 240 lb, a 5 12 in., b 5 8 in., and c 5 10 in.

Fig. P4.127

x

y

z

b

cA

B

C

P

a

 4.128 Solve Prob. 4.127, assuming that the force P is removed and is 

replaced by a couple M 5 1 (600 lb?in.)j acting at B.
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 4.129 Frame ABCD is supported by a ball-and-socket joint at A and by 

three cables. For a 5 150 mm, determine the tension in each cable 

and the reaction at A.

Fig. P4.129 and P4.130

A

B

C
H

DE

F

G

x

y

z

140 mm

350 N
300 mm

140 mm

200 mm

a480 mm

4.130 Frame ABCD is supported by a ball-and-socket joint at A and by three 

cables. Knowing that the 350-N load is applied at D (a 5 300 mm), 

determine the tension in each cable and the reaction at A.

 4.131 The assembly shown consists of an 80-mm rod AF that is welded to 

a cross frame consisting of four 200-mm arms. The assembly is 

supported by a ball-and-socket joint at F and by three short links, 

each of which forms an angle of 45° with the vertical. For the load-

ing shown, determine (a) the tension in each link, (b) the reaction 

at F.

x

y

z

E

F

A

B

P

CD

45º

45º

45º

200 mm 200 mm

200 mm
200 mm

80 mm

Fig. P4.131

 4.132 The uniform 10-kg rod AB is supported by a ball-and-socket joint at 

A and by the cord CG that is attached to the midpoint G of the rod. 

Knowing that the rod leans against a frictionless vertical wall at B, 

determine (a) the tension in the cord, (b) the reactions at A and B.

x

y

z

GO  

A

B

C
150 mm

150 mm

400 mm

600 mm

Fig. P4.132
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 4.133 The frame ACD is supported by ball-and-socket joints at A and D
and by a cable that passes through a ring at B and is attached to 

hooks at G and H. Knowing that the frame supports at point C a 

load of magnitude P 5 268 N, determine the tension in the cable.

x

y

z

A
B

C

D

G

O

P

H

0.35 m

0.875 m

0.75 m

0.75 m

0.925 m

0.5 m
0.5 m

Fig. P4.133

 4.134 Solve Prob. 4.133, assuming that cable GBH is replaced by a cable 

GB attached at G and B.

 4.135 The bent rod ABDE is supported by ball-and-socket joints at A and 

E and by the cable DF. If a 60-lb load is applied at C as shown, 

determine the tension in the cable.

x

y

z

A

B

C

D

E

F

8 in.

7 in.

9 in.

60 lb11 in.

16 in.

10 in.

14 in.

Fig. P4.135

 4.136 Solve Prob. 4.135, assuming that cable DF is replaced by a cable 

connecting B and F.

 4.137 Two rectangular plates are welded together to form the assembly 

shown. The assembly is supported by ball-and-socket joints at B and 

D and by a ball on a horizontal surface at C. For the loading shown, 

determine the reaction at C.

B

A

y

z

D

C
x

6 in.

12 in.
8 in.

9 in.

80 lb

Fig. P4.137
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 4.138 The pipe ACDE is supported by ball-and-socket joints at A and E
and by the wire DF. Determine the tension in the wire when a 640-N 

load is applied at B as shown.

640 N

x

y

z

A B

C

D
E

F

240 mm

160 mm

480 mm

200 mm

490 mm

Fig. P4.138

4.139 Solve Prob. 4.138, assuming that wire DF is replaced by a wire 

connecting C and F.

 4.140 Two 2 3 4-ft plywood panels, each with a weight of 12 lb, are nailed 

together as shown. The panels are supported by ball-and-socket 

joints at A and F and by the wire BH. Determine (a) the location of 

H in the xy plane if the tension in the wire is to be minimum, (b) the 

corresponding minimum tension.

z 2 ft

2 ft

2 ft

2 ft

2 ft

x

x

y

y

A

B

C

O

H

D

E

F
12 lb12 lb

Fig. P4.140

 4.141 Solve Prob. 4.140, subject to the restriction that H must lie on the 

y axis.
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Review and Summary
Equilibrium Equations
This chapter was devoted to the study of the equilibrium of rigid bodies, 

i.e., to the situation when the external forces acting on a rigid body form a 
system equivalent to zero [Introduction]. We then have

 oF 5 0   oMO 5 o(r 3 F) 5 0 (4.1)

Resolving each force and each moment into its rectangular components, we 

can express the necessary and sufficient conditions for the equilibrium of a 

rigid body with the following six scalar equations:

 oFx 5 0 oFy 5 0 oFz 5 0 (4.2)

oMx 5 0 oMy 5 0 oMz 5 0 (4.3)

We can use these equations to determine unknown forces applied to the rigid 

body or unknown reactions exerted by its supports.

Free-Body Diagram
When solving a problem involving the equilibrium of a rigid body, it is essential 

to consider all of the forces acting on the body. Therefore, the first step in the 

solution of the problem should be to draw a free-body diagram showing the body 

under consideration and all of the unknown as well as known forces acting on it.

Equilibrium of a Two-Dimensional Structure
In the first part of this chapter, we considered the equilibrium of a two-
dimensional structure; i.e., we assumed that the structure considered and the 

forces applied to it were contained in the same plane. We saw that each of 

the reactions exerted on the structure by its supports could involve one, two, 

or three unknowns, depending upon the type of support [Sec. 4.1A].

 In the case of a two-dimensional structure, the equations given previ-

ously reduce to three equilibrium equations: 

 oFx 5 0   oFy 5 0   oMA 5 0 (4.5)

where A is an arbitrary point in the plane of the structure [Sec. 4.1B]. We can 

use these equations to solve for three unknowns. Although the three equilib-

rium equations (4.5) cannot be augmented with additional equations, any of 

them can be replaced by another equation. Therefore, we can write alternative 

sets of equilibrium equations, such as

 oFx 5 0   oMA 5 0   oMB 5 0 (4.6)

where point B is chosen in such a way that the line AB is not parallel to the 

y axis, or

oMA 5 0   oMB 5 0   oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line.

Static Indeterminacy, Partial Constraints, 
Improper Constraints
Since any set of equilibrium equations can be solved for only three unknowns, 

the reactions at the supports of a rigid two-dimensional structure cannot be 
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completely determined if they involve more than three unknowns; they are 

said to be statically indeterminate [Sec. 4.1C]. On the other hand, if the reac-

tions involve fewer than three unknowns, equilibrium is not maintained under 

general loading conditions; the structure is said to be partially constrained.
The fact that the reactions involve exactly three unknowns is no guarantee 

that you can solve the equilibrium equations for all three unknowns. If the 

supports are arranged in such a way that the reactions are either concurrent 
or parallel, the reactions are statically indeterminate, and the structure is said 

to be improperly constrained.

Two-Force Body, Three-Force Body
We gave special attention in Sec. 4.2 to two particular cases of equilibrium 

of a rigid body. We defined a two-force body as a rigid body subjected to 

forces at only two points, and we showed that the resultants F1 and F2 of 

these forces must have the same magnitude, the same line of action, and 
opposite sense (Fig. 4.11), which is a property that simplifies the solution of 

certain problems in later chapters. We defined a three-force body as a rigid 

body subjected to forces at only three points, and we demonstrated that the 

resultants F1, F2, and F3 of these forces must be either concurrent (Fig. 4.12) 

or parallel. This property provides us with an alternative approach to the 

solution of problems involving a three-force body [Sample Prob. 4.6].

Equilibrium of a Three-Dimensional Body
In the second part of this chapter, we considered the equilibrium of a three-
dimensional body. We saw that each of the reactions exerted on the body by 

its supports could involve between one and six unknowns, depending upon 

the type of support [Sec. 4.3A].

 In the general case of the equilibrium of a three-dimensional body, all 

six of the scalar equilibrium equations (4.2) and (4.3) should be used and 

solved for six unknowns [Sec. 4.3B]. In most problems, however, we can 

obtain these equations more conveniently if we start from

 oF 5 0   oMO 5 o (r 3 F) 5 0 (4.1)

and then express the forces F and position vectors r in terms of scalar com-

ponents and unit vectors. We can compute the vector products either directly 

or by means of determinants, and obtain the desired scalar equations by equat-

ing to zero the coefficients of the unit vectors [Sample Probs. 4.7 through 4.9].

 We noted that we may eliminate as many as three unknown reaction 

components from the computation of oMO in the second of the relations (4.1) 

through a judicious choice of point O. Also, we can eliminate the reactions 

at two points A and B from the solution of some problems by writing the 

equation oMAB 5 0, which involves the computation of the moments of the 

forces about an axis AB joining points A and B [Sample Prob. 4.10].

 We observed that when a body is subjected to individual couples Mi, 

either as applied loads or as support reactions, we can include these couples 

by expressing the second part of Eq. (4.1) as

 oMO 5 o(r 3 F) 1 oMi 5 0 (4.19)

 If the reactions involve more than six unknowns, some of the reactions 

are statically indeterminate; if they involve fewer than six unknowns, the rigid 

body is only partially constrained. Even with six or more unknowns, the rigid 

body is improperly constrained if the reactions associated with the given sup-

ports are either parallel or intersect the same line.

Fig. 4.11

A

B

F1

F2

Fig. 4.12

F2

F3

F1

B C

D
A
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4.142 A 3200-lb forklift truck is used to lift a 1700-lb crate. Determine 

the reaction at each of the two (a) front wheels A, (b) rear wheels B.

4.143 The lever BCD is hinged at C and attached to a control rod at B. 

If P 5 100 lb, determine (a) the tension in rod AB, (b) the reaction 

at C.

P

A

B

C

D

7.5 in.

3 in.

4 in.

90°

Fig. P4.143

 4.144 Determine the reactions at A and B when (a) h 5 0, (b) h 5 200 mm.

60°

300 mm

250 mm 250 mm

150 N

G
B

A
h

Fig. P4.144

 4.145 Neglecting friction and the radius of the pulley, determine (a) the 

tension in cable ADB, (b) the reaction at C.

A B C

150 mm

200 mm
80 mm 80 mm

120 N

D

Fig. P4.145

Review Problems

BA

12 in.

G'

G

16 in. 24 in.

Fig. P4.142
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4.146 Bar AD is attached at A and C to collars that can move freely on 

the rods shown. If the cord BE is vertical (α 5 0), determine the 

tension in the cord and the reactions at A and C.

 4.147 A slender rod AB, with a weight of W, is attached to blocks A and 

B that move freely in the guides shown. The constant of the spring 

is k, and the spring is unstretched when θ 5 0. (a) Neglecting the 

weight of the blocks, derive an equation in W, k, l, and θ that must 

be satisfied when the rod is in equilibrium. (b) Determine the value 

of θ when W 5 75 lb, l 5 30 in., and k 5 3 lb/in.

A

BW

q

l

Fig. P4.147

 4.148 Determine the reactions at A and B when a 5 150 mm.

 4.149 For the frame and loading shown, determine the reactions at A and C.

A

B

C

D

30 lb

4 in. 6 in.

3 in.

Fig. P4.149

 4.150 A 200-mm lever and a 240-mm-diameter pulley are welded to the 

axle BE that is supported by bearings at C and D. If a 720-N verti-

cal load is applied at A when the lever is horizontal, determine (a) 

the tension in the cord, (b) the reactions at C and D. Assume that 

the bearing at D does not exert any axial thrust.

T

720 N

y

80 mm 120 mm

120 mm

200 mm

A
E

B

C

D

x

z

40 mm

Fig. P4.150

A B

E

C
D

30°

80 Na

0.2 m 0.2 m

30°

0.2 m

Fig. P4.146

A

B

240 mm

80 mm

320 N

a

Fig. P4.148
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4.151 The 45-lb square plate shown is supported by three vertical wires. 

Determine the tension in each wire.

4.152 The rectangular plate shown weighs 75 lb and is held in the position 

shown by hinges at A and B and by cable EF. Assuming that the 

hinge at B does not exert any axial thrust, determine (a) the tension 

in the cable, (b) the reactions at A and B.

x

y

z

D

H

F

E

A

B

C

25 in.

20 in.

4 in.

12 in.

8 in.

4 in.

30 in.

Fig. P4.152

4.153 A force P is applied to a bent rod ABC, which may be supported in 

four different ways as shown. In each case, if possible, determine 

the reactions at the supports.

A
A

B B

C C

P

A

B

C

P

P

A

B

C

P

45°

45°

(a) (b)

(c) (d)

a = 30°

30°

aa

a

aa

a

aa

a

aa

a

Fig. P4.153

A

C

B

z

x

y

20 in.

20 in.

15 in.
5 in.

Fig. P4.151
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Loads on dams include three types of distributed forces: the 

weights of its constituent elements, the pressure forces exerted 

by the water on its submerged face, and the pressure forces 

exerted by the ground on its base.

Distributed Forces: Centroids 
and Centers of Gravity

5
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Introduction
We have assumed so far that we could represent the attraction exerted by 

the earth on a rigid body by a single force W. This force, called the force 

due to gravity or the weight of the body, is applied at the center of gravity
of the body (Sec. 3.1A). Actually, the earth exerts a force on each of the 

particles forming the body, so we should represent the attraction of the 

earth on a rigid body by a large number of small forces distributed over 

the entire body. You will see in this chapter, however, that all of these 

small forces can be replaced by a single equivalent force W. You will also 

see how to determine the center of gravity—i.e., the point of application 

of the resultant W—for bodies of various shapes.

In the first part of this chapter, we study two-dimensional bodies, 

such as flat plates and wires contained in a given plane. We introduce two 

concepts closely associated with determining the center of gravity of a 

plate or a wire: the centroid of an area or a line and the first moment
of an area or a line with respect to a given axis. Computing the area of a 

surface of revolution or the volume of a body of revolution is directly 

related to determining the centroid of the line or area used to generate 

that surface or body of revolution (theorems of Pappus-Guldinus). Also, 

as we show in Sec. 5.3, the determination of the centroid of an area sim-

plifies the analysis of beams subjected to distributed loads and the com-

putation of the forces exerted on submerged rectangular surfaces, such as 

hydraulic gates and portions of dams.

In the last part of this chapter, you will see how to determine the 

center of gravity of a three-dimensional body as well as how to calculate 

the centroid of a volume and the first moments of that volume with respect 

to the coordinate planes.

Introduction

 5.1 PLANAR CENTERS 
OF GRAVITY AND 
CENTROIDS

5.1A Center of Gravity of a 
Two-Dimensional Body

5.1B Centroids of Areas and Lines
5.1C First Moments of Areas 

and Lines
5.1D Composite Plates and Wires

5.2 FURTHER 
CONSIDERATIONS 
OF CENTROIDS

5.2A Determination of Centroids 
by Integration

5.2B Theorems of Pappus-Guldinus

5.3 ADDITIONAL 
APPLICATIONS OF 
CENTROIDS

5.3A Distributed Loads on Beams
*5.3B Forces on Submerged Surfaces

 5.4 CENTERS OF GRAVITY 
AND CENTROIDS 
OF VOLUMES

5.4A Three-Dimensional Centers 
of Gravity and Centroids 

5.4B Composite Bodies
5.4C Determination of Centroids 

of Volumes by Integration

Objectives
• Describe the centers of gravity of two and three-

dimensional bodies.

• Define the centroids of lines, areas, and volumes.

• Consider the fi rst moments of lines and areas, and 
examine their properties.

• Determine centroids of composite lines, areas, and 
volumes by summation methods.

• Determine centroids of composite lines, areas, and 
volumes by integration.

• Apply the theorems of Pappus-Guldinus to analyze 
surfaces and bodies of revolution.

• Analyze distributed loads on beams and forces on 
 submerged surfaces.

Introduction 231

Photo 5.1 The precise balancing of the 
components of a mobile requires an 
understanding of centers of gravity and 
centroids, the main topics of this chapter.
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232 Distributed Forces: Centroids and Centers of Gravity

5.1  PLANAR CENTERS OF 
GRAVITY AND CENTROIDS

In Chapter 4, we showed how the locations of the lines of action of forces 

affects the replacement of a system of forces with an equivalent system of 

forces and couples. In this section, we extend this idea to show how a 

distributed system of forces (in particular, the elements of an object’s 

weight) can be replaced by a single resultant force acting at a specific point 

on an object. The specific point is called the object’s center of gravity.

5.1A  Center of Gravity of a
Two-Dimensional Body

Let us first consider a flat horizontal plate (Fig.  5.1). We can divide the 

plate into n small elements. We denote the coordinates of the first element 

by x1 and y1, those of the second element by x2 and y2, etc. The forces 

exerted by the earth on the elements of the plate are denoted, respectively, 

by DW1, DW2, . . . , DWn. These forces or weights are directed toward the 

center of the earth; however, for all practical purposes, we can assume 

them to be parallel. Their resultant is therefore a single force in the same 

direction. The magnitude W of this force is obtained by adding the mag-

nitudes of the elemental weights.

oFz:   W 5 DW1 1 DW2 1 ? ? ? 1 DWn

Fig. 5.1 The center of gravity of a plate is the point where the resultant weight of the plate acts. It is 
the weighted average of all the elements of weight that make up the plate.

O

ΔW1

x

y

z

y1

x1

O

ΔW1

x

y

z

(x2, y2)

(x1, y1)
(xm, yn)

ΔW2
ΔWn

x

y

z

G
O

⎯x

⎯y

W

 (a) Single element of the plate (b) Multiple elements of the plate (c) Center of gravity

x 5
#x dW

W
   y 5

#y dW

W

To obtain the coordinates x and y of point G where the resultant W should 

be applied, we note that the moments of W about the y and x axes are 

equal to the sum of the corresponding moments of the elemental weights:

oMy:  xW 5 x1DW1 1 x2DW2 1 ? ? ? 1 xnDWn

 oMx:  yW 5 y1DW1 1 y2DW2 1 ? ? ? 1 ynDWn 
(5.1)

Solving these equations for x and y gives us

x 5
x1DW1 1 x2DW2 1 ? ? ? 1 xnDWn

W

y 5
y1DW1 1 y2DW2 1 ? ? ? 1 ynDWn

W
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5.1 Planar Centers of Gravity and Centroids 233

We could use these equations in this form to find the center of gravity of 

a collection of n objects, each with a weight of Wi.
If we now increase the number of elements into which we divide the 

plate and simultaneously decrease the size of each element, in the limit of 

infinitely many elements of infinitesimal size, we obtain the expressions

Weight, center of
gravity of a flat plate

 W 5 #dW   x W 5 #x dW   y W 5 #y dW  (5.2)

Or, solving for x and y, we have

 W 5 #dW     x 5
#x dW

W
     y 5

#y dW

W
 (5.29)

These equations define the weight W and the coordinates x and y of the 

center of gravity G of a flat plate. The same equations can be derived 

for a wire lying in the xy plane (Fig. 5.2). Note that the center of gravity G
of a wire is usually not located on the wire.

W 5 #dW xW 5 #x dW yW 5 #y dW

(a) Single element of the wire (b) Multiple elements of the wire (c) Center of gravity

x 5
#x dW

W
   y 5

#y dW

W

ΔW1

x

y

z

O

ΔWn

ΔW1

x

y

y1

z

O

x1

x

y

z

O ⎯y

W

⎯x
G

ΔW2

(x2, y2)

(x1, y1)
(xm, yn)

Fig. 5.2 The center of gravity of a wire is the point where the resultant weight of the wire acts. 
The center of gravity may not actually be located on the wire.

5.1B Centroids of Areas and Lines
In the case of a flat homogeneous plate of uniform thickness, we can 

express the magnitude DW of the weight of an element of the plate as

DW 5 γ t DA

where γ 5 specific weight (weight per unit volume) of the material

 t 5 thickness of the plate

 DA 5 area of the element

Similarly, we can express the magnitude W of the weight of the entire 

plate as

W 5 γ tA

where A is the total area of the plate.

G

Photo 5.2 The center of gravity of a 
boomerang is not located on the object itself.
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234 Distributed Forces: Centroids and Centers of Gravity

If U.S. customary units are used, the specific weight γ should be 

expressed in lb/ft3, the thickness t in feet, and the areas DA and A in square 

feet. Then DW and W are expressed in pounds. If SI units are used, γ

should be expressed in N/m3, t in meters, and the areas DA and A in square 

meters; the weights DW and W are then expressed in newtons.†

Substituting for DW and W in the moment equations (5.1) and divid-

ing throughout by γ t, we obtain

oMy:  xA 5 x1 DA1 1 x2 DA2 1 ? ? ? 1 xn DAn

oMx:  yA 5 y1 DA1 1 y2 DA2 1 ? ? ? 1 yn DAn

If we increase the number of elements into which the area A is divided 

and simultaneously decrease the size of each element, in the limit we obtain

Centroid of an area A

 xA 5#x dA    y A 5 #y dA (5.3)

Or, solving for x and y, we obtain

 x 5
#x dA

A
     y 5

#y dA

A
 (5.39)

These equations define the coordinates x and y of the center of  gravity of 

a homogeneous plate. The point whose coordinates are x and y is also 

known as the centroid C of the area A of the plate (Fig. 5.3). If the plate 

is not homogeneous, you cannot use these equations to determine the center 

of gravity of the plate; they still define, however, the centroid of the area.

xAxxA 5#x dAdd y A 5 #y dAdd

O x

x

y

y

O x

y

AΔ A

C

⎯y

⎯x

O x

y

 (a) Divide area into elements (b) Element DA at point x, y (c) Centroid located at

x 5
#x dA

A
   y 5

#y dA

A
Fig. 5.3 The centroid of an area is the point where a homogeneous plate of uniform thickness 
would balance.

†We should note that in the SI system of units, a given material is generally characterized 

by its density ρ (mass per unit volume) rather than by its specific weight γ. You can obtain 

the specific weight of the material from the relation

γ 5 ρg

where g 5 9.81 m/s2. Note that since ρ is expressed in kg/m3, the units of γ are (kg/m3)(m/s2), 

or N/m3.
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5.1 Planar Centers of Gravity and Centroids 235

Fig. 5.4 The centroid of a line is the point where a homogeneous wire of uniform cross section 
would balance.

(a) Divide line into elements (b) Element DL at point x, y (c) Centroid located at

x 5
#x dL

L
   y 5

#y dL

L

x

x

y

y

O
x

y

O

⎯y

⎯xΔ L

 L

C

x

y

O

In the case of a homogeneous wire of uniform cross section, we can 

express the magnitude DW of the weight of an element of wire as

DW 5 γa DL

where γ 5 specific weight of the material

 a 5 cross-sectional area of the wire

 DL 5 length of the element

The center of gravity of the wire then coincides with the centroid C of 
the line L defining the shape of the wire (Fig.  5.4). We can obtain the 

coordinates x and y of the centroid of line L from the equations

Centroid of a line L

 xL 5#x dL     yL 5#y dL (5.4)

Solving for x and y gives us

 x 5
#x dL

L
      y 5

#y dL

L
 (5.49)

xL 5#x dLdd yL 5#y dLdd

5.1C First Moments of Areas and Lines
The integral ∫ x dA in Eqs. (5.3) is known as the first moment of the 
area A with respect to the y axis and is denoted by Qy. Similarly, the 

integral ∫ y dA defines the first moment of A with respect to the x axis
and is denoted by Qx. That is,

First moments of area A

Qy 5 #x dA     Qx 5 #y dA (5.5)Qy 5 #xdAdd Qx 5 #ydAdd  
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236 Distributed Forces: Centroids and Centers of Gravity

Comparing Eqs. (5.3) with Eqs. (5.5), we note that we can express the 

first moments of the area A as the products of the area and the coordinates 

of its centroid:

Qy 5 xA   Qx 5 yA (5.6)

It follows from Eqs. (5.6) that we can obtain the coordinates of the 

centroid of an area by dividing the first moments of that area by the area 

itself. The first moments of the area are also useful in mechanics of mate-

rials for determining the shearing stresses in beams under transverse load-

ings. Finally, we observe from Eqs. (5.6) that, if the centroid of an area 

is located on a coordinate axis, the first moment of the area with respect 

to that axis is zero. Conversely, if the first moment of an area with respect 

to a coordinate axis is zero, the centroid of the area is located on that axis.

We can use equations similar to Eqs. (5.5) and (5.6) to define the 

first moments of a line with respect to the coordinate axes and to express 

these moments as the products of the length L of the line and the coordi-

nates x and y of its centroid.

An area A is said to be symmetric with respect to an axis BB9 if 

for every point P of the area there exists a point P9 of the same area such 

that the line PP9 is perpendicular to BB9 and is divided into two equal 

parts by that axis (Fig. 5.5a). The axis BB9 is called an axis of symmetry. 

A line L is said to be symmetric with respect to an axis BB9 if it satisfies 

similar conditions. When an area A or a line L possesses an axis of sym-

metry BB9, its first moment with respect to BB9 is zero, and its centroid 

is located on that axis. For example, note that, for the area A of Fig. 5.5b, 

which is symmetric with respect to the y axis, every element of area dA

Qy 5 xAxxA Qx 5 yAyyA 

x

x

y

O

C

A

– x

dAdA'

P

P'

B'

(a)

(b)

B

Fig. 5.5 Symmetry about an axis. (a) The 
area is symmetric about the axis BB9. (b) The 
centroid of the area is located on the axis of 
symmetry.
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5.1 Planar Centers of Gravity and Centroids 237

with abscissa x corresponds to an element dA9 of equal area and with 

abscissa 2x. It follows that the integral in the first of Eqs. (5.5) is zero 

and, thus, that Qy 5 0. It also follows from the first of the relations in 

Eq. (5.3) that x 5 0. Thus, if an area A or a line L possesses an axis of 

symmetry, its centroid C is located on that axis.

We further note that if an area or line possesses two axes of sym-

metry, its centroid C must be located at the intersection of the two axes 

(Fig. 5.6). This property enables us to determine immediately the centroids 

of areas such as circles, ellipses, squares, rectangles, equilateral triangles, 

or other symmetric figures, as well as the centroids of lines in the shape 

of the circumference of a circle, the perimeter of a square, etc.

C
C

B

B'

B

B'
D

D'

D'D

(a) (b)

Fig. 5.6 If an area has two axes of symmetry, the centroid 
is located at their intersection. (a) An area with two axes 
of symmetry but no center of symmetry; (b) an area with 
two axes of symmetry and a center of symmetry.

We say that an area A is symmetric with respect to a center O if, 

for every element of area dA of coordinates x and y, there exists an ele-

ment dA9 of equal area with coordinates 2x and 2y (Fig.  5.7). It then 

follows that the integrals in Eqs. (5.5) are both zero and that Qx 5 Qy 5 0. 

It also follows from Eqs. (5.3) that x 5 y 5 0; that is, that the centroid 

of the area coincides with its center of symmetry O. Similarly, if a line 

possesses a center of symmetry O, the centroid of the line coincides with 

the center O.

Note that a figure possessing a center of symmetry does not neces-

sarily possess an axis of symmetry (Fig. 5.7), whereas a figure possessing 

two axes of symmetry does not necessarily possess a center of symmetry 

(Fig. 5.6a). However, if a figure possesses two axes of symmetry at right 

angles to each other, the point of intersection of these axes is a center of 

symmetry (Fig. 5.6b).

Determining the centroids of unsymmetrical areas and lines and of 

areas and lines possessing only one axis of symmetry will be discussed 

in the next section. Centroids of common shapes of areas and lines are 

shown in Fig. 5.8A and B.

5.1D Composite Plates and Wires
In many instances, we can divide a flat plate into rectangles, triangles, or 

the other common shapes shown in Fig.  5.8A. We can determine the 

abscissa X of the plate’s center of gravity G from the abscissas x1, x2, . . . , xn 

of the centers of gravity of the various parts. To do this, we equate the 

moment of the weight of the whole plate about the y axis to the sum of 

x

y

O

A dA

dA'

x

y

– y

– x

Fig. 5.7 An area may have a center of 
symmetry but no axis of symmetry.
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238 Distributed Forces: Centroids and Centers of Gravity
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O

O

O
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0
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a

a

a

b
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h

h

n + 1
n + 2

a n + 1
4n + 2
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n + 1

C

0

0

0

⎯x

⎯y
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h

C

3α
2r sin  α    r2α

3�

3�

3�

3�3
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�

�

�

Fig. 5.8A Centroids of common shapes of areas.

bee87302_ch05_230-296.indd   238bee87302_ch05_230-296.indd   238 10/24/14   11:57 AM10/24/14   11:57 AM

UPLOADED BY AHMAD T JUNDI



5.1 Planar Centers of Gravity and Centroids 239

the moments of the weights of the various parts about the same axis 

(Fig.  5.9). We can obtain the ordinate Y  of the center of gravity of the 

plate in a similar way by equating moments about the x axis. Mathemati-

cally, we have

 oMy:  X(W1 1 W2 1 . . . 1 Wn) 5 x1W1 1 x2W2 1 . . . 1 xnWn

 oMx:  Y(W1 1 W2 1 . . . 1 Wn) 5 y1W1 1 y2W2 1 . . . 1 ynWn

⎯x

⎯y

r sin a
a

2r
� �

�

2r

2r

2
� r

� r

Shape

Quarter-circular
arc

Semicircular arc

Arc of circle

Length

0

2a r0

O
O

O

C

C

r

rC

⎯x

⎯y⎯x

a

a

Fig. 5.8B Centroids of common shapes of lines.

=

x

y

z

x

y

z

O
G

⎯X

⎯Y

W1 W2

W3

G1
G2

G3

ΣW

ΣMy :  ⎯X Σ W = Σ⎯x W

ΣMx :  ⎯Y Σ W = Σ⎯y W

O

Fig. 5.9. We can determine the location of the center of gravity G of a 
composite plate from the centers of gravity G1, G2, . . . of the component plates.

In more condensed notation, this is

Center of gravity
of a composite plate

X 5
o xW

W
   Y 5

o yW

W
 (5.7)X 5

oxW

W
Y 5

oyW

W
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240 Distributed Forces: Centroids and Centers of Gravity

We can use these equations to find the coordinates X and Y  of the center 

of gravity of the plate from the centers of gravity of its component parts.

If the plate is homogeneous and of uniform thickness, the center of 

gravity coincides with the centroid C of its area. We can determine 

the abscissa X of the centroid of the area by noting that we can express the 

first moment Qy of the composite area with respect to the y axis as (1) the 

product of X and the total area and (2) as the sum of the first moments of 

the elementary areas with respect to the y axis (Fig.  5.10). We obtain the 

=

x

y

O

C⎯X

⎯Y

A1

A3

A2

C1 C2

C3
ΣA

Qy  = ⎯X Σ A = Σ⎯x A

Qx  = ⎯Y Σ A = Σ⎯y A

x

y

O

Fig. 5.10 We can find the location of the centroid of a composite 
area from the centroids of the component areas.

x

y

z

x

y

⎯x1

⎯x2

⎯xA⎯x

W1
W2

W3

A1

A1 Semicircle

A2 Full rectangle

A3 Circular hole

A2 A3

+

–

A

⎯x3

⎯x1

⎯x3

⎯x2

+

+

–

+ +

–

–

Fig. 5.11 When calculating the centroid of 
a composite area, note that if the centroid of 
a component area has a negative coordinate 
distance relative to the origin, or if the area 
represents a hole, then the first moment is 
negative.

ordinate Y of the centroid in a similar way by considering the first moment 

Qx of the composite area. We have

 Qy 5 X(A1 1 A2 1 . . . 1 An) 5 x1A1 1 x2 A2 1 . . . 1 xn An

 Qx 5 Y(A1 1 A2 1 . . . 1 An) 5 y1A1 1 y2 A2 1 . . . 1 yn An

Again, in shorter form,

Centroid of a
composite area

Qy 5 X oA 5 oxA    Qx 5 Y oA 5 oyA (5.8)

These equations yield the first moments of the composite area, or we can 

use them to obtain the coordinates X and Y  of its centroid.

First moments of areas, like moments of forces, can be positive or 

negative. Thus, you need to take care to assign the appropriate sign to the 

moment of each area. For example, an area whose centroid is located to 

the left of the y axis has a negative first moment with respect to that axis. 

Also, the area of a hole should be assigned a negative sign (Fig. 5.11).

Similarly, it is possible in many cases to determine the center of 

gravity of a composite wire or the centroid of a composite line by dividing 

the wire or line into simpler elements (see Sample Prob. 5.2).

Qy 5 XoAoo 5 oxAxxA Qx 5 YoAoo 5 oyAyyA
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5.1 Planar Centers of Gravity and Centroids 241

Sample Problem 5.1

For the plane area shown, determine (a) the first moments with respect to 

the x and y axes; (b) the location of the centroid.

STRATEGY: Break up the given area into simple components, find the 

centroid of each component, and then find the overall first moments and 

centroid.

MODELING: As shown in Fig. 1, you obtain the given area by adding 

a rectangle, a triangle, and a semicircle and then subtracting a circle. Using 

the coordinate axes shown, find the area and the coordinates of the centroid 

of each of the component areas. To keep track of the data, enter them in 

a table. The area of the circle is indicated as negative because it is sub-

tracted from the other areas. The coordinate y of the centroid of the triangle 

is negative for the axes shown. Compute the first moments of the compo-

nent areas with respect to the coordinate axes and enter them in your table.

y

x

80 mm

60 mm

60 mm
40 mm

120 mm

Fig. 1 Given area modeled as the combination of simple geometric shapes.

y y

x

80 mm

60 mm

r1 = 60 mm

r2 = 40 mm

120 mm

x x x x

y y y

= + + _
40 mm

40 mm

–20 mm

= 25.46 mm
4r1 
3 r1 = 60 mm

r2 = 40 mm

60 mm60 mm

60 mm

80 mm 105.46 mm 80 mm

�

Component A, mm2 x, mm y , mm x A, mm3 y  A, mm3

Rectangle (120)(80) 5 9.6 3 103 60 40 1576 3 103 1384 3 103

Triangle 
1
2(120)(60) 5 3.6 3 103 40 220 1144 3 103 272 3 103

Semicircle 
1
2π(60)2 5 5.655 3 103 60 105.46 1339.3 3 103 1596.4 3 103

Circle 2π(40)2 5 25.027 3 103 60 80 2301.6 3 103 2402.2 3 103

 oA 5 13.828 3 103   oxA 5 1757.7 3 103 oyA 5 1506.2 3 103

ANALYSIS:

 a. First Moments of the Area. Using Eqs. (5.8), you obtain

 Qx 5 oyA 5 506.2 3 103 mm3  Qx 5 506 3 103 mm3 b

 Qy 5 oxA 5 757.7 3 103 mm3  Qy 5 758 3 103 mm3 b

 b. Location of Centroid. Substituting the values given in the table 

into the equations defining the centroid of a composite area yields (Fig. 2)

X oA 5 oxA:  X(13.828 3 103 mm2) 5 757.7 3 103 mm3

X 5 54.8 mm b

Y oA 5 oyA:  Y(13.828 3 103 mm2) 5 506.2 3 103 mm3

Y  5 36.6 mm b

y

x

C

X = 54.8 mm

Y = 36.6 mm

Fig. 2 Centroid of composite area.
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242 Distributed Forces: Centroids and Centers of Gravity

REFLECT and THINK: Given that the lower portion of the shape has 

more area to the left and that the upper portion has a hole, the location 

of the centroid seems reasonable upon visual inspection.

Sample Problem 5.2

The figure shown is made from a piece of thin, homogeneous wire. Deter-

mine the location of its center of gravity.

STRATEGY: Since the figure is formed of homogeneous wire, its center 

of gravity coincides with the centroid of the corresponding line. Therefore, 

you can simply determine that centroid.

10 in.

12 in.

5 in.

24 in.

C

y

xBA

26 in.

Fig. 1 Location of each line segment’s centroid.

MODELING: Choosing the coordinate axes shown in Fig.  1 with the 

origin at A, determine the coordinates of the centroid of each line segment 

and compute the first moments with respect to the coordinate axes. You 

may find it convenient to list the data in a table.

Segment L, in. x, in. y, in. x L, in2 y L, in2

AB 24 12 0 288   0

BC 26 12 5 312 130

CA 10  0 5   0  50

 oL 5 60   ox L 5 600 oy L 5 180

ANALYSIS: Substituting the values obtained from the table into the 

equations defining the centroid of a composite line gives 

X oL 5 ox L:  X(60 in.) 5 600 in2 X 5 10 in. b

Y oL 5 oy L:  Y(60 in.) 5 180 in2 Y  5  3 in. b

REFLECT and THINK: The centroid is not on the wire itself, but it is 

within the area enclosed by the wire.

26 in.
10 in.

24 in.

C

BA
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5.1 Planar Centers of Gravity and Centroids 243

Sample Problem 5.3

A uniform semicircular rod of weight W and radius r is attached to a pin 

at A and rests against a frictionless surface at B. Determine the reactions 

at A and B.

STRATEGY: The key to solving the problem is finding where the 

weight W of the rod acts. Since the rod is a simple geometrical shape, 

you can look in Fig. 5.8 for the location of the wire’s centroid.

MODELING: Draw a free-body diagram of the rod (Fig. 1). The forces 

acting on the rod are its weight W, which is applied at the center of grav-

ity G (whose position is obtained from Fig. 5.8B); a reaction at A, repre-

sented by its components Ax and Ay; and a horizontal reaction at B.

G

B

Ax

A

Ay

WB

2r

2r
�

Fig. 1 Free-body diagram of rod.

ANALYSIS:

1l oMA 5 0: B(2r) 2 W a2r

π
b 5 0

 B 5 1
W

π
 B 5

W

π
 y b

   y
1 oFx 5 0: Ax 1 B 5 0

 Ax 5 2B 5 2
W

π
    Ax 5

W

π
 z

  1xoFy 5 0:  Ay 2 W 5 0 Ay 5 W x

Adding the two components of the reaction at A (Fig. 2), we have

 A 5 cW 
2 1 aW

π
b2 d 1/2

 A 5 W a1 1
1

π 
2
b1/2

 b

tan α 5
W

W/π
5 π  α 5 tan21

π b

The answers can also be expressed as

 A 5 1.049W b72.3°   B 5 0.318Wy b

REFLECT and THINK: Once you know the location of the rod’s center 

of gravity, the problem is a straightforward application of the concepts in 

Chapter 4.

A

B

O

r

Ay = W

a

Ax =
W
�

A

Fig. 2 Reaction at A.
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244244

SOLVING PROBLEMS 
ON YOUR OWN

In this section, we developed the general equations for locating the centers of gravity 

of two-dimensional bodies and wires [Eqs. (5.2)] and the centroids of plane areas 

[Eqs. (5.3)] and lines [Eqs. (5.4)]. In the following problems, you will have to locate 

the centroids of composite areas and lines or determine the first moments of the area 

for composite plates [Eqs. (5.8)].

1. Locating the centroids of composite areas and lines. Sample Problems 5.1 and 

5.2 illustrate the procedure you should follow when solving problems of this type. 

However, several points are worth emphasizing.

 a. The first step in your solution should be to decide how to construct the given 

area or line from the common shapes of Fig. 5.8. You should recognize that for plane 

areas it is often possible to construct a particular shape in more than one way. Also, 

showing the different components (as is done in Sample Prob. 5.1) can help you cor-

rectly establish their centroids and areas or lengths. Do not forget that you can subtract 

areas as well as add them to obtain a desired shape.

 b. We strongly recommend that for each problem you construct a table listing the 

areas or lengths and the respective coordinates of the centroids. Remember, any areas 

that are “removed” (such as holes) are treated as negative. Also, the sign of negative 

coordinates must be included. Therefore, you should always carefully note the location 

of the origin of the coordinate axes.

 c. When possible, use symmetry [Sec. 5.1C] to help you determine the location 

of a centroid.

 d. In the formulas for the circular sector and for the arc of a circle in Fig. 5.8, the 

angle α must always be expressed in radians.

2. Calculating the first moments of an area. The procedures for locating the cen-

troid of an area and for determining the first moments of an area are similar; however, 

it is not necessary to compute the total area for finding first moments. Also, as noted 

in Sec. 5.1C, you should recognize that the first moment of an area relative to a 

centroidal axis is zero.

3. Solving problems involving the center of gravity. The bodies considered in the 

following problems are homogeneous; thus, their centers of gravity and centroids 

coincide. In addition, when a body that is suspended from a single pin is in equilib-

rium, the pin and the body’s center of gravity must lie on the same vertical line.

It may appear that many of the problems in this section have little to do with the 

study of mechanics. However, being able to locate the centroid of composite shapes 

will be essential in several topics that you will study later in this course.
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Problems
 5.1 through 5.9 Locate the centroid of the plane area shown.

x

y

45 mm

45 mm27 mm

Fig. P5.1

x

y

60 mm

60 mm

60 mm

75 mm75 mm

75 mm

Fig. P5.4

x

y

24 mm18 mm

32 mm

12 mm12 mm

Fig. P5.3

1 in.

1 in.

2 in.

5 in.

4 in.

x

y

Fig. P5.2

x

y
6 in.

4 in.

3 in.

Fig. P5.5 Fig. P5.6

x

y

60 mm

60 mm

Fig. P5.7

x

y

8 in. 8 in.

5 in.
8 in.

Fig. P5.8

r = 38 in.

x

y

16 in.

20 in.

Fig. P5.9

x

y

75 mm

75 mm

75 mm
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246

 5.10 through 5.15 Locate the centroid of the plane area shown.

 5.16 Determine the y coordinate of the centroid of the shaded area in 

terms of r1, r2, and α.

 5.17 Show that as r1 approaches r2, the location of the centroid 

approaches that for an arc of circle of radius (r1 1 r2)/2.

 5.18 Determine the x coordinate of the centroid of the trapezoid shown 

in terms of h1, h2, and a.

x

h2

a

h1

y

Fig. P5.18

 5.19 For the semiannular area of Prob. 5.12, determine the ratio r1 to 

r2 so that the centroid of the area is located at x 5 21
2 
r2 and y 5 0.

Parabola

Vertex10 in.

3 in.

16 in.

y

x

Fig. P5.10

x

y

a = 8 in.

x = ky2

b = 4 in.

Fig. P5.13

x

y

Vertex

Parabola

75 mm

60 mm

60 mm

Fig. P5.11

3 m

4.5 m4.5 m

r = 1.8 m

Vertex
Parabola

x

y

Fig. P5.14

x

y

r1 = 72 mm

r2 = 120 mm

Fig. P5.12

x

y

r

90 mm
60 mm

60 mm 60 mm

Fig. P5.15

x

y

α α
r1 r2

Fig. P5.16 and Fig. P5.17
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 5.20 A composite beam is constructed by bolting four plates to four 60 3

60 3 12-mm angles as shown. The bolts are equally spaced along 

the beam, and the beam supports a vertical load. As proved in 

mechanics of materials, the shearing forces exerted on the bolts at A
and B are proportional to the first moments with respect to the cen-

troidal x axis of the red shaded areas shown, respectively, in parts a
and b of the figure. Knowing that the force exerted on the bolt at A
is 280 N, determine the force exerted on the bolt at B.

300 mm

12 mm 12 mm

12 mm

12 mm

60 mm

60 mm

A

C C
x x

B

(a) (b)

450 mm

Fig. P5.20

 5.21 and 5.22 The horizontal x axis is drawn through the centroid C of 

the area shown, and it divides the area into two component areas A1

and A2. Determine the first moment of each component area with 

respect to the x axis, and explain the results obtained.

  

0.60 in.

0.84 in.

0.24 in. 0.24 in.

0.72 in.

x

y

0.72 in.

A2

A1

C

Fig. P5.21  

65

20

40

20

Dimensions in mm

x

y

15

40

A2

A1

C

Fig. P5.22

 5.23 The first moment of the shaded area with respect to the x axis is 

denoted by Qx. (a) Express Qx in terms of b, c, and the distance y 

from the base of the shaded area to the x axis. (b) For what value 

of y is Qx maximum, and what is that maximum value?

x

y

b

c
y

c

C

Fig. P5.23
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 5.24 through 5.27 A thin, homogeneous wire is bent to form the 

perimeter of the figure indicated. Locate the center of gravity of the 

wire figure thus formed.

5.24 Fig. P5.1.

5.25 Fig. P5.3.

5.26 Fig. P5.5.

5.27 Fig. P5.8.

 5.28 The homogeneous wire ABC is bent into a semicircular arc and a 

straight section as shown and is attached to a hinge at A. Determine 

the value of θ for which the wire is in equilibrium for the indicated 

position.

 5.29 The frame for a sign is fabricated from thin, flat steel bar stock of 

mass per unit length 4.73 kg/m. The frame is supported by a pin at 

C and by a cable AB. Determine (a) the tension in the cable, (b) the 

reaction at C.

A

C

B

R
0.75 m

0.8 m

0.2 m

1.35 m

0.6 m

Fig. P5.29

 5.30 The homogeneous wire ABCD is bent as shown and is attached to a 

hinge at C. Determine the length L for which portion BCD of the 

wire is horizontal.

80 mm

B

L

C

A

D

60 mm

Fig. P5.30 and P5.31

 5.31 The homogeneous wire ABCD is bent as shown and is attached to a 

hinge at C. Determine the length L for which portion AB of the wire 

is horizontal.

 5.32 Determine the distance h for which the centroid of the shaded area 

is as far above line BB9 as possible when (a) k 5 0.10, (b) k 5 0.80.

 5.33 Knowing that the distance h has been selected to maximize the dis-

tance y from line BB9 to the centroid of the shaded area, show that 

y 5 2h/3.

A

B

C

r

q

r

Fig. P5.28

B B'

b

kb

a

h

Fig. P5.32 and P5.33
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5.2 Further Considerations of Centroids 249

5.2  FURTHER CONSIDERATIONS 
OF CENTROIDS

The objects we analyzed in Sec. 5.1 were composites of basic geometric 

shapes like rectangles, triangles, and circles. The same idea of locating a 

center of gravity or centroid applies for an object with a more complicated 

shape, but the mathematical techniques for finding the location are a little 

more difficult.

5.2A  Determination of Centroids 
by Integration

For an area bounded by analytical curves (i.e., curves defined by algebraic 

equations), we usually determine the centroid by evaluating the integrals 

in Eqs. (5.39):

x 5
#x dA

A
   y 5

#y dA

A
 (5.39)

If the element of area dA is a small rectangle of sides dx and dy, evaluat-

ing each of these integrals requires a double integration with respect to x 

and y. A double integration is also necessary if we use polar coordinates 

for which dA is a small element with sides dr and r dθ.

In most cases, however, it is possible to determine the coordinates 

of the centroid of an area by performing a single integration. We can 

achieve this by choosing dA to be a thin rectangle or strip, or it can be a 

thin sector or pie-shaped element (Fig.  5.12). The centroid of the thin 

rectangle is located at its center, and the centroid of the thin sector is 

located at a distance (2/3)r from its vertex (as it is for a triangle). Then 

we obtain the coordinates of the centroid of the area under consideration 

⎯xel = x

⎯yel = y/2

dA = ydx

(c)

⎯yel = y

dA = (a – x) dy

(b)

⎯xel =
a + x

2

(a)

⎯xel =
2r
3

⎯yel =
2r
3

dA = 1
2

cosθ

sinθ

r2 dθ

⎯xel

⎯yel

⎯xel ⎯xel

⎯yel

⎯yel

x

a

y

x

y

x

x x

y yy

O O Odx

dy

P(x, y)

P(x, y)

r

θ

2r
3

P(  , r)θ

Fig. 5.12 Centroids and areas of differential elements. (a) Vertical rectangular strip; 
(b) horizontal rectangular strip; (c) triangular sector.
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250 Distributed Forces: Centroids and Centers of Gravity

by setting the first moment of the entire area with respect to each of the 

coordinate axes equal to the sum (or integral) of the corresponding 

moments of the elements of the area. Denoting the coordinates of the 

centroid of the element dA by xel and yel, we have

First moments of area

 Qy 5 xA 5#xel dA 

  Qx 5 yA 5#yel  dA 

(5.9)

If we do not already know the area A, we can also compute it from these 

elements.

In order to carry out the integration, we need to express the coordi-

nates xel and yel of the centroid of the element of area dA in terms of the 

coordinates of a point located on the curve bounding the area under con-

sideration. Also, we should express the area of the element dA in terms of 

the coordinates of that point and the appropriate differentials. This has been 

done in Fig. 5.12 for three common types of elements; the pie-shaped ele-

ment of part (c) should be used when the equation of the curve bounding 

the area is given in polar coordinates. You can substitute the appropriate 

expressions into formulas (5.9), and then use the equation of the bounding 

curve to express one of the coordinates in terms of the other. This process 

reduces the double integration to a single integration. Once you have deter-

mined the area and evaluated the integrals in Eqs. (5.9), you can solve these 

equations for the coordinates x and y of the centroid of the area.

When a line is defined by an algebraic equation, you can determine 

its centroid by evaluating the integrals in Eqs. (5.49):

 x 5
#x dL

L
   y 5

#y dL

L
 (5.49)

You can replace the differential length dL with one of the following 

expressions, depending upon which coordinate, x, y, or θ, is chosen as the 

independent variable in the equation used to define the line (these expres-

sions can be derived using the Pythagorean theorem):

dL 5
B

1 1 ady

dx
b2

dx   dL 5
B

1 1 adx

dy
b2

dy

dL 5
B

r2 1 a dr

dθ
b2

dθ

After you have used the equation of the line to express one of the coor-

dinates in terms of the other, you can perform the integration and solve 

Eqs. (5.4) for the coordinates x and y of the centroid of the line.

5.2B Theorems Of Pappus-Guldinus
These two theorems, which were first formulated by the Greek geometer 

Pappus during the third century C.E. and later restated by the Swiss math-

ematician Guldinus or Guldin (1577–1643), deal with surfaces and bodies 

Qy 5 xAxxA 5#xel dAdd

Qx 5 yAyyA 5#yel dAdd
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5.2 Further Considerations of Centroids 251

of revolution. A surface of revolution is a surface that can be generated 

by rotating a plane curve about a fixed axis. For example, we can obtain 

the surface of a sphere by rotating a semicircular arc ABC about the 

diameter AC (Fig.  5.13). Similarly, rotating a straight line AB about an 

axis AC produces the surface of a cone, and rotating the circumference of 

a circle about a nonintersecting axis generates the surface of a torus or 

ring. A body of revolution is a body that can be generated by rotating a 

plane area about a fixed axis. As shown in Fig.  5.14, we can generate a 

sphere, a cone, and a torus by rotating the appropriate shape about the 

indicated axis.

Sphere Cone Torus

Fig. 5.14. Rotating plane areas about an axis generates 
volumes of revolution.

Theorem I. The area of a surface of revolution is equal to the length 
of the generating curve times the distance traveled by the centroid of 
the curve while the surface is being generated.

x x

dL

dA

C

L

⎯yy

2 ⎯y�

Fig. 5.15 An element of length dL 
rotated about the x axis generates a 
circular strip of area dA. The area of the 
entire surface of revolution equals 
the length of the line L multiplied by 
the distance traveled by the centroid C 
of the line during one revolution.

Proof. Consider an element dL of the line L (Fig. 5.15) that is revolved 

about the x axis. The circular strip generated by the element dL has an area 

A

B

CA C

B

Sphere Cone
A C

Torus

Fig. 5.13. Rotating plane curves about an axis generates 
surfaces of revolution.

Photo 5.3 The storage tanks 
shown are bodies of revolution. 
Thus, their surface areas and 
volumes can be determined using 
the theorems of Pappus-Guldinus.
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252 Distributed Forces: Centroids and Centers of Gravity

dA equal to 2πy dL. Thus, the entire area generated by L is A 5 ∫ 2πy dL. 

Recall our earlier result that the integral ∫ y dL is equal to yL. Therefore, 

we have

 A 5 2πyL (5.10)

Here 2πy is the distance traveled by the centroid C of L (Fig. 5.15). �

Note that the generating curve must not cross the axis about which 

it is rotated; if it did, the two sections on either side of the axis would 

generate areas having opposite signs, and the theorem would not apply.

Theorem II. The volume of a body of revolution is equal to the 
generating area times the distance traveled by the centroid of the area 
while the body is being generated.

Proof. Consider an element dA of the area A that is revolved about the 

x axis (Fig.  5.16). The circular ring generated by the element dA has a 

volume dV equal to 2πy dA. Thus, the entire volume generated by A is 

V 5 ∫2πy dA, and since we showed earlier that the integral ∫ y dA is 

equal to yA, we have

V 5 2πyA (5.11)

Here 2πy is the distance traveled by the centroid of A. �

y

x

dV

dA

y

x

A
C

2  y�

Fig. 5.16 An element of area dA rotated 
about the x axis generates a circular ring of 
volume dV. The volume of the entire body of 
revolution equals the area of the region A 
multiplied by the distance traveled by the 
centroid C of the region during one revolution.

Again, note that the theorem does not apply if the axis of rotation 

intersects the generating area. 

The theorems of Pappus-Guldinus offer a simple way to compute 

the areas of surfaces of revolution and the volumes of bodies of revolution. 

Conversely, they also can be used to determine the centroid of a plane 

curve if you know the area of the surface generated by the curve or to 

determine the centroid of a plane area if you know the volume of the body 

generated by the area (see Sample Prob. 5.8).

A 5 2πyππ L

V 5 2πyππ AyyA
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5.2 Further Considerations of Centroids 253

Sample Problem 5.4

Determine the location of the centroid of a parabolic spandrel by direct 

integration.

STRATEGY: First express the parabolic curve using the parameters a
and b. Then choose a differential element of area and express its area in 

terms of a, b, x, and y. We illustrate the solution first with a vertical ele-

ment and then a horizontal element.

MODELING: 

Determination of the Constant k. Determine the value of k by 

substituting x 5 a and y 5 b into the given equation. We have b 5 ka2 

or k 5 b/a2. The equation of the curve is thus

y 5
b

a2
 x2    or    x 5

a

b1/2
  y1/2

ANALYSIS: 

Vertical Differential Element. Choosing the differential element 

shown in Fig. 1, the total area of the region is

A 5#  dA 5#  y dx 5#
a

0

 
b

a2
 x2 dx 5 c b

a2
 
x3

3
d a

0

5
ab

3

a

x

y

y

dA = y dx

⎯yel =
y
2

⎯xel = x

Fig. 1 Vertical differential element 
used to determine centroid.

The first moment of the differential element with respect to the y axis is 

xel dA; hence, the first moment of the entire area with respect to this axis is

Qy 5 #  xel dA 5 #  xy dx 5 #
a

0

 x a b

a2
 x2b dx 5 c b

a2
 
x4

4
d a

0

5
a2b

4

Since Qy 5 xA, you have

xA 5#xel dA      x  

ab

3
5

a2b

4
      x 5

3
4 a b

Likewise, the first moment of the differential element with respect to the 

x axis is yel dA, so the first moment of the entire area about the x axis is

Qx 5#  yel dA 5#  
y

2
  y dx 5#

a

0

 
1

2
 a b

a2
  x2b2

dx 5 c b2

2a4
 
x5

5
d a

0

5
ab2

10

Since Qx 5 yA, you get

yA 5#  yel dA      y  

ab

3
5

ab2

10
      y 5

3
10 b b

a
x

y = kx2

y

b
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254 Distributed Forces: Centroids and Centers of Gravity

Horizontal Differential Element. You obtain the same results by 

considering a horizontal element (Fig. 2). The first moments of the area are

Qy 5#  xel  dA 5#  
a 1 x

2
 (a 2 x) dy 5#

b

0

 
a2 2 x2

2
  dy

 5
1

2
 #

b

0

 aa2 2
a2

b
  yb dy 5

a2b

4

Qx 5#  yel  dA 5#  y(a 2 x) dy 5#  y aa 2
a

b1/2
 y1/2b 

dy

 5#
b

0

 aay 2
a

b1/2
  y3/2b 

dy 5
ab2

10

To determine x and y, again substitute these expressions into the equations 

defining the centroid of the area.

REFLECT and THINK: You obtain the same results whether you 

choose a vertical or a horizontal element of area, as you should. You can 

use both methods as a check against making a mistake in your 

calculations.

x

b

⎯yel = y

⎯xel =
a + x

2

dA = (a – x) dy

a

y

x

Fig. 2 Horizontal differential 
element used to determine centroid.

Sample Problem 5.5

Determine the location of the centroid of the circular arc shown.

STRATEGY: For a simple figure with circular geometry, you should use 

polar coordinates.

MODELING: The arc is symmetrical with respect to the x axis, so 

y 5 0. Choose a differential element, as shown in Fig. 1. 

ANALYSIS: Determine the length of the arc by integration.

L 5#  dL 5#
α

2α

 r dθ 5 r #
α

2α

 dθ 5 2rα

The first moment of the arc with respect to the y axis is

 Qy 5#
 

x dL 5#
α

2α

 (r cos θ)(r dθ) 5 r2 #
α

2α

 cos θ dθ

 5 r2 [sin θ]α

2α 5 2r2 sin α

Since Qy 5 xL, you obtain

x(2rα) 5 2r2 sin α      x 5
r sin α

α
 b

REFLECT and THINK: Observe that this result matches that given for 

this case in Fig. 5.8B.

O

α

α

r

Fig. 1 Differential element used 
to determine centroid.

x

y

θ
O

r

 = θ α

dθ
dL = r dθ

x = r cosθ

 = –θ α
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5.2 Further Considerations of Centroids 255

Sample Problem 5.6

Determine the area of the surface of revolution shown that is obtained by 

rotating a quarter-circular arc about a vertical axis.

STRATEGY: According to the first Pappus-Guldinus theorem, the area 

of the surface of revolution is equal to the product of the length of the 

arc and the distance traveled by its centroid. 

MODELING and ANALYSIS: Referring to Fig. 5.8B and Fig. 1, you 

have

 x 5 2r 2
2r

π
5 2r

 
a1 2

1

π
b

 A 5 2πxL 5 2π c 2r
 
a1 2

1

π
b d

 
aπr

2
b

A 5 2πr2(π 2 1) b

r

2r

Fig. 1 Centroid location of arc.

y

x

x

2r

C

2r
�

20 mm

20 mm 20 mm
60 mm

30 mm
400 mm

100 mm Sample Problem 5.7

The outside diameter of a pulley is 0.8 m, and the cross section of its rim 

is as shown. Knowing that the pulley is made of steel and that the density 

of steel is ρ 5 7.85 3 103 kg/m3, determine the mass and weight of 

the rim.

STRATEGY: You can determine the volume of the rim by applying the 

second Pappus-Guldinus theorem, which states that the volume equals the 

product of the given cross-sectional area and the distance traveled by its 

centroid in one complete revolution. However, you can find the volume 

more easily by observing that the cross section can be formed from rect-

angle I with a positive area and from rectangle II with a negative area 

(Fig. 1).

MODELING: Use a table to keep track of the data, as you did in Sec. 5.1.

  Distance Traveled
 Area, mm2 y, mm by C, mm Volume, mm3

 I 15000 375 2π(375) 5 2356  (5000)(2356) 5 11.78 3 106

II 21800 365 2π(365) 5 2293 (21800)(2293) 5 24.13 3 106

     Volume of rim 5 7.65 3 106

ANALYSIS: Since 1 mm 5 1023 m, you have 1 mm23 5 (1023 m)3 5

1029 m3. Thus you obtain V 5 7.65 3 106 mm3 5 (7.65 3 106)(1029 m3) 5

7.65 3 1023 m3.

m 5 ρV 5 (7.85 3 103 kg/m3)(7.65 3 1023 m3)  m 5 60.0 kg b

 W 5 mg 5 (60.0 kg)(9.81 m/s2) 5 589 kg?m/s2 W 5 589 N b

_

100 mm 60 mm

50 mm 30 mm

CII

CI II
I

375 mm 365 mm

Fig. 1 Modeling the given area by 
subtracting area II from area I.
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256 Distributed Forces: Centroids and Centers of Gravity

Sample Problem 5.8

Using the theorems of Pappus-Guldinus, determine (a) the centroid of a 

semicircular area and (b) the centroid of a semicircular arc. Recall that 

the volume and the surface area of a sphere are 
4
3πr3 and 4πr2, 

respectively.

STRATEGY: The volume of a sphere is equal to the product of the area 

of a semicircle and the distance traveled by the centroid of the semicircle 

in one revolution about the x axis. Given the volume, you can determine the 

distance traveled by the centroid and thus the distance of the centroid from 

the axis. Similarly, the area of a sphere is equal to the product of the length 

of the generating semicircle and the distance traveled by its centroid in one 

revolution. You can use this to find the location of the centroid of the arc.

MODELING: Draw diagrams of the semicircular area and the semicir-

cular arc (Fig. 1) and label the important geometries.

x

x

r

r2
A = 2

L =

⎯y

⎯yr

�

r�

Fig. 1 Semicircular area 
and semicircular arc.

ANALYSIS: Set up the equalities described in the theorems of Pappus-

Guldinus and solve for the location of the centroid.

V 5 2π yA    4

3
 π r3 5 2π y a1

2
 πr2b    y 5

4r

3π
 b

 A 5 2πyL      4πr2 5 2πy(πr) y 5
2r

π
 b

REFLECT and THINK: Observe that this result matches those given 

for these cases in Fig. 5.8.

REFLECT and THINK: When a cross section can be broken down into 

multiple common shapes, you can apply Theorem II of Pappus–Guldinus 

in a manner that involves finding the products of the centroid (y) and area 

(A), or the first moments of area (yA), for each shape. Thus, it was not 

necessary to find the centroid or the area of the overall cross section.
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257 257

SOLVING PROBLEMS 
ON YOUR OWN

In the problems for this section, you will use the equations

 x 5
#x dA

A
   y 5

#y dA

A
 (5.39)

 x 5
#x dL

L
   y 5

#y dL

L
 (5.49)

to locate the centroids of plane areas and lines, respectively. You will also apply the 

theorems of Pappus-Guldinus to determine the areas of surfaces of revolution and the 

volumes of bodies of revolution.

1. Determining the centroids of areas and lines by direct integration. 
When solving problems of this type, you should follow the method of solution shown 

in Sample Probs. 5.4 and 5.5. To compute A or L, determine the first moments of the 

area or the line, and solve Eqs. (5.3) or (5.4) for the coordinates of the centroid. In 

addition, you should pay particular attention to the following points.

 a. Begin your solution by carefully defining or determining each term in the appli-

cable integral formulas. We strongly encourage you to show on your sketch of the 

given area or line your choice for dA or dL and the distances to its centroid.

b. As explained in Sec. 5.2A, x and y in Eqs. (5.3) and (5.4) represent the coor-
dinates of the centroid of the differential elements dA and dL. It is important to 

recognize that the coordinates of the centroid of dA are not equal to the coordinates 

of a point located on the curve bounding the area under consideration. You should 

carefully study Fig. 5.12 until you fully understand this important point.

 c. To possibly simplify or minimize your computations, always examine the shape 

of the given area or line before defining the differential element that you will use. 

For example, sometimes it may be preferable to use horizontal rectangular elements 

instead of vertical ones. Also, it is usually advantageous to use polar coordinates when 

a line or an area has circular symmetry.

 d. Although most of the integrations in this section are straightforward, at times 

it may be necessary to use more advanced techniques, such as trigonometric substitu-

tion or integration by parts. Using a table of integrals is often the fastest method to 

evaluate difficult integrals.

2. Applying the theorems of Pappus-Guldinus. As shown in Sample Probs. 5.6 

through 5.8, these simple, yet very useful theorems allow you to apply your knowl-

edge of centroids to the computation of areas and volumes. Although the theorems 

refer to the distance traveled by the centroid and to the length of the generating curve 

or to the generating area, the resulting equations [Eqs. (5.10) and (5.11)] contain the 

products of these quantities, which are simply the first moments of a line (yL) and 

an area (yA), respectively. Thus, for those problems for which the generating line or 

area consists of more than one common shape, you need only determine yL or yA; 

you do not have to calculate the length of the generating curve or the generating area.
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 5.34 through 5.36 Determine by direct integration the centroid of the 

area shown. Express your answer in terms of a and h.

Problems

x

y

h

a

Fig. P5.34

x

y

y = mx

y = kx2

h

a

Fig. P5.35

x

y

a a

h

y = kx2

Fig. P5.36

x

y

a

a
2

a
2

a

a

Fig. P5.37

x

y

r1

r2

Fig. P5.38

x

y

b

a

x2

a2

y2

b2
+ = 1

Fig. P5.39

 5.37 through 5.39 Determine by direct integration the centroid of the 

area shown.

 5.40 and 5.41 Determine by direct integration the centroid of the area 

shown. Express your answer in terms of a and b.

x

y

b

a

y = k(x – a)2

Fig. P5.40

x

y

a

b
y1 = k1x2

y2 = k2x3

Fig. P5.41
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5.42 Determine by direct integration the centroid of the area shown.

 5.43 and 5.44 Determine by direct integration the centroid of the area 

shown. Express your answer in terms of a and b.

x

y

b
2

b
2

a
2

a
2

x = ky2

Fig. P5.43

x

y

y = kx2

a a

b

b

Fig. P5.44

 5.45 and 5.46 A homogeneous wire is bent into the shape shown. Deter-

mine by direct integration the x coordinate of its centroid. 

x

y

a

a

π
20 ≤     ≤θx = a cos3

y = a sin3
θ
θ

Fig. P5.45

y

x

r 45°

45°

Fig. P5.46

*5.47 A homogeneous wire is bent into the shape shown. Determine by 

direct integration the x coordinate of its centroid. Express your 

answer in terms of a.

 *5.48 and *5.49 Determine by direct integration the centroid of the area 

shown.

x

y

q

r = a eq

Fig. P5.48

y

x
L

a

y 5 a sin
p x
L

L
2

Fig. P5.49

5.50 Determine the centroid of the area shown in terms of a.

 5.51 Determine the centroid of the area shown when a 5 4 in.

 5.52 Determine the volume and the surface area of the solid obtained by 

rotating the area of Prob. 5.1 about (a) the x axis, (b) the line x 5 72 mm.

 5.53 Determine the volume and the surface area of the solid obtained by 

rotating the area of Prob. 5.2 about (a) the x axis, (b) the y axis.

y

x
L L

a

y = a 1 – x
L

x2

L2
+  ) (

Fig. P5.42

x

y

a

a

y = kx
3
2

Fig. P5.47

1
x

x

y

a

a
y =

Fig. P5.50 and P5.51
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 5.54 Determine the volume and the surface area of the solid obtained by 

rotating the area of Prob. 5.6 about (a) the line x 5 –60 mm, (b) the 

line y 5 120 mm.

 5.55 Determine the volume and the surface area of the chain link shown, 

which is made from a 6-mm-diameter bar, if R 5 10 mm and L 5 30 mm.

L

R

R

Fig. P5.55

 5.56 Determine the volume of the solid generated by rotating the para-

bolic area shown about (a) the x axis, (b) the axis AA9.

x

y

h

a a a A

A'

Fig. P5.56

 5.57 Verify that the expressions for the volumes of the first four shapes 

in Fig. 5.21 are correct.

 5.58 Knowing that two equal caps have been removed from a 10-in.-

diameter wooden sphere, determine the total surface area of the 

remaining portion.

5.59 Three different drive belt profiles are to be studied. If at any given 

time each belt makes contact with one-half of the circumference of 

its pulley, determine the contact area between the belt and the pulley 

for each design.

0.625 in.

(a) (b) (c)

0.08 in.
r = 0.25 in.

40°
40°

0.375 in.
0.125 in.

3 in.3 in. 3 in.

Fig. P5.59

4 in.

4 in.

10 in.

Fig. P5.58
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 5.60 Determine the capacity, in liters, of the punch bowl shown if 

R 5 250 mm.

R

R

Fig. P5.60

5.61 Determine the volume and total surface area of the bushing shown.

 5.62 Determine the volume and weight of the solid brass knob shown, 

knowing that the specific weight of brass is 0.306 lb/in3.

 5.63 Determine the total surface area of the solid brass knob shown.

 5.64 The aluminum shade for the small high-intensity lamp shown has a 

uniform thickness of 1 mm. Knowing that the density of aluminum 

is 2800 kg/m3, determine the mass of the shade.

32 mm

26 mm32 mm56 mm

28 mm

66 mm

8 mm

Fig. P5.64

*5.65 The shade for a wall-mounted light is formed from a thin sheet of 

translucent plastic. Determine the surface area of the outside of the 

shade, knowing that it has the parabolic cross section shown.

100 mm

y

x

y = k x2

250 mm

Fig. P5.65

60 mm

42 mm52 mm

20 mm

Fig. P5.61

1.25 in.
r = 0.75 in.

r = 0.75 in.

Fig. P5.62 and P5.63
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262 Distributed Forces: Centroids and Centers of Gravity

5.3  ADDITIONAL APPLICATIONS 
OF CENTROIDS

We can use the concept of the center of gravity or the centroid of an area 

to solve other problems besides those dealing with the weights of flat 

plates. The same techniques allow us to deal with other kinds of distrib-

uted loads on objects, such as the forces on a straight beam (a bridge 

girder or the main carrying beam of a house floor) or a flat plate under 

water (the side of a dam or a window in an aquarium tank).

5.3A Distributed Loads on Beams
Consider a beam supporting a distributed load; this load may consist of 

the weight of materials supported directly or indirectly by the beam, or it 

may be caused by wind or hydrostatic pressure. We can represent the 

distributed load by plotting the load w supported per unit length (Fig. 5.17); 

this load is expressed in N/m or in lb/ft. The magnitude of the force 

exerted on an element of the beam with length dx is dW 5 w dx, and the 

total load supported by the beam is

W 5 #
L

0

w dx

Note that the product w dx is equal in magnitude to the element of area dA
shown in Fig.  5.17a. The load W is thus equal in magnitude to the total 

area A under the load curve, as

W 5 #dA 5 A

We now want to determine where a single concentrated load W, of the 

same magnitude W as the total distributed load, should be applied on the beam 

if it is to produce the same reactions at the supports (Fig. 5.17b). However, 

this concentrated load W, which represents the resultant of the given distrib-

uted loading, is equivalent to the loading only when considering the free-body 

diagram of the entire beam. We obtain the point of application P of the 

equivalent concentrated load W by setting the moment of W about point O 

equal to the sum of the moments of the elemental loads dW about O. Thus,

(OP)W 5 #x dW

Then, since dW 5 w dx 5 dA and W 5 A, we have

 (OP)A 5 #
L

0

x dA (5.12)

Since this integral represents the first moment with respect to the w axis 

of the area under the load curve, we can replace it with the product xA. 

We therefore have OP 5 x, where x is the distance from the w axis to the 

centroid C of the area A (this is not the centroid of the beam).

We can summarize this result:

We can replace a distributed load on a beam by a concentrated 
load; the magnitude of this single load is equal to the area under 
the load curve, and its line of action passes through the centroid of 
that area. 

(a)

(b)

w

O

w

dx
x

L

B

dW = dA

x

d W

w

O B x

L

P

W = A
W

C⎯x=

Fig. 5.17 (a) A load curve representing 
the distribution of load forces along a 
horizontal beam, with an element of 
length dx; (b) the resultant load W has 
magnitude equal to the area A under the 
load curve and acts through the centroid 
of the area.

Photo 5.4 The roof of a building shown 
must be able to support not only the 
total weight of the snow but also the 
nonsymmetric distributed loads resulting 
from drifting of the snow.
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5.3 Additional Applications of Centroids 263

Note, however, that the concentrated load is equivalent to the given loading 

only so far as external forces are concerned. It can be used to determine reac-

tions, but should not be used to compute internal forces and deflections.

*5.3B Forces on Submerged Surfaces
The approach used for distributed loads on beams works in other applica-

tions as well. Here, we use it to determine the resultant of the hydrostatic 

pressure forces exerted on a rectangular surface submerged in a liquid. We 

can use these methods to determine the resultant of the hydrostatic forces 

exerted on the surfaces of dams, rectangular gates, and vanes. In Chap. 9, 

we discuss the resultants of forces on submerged surfaces of variable width.

Consider a rectangular plate with a length of L and width of b, 

where b is measured perpendicular to the plane of the figure (Fig. 5.18). 

As for the case of distributed loads on a beam, the load exerted on an 

element of the plate with a length of dx is w dx, where w is the load per 

unit length and x is the distance along the length. However, this load also 

can be expressed as p dA 5 pb dx, where p is the gage pressure in the 

liquid† and b is the width of the plate; thus, w 5 bp. Since the gage pres-

sure in a liquid is p 5 γh, where γ is the specific weight of the liquid 

and h is the vertical distance from the free surface, it follows that

 w 5 bp 5 bγh (5.13)

This equation shows that the load per unit length w is proportional to h 

and, thus, varies linearly with x.

From the results of Sec. 5.3A, the resultant R of the hydrostatic 

forces exerted on one side of the plate is equal in magnitude to the trap-

ezoidal area under the load curve, and its line of action passes through 

the centroid C of that area. The point P of the plate where R is applied 

is known as the center of pressure.‡

Now consider the forces exerted by a liquid on a curved surface of 

constant width (Fig.  5.19a). Since determining the resultant R of these 

forces by direct integration would not be easy, we consider the free body 

obtained by detaching the volume of liquid ABD bounded by the curved 

surface AB and by the two plane surfaces AD and DB shown in Fig. 5.19b. 

The forces acting on the free body ABD are the weight W of the detached 

volume of liquid, the resultant R1 of the forces exerted on AD, the resul-

tant R2 of the forces exerted on BD, and the resultant 2R of the forces 

exerted by the curved surface on the liquid. The resultant 2R is both equal 

and opposite to and has the same line of action as the resultant R of the 

forces exerted by the liquid on the curved surface. We can determine the forces 

W, R1, and R2 by standard methods. After their values have been found, 

we obtain the force 2R by solving the equations of equilibrium for the 

free body of Fig. 5.19b. The resultant R of the hydrostatic forces exerted 

on the curved surface is just the reverse of 2R.

†The pressure p, which represents a load per unit area, is measured in N/m2 or in lb/ft2. The 

derived SI unit N/m2 is called a pascal (Pa).
‡The area under the load curve is equal to wE L, where wE is the load per unit length at the 

center E of the plate. Then from Eq. (5.13), we have

R 5 wE 
L 5 (bpE)L 5 pE(bL) 5 pE A

where A denotes the area of the plate. Thus, we can obtain the magnitude of R by multiply-

ing the area of the plate by the pressure at its center E. Note, however, that the resultant R 

should be applied at P, not at E.

Fig. 5.18 The waterside face of a 
hydroelectric dam can be modeled as a 
rectangular plate submerged under water. 
Shown is a side view of the plate.

C

R
w

L

E
P

A

Surface of water

B

x

dx

(a)

(b)

A

B

A
D

B

R

R1

R2

–R
W

Fig. 5.19 (a) Force R exerted by a liquid 
on a submerged curved surface of constant 
width; (b) free-body diagram of the volume 
of liquid ABD.
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264 Distributed Forces: Centroids and Centers of Gravity

Sample Problem 5.9

A beam supports a distributed load as shown. (a) Determine the equivalent 

concentrated load. (b) Determine the reactions at the supports.

STRATEGY: The magnitude of the resultant of the load is equal to the 

area under the load curve, and the line of action of the resultant passes 

through the centroid of the same area. Break down the area into pieces 

for easier calculation, and determine the resultant load. Then, use the 

calculated forces or their resultant to determine the reactions.

MODELING and ANALYSIS:

a. Equivalent Concentrated Load. Divide the area under the load 

curve into two triangles (Fig. 1), and construct the table below. To simplify 

the computations and tabulation, the given loads per unit length have been 

converted into kN/m.

Component A, kN x, m x A, kN?m

Triangle I 4.5 2 9

Triangle II 13.5 4 54

oA 5 18.0  oxA 5 63

Thus, XoA 5 oxA: X(18 kN) 5 63 kN?m X 5 3.5 m

The equivalent concentrated load (Fig. 2) is

W 5 18 kN w b

Its line of action is located at a distance

X 5 3.5 m to the right of A b

b. Reactions. The reaction at A is vertical and is denoted by A. Rep-

resent the reaction at B by its components Bx and By. Consider the given 

load to be the sum of two triangular loads (see the free-body diagram, 

Fig.  3). The resultant of each triangular load is equal to the area of the 

triangle and acts at its centroid. 

 Write the following equilibrium equations from the free-body diagram:

H

1  

oFx 5 0: Bx 5 0 b

1l oMA 5 0:  2(4.5 kN)(2 m) 2 (13.5 kN)(4 m) 1 By(6 m) 5 0

By 5 10.5 kNx b

1l oMB 5 0:  1(4.5 kN)(4 m) 1 (13.5 kN)(2 m) 2 A(6 m) 5 0

A 5 7.5 kNx b

REFLECT and THINK: You can replace the given distributed load by 

its resultant, which you found in part a. Then you can determine the reac-

tions from the equilibrium equations oFx 5 0, oMA 5 0, and oMB 5 0. 

Again the results are

Bx 5 0   By 5 10.5 kNx A 5 7.5 kNx b

A B

wA = 1500 N/m

wB = 4500 N/m

L = 6 m

I

II
4.5 kN/m

1.5 kN/m

6 m
⎯x = 2 m

⎯x = 4 m

x

Fig. 1 The load modeled as two 
triangular areas.

A B

18 kN
⎯X = 3.5 m

Fig. 2 Equivalent concentrated load.

A

Bx

By

4.5 kN
13.5 kN

2 m

4 m

6 m

Fig. 3 Free-body diagram of beam.
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5.3 Additional Applications of Centroids 265

Sample Problem 5.10

The cross section of a concrete dam is shown. Consider a 1-ft-thick section 

of the dam, and determine (a) the resultant of the reaction forces exerted 

by the ground on the base AB of the dam, (b) the resultant of the pressure 

forces exerted by the water on the face BC of the dam. The specific 

weights of concrete and water are 150 lb/ft3 and 62.4 lb/ft3, respectively.

5 ft

Vertex

Parabola

18 ft

A B

C

22 ft

9 ft 10 ft

STRATEGY: Draw a free-body diagram of the section of the dam, 

breaking it into parts to simplify the calculations. Model the resultant of 

the reactions as a force-couple system at A. Use the method described in 

Sec. 5.3B to find the force exerted by the dam on the water and reverse 

it to find the force exerted by the water on face BC.

MODELING and ANALYSIS: 

a. Ground Reaction. Choose as a free body the 1-ft-thick section 

AEFCDB of the dam and water (Fig.  1). The reaction forces exerted by 

the ground on the base AB are represented by an equivalent force-couple 

system at A. Other forces acting on the free body are the weight of the 

dam represented by the weights of its components W1, W2, and W3; the 

weight of the water W4; and the resultant P of the pressure forces exerted 

on section BD by the water to the right of section BD. 

x

y
2.5 ft

4 ft

E F

C D

A

B

3 ft

H

M

V

P

W1 W3

W4
W2

w = bp
    = (1 ft)(18 ft)(62.4 lb/ft3)

9 ft

22 ft

14 ft

6 ft

18 ft

6 ft

6 ft

Fig. 1 Free-body diagram of dam and water.
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266 Distributed Forces: Centroids and Centers of Gravity

 Calculate each of the forces that appear in the free-body diagram, Fig. 1:

 W1 5
1
2(9 ft)(22 ft)(1 ft)(150 lb/ft3) 5 14,850 lb

 W2 5 (5 ft)(22 ft)(1 ft)(150 lb/ft3) 5 16,500 lb

 W3 5
1
3(10 ft)(18 ft)(1 ft)(150 lb/ft3) 5 9000 lb

 W4 5
2
3(10 ft)(18 ft)(1 ft)(62.4 lb/ft3) 5 7488 lb

 P 5
1
2(18 ft)(1 ft)(18 ft)(62.4 lb/ft3) 5 10,109 lb

Equilibrium Equations. Write the equilibrium equations for the sec-

tion of the dam, and calculate the forces and moment labeled at A in Fig. 1.

H

1 oFx 5 0:  H 2 10,109 lb 5 0 H 5 10,110 lb y b

 1xoFy 5 0:  V 2 14,850 lb 2 16,500 lb 2 9000 lb 2 7488 lb 5 0

V 5 47,840 lbx b 

1l oMA 5 0:  2(14,850 lb)(6 ft) 2 (16,500 lb)(11.5 ft)

 2 (9000 lb)(17 ft) 2 (7488 lb)(20 ft) 1 (10,109 lb)(6 ft) 1 M 5 0

M 5 520,960 lb?ft l b

You can replace the force-couple system by a single force acting at a 

distance d to the right of A, where

d 5
520,960 lb?ft

47,840 lb
5 10.89 ft

b. Resultant R of Water Forces. Draw a free-body diagram for 

the parabolic section of water BCD (Fig. 2). The forces involved are the 

resultant 2R of the forces exerted by the dam on the water, the weight 

W4, and the force P. Since these forces must be concurrent, 2R passes 

through the point of intersection G of W4 and P. Draw a force triangle to 

determine the magnitude and direction of 2R. The resultant R of the 

forces exerted by the water on the face BC is equal and opposite. Hence, 

R 5 12,580 lb d36.5° b

x

y
4 ft

C D

B

G P

W4 =
7488 lbW4

–R

–R

P = 10,109 lb

α

α = 36.5°
R = 12,580 lb

6 ft

Fig. 2 Free-body diagram of parabolic section 
of water BCD.

REFLECT and THINK: Note that if you found the distance d to be 

negative—that is, if the moment reaction at A had been acting in the 

opposite direction—this would have indicated an instability condition of 

the dam. In this situation, the effects of the water pressure would over-

come the weight of the dam, causing it to tip about A.
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267 267

The problems in this section involve two common and very important types of 

loading: distributed loads on beams and forces on submerged surfaces of constant 

width. As we discussed in Sec. 5.3 and illustrated in Sample Probs. 5.9 and 5.10, 

determining the single equivalent force for each of these loadings requires a knowl-

edge of centroids.

1. Analyzing beams subjected to distributed loads. In Sec. 5.3A, we showed that 

a distributed load on a beam can be replaced by a single equivalent force. The mag-

nitude of this force is equal to the area under the distributed load curve, and its line 

of action passes through the centroid of that area. Thus, you should begin solving this 

kind of problem by replacing the various distributed loads on a given beam by their 

respective single equivalent forces. You can then determine the reactions at the sup-

ports of the beam by using the methods of Chap. 4.

When possible, divide complex distributed loads into the common-shape areas shown 

in Fig. 5.8A (Sample Prob. 5.9). You can replace each of these areas under the loading 

curve by a single equivalent force. If required, you can further reduce the system of 

equivalent forces to a single equivalent force. As you study Sample Prob. 5.9, note 

how we used the analogy between force and area under the loading curve and applied 

the techniques for locating the centroid of a composite area to analyze a beam sub-

jected to a distributed load.

2. Solving problems involving forces on submerged bodies. Remember the follow-

ing points and techniques when solving problems of this type.

a. The pressure p at a depth h below the free surface of a liquid is equal to γh or 

ρgh, where γ and ρ are the specific weight and the density of the liquid, respectively. 

The load per unit length w acting on a submerged surface of constant width b is then

w 5 bp 5 bγh 5 bρgh

 b. The line of action of the resultant force R acting on a submerged plane surface 

is perpendicular to the surface.

 c. For a vertical or inclined plane rectangular surface with a width of b, you can 

represent the loading on the surface using a linearly distributed load that is trapezoidal 

in shape (Fig. 5.18). The magnitude of the resultant R is given by

R 5 γhE A

where hE is the vertical distance to the center of the surface and A is the area of the 

surface.

SOLVING PROBLEMS 
ON YOUR OWN
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d. The load curve is triangular (rather than trapezoidal) when the top edge of a 

plane rectangular surface coincides with the free surface of the liquid, since the pres-

sure of the liquid at the free surface is zero. For this case, it is straightforward to 

determine the line of action of R, because it passes through the centroid of a trian-
gular distributed load.

e. For the general case, rather than analyzing a trapezoid, we suggest that you use 

the method indicated in part b of Sample Prob. 5.9. First divide the trapezoidal dis-

tributed load into two triangles, and then compute the magnitude of the resultant of 

each triangular load. (The magnitude is equal to the area of the triangle times the 

width of the plate.) Note that the line of action of each resultant force passes through 

the centroid of the corresponding triangle and that the sum of these forces is equivalent 

to R. Thus, rather than using R, you can use the two equivalent resultant forces whose 

points of application are easily calculated. You should use the equation given for R
here in paragraph c when you need only the magnitude of R.

f. When the submerged surface of a constant width is curved, you can obtain the 

resultant force acting on the surface by considering the equilibrium of the volume of 

liquid bounded by the curved surface and by using horizontal and vertical planes 

(Fig. 5.19). Observe that the force R1 of Fig. 5.19 is equal to the weight of the liquid 

lying above the plane AD. The method of solution for problems involving curved 

surfaces is shown in part b of Sample Prob. 5.10.

In subsequent mechanics courses (in particular, mechanics of materials and fluid 

mechanics), you will have ample opportunity to use the ideas introduced in this 

section.
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 5.66 and 5.67 For the beam and loading shown, determine (a) the mag-

nitude and location of the resultant of the distributed load, (b) the 

reactions at the beam supports.

Problems

1600 N/m

400 N/m

A B

6 m

Fig. P5.66

900 N/m

2000 N/m

A B

6 m

Parabola

Vertex

Fig. P5.67

A B

4 ft 3 ft

150 lb/ft

200 lb/ft

Fig. P5.68

50 lb/in.

A B

12 in. 6 in.20 in.
400 lb

Fig. P5.69

600 lb/ft

480 lb/ft

A D
B C

2 ft
6 ft3 ft

Fig. P5.70

5.68 through 5.73 Determine the reactions at the beam supports for the 

given loading.

400 N/m

900 N/m

A B

0.6 m0.4 m
1.5 m

Fig. P5.71

100 lb/ft

200 lb/ft

A B

6 ft12 ft

Parabolas

Fig. P5.72

A B

6 m

900 N/m

300 N/m

Parabola

Vertex

Fig. P5.73
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 5.74 Determine (a) the distance a so that the vertical reactions at supports 

A and B are equal, (b) the corresponding reactions at the supports.

 5.75 Determine (a) the distance a so that the reaction at support B is 

minimum, (b) the corresponding reactions at the supports.

 5.76 Determine the reactions at the beam supports for the given loading 

when w0 5 400 lb/ft.

300 lb/ft

w0

A
B

C

5 ft 7 ft

Fig. P5.76 and P5.77

 5.77 Determine (a) the distributed load w0 at the end A of the beam ABC
for which the reaction at C is zero, (b) the corresponding reaction at B.

 5.78 The beam AB supports two concentrated loads and rests on soil that 

exerts a linearly distributed upward load as shown. Determine the 

values of wA and wB corresponding to equilibrium.

 5.79 For the beam and loading of Prob. 5.78, determine (a) the distance 

a for which wA 5 20 kN/m, (b) the corresponding value of wB.

  In the following problems, use γ 5 62.4 lb/ft3 for the specific weight of 

fresh water and γc 5 150 lb/ft3 for the specific weight of concrete if U.S. 

customary units are used. With SI units, use ρ 5 103 kg/m3 for the density of 

fresh water and ρc 5 2.40 3 103 kg/m3 for the density of concrete. (See the 

footnote on page 234 for how to determine the specific weight of a material 

given its density.)

 5.80 The cross section of a concrete dam is as shown. For a 1-ft-wide 

dam section determine (a) the resultant of the reaction forces exerted 

by the ground on the base AB of the dam, (b) the point of application 

of the resultant of part a, (c) the resultant of the pressure forces 

exerted by the water on the face BC of the dam.

15 ft
18 ft

9 ft 6 ft 6 ft

A B

C

Fig. P5.80

 5.81 The cross section of a concrete dam is as shown. For a 1-m-wide 

dam section determine (a) the resultant of the reaction forces exerted 

by the ground on the base AB of the dam, (b) the point of application 

of the resultant of part a, (c) the resultant of the pressure forces 

exerted by the water on the face BC of the dam.

A B
wA

wB

24 kN 30 kN
0.3 m

1.8 m

a = 0.6 m

Fig. P5.78

4 m
3 m

1.5 m 2 m

Parabola

Vertex

A B

C

Fig. P5.81

A B

4 m

600 N/m

a

1800 N/m

Fig. P5.74 and P5.75
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 5.82 The dam for a lake is designed to withstand the additional force 

caused by silt that has settled on the lake bottom. Assuming that silt 

is equivalent to a liquid of density ρs 5 1.76 3 103 kg/m3 and con-

sidering a 1-m-wide section of dam, determine the percentage 

increase in the force acting on the dam face for a silt accumulation 

of depth 2 m.

5.83 The base of a dam for a lake is designed to resist up to 120 percent 

of the horizontal force of the water. After construction, it is found 

that silt (that is equivalent to a liquid of density ρs 5 1.76 3 103 kg/m3) 

is settling on the lake bottom at the rate of 12 mm/year. Considering 

a 1-m-wide section of dam, determine the number of years of service 

until the dam becomes unsafe.

 5.84 An automatic valve consists of a 9 3 9-in. square plate that is piv-

oted about a horizontal axis through A located at a distance h 5 3.6 in. 

above the lower edge. Determine the depth of water d for which the 

valve will open.

 5.85 An automatic valve consists of a 9 3 9-in. square plate that is piv-

oted about a horizontal axis through A. If the valve is to open when 

the depth of water is d 5 18 in., determine the distance h from the 

bottom of the valve to the pivot A.

 5.86 The 3 3 4-m side AB of a tank is hinged at its bottom A and is held 

in place by a thin rod BC. The maximum tensile force the rod can 

withstand without breaking is 200 kN, and the design specifications 

require the force in the rod not to exceed 20 percent of this value. 

If the tank is slowly filled with water, determine the maximum allow-

able depth of water d in the tank.

A

BCT

3 m
d

Fig. P5.86 and P5.87

 5.87 The 3 3 4-m side of an open tank is hinged at its bottom A and 

is held in place by a thin rod BC. The tank is to be filled with 

glycerine with a density of 1263 kg/m3. Determine the force T in 

the rod and the reaction at the hinge after the tank is filled to a depth 

of 2.9 m.

 5.88 A 0.5 3 0.8-m gate AB is located at the bottom of a tank filled with 

water. The gate is hinged along its top edge A and rests on a friction-

less stop at B. Determine the reactions at A and B when cable BCD
is slack.

 5.89 A 0.5 3 0.8-m gate AB is located at the bottom of a tank filled with 

water. The gate is hinged along its top edge A and rests on a friction-

less stop at B. Determine the minimum tension required in cable 

BCD to open the gate.

Water

Silt

6.6 m

Fig. P5.82 and P5.83

h

d

A

B

9 in.

Fig. P5.84 and P5.85

A

B

C D T

0.27 m

0.45 m

0.48 m

0.64 m

Fig. P5.88 and P5.89
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 5.90 A 4 3 2-ft gate is hinged at A and is held in position by rod CD. 

End D rests against a spring whose constant is 828 lb/ft. The spring 

is undeformed when the gate is vertical. Assuming that the force 

exerted by rod CD on the gate remains horizontal, determine the 

minimum depth of water d for which the bottom B of the gate will 

move to the end of the cylindrical portion of the floor.

5.91 Solve Prob. 5.90 if the gate weighs 1000 lb.

 5.92 A prismatically shaped gate placed at the end of a freshwater channel 

is supported by a pin and bracket at A and rests on a frictionless 

support at B. The pin is located at a distance h 5 0.10 m below the 

center of gravity C of the gate. Determine the depth of water d for 

which the gate will open.

B

C
h

0.75 m

0.40 m

d

A

Fig. P5.92 and P5.93

 5.93 A prismatically shaped gate placed at the end of a freshwater channel 

is supported by a pin and bracket at A and rests on a frictionless 

support at B. The pin is located at a distance h below the center of 

gravity C of the gate. Determine the distance h if the gate is to open 

when d 5 0.75 m.

 5.94 A long trough is supported by a continuous hinge along its lower 

edge and by a series of horizontal cables attached to its upper edge. 

Determine the tension in each of the cables at a time when the trough 

is completely full of water.

A

r = 24 in.

20 in.

20 in.

20 in.

Fig. P5.94

5.95 The square gate AB is held in the position shown by hinges along 

its top edge A and by a shear pin at B. For a depth of water d 5 3.5 ft, 

determine the force exerted on the gate by the shear pin.

A

B

C
D

2 ft

3 ft
d

4 ft

Fig. P5.90

30°

A

B1.8 ft

d

Fig. P5.95
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5.4 Centers of Gravity and Centroids of Volumes 273

5.4  CENTERS OF GRAVITY AND 
CENTROIDS OF VOLUMES

So far in this chapter, we have dealt with finding centers of gravity and 

centroids of two-dimensional areas and objects such as flat plates and 

plane surfaces. However, the same ideas apply to three-dimensional objects 

as well. The most general situations require the use of multiple integration 

for analysis, but we can often use symmetry considerations to simplify 

the calculations. In this section, we show how to do this.

5.4A  Three-Dimensional Centers 
of Gravity and Centroids 

For a three-dimensional body, we obtain the center of gravity G by divid-

ing the body into small elements. The weight W of the body acting at G 

is equivalent to the system of distributed forces DW representing the 

weights of the small elements. Choosing the y axis to be vertical with 

positive sense upward (Fig.  5.20) and denoting the position vector of G
to be r, we set W equal to the sum of the elemental weights DW and set 

its moment about O equal to the sum of the moments about O of the 

elemental weights. Thus, 

oF: 2Wj 5 o(2DWj) 
(5.14)

oMO: r 3 (2Wj) 5 o [r 3 (2DWj) ]  

G

y

O

=
ΔW

y

xx

z z

O

rr

W = –W j

ΔW = –ΔW j

Fig. 5.20 For a three-dimensional body, the weight W acting through 
the center of gravity G and its moment about O is equivalent to the 
system of distributed weights acting on all the elements of the body and 
the sum of their moments about O.

We can rewrite the last equation in the form

rW 3 (2j) 5 (or DW) 3 (2j) (5.15)

From these equations, we can see that the weight W of the body is equiva-

lent to the system of the elemental weights DW if the following conditions 

are satisfied:

W 5 o DW  rW 5 or DW

Photo 5.5 To predict the flight characteristics 
of the modified Boeing 747 when used to 
transport a space shuttle, engineers had to 
determine the center of gravity of each craft.
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274 Distributed Forces: Centroids and Centers of Gravity

Increasing the number of elements and simultaneously decreasing the size 

of each element, we obtain in the limit as

Weight, center of gravity
of a three-dimensional body

W 5#  dW    r W 5#  r dW  (5.16)

Note that these relations are independent of the orientation of the body. 

For example, if the body and the coordinate axes were rotated so that the 

z axis pointed upward, the unit vector 2j would be replaced by 2k in 

Eqs. (5.14) and (5.15), but the relations in Eqs. (5.16) would remain unchanged. 

Resolving the vectors r and r into rectangular components, we note 

that the second of the relations in Eqs. (5.16) is equivalent to the three 

scalar equations

 x W 5#  x dW   y W 5#  y dW   z W 5#  z dW  (5.17)

 or

x 5
#x dW

W
   y 5

#y dW

W
   z 5

#z dW

W
 (5.179)

If the body is made of a homogeneous material of specific weight γ, 

we can express the magnitude dW of the weight of an infinitesimal ele-

ment in terms of the volume dV of the element and express the magnitude 

W of the total weight in terms of the total volume V. We obtain

dW 5 γ dV   W 5 γV

Substituting for dW and W in the second of the relations in Eqs. (5.16), 

we have

 r V 5#  r dV  (5.18)

In scalar form, this becomes

Centroid of a
volume V

x V 5#  x dV   y V 5#  y dV   z V 5#  z dV  (5.19)

or

x 5
#x dV

V
   y 5

#y dV

V
   z 5

#z dV

V
 (5.199)

The center of gravity of a homogeneous body whose coordinates are x, y, z
is also known as the centroid C of the volume V of the body. If the body is 

not homogeneous, we cannot use Eqs. (5.19) to determine the center of gravity 

of the body; however, Eqs. (5.19) still define the centroid of the volume.

The integral ∫ x dV is known as the first moment of the volume 
with respect to the yz plane. Similarly, the integrals ∫ y dV and ∫ z dV
define the first moments of the volume with respect to the zx plane and 

W 5# dW rW 5# r dW

xW 5# x dW yW 5# y dW zW 5# z dW

xV 5# x dV yV 5# y dV zV 5# z dV
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5.4 Centers of Gravity and Centroids of Volumes 275

the xy plane, respectively. You can see from Eqs. (5.19) that if the centroid 

of a volume is located in a coordinate plane, the first moment of the 

volume with respect to that plane is zero.

A volume is said to be symmetrical with respect to a given plane 

if, for every point P of the volume, there exists a point P9 of the same 

volume such that the line PP9 is perpendicular to the given plane and is 

bisected by that plane. We say the plane is a plane of symmetry for the 

given volume. When a volume V possesses a plane of symmetry, the first 

moment of V with respect to that plane is zero, and the centroid of the 

volume is located in the plane of symmetry. If a volume possesses two 

planes of symmetry, the centroid of the volume is located on the line of 

intersection of the two planes. Finally, if a volume possesses three planes 

of symmetry that intersect at a well-defined point (i.e., not along a com-

mon line), the point of intersection of the three planes coincides with the 

centroid of the volume. This property enables us to determine immediately 

the locations of the centroids of spheres, ellipsoids, cubes, rectangular 

parallelepipeds, etc.

For unsymmetrical volumes or volumes possessing only one or two 

planes of symmetry, we can determine the location of the centroid by 

integration (Sec. 5.4C). The centroids of several common volumes are 

shown in Fig.  5.21. Note that, in general, the centroid of a volume of 

revolution does not coincide with the centroid of its cross section. Thus, 

the centroid of a hemisphere is different from that of a semicircular area, 

and the centroid of a cone is different from that of a triangle.

5.4B Composite Bodies
If a body can be divided into several of the common shapes shown in 

Fig. 5.21, we can determine its center of gravity G by setting the moment 

about O of its total weight equal to the sum of the moments about O of 

the weights of the various component parts. Proceeding in this way, we 

obtain the following equations defining the coordinates X, Y, Z of the cen-

ter of gravity G as

Center of gravity of a
body with weight W

 X oW 5 ox W   Y oW 5 oy W   Z oW 5 oz W  (5.20)

or

 X 5
o xW

o W
   Y 5

o yW

o W
   Z 5

o zW

o W
 (5.209)

If the body is made of a homogeneous material, its center of gravity 

coincides with the centroid of its volume, and we obtain

Centroid of a volume V

 X oV 5 ox V   Y oV 5 oy V   Z oV 5 oz V  (5.21)

or

 X 5
o xV

o V
   Y 5

o yV

o V
   Z 5

o zV

o V
 (5.219)

XoW 5 oxW YoW 5 oyW ZoW 5 ozW

XoV 5 oxV YoV 5 oyV ZoV 5 ozV
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276 Distributed Forces: Centroids and Centers of Gravity

Fig. 5.21 Centroids of common shapes and volumes.

Shape

Semiellipsoid
of revolution

Paraboloid 
of revolution

Cone

Pyramid

Hemisphere
C

Volume

3a
8

3h
8

h
3

h
4

h
4

1
3

abh

⎯x

a

a

a

a

a

b

C

C

C

C

h

h

h

h

⎯x

⎯x

⎯x

⎯x

⎯x

2
3

a3�

2
3

a2h�

1
2

a2h�

1
3

a2h�
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5.4 Centers of Gravity and Centroids of Volumes 277

5.4C  Determination of Centroids of 
Volumes by Integration

We can determine the centroid of a volume bounded by analytical surfaces 

by evaluating the integrals given earlier in this section:

x V 5#  x dV    y V 5#  y dV    z V 5#  z dV  (5.22)

If we choose the element of volume dV to be equal to a small cube with 

sides dx, dy, and dz, the evaluation of each of these integrals requires a 

triple integration. However, it is possible to determine the coordinates of 

the centroid of most volumes by double integration if we choose dV to 

be equal to the volume of a thin filament (Fig. 5.22). We then obtain the 

coordinates of the centroid of the volume by rewriting Eqs. (5.22) as

x V 5#  xel dV   y V 5#  yel dV   z V 5#  zel dV  (5.23)

Then we substitute the expressions given in Fig. 5.22 for the volume dV
and the coordinates xel, yel, zel. By using the equation of the surface to 

express z in terms of x and y, we reduce the integration to a double inte-

gration in x and y.

If the volume under consideration possesses two planes of symmetry, 

its centroid must be located on the line of intersection of the two planes. 

Choosing the x axis to lie along this line, we have

y 5 z 5 0

and the only coordinate to determine is x. This can be done with a single 
integration by dividing the given volume into thin slabs parallel to the 

yz plane and expressing dV in terms of x and dx in the equation

x V 5#  xel dV  (5.24)

For a body of revolution, the slabs are circular, and their volume is given 

in Fig. 5.23.

dx

r

xel

z

y

x

xel = x
dV =  r2 dx �

Fig. 5.23 Determining the centroid 
of a body of revolution.

xV 5# xel dV yV 5# yel dV zV 5# zel dV

xV 5# xel dV

P(x,y,z)

z

y

x

z

zel

xel

yel

xel = x,  yel = y,  zel =
dV = z dx dy 

z
2

dx
dy

Fig. 5.22 Determining the centroid 
of a volume by double integration.
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278 Distributed Forces: Centroids and Centers of Gravity

Sample Problem 5.11

Determine the location of the center of gravity of the homogeneous body 

of revolution shown that was obtained by joining a hemisphere and a 

cylinder and carving out a cone.

STRATEGY: The body is homogeneous, so the center of gravity coin-

cides with the centroid. Since the body was formed from a composite of 

three simple shapes, you can find the centroid of each shape and combine 

them using Eq. (5.21).

MODELING: Because of symmetry, the center of gravity lies on the 

x axis. As shown in Fig.  1, the body is formed by adding a hemisphere 

to a cylinder and then subtracting a cone. Find the volume and the abscissa 

of the centroid of each of these components from Fig. 5.21 and enter them 

in a table (below). Then you can determine the total volume of the body 

and the first moment of its volume with respect to the yz plane.

Component Volume, mm3 x, mm x V, mm4

Hemisphere
 

 
1

2
 
4π

3
 (60)3 5 0.4524 3 106

 
222.5 210.18 3 106

Cylinder π(60)2(100) 5   1.1310 3 106 150 156.55 3 106

Cone
 

 2
π

3
 (60)2(100) 5 20.3770 3 106

 
175 228.28 3 106

 oV 5     1.206 3 106  oxV 5 118.09 3 106

Thus,

X oV 5 oxV:  X(1.206 3 106 mm3) 5 18.09 3 106 mm4

X 5 15 mm b

100 mm

x

z

60 mm

60 mm

y

O

Fig. 1 The given body modeled as the combination of simple geometric 
shapes.

50 mm

xxx

yyy

O O O

60 mm

3
8

(60 mm) = 22.5 mm 3
4

(100 mm) = 75 mm

+ –

ANALYSIS: Note that the location of the centroid of the hemisphere is 

negative because it lies to the left of the origin.

REFLECT and THINK: Adding the hemisphere and subtracting the cone 

have the effect of shifting the centroid of the composite shape to the left of 

that for the cylinder (50 mm). However, because the first moment of volume 
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5.4 Centers of Gravity and Centroids of Volumes 279

for the cylinder is larger than for the hemisphere and cone combined, you 

should expect the centroid for the composite to still be in the positive x
domain. Thus, as a rough visual check, the result of 115 mm is reasonable.

Sample Problem 5.12

Locate the center of gravity of the steel machine part shown. The diame ter 

of each hole is 1 in.

0.5 in.

0.5 in.

1 in.

1 in.

1 in.
x

z

y

4.5 in.
2.5 in.

2 in.

2 in.

STRATEGY: This part can be broken down into the sum of two volumes 

minus two smaller volumes (holes). Find the volume and centroid of each 

volume and combine them using Eq. (5.21) to find the overall centroid.

MODELING: As shown in Fig. 1, the machine part can be obtained by 

adding a rectangular parallelepiped (I) to a quarter cylinder (II) and then 

subtracting two 1-in.-diameter cylinders (III and IV). Determine the volume 

and the coordinates of the centroid of each component and enter them in 

a table (below). Using the data in the table, determine the total volume and 

the moments of the volume with respect to each of the coordinate planes.

ANALYSIS: You can treat each component volume as a planar shape 

using Fig.  5.8A to find the volumes and centroids, but the right-angle 

joining of components I and II requires calculations in three dimensions. 

You may find it helpful to draw more detailed sketches of components 

with the centroids carefully labeled (Fig. 2).

0.5 in.

0.5 in.

CII CII

CICIII CIV

CI, CIII, CIV 

1 in. 1 in.

2 in. 1.5 in.

2.25 in.
0.25 in.

0.25 in.

4r
3= = 0.8488 in.4 (2)

x z

y y

8  in.

p3p

3p

Fig. 2 Centroids of components.

4.5 in.
2 in.

I

II

III IV

2 in.

1 in. diam.+
_ _

Fig. 1 The given body modeled as the 
combination of simple geometric shapes.
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280 Distributed Forces: Centroids and Centers of Gravity

Sample Problem 5.13

Determine the location of the centroid of the half right circular cone 

shown.

y

z
x

h

a

STRATEGY: This is not one of the shapes in Fig. 5.21, so you have to 

determine the centroid by using integration.

MODELING: Since the xy plane is a plane of symmetry, the centroid 

lies in this plane, and z 5 0. Choose a slab of thickness dx as a differential 

element. The volume of this element is

dV 5
1

2
πr2

 dx

  V, in3 x, in. y, in. z, in. x V, in4 y V, in4 z V, in4

 I   (4.5)(2)(0.5) 5 4.5 0.25 21 2.25   1.125 24.5  10.125

 II    
1
4 π(2)2(0.5) 5 1.571 1.3488 20.8488 0.25   2.119 21.333   0.393

 III 2π(0.5)2(0.5) 5 20.3927 0.25 21 3.5 20.098   0.393 21.374

 IV 2π(0.5)2(0.5) 5 20.3927 0.25 21 1.5 20.098   0.393 20.589

 oV 5 5.286    oxV 5 3.048 oyV 5 25.047 ozV 5 8.555

Thus,

XoV 5 oxV:  X(5.286 in3) 5 3.048 in4 X 5  0.577 in. b

YoV 5 oyV:  Y(5.286 in3) 5 25.047 in4 Y 5  20.955 in. b

ZoV 5 ozV:  Z(5.286 in3) 5 8.555 in4 Z 5  1.618 in. b

REFLECT and THINK: By inspection, you should expect X and Z to 

be considerably less than (1/2)(2.5 in.) and (1/2)(4.5 in.), respectively, 

and Y  to be slightly less in magnitude than (1/2)(2 in.). Thus, as a rough 

visual check, the results obtained are as expected.
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5.4 Centers of Gravity and Centroids of Volumes 281

Obtain the coordinates xel and yel of the centroid of the element from 

Fig. 5.8 (semicircular area):

xel 5 x     yel 5
4r

3π

Noting that r is proportional to x, use similar triangles (Fig. 1) to write

r
x

5
a

h
     r 5

a

h
 x

y

z
x

h

⎯yel

a
r

⎯xel = x

Fig. 1 Geometry of the differential 
element.

ANALYSIS: The volume of the body is

V 5#  dV 5#
h

0

 
1
2 πr2 dx 5#

h

0

 
1
2 π  aa

h
 xb2

dx 5
πa2h

6

The moment of the differential element with respect to the yz plane is 

xel  dV; the total moment of the body with respect to this plane is

#xel dV 5#
h

0

 x(
1
2 πr2) dx 5#

h

0

 x(
1
2 π) aa

h
 xb2

dx 5
πa2h2

8

Thus,

xV 5#  xel dV      x 

πa2h

6
5

πa2h2

8
     x 5

3
4h b

Similarly, the moment of the differential element with respect to the zx plane 

is yel  dV; the total moment is

#  yel dV 5#
h

0

 
4r

3π
 (

1
2πr2)dx 5

2

3 #
h

0

aa

h
 xb3

dx 5
a3h

6

Thus,

yV 5#  yel dV     y 

πa2h

6
5

a3h

6
     y 5

a

π
 b

REFLECT and THINK: Since a full right circular cone is a body of 

revolution, its x is unchanged for any portion of the cone bounded by planes 

intersecting along the x axis. The same centroid location in the x direction 

was therefore obtained for the half cone that Fig. 5.21 shows for the full 

cone. Similarly, the same x result would be obtained for a quarter cone.
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In the problems for this section, you will be asked to locate the centers of gravity 

of three-dimensional bodies or the centroids of their volumes. All of the techniques 

we previously discussed for two-dimensional bodies—using symmetry, dividing the 

body into common shapes, choosing the most efficient differential element, etc.— also 

may be applied to the general three-dimensional case.

 1. Locating the centers of gravity of composite bodies. In general, you must use 

Eqs. (5.20):

 XoW 5 oxW  YoW 5 oyW  ZoW 5 ozW (5.20)

However, for the case of a homogeneous body, the center of gravity of the body 

coincides with the centroid of its volume. Therefore, for this special case, you can 

also use Eqs. (5.21) to locate the center of gravity of the body:

 X oV 5 oxV  YoV 5 oyV  ZoV 5 ozV (5.21)

You should realize that these equations are simply an extension of the equations used 

for the two-dimensional problems considered earlier in the chapter. As the solutions of 

Sample Probs. 5.11 and 5.12 illustrate, the methods of solution for two- and three-

dimensional problems are identical. Thus, we once again strongly encourage you to 

construct appropriate diagrams and tables when analyzing composite bodies. Also, as 

you study Sample Prob. 5.12, observe how we obtained the x and y coordinates of the 

centroid of the quarter cylinder using the equations for the centroid of a quarter circle.

Two special cases of interest occur when the given body consists of either uniform 

wires or uniform plates made of the same material.

 a. For a body made of several wire elements of the same uniform cross section, 

the cross-sectional area A of the wire elements factors out of Eqs. (5.21) when V is 

replaced with the product AL, where L is the length of a given element. Equations (5.21) 

thus reduce in this case to

XoL 5 oxL  YoL 5 oyL  ZoL 5 ozL

 b. For a body made of several plates of the same uniform thickness, the thickness t 
of the plates factors out of Eqs. (5.21) when V is replaced with the product tA, where 

A is the area of a given plate. Equations (5.21) thus reduce in this case to

XoA 5 oxA  YoA 5 oyA  ZoA 5 ozA

2. Locating the centroids of volumes by direct integration. As explained in 

Sec. 5.4C, you can simplify evaluating the integrals of Eqs. (5.22) by choosing either 

a thin filament (Fig.  5.22) or a thin slab (Fig.  5.23) for the element of volume d V. 

Thus, you should begin your solution by identifying, if possible, the d V that produces 

the single or double integrals that are easiest to compute. For bodies of revolution, 

this may be a thin slab (as in Sample Prob. 5.13) or a thin cylindrical shell. However, 

it is important to remember that the relationship that you establish among the variables 

(like the relationship between r and x in Sample Prob. 5.13) directly affects the com-

plexity of the integrals you have to compute. Finally, we again remind you that 

xel, yel, and zel in Eqs. (5.23) are the coordinates of the centroid of dV.

SOLVING PROBLEMS 
ON YOUR OWN
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 5.96 Consider the composite body shown. Determine (a) the value of x
when h 5 L/2, (b) the ratio h/L for which x 5 L.

y

a

z

x

b
2

L h

b

Fig. P5.96

 5.97 Determine the location of the centroid of the composite body shown 

when (a) h 5 2b, (b) h 5 2.5b.

a

CB
A

h

b

Fig. P5.97

 5.98 The composite body shown is formed by removing a semiellipsoid 

of revolution of semimajor axis h and semiminor axis a/2 from a 

hemisphere of radius a. Determine (a) the y coordinate of the cen-

troid when h 5 a/2, (b) the ratio h/a for which y 5 20.4a.

 5.99 Locate the centroid of the frustum of a right circular cone when 

r1 5 40 mm, r2 5 50 mm, and h 5 60 mm.

h

r1

r2

Fig. P5.99

Problems

y

x

z

h

a a
2

Fig. P5.98
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 5.100 For the machine element shown, locate the x coordinate of the center 

of gravity.

5.101 For the machine element shown, locate the z coordinate of the center 

of gravity.

 5.102 For the machine element shown, locate the y coordinate of the center 

of gravity.

1.5 in.

1.5 in.
1.5 in.

2.25 in.

0.75 in.

0.5 in.
x

y

z

r = 0.95 in.
r = 0.95 in.

1.5 in.

1.5 in.

Fig. P5.102 and P5.103

 5.103 For the machine element shown, locate the z coordinate of the center 

of gravity.

 5.104 For the machine element shown, locate the y coordinate of the center 

of gravity.

50 mm

50 mm

60 mm

z

x

O

r = 30 mm

r = 40 mm

60 mm

60 mm

10 mm

10 mm
10 mm

y

Fig. P5.104 and P5.105

 5.105 For the machine element shown, locate the x coordinate of the center 

of gravity.

Dimensions in mm

y

x

19

40

24
10

19
10

90

20

z

O
r = 12

Fig. P5.100 and P5.101
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 5.106 and 5.107 Locate the center of gravity of the sheet-metal form 

shown.

y

x

z

80 mm

125 mm

150 mm

250 mm

Fig. P5.106      

x

y

z
1.5 m

r = 1.8 m
1.2 m

0.8 m

Fig. P5.107

5.108 A corner reflector for tracking by radar has two sides in the shape 

of a quarter circle with a radius of 15 in. and one side in the shape 

of a triangle. Locate the center of gravity of the reflector, knowing 

that it is made of sheet metal with a uniform thickness.

y

z x

15 in.
15 in.

Fig. P5.108

 5.109 A wastebasket, designed to fit in the corner of a room, is 16 in. high 

and has a base in the shape of a quarter circle with a radius of 10 in. 

Locate the center of gravity of the wastebasket, knowing that it is 

made of sheet metal with a uniform thickness.

 5.110 An elbow for the duct of a ventilating system is made of sheet metal 

with a uniform thickness. Locate the center of gravity of the elbow.

x
z

y

76 mm

100 mm

r = 200 mm
r = 400 mm

Fig. P5.110

x

y

z

16 in.

10 in.
10 in.

Fig. P5.109
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 5.111 A window awning is fabricated from sheet metal with a uniform 

thickness. Locate the center of gravity of the awning.

5.112 A mounting bracket for electronic components is formed from sheet 

metal with a uniform thickness. Locate the center of gravity of the 

bracket.

x

y

z

r = 0.625 in.

3 in.

1.25 in.

0.75 in.

0.75 in.

1 in. 2.5 in.

6 in.

Fig. P5.112

 5.113 A thin sheet of plastic with a uniform thickness is bent to form a 

desk organizer. Locate the center of gravity of the organizer.

x

z

r = 6 mm r = 6 mm

r = 6 mm

y

60 mm

74 mm

30 mm

r = 5 mm

69 mm

75 mm

Fig. P5.113

 5.114 A thin steel wire with a uniform cross section is bent into the shape 

shown. Locate its center of gravity.

1.0 m

x

y

z

A

BC

O

2.4 m2.4 m

Fig. P5.114

x

y

z

4 in.

34 in.

r = 25 in.

Fig. P5.111
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5.115 The frame of a greenhouse is constructed from uniform aluminum 

channels. Locate the center of gravity of the portion of the frame 

shown.

5 ft

3 ft
2 ft x

r

Fig. P5.115

 5.116 and 5.117 Locate the center of gravity of the figure shown, know-

ing that it is made of thin brass rods with a uniform diameter.

x

y

z

A

B

E
D

O

30 in.

r = 16 in.

Fig. P5.117

x

y

z

A

B

D

O

1.5 m

0.6 m
1 m

Fig. P5.116

 5.118 A scratch awl has a plastic handle and a steel blade and shank. 

Knowing that the density of plastic is 1030 kg/m3 and of steel is 

7860 kg/m3, locate the center of gravity of the awl.

10 mm

3.5 mm

r

90 mm

25 mm

80 mm

50 mm

Fig. P5.118

 5.119 A bronze bushing is mounted inside a steel sleeve. Knowing that the 

specific weight of bronze is 0.318 lb/in3 and of steel is 0.284 lb/in3, 

determine the location of the center of gravity of the assembly.

0.40 in.

1.00 in.

1.80 in.

1.125 in.
0.5 in.

0.75 in.

Fig. P5.119
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5.120 A brass collar with a length of 2.5 in. is mounted on an aluminum 

rod with a length of 4 in. Locate the center of gravity of the com-

posite body. (Specific weights: brass 5 0.306 lb/in3, aluminum 5

0.101 lb/in3.)

4 in.

1.6 in.

2.5 in.

3 in.

Fig. P5.120

 5.121 The three legs of a small glass-topped table are equally spaced and 

are made of steel tubing that has an outside diameter of 24 mm and 

a cross-sectional area of 150 mm2. The diameter and the thickness 

of the table top are 600 mm and 10 mm, respectively. Knowing that 

the density of steel is 7860 kg/m3 and of glass is 2190 kg/m3, locate 

the center of gravity of the table.

 5.122 through 5.124 Determine by direct integration the values of x for 

the two volumes obtained by passing a vertical cutting plane through 

the given shape of Fig. 5.21. The cutting plane is parallel to the base 

of the given shape and divides the shape into two volumes of equal 

height.

 5.122 A hemisphere

 5.123 A semiellipsoid of revolution

 5.124 A paraboloid of revolution.

 5.125 and 5.126 Locate the centroid of the volume obtained by rotating 

the shaded area about the x axis.

Fig. P5.126

y

x

a

h

y = k(x – h)2

y

x
1 m

3 m

y = (1 –     )1
x

Fig. P5.125

 5.127 Locate the centroid of the volume obtained by rotating the shaded 

area about the line x 5 h.

r = 280 mm

r = 180 mm

Fig. P5.121

y

x

x2

h2
y2

a2+ = 1

h

a

Fig. P5.127
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 *5.128 Locate the centroid of the volume generated by revolving the portion 

of the sine curve shown about the x axis.

y

x

b

a a

y5b sin �x
2a

Fig. P5.128 and P5.129

 *5.129 Locate the centroid of the volume generated by revolving the portion 

of the sine curve shown about the y axis. (Hint: Use a thin cylindrical 

shell of radius r and thickness dr as the element of volume.)

 *5.130 Show that for a regular pyramid of height h and n sides (n 5 3, 4, . . .) 

the centroid of the volume of the pyramid is located at a distance 

h/4 above the base.

 5.131 Determine by direct integration the location of the centroid of one-

half of a thin, uniform hemispherical shell of radius R.

 5.132 The sides and the base of a punch bowl are of uniform thickness t. 
If t ,, R and R 5 250 mm, determine the location of the center of 

gravity of (a) the bowl, (b) the punch.

R

R

Fig. P5.132

 5.133 Locate the centroid of the section shown, which was cut from a thin 

circular pipe by two oblique planes.

y

xz

h

h
3

a
a

Fig. P5.133

x

y

z
R

R

Fig. P5.131
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 *5.134 Locate the centroid of the section shown, which was cut from an 

elliptical cylinder by an oblique plane.

xz

h

y

a

a
b

b

Fig. P5.134

 5.135 Determine by direct integration the location of the centroid of the 

volume between the xz plane and the portion shown of the surface 

y 5 16h(ax – x2)(bz – z2)/a2b2.

y

x
z ba

Fig. P5.135

 5.136 After grading a lot, a builder places four stakes to designate the 

corners of the slab for a house. To provide a firm, level base for the 

slab, the builder places a minimum of 3 in. of gravel beneath the slab. 

Determine the volume of gravel needed and the x coordinate of the 

centroid of the volume of the gravel. (Hint: The bottom surface of 

the gravel is an oblique plane, which can be represented by the equa-

tion y 5 a 1 bx 1 cz.)

y

x

z     

5 in.

3 in.

8 in.

6 in.

30 ft
50 ft

Fig. P5.136
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This chapter was devoted chiefly to determining the center of gravity of a rigid 

body, i.e., to determining the point G where we can apply a single force W—the 

weight of the body—to represent the effect of Earth’s attraction on the body.

Center of Gravity of a Two-Dimensional Body
In the first part of this chapter, we considered two-dimensional  bodies, such 

as flat plates and wires contained in the xy plane. By adding force components 

in the vertical z direction and moments about the horizontal y and x axes 

[Sec. 5.1A], we derived the relations

W 5#  dW   xW 5#  x dW   yW 5#  y dW  (5.2)

These equations define the weight of the body and the coordinates x and y of 

its center of gravity.

Centroid of an Area or Line
In the case of a homogeneous flat plate of uniform thickness [Sec. 5.1B], the 

center of gravity G of the plate coincides with the centroid C of the area A 

of the plate. The coordinates are defined by the relations

 xA 5#  x dA   yA 5#  y dA (5.3)

Similarly, determining the center of gravity of a homogeneous wire of uniform 
cross section contained in a plane reduces to determining the centroid C of 
the line L representing the wire; we have

xL 5#x dL    yL 5#y dL (5.4)

First Moments
The integrals in Eqs. (5.3) are referred to as the first moments of the area A
with respect to the y and x axes and are denoted by Qy and Qx, respectively 

[Sec. 5.1C]. We have

 Qy 5 xA   Qx 5 yA  (5.6)

The first moments of a line can be defined in a similar way.

Properties of Symmetry
Determining the centroid C of an area or line is simplified when the area or 

line possesses certain properties of symmetry. If the area or line is symmetric 

with respect to an axis, its centroid C lies on that axis; if it is symmetric with 

respect to two axes, C is located at the intersection of the two axes; if it is 

symmetric with respect to a center O, C coincides with O.

Review and Summary
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Center of Gravity of a Composite Body
The areas and the centroids of various common shapes are tabulated in 

Fig.  5.8. When a flat plate can be divided into several of these shapes, the 

coordinates X and Y  of its center of gravity G can be determined from the 

coordinates x1, x2, . . . and y1, y2, . . . of the centers of gravity G1, G2, . . . of 

the various parts [Sec. 5.1D]. Equating moments about the y and x axes, 

respectively (Fig. 5.24), we have

XoW 5 oxW  YoW 5 oyW (5.7)

x

y

z

x

y

z

OO
G

⎯X

⎯Y

ΣW =

G1
G2

G3

W1 W2

W3

Fig. 5.24

If the plate is homogeneous and of uniform thickness, its center of gravity 

coincides with the centroid C of the area of the plate, and Eqs. (5.7) reduce to

 Qy 5 XoA 5 oxA  Qx 5 YoA 5 oyA (5.8)

These equations yield the first moments of the composite area, or they can be 

solved for the coordinates X and Y  of its centroid [Sample Prob. 5.1]. Deter-

mining the center of gravity of a composite wire is carried out in a similar 

fashion [Sample Prob. 5.2].

Determining a Centroid by Integration
When an area is bounded by analytical curves, you can determine the coor-

dinates of its centroid by integration [Sec. 5.2A]. This can be done by evaluat-

ing either the double integrals in Eqs. (5.3) or a single integral that uses one 

of the thin rectangular or pie-shaped elements of area shown in Fig.  5.12. 

Denoting by xel and yel the coordinates of the centroid of the element dA, we 

have

 Qy 5 xA 5#  xel dA   Qx 5 yA 5#  yel dA (5.9)

It is advantageous to use the same element of area to compute both of the 

first moments Qy and Qx; we can also use the same element to determine the 

area A [Sample Prob. 5.4].

Theorems of Pappus–Guldinus
The theorems of Pappus-Guldinus relate the area of a surface of revolution 

or the volume of a body of revolution to the centroid of the generating curve 

or area [Sec. 5.2B]. The area A of the surface generated by rotating a curve of 

length L about a fixed axis (Fig. 5.25a) is

 A 5 2πyL (5.10)

where y represents the distance from the centroid C of the curve to the fixed 

axis. Similarly, the volume V of the body generated by rotating an area A

(a) (b)

x

C

L

⎯y
y

x

A
C

2   y�2   y�

Fig. 5.25

bee87302_ch05_230-296.indd   292bee87302_ch05_230-296.indd   292 10/24/14   11:58 AM10/24/14   11:58 AM

UPLOADED BY AHMAD T JUNDI



293

about a fixed axis (Fig. 5.25b) is

V 5 2πyA (5.11)

where y represents the distance from the centroid C of the area to the fixed axis.

Distributed Loads
The concept of centroid of an area also can be used to solve problems other 

than those dealing with the weight of flat plates. For example, to determine the 

reactions at the supports of a beam [Sec. 5.3A], we can replace a distributed 
load w by a concentrated load W equal in magnitude to the area A under the 

load curve and passing through the centroid C of that area (Fig. 5.26). We can 

use this same approach to determine the resultant of the hydrostatic forces 

exerted on a rectangular plate submerged in a liquid [Sec. 5.3B].

w w

O O

w

dx
x

L

B B

dW = dA

x x

L

P

x

W = A
Wd W

C=

Fig. 5.26

Center of Gravity of a Three-Dimensional Body
The last part of this chapter was devoted to determining the center of gravity

G of a three-dimensional body. We defined the coordinates x, y, z of G by the 

relations

xW 5#  x dW    yW 5#  y dW    z W 5#  z dW  (5.17)

Centroid of a Volume
In the case of a homogeneous body, the center of gravity G coincides with 

the centroid C of the volume V of the body. The coordinates of C are defined 

by the relations

 xV 5#  x dV    yV 5#  y dV    zV 5#  z dV  (5.19)

If the volume possesses a plane of symmetry, its centroid C lies in that plane; 

if it possesses two planes of symmetry, C is located on the line of intersection 

of the two planes; if it possesses three planes of symmetry that intersect at 

only one point, C coincides with that point [Sec. 5.4A].

Center of Gravity of a Composite Body
The volumes and centroids of various common three-dimensional shapes are 

tabulated in Fig.  5.21. When a body can be divided into several of these 

shapes, we can determine the coordinates X, Y, Z of its center of gravity G
from the corresponding coordinates of the centers of gravity of its various 

parts [Sec. 5.4B]. We have

XoW 5 oxW  YoW 5 oyW  ZoW 5 ozW (5.20)
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If the body is made of a homogeneous material, its center of gravity coincides 

with the centroid C of its volume, and we have [Sample Probs. 5.11 and 5.12]

XoV 5 oxV  YoV 5 oyV  ZoV 5 ozV (5.21)

Determining a Centroid by Integration
When a volume is bounded by analytical surfaces, we can find the coordinates 

of its centroid by integration [Sec. 5.4C]. To avoid the computation of triple 

integrals in Eqs. (5.19), we can use elements of volume in the shape of thin 

filaments, as shown in Fig. 5.27. Denoting the coordinates of the centroid of 

the element dV as xel, yel, zel, we rewrite Eqs. (5.19) as

xV 5#  xel dV    yV 5#  yel dV    zV 5#  zel dV  (5.23)

P(x,y,z)

z

y

x

z

zel

xel

yel

xel = x,  yel = y,  zel =
dV = z dx dy 

z
2

dx
dy

Fig. 5.27

that involve only double integrals. If the volume possesses two planes of sym-
metry, its centroid C is located on their line of intersection. Choosing the 

x axis to lie along that line and dividing the volume into thin slabs parallel 

to the yz plane, we can determine C from the relation

 xV 5#  xel dV  (5.24)

with a single integration [Sample Prob. 5.13]. For a body of revolution, these 

slabs are circular and their volume is given in Fig. 5.28. 

dx

r

xel

z

y

x

xel = x
dV =   r2 dx �

Fig. 5.28
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5.137 and 5.138 Locate the centroid of the plane area shown.

Review Problems

y

6 in.

6 in.

6 in.

6 in.

3 in.

x

Fig. P5.137

x

y

120 mm

r = 75 mm

Fig. P5.138

5.139 A uniform circular rod with a weight of 8 lb and radius of 10 in. is 

attached to a pin at C and to the cable AB. Determine (a) the tension 

in the cable, (b) the reaction at C.

5.140 Determine by direct integration the centroid of the area shown. 

Express your answer in terms of a and h.

x

y

y = h(1 – kx3)

h

a

Fig. P5.140

5.141 Determine by direct integration the centroid of the area shown.

x

y

h

L

y = h 1 +     – 2 x2

L2
x
L( (

Fig. P5.141

5.142 The escutcheon (a decorative plate placed on a pipe where the pipe 

exits from a wall) shown is cast from brass. Knowing that the den-

sity of brass is 8470 kg/m3, determine the mass of the escutcheon.

75 mm

25 mm

75 mm

26°

26°

Fig. P5.142

B

r

C

A

Fig. P5.139
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5.143 Determine the reactions at the beam supports for the given loading.

5.144 A beam is subjected to a linearly distributed downward load and 

rests on two wide supports BC and DE that exert uniformly distrib-

uted upward loads as shown. Determine the values of wBC and wDE

corresponding to equilibrium when wA 5 600 N/m.

A

wA

wBC

wDE

B C D E
F

6 m

3.1 m
0.6 m

1.0 m0.8 m

1200 N/m

Fig. P5.144

 5.145 A tank is divided into two sections by a 1 3 1-m square gate that is 

hinged at A. A couple with a magnitude of 490 N∙m is required for 

the gate to rotate. If one side of the tank is filled with water at the 

rate of 0.1 m3/min and the other side is filled simultaneously with 

methyl alcohol (density ρma 5 789 kg/m3) at the rate of 0.2 m3/min, 

determine at what time and in which direction the gate will rotate.

 5.146 Determine the y coordinate of the centroid of the body shown.

x

y

z

12 in.

12 in.

4 in.

8 in.

Fig. P5.147

192 mm

64 mm
96 mm

120°

120°

Fig. P5.148

A

Water

0.4 m 0.2 m

Methyl
Alcohol

0.6 m

Fig. P5.145

y

x

z

h

ab

a
2

Fig. P5.146

5.147 An 8-in.-diameter cylindrical duct and a 4 3 8-in. rectangular duct 

are to be joined as indicated. Knowing that the ducts were fabricated 

from the same sheet metal, which is of uniform thickness, locate the 

center of gravity of the assembly.

5.148 Three brass plates are brazed to a steel pipe to form the flagpole 

base shown. Knowing that the pipe has a wall thickness of 8 mm 

and that each plate is 6 mm thick, determine the location of the 

center of gravity of the base. (Densities: brass 5 8470 kg/m3; 

steel 5 7860 kg/m3.)

9 ft

A
B

200 lb/ft

6 ft6 ft

Fig. P5.143
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Trusses, such as this cantilever arch bridge over Deception Pass in 

Washington State, provide both a practical and an economical 

solution to many engineering problems.

Analysis of 
Structures

6
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298 Analysis of Structures

Introduction
In the preceding chapters, we studied the equilibrium of a single rigid 

body, where all forces involved were external to the rigid body. We now 

consider the equilibrium of structures made of several connected parts. 

This situation calls for determining not only the external forces acting on 

the structure, but also the forces that hold together the various parts of the 

structure. From the point of view of the structure as a whole, these forces 

are internal forces.

Consider, for example, the crane shown in Fig. 6.1a that supports 

a load W. The crane consists of three beams AD, CF, and BE connected 

by frictionless pins; it is supported by a pin at A and by a cable DG. 

The free-body diagram of the crane is drawn in Fig. 6.1b. The external 

forces shown in the diagram include the weight W, the two components 

Ax and Ay of the reaction at A, and the force T exerted by the cable 

at D. The internal forces holding the various parts of the crane together 

do not appear in the free-body diagram. If, however, we dismember the 

crane and draw a free-body diagram for each of its component parts, 

we can see the forces holding the three beams together, since these 

forces are external forces from the point of view of each component 

part (Fig. 6.1c).

 Introduction

 6.1 ANALYSIS OF TRUSSES
 6.1A Simple Trusses
 6.1B The Method of Joints
 *6.1C Joints Under Special Loading 

Conditions
 *6.1D Space Trusses

 6.2 OTHER TRUSS ANALYSES
 6.2A The Method of Sections
 6.2B Trusses Made of Several 

Simple Trusses

 6.3 FRAMES
 6.3A Analysis of a Frame
 6.3B Frames That Collapse Without 

Supports

 6.4 MACHINES

Objectives
• Define an ideal truss, and consider the attributes of 

simple trusses.

• Analyze plane and space trusses by the method of 
joints.

• Simplify certain truss analyses by recognizing special 
loading and geometry conditions.

• Analyze trusses by the method of sections.

• Consider the characteristics of compound trusses.

• Analyze structures containing multiforce members, 
such as frames and machines.

Fig. 6.1 A structure in equilibrium. (a) Diagram of a crane supporting a load; (b) free-body 
diagram of the crane; (c) free-body diagrams of the components of the crane.

TT

A

B

C

D

E
F

W

B

C

D

E

E

F
E

F

W W

G

(a)

B

B

C
C

D

(b) (c)

Ay

Ax

A
Ay

Ax

A
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6.1 Analysis of Trusses 299

Note that we represent the force exerted at B by member BE on 

member AD as equal and opposite to the force exerted at the same point 

by member AD on member BE. Similarly, the force exerted at E by BE
on CF is shown equal and opposite to the force exerted by CF on BE,
and the components of the force exerted at C by CF on AD are shown 

equal and opposite to the components of the force exerted by AD on CF. 

These representations agree with  Newton’s third law, which states that

The forces of action and reaction between two bodies in contact 
have the same magnitude, same line of action, and opposite sense.

We pointed out in Chap. 1 that this law, which is based on experimental 

evidence, is one of the six fundamental principles of elementary mechan-

ics. Its application is essential for solving problems involving connected 

bodies.

In this chapter, we consider three broad categories of engineering 

structures:

 1. Trusses, which are designed to support loads and are usually stationary, 

fully constrained structures. Trusses consist exclusively of straight mem-

bers connected at joints located at the ends of each member.  Members 

of a truss, therefore, are two-force members, i.e., members acted upon 

by two equal and opposite forces directed along the member.

 2. Frames, which are also designed to support loads and are also usually 

stationary, fully constrained structures. However, like the crane of 

Fig. 6.1, frames always contain at least one multi-force member, i.e., 

a member acted upon by three or more forces that, in general, are not 

directed along the member.

 3. Machines, which are designed to transmit and modify forces and are 

structures containing moving parts. Machines, like frames, always con-

tain at least one multi-force member.

6.1 ANALYSIS OF TRUSSES
The truss is one of the major types of engineering structures. It provides 

a practical and economical solution to many engineering situations, espe-

cially in the design of bridges and buildings. In this section, we describe 

the basic elements of a truss and study a common method for analyzing 

the forces acting in a truss.

Photo 6.1 The structures you see around you to support loads or transmit forces are generally 
trusses, frames, or machines.

Two-force member

(a) A truss bridge

Multi-force member

(b) A bicycle frame

Multi-force member

(c) A hydraulic machine arm
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300 Analysis of Structures

6.1A Simple Trusses
A truss consists of straight members connected at joints, as shown in 

Fig. 6.2a. Truss members are connected at their extremities only; no mem-

ber is continuous through a joint. In Fig. 6.2a, for example, there is no 

member AB; instead we have two distinct members AD and DB. Most 

actual structures are made of several trusses joined together to form a 

space framework. Each truss is designed to carry those loads that act in 

its plane and thus may be treated as a two-dimensional structure.

In general, the members of a truss are slender and can support little 

lateral load; all loads, therefore, must be applied at the various joints and not 

to the members themselves. When a concentrated load is to be applied 

between two joints or when the truss must support a distributed load, as in 

the case of a bridge truss, a floor system must be provided. The floor transmits 

the load to the joints through the use of stringers and floor beams (Fig. 6.3).

Photo 6.2 Shown is a pin-jointed 
connection on the approach span to the San 
Francisco–Oakland Bay Bridge.

Fig. 6.2 (a) A typical truss consists of 
straight members connected at joints; (b) we 
can model a truss as two-force members 
connected by pins.

A B

C

D

(a)

(b)

P

A B

C

D

P

Fig. 6.4 A two-force member of 
a truss can be in tension or 
compression.

(a) Tension (b) Compression

We assume that the weights of the truss members can be applied to 

the joints, with half of the weight of each member applied to each of the 

two joints the member connects. Although the members are actually joined 

together by means of welded, bolted, or riveted connections, it is custom-

ary to assume that the members are pinned together; therefore, the forces 

acting at each end of a member reduce to a single force and no couple. 

This enables us to model the forces applied to a truss member as a single 

force at each end of the member. We can then treat each member as a 

two-force member, and we can consider the entire truss as a group of pins 

and two-force members (Fig. 6.2b). An individual member can be acted 

upon as shown in either of the two sketches of Fig. 6.4. In Fig. 6.4a, the 

forces tend to pull the member apart, and the member is in tension; in 

Fig. 6.4b, the forces tend to push the member together, and the member 

is in compression. Some typical trusses are shown in Fig. 6.5.

Consider the truss of Fig. 6.6a, which is made of four members 

 connected by pins at A, B, C, and D. If we apply a load at B, the truss will 

greatly deform, completely losing its original shape. In contrast, the truss 

of Fig. 6.6b, which is made of three members connected by pins at A, B, 

and C, will deform only slightly under a load applied at B. The only  possible 

Floor beam

Stringer
Joints

Fig. 6.3 A floor system of a truss uses stringers and floor beams to 
transmit an applied load to the joints of the truss.
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6.1 Analysis of Trusses 301

deformation for this truss is one involving small changes in the length of 

its members. The truss of Fig. 6.6b is said to be a rigid truss, the term 

‘rigid’ being used here to indicate that the truss will not collapse.

As shown in Fig. 6.6c, we can obtain a larger rigid truss by adding two 

members BD and CD to the basic triangular truss of Fig. 6.6b. We can repeat 

this procedure as many times as we like, and the resulting truss will be rigid 

if each time we add two new members they are attached to two existing joints 

and connected at a new joint. (The three joints must not be in a straight line.) 

A truss that can be constructed in this manner is called a simple truss.
Note that a simple truss is not necessarily made only of triangles. 

The truss of Fig. 6.6d, for example, is a simple truss that we constructed 

from triangle ABC by adding successively the joints D, E, F, and G. 

Fig. 6.5 You can often see trusses in the design of a building roof, a bridge, or other 
other larger structures.

Pratt

Pratt

Howe

Howe

Fink

Typical Roof Trusses

Typical Bridge Trusses

Baltimore

Warren

K truss

Stadium

Cantilever portion
of a truss Bascule

Other Types of Trusses

Fig. 6.6 (a) A poorly designed truss that cannot support a load; (b) the most elementary rigid truss consists of a 
simple triangle; (c) a larger rigid truss built up from the triangle in (b); (d) a rigid truss not made up of triangles alone.

A

B

B'

C

A

B

C A

B

C

C'

D

D

A

B C

DE F

G

(a) (b) (c) (d )
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302 Analysis of Structures

On the other hand, rigid trusses are not always simple trusses, even when 

they appear to be made of triangles. The Fink and Baltimore trusses shown 

in Fig. 6.5, for instance, are not simple trusses, because they cannot be 

constructed from a single triangle in the manner just described. All of the 

other trusses shown in Fig. 6.5 are simple trusses, as you may easily 

check. (For the K truss, start with one of the central triangles.)

Also note that the basic triangular truss of Fig. 6.6b has three mem-

bers and three joints. The truss of Fig. 6.6c has two more members and 

one more joint; i.e., five members and four joints altogether. Observing 

that every time we add two new members, we increase the number of 

joints by one, we find that in a simple truss the total number of members 

is m 5 2n 2 3, where n is the total number of joints.

6.1B  The Method of Joints
We have just seen that a truss can be considered as a group of pins and 

two-force members. Therefore, we can dismember the truss of Fig. 6.2, 

whose free-body  diagram is shown in Fig. 6.7a, and draw a free-body 

diagram for each pin and each member (Fig. 6.7b). Each member is acted 

upon by two forces, one at each end; these forces have the same magnitude, 

same line of action, and opposite sense (Sec. 4.2A). Furthermore, Newton’s 

third law states that the forces of action and reaction between a member 

and a pin are equal and opposite. Therefore, the forces exerted by a mem-

ber on the two pins it connects must be directed along that member and 

be equal and opposite. The common magnitude of the forces exerted by a 

member on the two pins it connects is commonly referred to as the force 
in the member, even though this quantity is actually a scalar. Since we 

know the lines of action of all the internal forces in a truss, the analysis 

of a truss reduces to computing the forces in its various members and 

determining whether each of its members is in tension or compression.

Since the entire truss is in equilibrium, each pin must be in equilib-

rium. We can use the fact that a pin is in equilibrium to draw its free-body 

diagram and write two equilibrium equations (Sec. 2.3A). Thus, if the 

truss contains n pins, we have 2n equations available, which can be solved 

for 2n unknowns. In the case of a simple truss, we have m 5 2n 2 3; 

that is, 2n 5 m 1 3, and the number of unknowns that we can determine 

from the free-body diagrams of the pins is m 1 3. This means that we 

can find the forces in all the members, the two components of the reaction 

RA, and the reaction RB by considering the free-body diagrams of the pins.

We can also use the fact that the entire truss is a rigid body in equi-

librium to write three more equations involving the forces shown in the 

free-body diagram of Fig. 6.7a. Since these equations do not contain any 

new information, they are not independent of the equations associated with 

the free-body diagrams of the pins. Nevertheless, we can use them to deter-

mine the components of the reactions at the supports. The arrangement of 

pins and members in a simple truss is such that it is always possible to 

find a joint involving only two unknown forces. We can determine these 

forces by using the methods of Sec. 2.3C and then transferring their values 

to the adjacent joints, treating them as known quantities at these joints. We 

repeat this procedure until we have determined all unknown forces.

As an example, let’s analyze the truss of Fig. 6.7 by considering the 

equilibrium of each pin successively, starting with a joint at which only 

Photo 6.3 Two K trusses were used as the 
main components of the movable bridge 
shown, which moved above a large stockpile 
of ore. The bucket below the trusses picked 
up ore and redeposited it until the ore was 
thoroughly mixed. The ore was then sent to 
the mill for processing into steel.

Fig. 6.7 (a) Free-body diagram of the truss 
as a rigid body; (b) free-body diagrams of the 
five members and four pins that make up the 
truss.

DA B

C

C

B

P

P

(a)

(b)

RB

RB

D

RA

A

RA
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6.1 Analysis of Trusses 303

two forces are unknown. In this truss, all pins are subjected to at least 

three unknown forces. Therefore, we must first determine the reactions at 

the supports by considering the entire truss as a free body and using the 

equations of equilibrium of a rigid body. In this way we find that RA is 

vertical, and we determine the magnitudes of RA and RB.

This reduces the number of unknown forces at joint A to two, and 

we can determine these forces by considering the equilibrium of pin A. 

The reaction RA and the forces FAC and FAD exerted on pin A by members 

AC and AD, respectively, must form a force triangle. First we draw RA 

(Fig. 6.8); noting that FAC and FAD are directed along AC and AD, respec-

tively, we complete the triangle and determine the magnitude and sense 

of FAC and FAD. The magnitudes FAC and FAD represent the forces in 

members AC and AD. Since FAC is directed down and to the left––that is, 

toward joint A––member AC pushes on pin A and is in compression. 

(From Newton’s third law, pin A pushes on member AC.) Since FAD is 

directed away from joint A, member AD pulls on pin A and is in tension. 

(From Newton’s third law, pin A pulls away from member AD.)

Photo 6.4 Because roof trusses, such as 
those shown, require support only at their 
ends, it is possible to construct buildings with 
large, unobstructed interiors.

Fig. 6.8 Free-body diagrams and force polygons used to determine the 
forces on the pins and in the members of the truss in Fig. 6.7.

Free-body diagram

Joint A

Joint D

Joint C

Joint B B

Force  polygon

FAC

FAC

FAD

FDA

FCA
FCB

FCD

FCD

FCA

FCB

RB

RBFBD

FBDFBC

FBC

FDA

FDC

FDCFDB

FDB

P

P

FAD
RA

RAA

D

C

bee87302_ch06_297-366.indd   303bee87302_ch06_297-366.indd   303 10/24/14   4:18 PM10/24/14   4:18 PM

UPLOADED BY AHMAD T JUNDI



304 Analysis of Structures

We can now proceed to joint D, where only two forces, FDC and FDB, 

are still unknown. The other forces are the load P, which is given, and the 

force FDA exerted on the pin by member AD. As indicated  previously, this 

force is equal and opposite to the force FAD exerted by the same member 

on pin A. We can draw the force polygon corresponding to joint D, as 

shown in Fig. 6.8, and determine the forces FDC and FDB from that polygon. 

However, when more than three forces are involved, it is usually more 

convenient to solve the equations of equilibrium oFx 5 0 and oFy 5 0 

for the two unknown forces. Since both of these forces are directed away 

from joint D, members DC and DB pull on the pin and are in tension.

Next, we consider joint C; its free-body diagram is shown in Fig. 6.8. 

Both FCD and FCA are known from the analysis of the preceding joints, so 

only FCB is unknown. Since the equilibrium of each pin provides sufficient 

information to determine two unknowns, we can check our analysis at this 

joint. We draw the force triangle and determine the magnitude and sense 

of FCB. Since FCB is directed toward joint C, member CB pushes on pin C 

and is in compression. The check is obtained by verifying that the force FCB 

and member CB are parallel.

Finally, at joint B, we know all of the forces. Since the correspond-

ing pin is in equilibrium, the force triangle must close, giving us an addi-

tional check of the analysis. 

Note that the force polygons shown in Fig. 6.8 are not unique; we 

could replace each of them by an alternative configuration. For example, 

the force triangle corresponding to joint A could be drawn as shown in 

Fig. 6.9. We obtained the triangle actually shown in Fig. 6.8 by drawing 

the three forces RA, FAC, and FAD in tip-to-tail fashion in the order in which 

we cross their lines of action when moving clockwise around joint A.

*6.1C  Joints Under Special Loading
Conditions

Some geometric arrangements of members in a truss are particularly  simple 

to analyze by observation. For example, Fig. 6.10a shows a joint connecting 

four members lying along two intersecting straight lines. The free-body dia-

gram of Fig. 6.10b shows that pin A is subjected to two pairs of directly 

opposite forces. The corresponding force polygon, therefore, must be a paral-

lelogram (Fig. 6.10c), and the forces in opposite members must be equal.

Fig. 6.9 Alternative force polygon for joint 
A in Fig. 6.8.

RA

FAD

FAC

Fig. 6.10 (a) A joint A connecting four members of a truss in two straight 
lines; (b) free-body diagram of pin A; (c) force polygon (parallelogram) for 
pin A. Forces in opposite members are equal.

(a)

A A

D

C

B

E

(b) (c)

FAD

FAB

FAE

FAC

FAD

FAB

FAE

FAC
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6.1 Analysis of Trusses 305

Consider next Fig. 6.11a, in which a joint connects three members 

and supports a load P. Two members lie along the same line, and load P 

acts along the third member. The free-body diagram of pin A and the 

corresponding force polygon are the same as in Fig. 6.10b and c, with 

FAE replaced by load P. Thus, the forces in the two opposite members 
must be equal, and the force in the other member must equal P. 

Figure 6.11b shows a particular case of special interest. Since, in this 

case, no external load is applied to the joint, we have P 5 0, and the 

force in member AC is zero. Member AC is said to be a zero-force 
member.

Now consider a joint connecting two members only. From Sec. 2.3A, 

we know that a particle acted upon by two forces is in equilibrium if the 

two forces have the same magnitude, same line of action, and opposite 

sense. In the case of the joint of Fig. 6.12a, which connects two members 

AB and AD lying along the same line, the forces in the two members must 

be equal for pin A to be in equilibrium. In the case of the joint of Fig. 6.12b, 

pin A cannot be in equilibrium unless the forces in both members are zero. 

Members connected as shown in Fig. 6.12b, therefore, must be zero-force 
members.

Fig. 6.12 (a) A joint in a truss connecting 
two members in a straight line. Forces in the 
members are equal. (b) If the two members 
are not in a straight line, they must be 
zero-force members.

(a)

A

D

B

(b)

A

D

B

Spotting joints that are under the special loading conditions just 

described will expedite the analysis of a truss. Consider, for example, a 

Howe truss loaded as shown in Fig. 6.13. We can recognize all of the 

members represented by green lines as zero-force members. Joint C con-

nects three members, two of which lie in the same line, and is not sub-

jected to any external load; member BC is thus a zero-force member. 

Applying the same reasoning to joint K, we find that member JK is also 

a zero-force member. But joint J is now in the same situation as joints C 

and K, so member IJ also must be a zero-force member. Examining joints 

C, J, and K also shows that the forces in members AC and CE are equal, 

that the forces in members HJ and JL are equal, and that the forces in 

members IK and KL are equal. Turning our attention to joint I, where the 

20-kN load and member HI are collinear, we note that the force in member 

HI is 20 kN (tension) and that the forces in members GI and IK are equal. 

Hence, the forces in members GI, IK, and KL are equal.

Note that the conditions described here do not apply to joints B and 

D in Fig. 6.13, so it is wrong to assume that the force in member DE is 

25 kN or that the forces in members AB and BD are equal. To determine 

the forces in these members and in all remaining members, you need to 

Fig. 6.11 (a) Joint A in a truss connects 
three members, two in a straight line and the 
third along the line of a load. Force in the 
third member equals the load. (b) If the load 
is zero, the third member is a zero-force 
member.

(a)

A

D

C

B

(b)

A

P

D

C

B

Fig. 6.13 An example of loading on a Howe 
truss; identifying special loading conditions.

A
B

C

D

E

F

G

H

25 kN

25 kN

50 kN

20 kN

I

J

K
L
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306 Analysis of Structures

carry out the analysis of joints A, B, D, E, F, G, H, and L in the usual 

manner. Thus, until you have become thoroughly familiar with the condi-

tions under which you can apply the rules described in this section, you 

should draw the free-body diagrams of all pins and write the correspond-

ing equilibrium equations (or draw the corresponding force polygons) 

whether or not the joints being considered are under one of these special 

loading conditions.

A final remark concerning zero-force members: These members are 

not useless. For example, although the zero-force members of Fig. 6.13 

do not carry any loads under the loading conditions shown, the same 

members would probably carry loads if the loading conditions were 

changed. Besides, even in the case considered, these members are needed 

to support the weight of the truss and to maintain the truss in the desired 

shape.

*6.1D Space Trusses
When several straight members of a truss are joined together at their 

extremities to form a three-dimensional configuration, the resulting struc-

ture is called a space truss. Recall from Sec. 6.1A that the most elemen-

tary two-dimensional rigid truss consists of three members joined at their 

extremities to form the sides of a triangle. By adding two members at a 

time to this basic configuration and connecting them at a new joint, we 

could obtain a larger rigid structure that we defined as a simple truss. 

Similarly, the most elementary rigid space truss consists of six members 

joined at their extremities to form the edges of a  tetrahedron ABCD 

(Fig. 6.14a). By adding three members at a time to this basic configuration, 

such as AE, BE, and CE (Fig. 6.14b), attaching them to three existing 

joints, and connecting them at a new joint, we can obtain a larger rigid 

structure that we define as a simple space truss. (The four joints must not 

lie in a plane.) Note that the basic tetrahedron has six members and four 

joints, and every time we add three members, the number of joints increases 

by one. Therefore, we conclude that in a simple space truss the total num-

ber of members is m 5 3n 2 6, where n is the total number of joints.

If a space truss is to be completely constrained and if the reactions 

at its supports are to be statically determinate, the supports should consist 

of a combination of balls, rollers, and balls and sockets, providing six 

unknown reactions (see Sec. 4.3B). We can determine these unknown 

reactions by solving the six equations expressing that the three-dimen-

sional truss is in equilibrium.

Although the members of a space truss are actually joined together 

by means of bolted or welded connections, we assume for analysis purposes 

that each joint consists of a ball-and-socket connection. Thus, no couple is 

applied to the members of the truss, and we can treat each member as a 

two-force member. The conditions of equilibrium for each joint are expressed 

by the three equations oFx 5 0, oFy 5 0, and oFz 5 0. Thus, in the case 

of a simple space truss containing n joints, writing the  conditions of 

equilibrium for each joint yields 3n equations. Since m 5 3n 2 6, these 

equations suffice to determine all unknown forces (forces in m members 

and six reactions at the supports). However, to avoid the necessity of solving 

simultaneous equations, you should take care to select joints in such an 

order that no selected joint involves more than three unknown forces.

Photo 6.5 Three-dimensional or space 
trusses are used for broadcast and power 
transmission line towers, roof framing, and 
spacecraft applications, such as components 
of the International Space Station.

Fig. 6.14 (a) The most elementary space 
truss consists of six members joined at their 
ends to form a tetrahedron. (b) We can add 
three members at a time to three joints of an 
existing space truss, connecting the new 
members at a new joint, to build a larger 
simple space truss.

A

B

C

D

A

B

C

D

E

(a)

(b)
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6.1 Analysis of Trusses 307

Sample Problem 6.1

Using the method of joints, determine the force in each member of the 

truss shown.

STRATEGY: To use the method of joints, you start with an analysis of 

the free-body diagram of the entire truss. Then look for a joint connecting 

only two members as a starting point for the calculations. In this example, 

we start at joint A and proceed through joints D, B, E, and C, but you 

could also start at joint C and proceed through joints E, B, D, and A.

MODELING and ANALYSIS: You can combine these steps for each 

joint of the truss in turn. Draw a free-body diagram; draw a force polygon 

or write the equilibrium equations; and solve for the unknown forces.

Entire Truss. Draw a free-body diagram of the entire truss (Fig. 1); 

external forces acting on this free body are the applied loads and the  reactions 

at C and E. Write the equilibrium equations, taking moments about C.

1loMC 5 0: (2000 lb)(24 ft) 1 (1000 lb)(12 ft) 2 E(6 ft) 5 0

 E 5 110,000 lb E 5 10,000 lbx

  y1 oFx 5 0: Cx 5 0

 1xoFy 5 0: 22000 lb 2 1000 lb 1 10,000 lb 1 Cy 5 0

 Cy 5 27000 lb Cy 5 7000 lbw

Joint A. This joint is subject to only two unknown forces: the forces 

exerted by AB and those by AD. Use a force triangle to determine FAB 

and FAD (Fig. 2). Note that member AB pulls on the joint so AB is in 

 tension, and member AD pushes on the joint so AD is in compression. 

Obtain the magnitudes of the two forces from the proportion

2000 lb

4
5

FAB

3
5

FAD

5

FAB 5 1500 lb T b
FAD 5 2500 lb C b

Joint D. Since you have already determined the force exerted by mem-

ber AD, only two unknown forces are now involved at this joint. Again, 

use a force triangle to determine the unknown forces in members DB and 

DE (Fig. 3).

(continued)

12 ft

12 ft

12 ft

6 ft6 ft

8 ft

A B C

D E

2000 lb 1000 lb

Fig. 1 Free-body diagram of 
entire truss.

12 ft

12 ft

12 ft

6 ft6 ft

8 ft

A B C

D E
E

2000 lb 1000 lb Cy

C x

FAD
FAD

FAB

FAB

A

2000 lb

2000 lb

3

3

4
45 5

Fig. 2 Free-body diagram of 
joint A.

FDA = 2500 lb

D

FDB
FDB

FDE

FDE FDA

3 3
4 45 5

Fig. 3 Free-body diagram of joint D.
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308 Analysis of Structures

 FDB 5 FDA FDB 5 2500 lb T b

 FDE 5 2A35BFDA FDE 5 3000 lb C b

Joint B. Since more than three forces act at this joint (Fig. 4), 

 determine the two unknown forces FBC and FBE by solving the equilib-

rium equations oFx 5 0 and oFy 5 0. Suppose you arbitrarily assume 

that both unknown forces act away from the joint, i.e., that the members 

are in tension. The positive value obtained for FBC indicates that this 

assumption is correct; member BC is in tension. The negative value of 

FBE indicates that the second assumption is wrong; member BE is in 

compression.

FBA = 1500 lb

FBD = 2500 lb FBE

B
FBC

1000 lb

33
44

Fig. 4 Free-body diagram of 
joint B.

1xoFy 5 0: 21000 2 
4
5(2500) 2 

4
5FBE 5 0

  FBE 5 23750 lb FBE 5 3750 lb C b

  y1 oFx 5 0: FBC 2 1500 2 
3
5(2500) 2 

3
5(3750) 5 0

  FBC 5 15250 lb FBC 5 5250 lb T b

Joint E. Assume the unknown force FEC acts away from the joint 

(Fig. 5). Summing x components, you obtain

y
1 oFx 5 0:  

3
5FEC 1 3000 1 

3
5(3750) 5 0

 FEC 5 28750 lb FEC 5 8750 lb C b

Summing y components, you obtain a check of your computations:

1xoFy 5 10,000 2 
4
5(3750) 2 

4
5(8750)

 5 10,000 2 3000 2 7000 5 0 (checks)

REFLECT and THINK: Using the computed values of FCB and FCE, 

you can determine the reactions Cx and Cy by considering the equilibrium 

of Joint C (Fig. 6). Since these reactions have already been determined 

from the equilibrium of the entire truss, this provides two checks of your 

com putations. You can also simply use the computed values of all forces 

acting on the joint (forces in members and reactions) and check that the 

joint is in equilibrium:

  y1 oFx 5 25250 1 
3
5(8750) 5 25250 1 5250 5 0 (checks)

1xoFy 5 27000 1 
4
5(8750) 5 27000 1 7000 5 0 (checks)

FEB = 3750 lb FEC

FED = 3000 lb

E = 10,000 lb

E
33

44

Fig. 5 Free-body diagram 
of joint E.

FCB = 5250 lb

FCE = 8750 lb

Cy = 7000 lb

Cx = 0
C

3
4

Fig. 6 Free-body diagram 
of joint C.
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309 309

SOLVING PROBLEMS 
ON YOUR OWN

In this section, you learned to use the method of joints to determine the forces in 

the members of a simple truss; that is, a truss that can be constructed from a basic 

triangular truss by adding to it two new members at a time and connecting them at a 

new joint.

The method consists of the following steps:

1. Draw a free-body diagram of the entire truss, and use this diagram to deter-
mine the reactions at the supports.

2. Locate a joint connecting only two members, and draw the free-body diagram 
of its pin. Use this free-body diagram to determine the unknown force in each of the 

two members. If only three forces are involved (the two unknown forces and a known 

one), you will probably find it more convenient to draw and solve the corresponding 

force triangle. If more than three forces are involved, you should write and solve the 

equilibrium equations for the pin, oFx 5 0 and oFy 5 0, assuming that the members 

are in tension. A positive answer means that the member is in tension, a negative 

answer means that the member is in compression. Once you have found the forces, 

enter their values on a sketch of the truss with T for tension and C for 

compression.

3. Next, locate a joint where the forces in only two of the connected members 
are still unknown. Draw the free-body diagram of the pin and use it as indicated in 

Step 2 to determine the two unknown forces.

4. Repeat this procedure until you have found the forces in all the members of 
the truss. Since you previously used the three equilibrium equations associated with 

the free-body diagram of the entire truss to determine the reactions at the supports, 

you will end up with three extra equations. These equations can be used to check 

your computations.

5. Note that the choice of the first joint is not unique. Once you have determined 

the reactions at the supports of the truss, you can choose either of two joints as a 

starting point for your analysis. In Sample Prob. 6.1, we started at joint A and pro-

ceeded through joints D, B, E, and C, but we could also have started at joint C and 

proceeded through joints E, B, D, and A. On the other hand, having selected a first 

joint, you may in some cases reach a point in your analysis beyond which you cannot 

proceed. You must then start again from another joint to complete your solution.

 Keep in mind that the analysis of a simple truss always can be carried out by 

the method of joints. Also remember that it is helpful to outline your solution before 

starting any computations.
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 6.1 through 6.8  Using the method of joints, determine the force in each 

member of the truss shown. State whether each member is in tension 

or compression.

PROBLEMS

Fig. P6.4

A B C

D
E F

24 kN

8 kN

7 kN7 kN

0.8 m

1.5 m 1.5 m

Fig. P6.5

B

A

C

D

10 kips 10 kips

5 ft

10 ft 10 ft

Fig. P6.2
C

A

B

2.8 kN

1.4 m

0.4 m

0.75 m

Fig. P6.3

300 lb

15 in.
48 in.

20 in.

A

C

B

Fig. P6.1

B

C

A

240 lb

20 in.

16 in.

15 in.

Fig. P6.6

B C

D

A

E

24 kN
4.5 m

3.2 m

6 m 6 m
Fig. P6.8

A

B

C D

5 kN

5 kN

4 m

4 m

2 m

Fig. P6.7

A B

C

D E

12 ft

693 lb

5 ft 5 ft11 ft
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     6.9 and 6.10  Determine the force in each member of the truss shown. 

State whether each member is in tension or compression.

Fig. P6.9

E
H

D

30°30°

G

C

F

B

A

4 kN 4 kN
a a a a

Fig. P6.10

E

H
G

B C

F

D

A

5 kN

a a

a

 6.11 Determine the force in each member of the Gambrel roof truss 

shown. State whether each member is in tension or compression.

 6.12 Determine the force in each member of the Howe roof truss shown. 

State whether each member is in tension or compression.

Fig. P6.12

A

B

C

D

E

F

G
H

600 lb

600 lb

300 lb

600 lb

300 lb

8 ft8 ft8 ft8 ft

6 ft

6 ft

 6.13 Determine the force in each member of the roof truss shown. State 

whether each member is in tension or compression.

 6.14 Determine the force in each member of the Fink roof truss shown. 

State whether each member is in tension or compression.

Fig. P6.14

C

D

E

F

G

1.5 kN
1.5 kN

2.25 m 2.25 m

3 kN

3 kN

3 kN

1 m

1 mA

B

3 m 3 m 3 m

Fig. P6.11

C

D

E

F

G H
A

B

6 ft

8 ft 8 ft 8 ft 8 ft

300 lb
300 lb

600 lb
600 lb

600 lb

2 ft 4 in.

Fig. P6.13

C

D

E

F

A

B
1.2 kN

2.4 kN

9 m 9 m

1.2 kN

2.4 kN

6 m 6 m 6 m

7.5 m
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Fig. P6.22 and P6.23

C
D

E

F

G
H

A
B

400 lb

400 lb

5.76 ft 5.76 ft 5.76 ft 5.76 ft

800 lb

800 lb
800 lb

10.54 ft 12.5 ft

6.72 ft

 6.15 Determine the force in each member of the Warren bridge truss 

shown. State whether each member is in tension or compression.

6.16 Solve Prob. 6.15 assuming that the load applied at E has been 

removed.

 6.17 Determine the force in each member of the Pratt roof truss shown. 

State whether each member is in tension or compression.

Fig. P6.17

5.7 kN

10.5 kN

5.7 kN

10.5 kN

9.6 kN

A

B

C

D

E

F

G

H
2.4 m

3.8 m 3.2 m 3.2 m 3.8 m

 6.18 The truss shown is one of several supporting an advertising panel. 

Determine the force in each member of the truss for a wind load 

equivalent to the two forces shown. State whether each member is 

in tension or compression.

 6.19 Determine the force in each member of the Pratt bridge truss shown. 

State whether each member is in tension or compression.

6.20 Solve Prob. 6.19 assuming that the load applied at G has been 

removed.

 6.21 Determine the force in each of the members located to the left of 

FG for the scissors roof truss shown. State whether each member is 

in tension or compression.

Fig. P6.21

C

D

E

F

G

H

I
J

K LA

B
1 kN

1 kN

2 kN

2 kN

2 m 2 m 2 m 2 m 2 m 2 m

1 m
1 m
1 m
1 m
1 m

 6.22 Determine the force in member DE and in each of the members 

located to the left of DE for the inverted Howe roof truss shown. 

State whether each member is in tension or compression.

 6.23 Determine the force in each of the members located to the right of 

DE for the inverted Howe roof truss shown. State whether each 

member is in tension or compression.

Fig. P6.15

C

D

E

F

G
A

B

12 ft

9 ft9 ft

6 kips 6 kips

18 ft 18 ft 18 ft

18 ft18 ft

Fig. P6.18

A

B

C

D

E

F

800 N

800 N

2 m 2 m

3.75 m

3.75 m

Fig. P6.19

C

D

E

F

G
HA

B

4 kips 4 kips 4 kips

12 ft

9 ft 9 ft 9 ft 9 ft
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 6.24 The portion of truss shown represents the upper part of a power 

transmission line tower. For the given loading, determine the force 

in each of the members located above HJ. State whether each mem-

ber is in tension or compression.

Fig. P6.24

C

D

E

F

G

H

I

J

K

L

M

N O

P

Q R

A

B

1.60 m

1.2 kN

1.2 kN1.2 kN

1.2 kN

1.2 kN1.2 kN

0.60 m

0.60 m

0.60 m

0.60 m

0.60 m

0.60 m

S T

2.21 m 2.21 m

1.20 m

1.20 m2.97 m

6.25 For the tower and loading of Prob. 6.24 and knowing that FCH 5

FEJ 5 1.2 kN C and FEH 5 0, determine the force in member HJ
and in each of the members located between HJ and NO. State 

whether each member is in tension or compression.

6.26 Solve Prob. 6.24 assuming that the cables hanging from the right 

side of the tower have fallen to the ground.

    6.27 and 6.28  Determine the force in each member of the truss shown. 

State whether each member is in tension or compression.

Fig. P6.27
12 ft12 ft12 ft

15 ft

15 kips

12 ft

A B C

E

D

G

F

H 

Fig. P6.28

A
B

C

D

E

F

G

H

48 kN

4 m 4 m 4 m 4 m

4.5 m
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 6.29 Determine whether the trusses of Probs. 6.31a, 6.32a, and 6.33a are 

simple trusses.

 6.30 Determine whether the trusses of Probs. 6.31b, 6.32b, and 6.33b are 

simple trusses.

6.31 For the given loading, determine the zero-force members in each of 

the two trusses shown.

 6.32 For the given loading, determine the zero-force members in each of 

the two trusses shown.

Fig. P6.32

A B C

D E F G

H
I J K

L

P

(a)

A B C D E

F G H I

J
K L M

P Q

N O
P

(b)

a
2

a
2

aaaa

 6.33 For the given loading, determine the zero-force members in each of 

the two trusses shown.

Fig. P6.33

P

A

F
G H I

J

D E

B C

C

F

A

D E

HG

B

(a) (b)
P

P P

Q

 6.34 Determine the zero-force members in the truss of (a) Prob. 6.21, 

(b) Prob. 6.27.

Fig. P6.31

A

B

C

D

E

F

G

H

I

J

K

L

M

P
Q

N

O

(a)

A

B

C

D

E

F

G

H

I

J

K

L

M

P
Q

N

O

(b)
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 *6.35 The truss shown consists of six members and is supported by a short 

link at A, two short links at B, and a ball-and-socket at D. Determine 

the force in each of the members for the given loading.

 *6.36 The truss shown consists of six members and is supported by a 

 ball-and-socket at B, a short link at C, and two short links at D. 

Determine the force in each of the members for P 5 (22184 N)j
and Q 5 0.

Fig. P6.36 and P6.37
z

2.1 m

2.1 m

A

B

C

D

P

Q

O
x

y

0.8 m

4.8 m

2 m

 *6.37 The truss shown consists of six members and is supported by a  

ball-and-socket at B, a short link at C, and two short links at D. 

Determine the force in each of the members for P 5 0 and 

Q 5 (2968 N)i.

 *6.38 The truss shown consists of nine members and is supported by a 

ball-and-socket at A, two short links at B, and a short link at C. 

Determine the force in each of the members for the given loading.

Fig. P6.38

6 ft
6 ft

6 ft
1600 lb

7.5 ft x

y

z

A

B

C

D

E
8 ft

6 ft

Fig. P6.35

A

B

C

DO

x

y

z

7 ft 7 ft

10 ft

24 ft

400 lb
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 *6.39 The truss shown consists of nine members and is supported by a ball-

and-socket at B, a short link at C, and two short links at D. (a) Check 

that this truss is a simple truss, that it is completely  constrained, and 

that the reactions at its supports are statically  determinate. (b) Deter-

mine the force in each member for P 5 (21200 N)j and Q 5 0.

Fig. P6.39

y

A

B

C

D
E

O

P

Q

z
1.2 m

0.6 m

0.6 m

x
0.75 m

2.25 m

3 m

 *6.40 Solve Prob. 6.39 for P 5 0 and Q 5 (2900 N)k.

 *6.41 The truss shown consists of 18 members and is supported by a 

 ball-and-socket at A, two short links at B, and one short link at G. 

(a) Check that this truss is a simple truss, that it is completely con-

strained, and that the reactions at its supports are statically determi-

nate. (b) For the given loading, determine the force in each of the 

six members joined at E.

Fig. P6.41 and P6.42

A

E

H

G

C

FD

B

x

y

z

10.08 ft

9.60 ft

11.00 ft

(275 lb) i

(240 lb) k

 *6.42 The truss shown consists of 18 members and is supported by a 

 ball-and-socket at A, two short links at B, and one short link at G. 

(a) Check that this truss is a simple truss, that it is completely 

 constrained, and that the reactions at its supports are statically 

 determinate. (b) For the given loading, determine the force in each 

of the six members joined at G.
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6.2 Other Truss Analyses 317

6.2 OTHER TRUSS ANALYSES
The method of joints is most effective when we want to determine the 

forces in all the members of a truss. If, however, we need to determine 

the force in only one member or in a very few members, the method of 

sections is more efficient.

6.2A The Method of Sections
Assume, for example, that we want to determine the force in member BD 

of the truss shown in Fig. 6.15a. To do this, we must determine the force 

with which member BD acts on either joint B or joint D. If we were to 

use the method of joints, we would choose either joint B or joint D as a 

free body. However, we can also choose a larger portion of the truss that 

is composed of several joints and members, provided that the force we 

want to find is one of the external forces acting on that portion. If, in 

addition, we choose the portion of the truss as a free body where a total 

of only three unknown forces act upon it, we can obtain the desired force 

by solving the equations of equilibrium for this portion of the truss. In 

practice, we isolate a portion of the truss by passing a section through 

three members of the truss, one of which is the desired member. That is, 

we draw a line that divides the truss into two completely separate parts 

but does not intersect more than three members. We can then use as a free 

body either of the two portions of the truss obtained after the intersected 

members have been removed.†

In Fig. 6.15a, we have passed the section nn through members BD, 
BE, and CE, and we have chosen the portion ABC of the truss as the free 

body (Fig. 6.15b). The forces acting on this free body are the loads P1 

and P2 at points A and B and the three unknown forces FBD, FBE, and FCE. 

Since we do not know whether the members removed are in tension or 

compression, we have arbitrarily drawn the three forces away from the 

free body as if the members are in tension.

We use the fact that the rigid body ABC is in equilibrium to write 

three equations that we can solve for the three unknown forces. If we want 

to determine only force FBD, say, we need write only one equation, pro-

vided that the equation does not contain the other unknowns. Thus, the 

equation oME 5 0 yields the value of the magnitude FBD (Fig. 6.15b). A 

positive sign in the answer will indicate that our original assumption 

regarding the sense of FBD was correct and that member BD is in tension; 

a negative sign will indicate that our assumption was incorrect and that 

BD is in compression.

On the other hand, if we want to determine only force FCE, we need 

to write an equation that does not involve FBD or FBE; the appropriate 

equation is oMB 5 0. Again, a positive sign for the magnitude FCE of the 

desired force indicates a correct assumption, that is, tension; and a nega-

tive sign indicates an incorrect assumption, that is, compression.

If we want to determine only force FBE, the appropriate equation is 

oFy 5 0. Whether the member is in tension or compression is again 

determined from the sign of the answer.

Fig. 6.15 (a) We can pass a section nn 
through the truss, dividing the three 
members BD, BE, and CE. (b) Free-body 
diagram of portion ABC of the truss. We 
assume that members BD, BE, and CE are in 
tension.

A B

C

A B

C

D

E

E

G

(a)

(b)

n

n
P1 P2

P1 P2

P3

FCE

FBD

FBE

†In the analysis of some trusses, we can pass sections through more than three members, provided 

we can write equilibrium equations involving only one unknown that we can use to determine 

the forces in one, or possibly two, of the intersected members. See Probs. 6.61 through 6.64. 
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318 Analysis of Structures

If we determine the force in only one member, no independent check 

of the computation is available. However, if we calculate all of the 

unknown forces acting on the free body, we can check the computations 

by writing an additional equation. For instance, if we determine FBD, FBE, 

and FCE as indicated previously, we can check the work by verifying that 

oFx 5 0.

6.2B  Trusses Made of Several Simple 
Trusses

Consider two simple trusses ABC and DEF. If we connect them by three 

bars BD, BE, and CE as shown in Fig. 6.16a, together they form a rigid 

truss ABDF. We can also combine trusses ABC and DEF into a single 

rigid truss by joining joints B and D at a single joint B and connecting 

joints C and E by a bar CE (Fig. 6.16b). This is known as a Fink truss. 

The trusses of Fig. 6.16a and b are not simple trusses; you cannot con-

struct them from a triangular truss by adding successive pairs of members 

as described in Sec. 6.1A. They are rigid trusses, however, as you can 

check by comparing the systems of connections used to hold the simple 

trusses ABC and DEF together (three bars in Fig. 6.16a, one pin and one 

bar in Fig. 6.16b) with the systems of supports discussed in Sec. 4.1. 

Trusses made of several simple trusses rigidly connected are known as 

compound trusses.

Fig. 6.16 Compound trusses. (a) Two simple trusses ABC and DEF connected by three 
bars. (b) Two simple trusses ABC and DEF connected by one joint and one bar 
(a Fink truss).

A

B

C

D

E
F

(a)

A

B

C E
F

(b)

In a compound truss, the number of members m and the number of 

joints n are still related by the formula m 5 2n 2 3. You can verify this 

by observing that if a compound truss is supported by a frictionless pin 

and a roller (involving three unknown reactions), the total number of 

unknowns is m 1 3, and this number must be equal to the number 2n of 

equations obtained by expressing that the n pins are in equilibrium. It 

follows that m 5 2n 2 3. 

Compound trusses supported by a pin and a roller or by an equiva-

lent system of supports are statically determinate, rigid, and completely 
constrained. This means that we can determine all of the unknown reac-

tions and the forces in all of the members by using the methods of statics, 

and the truss will neither collapse nor move. However, the only way to 

determine all of the forces in the members using the method of joints 

requires solving a large number of simultaneous equations. In the case of 

the compound truss of Fig. 6.16a, for example, it is more efficient to pass 
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6.2 Other Truss Analyses 319

a section through members BD, BE, and CE to determine the forces in 

these members.

Suppose, now, that the simple trusses ABC and DEF are connected 

by four bars; BD, BE, CD, and CE (Fig. 6.17). The number of members 

m is now larger than 2n 2 3. This truss is said to be overrigid, and one 

of the four members BD, BE, CD, or CE is redundant. If the truss is 

supported by a pin at A and a roller at F, the total number of unknowns 

is m 1 3. Since m . 2n 2 3, the number m 1 3 of unknowns is now 

larger than the number 2n of available independent equations; the truss is 

statically indeterminate.

Fig. 6.17 A statically indeterminate, 
overrigid compound truss, due to a 
redundant member.

A

B

C

D

E
F

Finally, let us assume that the two simple trusses ABC and DEF are 

joined by a single pin, as shown in Fig. 6.18a. The number of mem bers, 

m, is now smaller than 2n 2 3. If the truss is supported by a pin at A and 

a roller at F, the total number of unknowns is m 1 3. Since m , 2n 2 3, 

the number m 1 3 of unknowns is now smaller than the number 2n of 

equilibrium equations that need to be satisfied. This truss is nonrigid and 

will collapse under its own weight. However, if two pins are used to 

 support it, the truss becomes rigid and will not collapse (Fig. 6.18b). Note 

that the total number of unknowns is now m 1 4 and is equal to the 

number 2n of equations. 

More generally, if the reactions at the supports involve r unknowns, 

the condition for a compound truss to be statically determinate, rigid, and 

completely constrained is m 1 r 5 2n. However, although this condition 

is necessary, it is not sufficient for the equilibrium of a structure that 

ceases to be rigid when detached from its supports (see Sec. 6.3B).

Fig. 6.18 Two simple trusses joined by a pin. (a) Supported by a pin and a roller, 
the truss will collapse under its own weight. (b) Supported by two pins, the truss 
becomes rigid and does not collapse.

A

B

C E
F

(a) (b)

A

B

C E
F

bee87302_ch06_297-366.indd   319bee87302_ch06_297-366.indd   319 10/24/14   4:18 PM10/24/14   4:18 PM

UPLOADED BY AHMAD T JUNDI



320 Analysis of Structures

Sample Problem 6.2

Determine the forces in members EF and GI of the truss shown.

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

10 ft

8 ft 8 ft 8 ft 8 ft 8 ft

STRATEGY: You are asked to determine the forces in only two of the 

members in this truss, so the method of sections is more appropriate than 

the method of joints. You can use a free-body diagram of the entire truss 

to help determine the reactions, and then pass sections through the truss 

to isolate parts of it for calculating the desired forces.

MODELING and ANALYSIS: You can go through the steps that  follow 

for the determination of the support reactions, and then for the analysis of 

portions of the truss.

Free-Body: Entire Truss. Draw a free-body diagram of the entire 

truss. External forces acting on this free body consist of the applied loads 

and the reactions at B and J (Fig. 1). Write and solve the following equi-

librium equations.

1loMB 5 0:

 2(28 kips)(8 ft) 2 (28 kips)(24 ft) 2 (16 kips)(10 ft) 1 J(32 ft) 5 0

J 5 133 kips  J 5 33 kipsx

y
1 oFx 5 0:  Bx 1 16 kips 5 0

Bx 5 216 kips  Bx 5 16 kipsz

 1loMJ 5 0:

 (28 kips)(24 ft) 1 (28 kips)(8 ft) 2 (16 kips)(10 ft) 2 By(32 ft) 5 0

By 5 123 kips  By 5 23 kipsx

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

10 ft

8 ft 8 ft 8 ft 8 ft 8 ft

J
By

Bx

Fig. 1 Free-body diagram of entire truss.

Force in Member EF. Pass section nn through the truss diagonally 

so that it intersects member EF and only two additional members (Fig. 2). 
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6.2 Other Truss Analyses 321

Remove the intersected members and choose the left-hand portion of the 

truss as a free body (Fig. 3). Three unknowns are involved; to eliminate 

the two horizontal forces, we write

1xoFy 5 0:  123 kips 2 28 kips 2 FEF 5 0

 FEF 5 25 kips

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

16 kips

n

n

m

m
23 kips 33 kips

Fig. 2 Sections nn and mm that will be used to 
analyze members EF and GI.

FEG

FEF

FDF
D

28 kips

16 kips

23 kips

A

B

C E

Fig. 3 Free-body diagram to 
analyze member EF.

The sense of FEF was chosen assuming member EF to be in tension; the 

negative sign indicates that the member is in compression.

FEF 5 5 kips C b

Force in Member GI. Pass section mm through the truss vertically 

so that it intersects member GI and only two additional members (Fig. 2). 

Remove the intersected members and choose the right-hand portion of the 

truss as a free body (Fig. 4). Again, three unknown forces are involved; 

to eliminate the two forces passing through point H, sum the moments 

about that point.

 1loMH 5 0:  (33 kips)(8 ft) 2 (16 kips)(10 ft) 1 FGI(10 ft) 5 0

FGI 5 210.4 kips  FGI 5 10.4 kips C b

REFLECT and THINK: Note that a section passed through a truss does 

not have to be vertical or horizontal; it can be diagonal as well. Choose 

the orientation that cuts through no more than three members of unknown 

force and also gives you the simplest part of the truss for which you can 

write equilibrium equations and determine the unknowns.

FGI

FHI

FHJ

10 ft

8 ft

H

I

J

K

16 kips

33 kips

Fig. 4 Free-body diagram to 
analyze member GI.
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322 Analysis of Structures

Sample Problem 6.3

Determine the forces in members FH, GH, and GI of the roof truss 

shown.

STRATEGY: You are asked to determine the forces in only three 

members of the truss, so use the method of sections. Determine the 

reactions by treating the entire truss as a free body and then isolate 

part of it for analysis. In this case, you can use the same smaller part 

of the truss to determine all three desired forces.

MODELING and ANALYSIS: Your reasoning and computation 

should go something like the sequence given here.

Free Body: Entire Truss. From the free-body diagram of the 

entire truss (Fig. 1), find the reactions at A and L:

A 5 12.50 kNx  L 5 7.50 kNx 

Note that

tan α 5
FG

GL
5

8 m

15 m
5 0.5333    α 5 28.078

Force in Member GI. Pass section nn vertically through the truss 

(Fig. 1). Using the portion HLI of the truss as a free body (Fig. 2), 

obtain the value of FGI :

1loMH 5 0:  (7.50 kN)(10 m) 2 (1 kN)(5 m) 2 FGI(5.33 m) 5 0

FGI 5 113.13 kN  FGI 5 13.13 kN T b

Force in Member FH. Determine the value of FFH from the  equation 

oMG 5 0. To do this, move FFH along its line of action until it acts at 

point F, where you can resolve it into its x and y components (Fig. 3). 

The moment of FFH with respect to point G is now (FFH cos α)(8 m).

1loMG 5 0:

(7.50 kN)(15 m) 2 (1 kN)(10 m) 2 (1 kN)(5 m) 1 (FFH cos α)(8 m) 5 0

FFH 5 213.81 kN  FFH 5 13.81 kN C b

Force in Member GH. First note that

 tan β 5
GI

HI
5

5 m
2
3(8 m)

5 0.9375    β 5 43.158

Then determine the value of FGH by resolving the force FGH into x and 

y components at point G (Fig. 4) and solving the equation oML 5 0.

1loML 5 0:  (1 kN)(10 m) 1 (1 kN)(5 m) 1 (FGH cos β)(15 m) 5 0

FGH 5 21.371 kN  FGH 5 1.371 kN C b

REFLECT and THINK: Sometimes you should resolve a force into 

components to include it in the equilibrium equations. By first sliding 

this force along its line of action to a more strategic point, you might 

eliminate one of its components from a moment equilibrium equation.

h = 8 m

A
B

C

D

F

G

H

I

J

K
L

E

1 kN

1 kN
1 kN

1 kN
1 kN

5 kN5 kN5 kN
6 panels @ 5 m = 30 m

A

B

C

D
F

G

H

I

J

K
L

E

1 kN
1 kN

1 kN
1 kN

1 kN

5 kN5 kN5 kN
n

n

12.50 kN
7.50 kN

a = 28.07°

Fig. 1 Free-body diagram of entire truss.

Fig. 2 Free-body diagram to analyze 
member GI.

H

I

J

K
L

FGI

FFH

FGH

1 kN

1 kN

7.50 kN

(8 m) = 5.33 m2
3

5 m 5 m

Fig. 3 Simplifying the analysis of member 
FH by first sliding its force to point F.

F

G

H

I

J

K
L

FGI

FGH

FFH sin a
FFH cos a

1 kN

1 kN

7.50 kN

a = 28.07°

5 m5 m

8 m

5 m

Fig. 4 Simplifying the analysis of member 
GH by first sliding its force to point G.

G

H

I

J

K
L

FGI

FFH

FGH sin b

b = 43.15°

FGH cos b

1 kN

1 kN

7.50 kN
5 m5 m 5 m
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323 323

SOLVING PROBLEMS
ON YOUR OWN

The method of joints that you studied in Sec. 6.1 is usually the best method to 

use when you need to find the forces in all of the members of a simple truss. 

However, the method of sections, which was covered in this section, is more efficient 

when you need to find the force in only one member or the forces in a very few 
members of a simple truss. The method of sections also must be used when the truss 

is not a simple truss.

A. To determine the force in a given truss member by the method of sections,
follow these steps:

1. Draw a free-body diagram of the entire truss, and use this diagram to determine 

the reactions at the supports.

2. Pass a section through three members of the truss, one of which is the member 

whose force you want to find. After you cut through these members, you will have 

two separate portions of truss.

3. Select one of these two portions of truss and draw its free-body diagram. This 

diagram should include the external forces applied to the selected portion as well as 

the forces exerted on it by the intersected members that were removed.

4. You can now write three equilibrium equations that can be solved for the forces 

in the three intersected members.

5. An alternative approach is to write a single equation that can be solved for the 

force in the desired member. To do so, first observe whether the forces exerted by the 

other two members on the free body are parallel or whether their lines of action 

intersect.

a. If these forces are parallel, you can eliminate them by writing an equilib-

rium equation involving components in a direction perpendicular to these two forces.

 b. If their lines of action intersect at a point H, you can eliminate them by 

writing an equilibrium equation involving moments about H.

6. Keep in mind that the section you use must intersect three members only. The 

reason is that the equilibrium equations in Step 4 can be solved for only three 

unknowns. However, you can pass a section through more than three members to find 

the force in one of those members if you can write an equilibrium equation containing 

only that force as an unknown. Such special situations are found in Probs. 6.61 

through 6.64.
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324

B. About completely constrained and determinate trusses:

1. Any simple truss that is simply supported is a completely constrained and deter-

minate truss.

2. To determine whether any other truss is or is not completely constrained and 
determinate, count the number m of its members, the number n of its joints, and the 

number r of the reaction components at its supports. Compare the sum m 1 r repre-

senting the number of unknowns and the product 2n representing the number of 

available independent equilibrium equations.

a. If m 1 r < 2n, there are fewer unknowns than equations. Thus, some of the 

equations cannot be satisfied, and the truss is only partially constrained.

 b. If m 1 r > 2n, there are more unknowns than equations. Thus, some of the 

unknowns cannot be determined, and the truss is indeterminate.

 c. If m 1 r 5 2n, there are as many unknowns as there are equations. This, 

however, does not mean that all of the unknowns can be determined and that all of 

the equations can be satisfied. To find out whether the truss is completely or improp-
erly constrained, try to determine the reactions at its supports and the forces in its 

members. If you can find all of them, the truss is completely constrained and 
determinate.

bee87302_ch06_297-366.indd   324bee87302_ch06_297-366.indd   324 10/24/14   4:18 PM10/24/14   4:18 PM

UPLOADED BY AHMAD T JUNDI



325

Problems
 6.43 A Mansard roof truss is loaded as shown. Determine the force in 

members DF, DG, and EG.

1.2 kN1.2 kN1.2 kN1.2 kN1.2 kN

A C E G I K
L

B D F H J

4 m

3 m

4 m 4 m 4 m
2.25 m2.25 m

Fig. P6.43 and P6.44

 6.44 A Mansard roof truss is loaded as shown. Determine the force in 

members GI, HI, and HJ.

 6.45 Determine the force in members BD and CD of the truss shown.

C E G

F HDA B

7.5 ft

36 kips 36 kips

4 panels at 10 ft = 40 ft

Fig. P6.45 and P6.46

 6.46 Determine the force in members DF and DG of the truss shown.

 6.47 Determine the force in members CD and DF of the truss shown.

 6.48 Determine the force in members FG and FH of the truss shown.

 6.49 Determine the force in members CD and DF of the truss shown.

5 m

10 kN 10 kN 10 kN 10 kN

3 m 3 m 3 m 3 m

A C E G
I

H
F

D
B

Fig. P6.49 and P6.50

 6.50 Determine the force in members CE and EF of the truss shown.

1.8 m

4 panels @ 2.4 m = 9.6 m

12 kN 12 kN

A
C E G

J

I

D F H
B

Fig. P6.47 and P6.48
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 6.51 Determine the force in members DE and DF of the truss shown when 

P 5 20 kips.

 6.52 Determine the force in members EG and EF of the truss shown when 

P 5 20 kips.

 6.53 Determine the force in members DF and DE of the truss shown.

20 kN30 kN

GEC

A B D F

1.5 m 2 m

2 m2 m2 m

Fig. P6.53 and P6.54

 6.54 Determine the force in members CD and CE of the truss shown.

 6.55 A monosloped roof truss is loaded as shown. Determine the force in 

members CE, DE, and DF. 

1 kN

1 kN

2 kN
2 kN

2 kN

0.46 m

2.4 m2.4 m2.4 m2.4 m

A

B

C

D

E

F

G

H

I

J

2.62 m

Fig. P6.55 and P6.56

 6.56 A monosloped roof truss is loaded as shown. Determine the force in 

members EG, GH, and HJ.

 6.57 A Howe scissors roof truss is loaded as shown. Determine the force 

in members DF, DG, and EG.

A

B

C

D

E

F

G

H

I

J

K
L

0.8 kip 0.8 kip

1.6 kips
1.6 kips 1.6 kips

1.6 kips 1.6 kips

6 ft

4.5 ft

8 ft8 ft8 ft8 ft8 ft8 ft

Fig. P6.57 and P6.58

 6.58 A Howe scissors roof truss is loaded as shown. Determine the force 

in members GI, HI, and HJ.

A
B

C

D

E

F

G

H

I

J7.5 ft

6 panels @ 6 ft = 36 ft

K

L

PP P P P

Fig. P6.51 and P6.52
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 6.59 Determine the force in members AD, CD, and CE of the truss shown.

A

B C

D

E
F

G

H
I K

9 kips

5 kips 5 kips

15 ft 15 ft 15 ft

8 ft

J

Fig. P6.59 and P6.60

 6.60 Determine the force in members DG, FG, and FH of the truss shown.

 6.61 Determine the force in members DG and FI of the truss shown. 

(Hint: Use section aa.)

5 kN

5 kN

5 kN

2 m 2 m

3 m

3 m

3 m

A

D

G

J

F

I

K

B

E

H

C

a a

b b

Fig. P6.61 and P6.62

 6.62 Determine the force in members GJ and IK of the truss shown. (Hint:
Use section bb.)

 6.63 Determine the force in members EH and GI of the truss shown. 

(Hint: Use section aa.)

B

D

a

G I

b

L O

N
P

M

K

H

F

a b

JE

A

15 ft 15 ft 15 ft 15 ft 15 ft 15 ft

C

12 kips 12 kips 12 kips

8 ft

8 ft

Fig. P6.63 and P6.64

6.64 Determine the force in members HJ and IL of the truss shown. (Hint:
Use section bb.)
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    6.65 and 6.66  The diagonal members in the center panels of the power 

transmission line tower shown are very slender and can act only in 

tension; such members are known as counters. For the given loading, 

determine (a) which of the two counters listed below is acting, 

(b) the force in that counter.

6.65 Counters CJ and HE.

   6.66 Counters IO and KN.

C

D

E

F

G

H

I

J

K

L

M

N O

P

Q R

A

B
1.60 m

1.2 kN

1.2 kN1.2 kN

1.2 kN

1.2 kN1.2 kN

0.60 m

0.60 m

0.60 m

0.60 m

0.60 m

20°

20°

20°

20°

20° 20°

0.60 m

S T

2.21 m

2.21 m

2.21 m

1.20 m

1.20 m2.97 m

Fig. P6.65 and P6.66

 6.67 The diagonal members in the center panels of the truss shown are 

very slender and can act only in tension; such members are known 

as counters. Determine the force in member DE and in the counters 

that are acting under the given loading.

 6.68 Solve Prob. 6.67 assuming that the 9-kip load has been removed.

 6.69 Classify each of the structures shown as completely, partially, or 

improperly constrained; if completely constrained, further classify as 

determinate or indeterminate. (All members can act both in tension 

and in compression.)

A

B D F

C E G

H

6 kips 9 kips 12 kips

8 ft 8 ft 8 ft 8 ft

6 ft

Counters

Fig. P6.67

P

P

(a)

P

P

(b) (c)

P

P

P

P

Fig. P6.69
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    6.70 through 6.74  Classify each of the structures shown as  completely, 

partially, or improperly constrained; if completely  constrained, 

 further classify as determinate or indeterminate. (All members can 

act both in tension and in compression.)

P

(a) (b) (c)

PP

P

(a) (b) (c)

PP

PPP

(a) (b) (c)

PPP PPP

PPP

(a) (b) (c)

PPP PPP

PP

(a) (b) (c)

PP PP

Fig. P6.70

Fig. P6.71

Fig. P6.72

Fig. P6.73

Fig. P6.74
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330 Analysis of Structures

6.3 FRAMES 
When we study trusses, we are looking at structures consisting entirely of 

pins and straight two-force members. The forces acting on the two-force 

members are directed along the members themselves. We now consider struc-

tures in which at least one of the members is a multi-force member, i.e., a 

member acted upon by three or more forces. These forces are generally not 

directed along the members on which they act; their directions are unknown; 

therefore, we need to represent them by two unknown components.

Frames and machines are structures containing multi-force  members. 

Frames are designed to support loads and are usually stationary, fully 

constrained structures. Machines are designed to transmit and modify 

forces; they may or may not be stationary and always contain moving parts.

Photo 6.6 Frames and machines contain multi-force 
members. Frames are fully constrained structures, 
whereas machines like this prosthetic hand are movable 
and designed to transmit or modify forces.

6.3A Analysis of a Frame
As the first example of analysis of a frame, we consider again the crane 

described in Sec. 6.1 that carries a given load W (Fig. 6.19a). The free-

body diagram of the entire frame is shown in Fig. 6.19b. We can use this 

diagram to determine the external forces acting on the frame. Summing 

moments about A, we first determine the force T exerted by the cable; 

summing x and y components, we then determine the components Ax and 

Ay of the reaction at the pin A.

Fig. 6.19 A frame in equilibrium. (a) Diagram of a crane supporting a load; (b) free-body 
diagram of the crane; (c) free-body diagrams of the components of the crane.

A

B

C

D

E
F

W

G

(a)

F

W

T

B

C

D

E

(b)

Ay

Ax

A

(c)

A B

B

C

C

D E

E

F

W

FBE

FBE

–FBE– FBE

T

Ay

A x

Cy

C x

–Cy

–C x
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6.3 Frames  331

In order to determine the internal forces holding the various parts 

of a frame together, we must dismember it and draw a free-body diagram 

for each of its component parts (Fig. 6.19c). First, we examine the two-

force members. In this frame, member BE is the only two-force member. 

The forces acting at each end of this member must have the same mag-

nitude, same line of action, and opposite sense (Sec. 4.2A). They are 

therefore directed along BE and are denoted, respectively, by FBE and 

2FBE. We arbitrarily assume their sense as shown in Fig. 6.19c; the sign 

obtained for the common magnitude FBE of the two forces will confirm 

or deny this assumption.

Next, we consider the multi-force members, i.e., the members that 

are acted upon by three or more forces. According to  Newton’s third law, 

the force exerted at B by member BE on member AD must be equal and 

opposite to the force FBE exerted by AD on BE. Similarly, the force exerted 

at E by member BE on member CF must be equal and opposite to the 

force 2FBE exerted by CF on BE. Thus, the forces that the two-force 

member BE exerts on AD and CF are, respectively, equal to 2FBE and 

FBE; they have the same magnitude FBE, opposite sense, and should be 

directed as shown in Fig. 6.19c.

Joint C connects two multi-force members. Since neither the direc-

tion nor the magnitude of the forces acting at C are known, we represent 

these forces by their x and y components. The components Cx and Cy of 

the force acting on member AD are arbitrarily directed to the right and 

upward. Since, according to Newton’s third law, the forces exerted by 

member CF on AD and by member AD on CF are equal and opposite, 

the components of the force acting on member CF must be directed to the 

left and downward; we denote them, respectively, by 2Cx and 2Cy. 

Whether the force Cx is actually directed to the right and the force 2Cx 

is actually directed to the left will be determined later from the sign of 

their common magnitude Cx with a plus sign indicating that the assump-

tion was correct and a minus sign that it was wrong. We complete the 

free-body diagrams of the multi-force members by showing the external 

forces acting at A, D, and F.†

We can now determine the internal forces by considering the free-

body diagram of either of the two multi-force members. Choosing the 

free-body diagram of CF, for example, we write the equations oMC 5 0, 

oME 5 0, and oFx 5 0, which yield the values of the magnitudes FBE, 

Cy, and Cx, respectively. We can check these values by verifying that 

member AD is also in equilibrium.

Note that we assume the pins in Fig. 6.19 form an integral part of 

one of the two members they connected, so it is not necessary to show 

their free-body diagrams. We can always use this assumption to simplify 

the analysis of frames and machines. However, when a pin connects three 

†It is not strictly necessary to use a minus sign to distinguish the force exerted by one 

member on another from the equal and opposite force exerted by the second member on the 

first, since the two forces belong to different free-body diagrams and thus are not easily 

confused. In the Sample Problems, we use the same symbol to represent equal and opposite 

forces that are applied to different free bodies. Note that, under these conditions, the sign 

obtained for a given force component does not directly relate the sense of that component 

to the sense of the corresponding coordinate axis. Rather, a positive sign indicates that the 
sense assumed for that component in the free-body diagram is correct, and a negative sign 

indicates that it is wrong. 
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332 Analysis of Structures

or more members, connects a support and two or more members, or when 

a load is applied to a pin, we must make a clear decision in choosing the 

member to which we assume the pin belongs. (If multi-force members are 

involved, the pin should be attached to one of these members.) We then 

need to identify clearly the various forces exerted on the pin. This is 

illustrated in Sample Prob. 6.6.

6.3B  Frames That Collapse Without 
Supports

The crane we just analyzed was constructed so that it could keep the 

same shape without the help of its supports; we therefore considered it 

to be a rigid body. Many frames, however, will collapse if detached from 

their supports; such frames cannot be considered rigid bodies. Consider, 

for example, the frame shown in Fig. 6.20a that consists of two members 

AC and CB carrying loads P and Q at their midpoints. The members are 

supported by pins at A and B and are connected by a pin at C. If we 

detach this frame from its supports, it will not maintain its shape. There-

fore, we should consider it to be made of two distinct rigid parts AC 

and CB.

The equations oFx 5 0, oFy 5 0, and oM 5 0 (about any given 

point) express the conditions for the equilibrium of a rigid body (Chap. 4); 

we should use them, therefore, in connection with the free-body diagrams 

of members AC and CB (Fig. 6.20b). Since these members are multi- force 

members and since pins are used at the supports and at the connection, 

we represent each of the reactions at A and B and the forces at C by two 

components. In accordance with Newton’s third law, we represent the 

components of the force exerted by CB on AC and the components of 

the force exerted by AC on CB by vectors of the same magnitude and 

opposite sense. Thus, if the first pair of components consists of Cx and 

Cy, the second pair is represented by 2Cx and 2Cy.

Note that four unknown force components act on free body AC, 

whereas we need only three independent equations to express that the 

body is in equilibrium. Similarly, four unknowns, but only three  equations, 

are associated with CB. However, only six different unknowns are 

involved in the analysis of the two members, and altogether, six  equations 

Fig. 6.20 (a) A frame of two members supported by two pins and joined together by a third pin. Without the 
supports, the frame would collapse and is therefore not a rigid body. (b) Free-body diagrams of the two members. 
(c) Free-body diagram of the whole frame.

A B

C

(a)

QP

A B

C C

(b)

Ay

A x

By

Bx

Cy

C x

–Cy

–C x

QP

A B

C

(c)
Ay

A x

By

Bx

QP
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6.3 Frames  333

are  available to express that the members are in equilibrium. Setting 

oMA 5 0 for free body AC and oMB 5 0 for CB, we obtain two simul-

taneous equations that we can solve for the common magnitude Cx of 

the components Cx and 2Cx and for the common magnitude Cy of the 

components Cy and 2Cy. We then have oFx 5 0 and oFy 5 0 for each 

of the two free bodies, successively obtaining the magnitudes Ax , Ay, Bx, 

and By.

Observe that, since the equations of equilibrium oFx 5 0, oFy 5 0, 

and oM 5 0 (about any given point) are satisfied by the forces acting on 

free body AC and since they are also satisfied by the forces acting on free 

body CB, they must be satisfied when the forces acting on the two free 

bodies are considered simultaneously. Since the internal forces at C cancel 

each other, we find that the equations of equilibrium must be satisfied by 

the external forces shown on the free-body diagram of the frame ACB 

itself (Fig. 6.20c), even though the frame is not a rigid body. We can use 

these equations to determine some of the components of the reactions at 

A and B. We will find, however, that the reactions cannot be completely 
determined from the free-body diagram of the whole frame. It is 

thus necessary to dismember the frame and consider the free-body 

 diagrams of its component parts (Fig. 6.20b), even when we are 

 interested in  determining external reactions only. The reason is that the 

 equilibrium equations obtained for free body ACB are necessary  conditions 

for the equilibrium of a nonrigid structure, but these are not sufficient 
conditions.

The method of solution outlined here involved simultaneous 

 equations. We now present a more efficient method that utilizes the free 

body ACB as well as the free bodies AC and CB. Writing oMA 5 0 and 

oMB 5 0 for free body ACB, we obtain By and Ay. From oMC 5 0, 

oFx 5 0, and oFy 5 0 for free body AC, we successively obtain Ax, Cx, 

and Cy. Finally, setting oFx 5 0 for ACB gives us Bx.

We noted previously that the analysis of the frame in Fig. 6.20 

involves six unknown force components and six independent equilibrium 

equations. (The equilibrium equations for the whole frame were obtained 

from the original six equations and, therefore, are not independent.) More-

over, we checked that all unknowns could be actually determined and that 

all equations could be satisfied. This frame is statically determinate and 
rigid. (We use the word “rigid” here to indicate that the frame maintains 

its shape as long as it remains attached to its supports.) In general, to 

determine whether a structure is statically determinate and rigid, you 

should draw a free-body diagram for each of its component parts and 

count the reactions and internal forces involved. You should then deter-

mine the number of independent equilibrium equations (excluding equa-

tions expressing the equilibrium of the whole structure or of groups of 

component parts already analyzed). If you have more unknowns than 

equations, the structure is statically indeterminate. If you have fewer 

unknowns than equations, the structure is nonrigid. If you have as many 

unknowns as equations and if all unknowns can be determined and all 
equations satisfied under general loading conditions, the structure is stati-

cally determinate and rigid. If, however, due to an improper arrangement 

of members and supports, all unknowns cannot be determined and all 

equations cannot be satisfied, the structure is statically indeterminate 
and nonrigid.
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334 Analysis of Structures

Sample Problem 6.4

In the frame shown, members ACE and BCD are connected by a pin at C 

and by the link DE. For the loading shown, determine the force in link 

DE and the components of the force exerted at C on member BCD.

STRATEGY: Follow the general procedure discussed in this section. First 

treat the entire frame as a free body, which will enable you to find the reac-

tions at A and B. Then dismember the frame and treat each member as a 

free body, which will give you the equations needed to find the force at C.

MODELING and ANALYSIS: Since the external reactions involve only 

three unknowns, compute the reactions by considering the free-body dia-

gram of the entire frame (Fig. 1).

 1xoFy 5 0: Ay 2 480 N 5 0  Ay 5 1480 N Ay 5 480 Nx

 1loMA 5 0:  2(480 N)(100 mm) 1 B(160 mm) 5 0

  B 5 1300 N B 5 300 Ny

  y1 oFx 5 0: B 1 Ax 5 0

 300 N 1 Ax 5 0 Ax 5 2300 N Ax 5 300 Nz

Now dismember the frame (Figs. 2 and 3). Since only two members are 

connected at C, the components of the unknown forces  acting on ACE and 

BCD are, respectively, equal and opposite. Assume that link DE is in 

tension (Fig. 3) and exerts equal and opposite forces at D and E, directed 

as shown.

Fig. 2 Free-body diagram of member BCD.

B

C

D

60 mm

60 mm
480 N

100 mm
150 mm

a

Cy

Cx

FDE

300 N

Free Body: Member BCD. Using the free body BCD (Fig. 2), you can 

write and solve three equilibrium equations:

1ioMC 5 0:

(FDE sin α)(250 mm) 1 (300 N)(80 mm) 1 (480 N)(100 mm) 5 0

 FDE 5 2561 N FDE 5 561 N C b
y
1 oFx 5 0: Cx 2 FDE cos α 1 300 N 5 0

Cx 2 (2561 N) cos 28.07° 1 300 N 5 0 Cx 5 2795 N

 1xoFy 5 0: Cy 2 FDE sin α 2 480 N 5 0

Cy 2 (2561 N) sin 28.07° 2 480 N 5 0 Cy 5 1216 N

From the signs obtained for Cx and Cy, the force components Cx and Cy exerted 

on member BCD are directed to the left and up, respectively. Thus, you have

Cx 5 795 Nz, Cy 5 216 Nx b

REFLECT and THINK: Check the computations by considering the 

free body ACE (Fig. 3). For example,

1loMA 5 (FDE cos α)(300 mm) 1 (FDE sin α)(100 mm) 2 Cx(220 mm)

 5 (2561 cos α)(300) 1 (2561 sin α)(100) 2 (2795)(220) 5 0

A

B

C D

E

60 mm

60 mm

80 mm

480 N

100 mm
150 mm

160 mm

Fig. 1 Free-body diagram of entire frame.

A

B

C D

E

160 mm

80 mm

480 N

100 mm
150 mm

Ay

B

A x

a

a = tan–1 = 28.07°80
150

Fig. 3 Free-body diagrams of member 
ACE and DE.

C

A

E

D

E

80 mm

480 N

100 mm

aCy

Cx
FDE

FDE

FDE

300 N

220 mm
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6.3 Frames  335

Sample Problem 6.5

Determine the components of the forces acting on each member of the 

frame shown.

STRATEGY: The approach to this analysis is to consider the entire 

frame as a free body to determine the reactions, and then consider separate 

members. However, in this case, you will not be able to determine forces 

on one member without analyzing a second member at the same time.

MODELING and ANALYSIS: The external reactions involve only 

three unknowns, so compute the reactions by considering the free-body 

diagram of the entire frame (Fig. 1).

1loME 5 0: 2(2400 N)(3.6 m) 1 F(4.8 m) 5 0

F 5 11800 N F 5 1800 Nx b
   1xoFy 5 0: 22400 N 1 1800 N 1 Ey 5 0

 Ey 5 1600 N Ey 5 600 Nx b

  y1 oFx 5 0:   Ex 5 0 b

Now dismember the frame. Since only two members are connected at each 

joint, force components are equal and opposite on each member at each 

joint (Fig. 2).

Free Body: Member BCD.

1loMB 5 0: 2(2400 N)(3.6 m) 1 Cy(2.4 m) 5 0 Cy 5 13600 N b
1loMC 5 0: 2(2400 N)(1.2 m) 1 By(2.4 m) 5 0 By 5 11200 N b

  y1 oFx 5 0: 2Bx 1 Cx 5 0

Neither Bx nor Cx can be obtained by considering only member BCD; you 

need to look at member ABE. The positive values obtained for By and Cy 

indicate that the force components By and Cy are directed as assumed.

Free Body: Member ABE.

1loMA 5 0: Bx(2.7 m) 5 0 Bx 5 0 b

  y1 oFx 5 0: 1Bx 2 Ax 5 0 Ax 5 0 b

  1xoFy 5 0: 2Ay 1 By 1 600 N 5 0

 2Ay 1 1200 N 1 600 N 5 0 Ay 5 11800 N b

Free Body: Member BCD. Returning now to member BCD, you have

y
1 oFx 5 0: 2Bx 1 Cx 5 0  0 1 Cx 5 0 Cx 5 0 b

REFLECT and THINK: All unknown components have now been found. 

To check the results, you can verify that member ACF is in equilibrium.

1loMC 5 (1800 N)(2.4 m) 2 Ay(2.4 m) 2 Ax(2.7 m)

 5 (1800 N)(2.4 m) 2 (1800 N)(2.4 m) 2 0 5 0  (checks)

2400 N

A

B

C
D

E F

2.7 m

3.6 m

4.8 m

2.7 m

2400 N

A

C
D

E F

3.6 m

4.8 m

Ey F
Ex

B

Fig. 1 Free-body diagram of 
entire frame.

600 N 1800 N

2.7 m

2.7 m

By Cy

Bx

By

Ay

Ay

Ax

Ax

Bx

Cx

Cy

Cx

A
A

B

B

C

E F

2400 N

C
D

2.4 m

2.4 m

1.2 m

Fig. 2 Free-body diagrams of 
individual members.
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336 Analysis of Structures

Sample Problem 6.6

A 600-lb horizontal force is applied to pin A of the frame shown.  Determine 

the forces acting on the two vertical members of the frame.

STRATEGY: Begin as usual with a free-body diagram of the entire 

frame, but this time you will not be able to determine all of the reactions. 

You will have to analyze a separate member and then return to the entire 

frame analysis in order to determine the remaining reaction forces.

MODELING and ANALYSIS: Choosing the entire frame as a free 

body (Fig. 1), you can write equilibrium equations to determine the two 

force components Ey and Fy. However, these equations are not sufficient 

to determine Ex and Fx.

1loME 5 0:  2(600 lb)(10 ft) 1 Fy(6 ft) 5 0

 Fy 5 11000 lb Fy 5 1000 lbx b

   1xoFy 5 0:  Ey 1 Fy 5 0

 Ey 5 21000 lb Ey 5 1000 lbw b

To proceed with the solution, now consider the free-body diagrams of 

the various members (Fig. 2). In dismembering the frame, assume that 

pin A is attached to the multi-force member ACE so that the 600-lb force 

is applied to that member. Note that AB and CD are two-force 

members.

Free Body: Member ACE

 1xoFy 5 0:  2
5
13FAB 1 

5
13FCD 2 1000 lb 5 0

 1loME 5 0:  2(600 lb)(10 ft) 2 (
12
13FAB)(10 ft) 2 (

12
13FCD)(2.5 ft) 5 0

Solving these equations simultaneously gives you

FAB 5 21040 lb  FCD 5 11560 lb b

The signs indicate that the sense assumed for FCD was correct and the 

sense for FAB was incorrect. Now summing x components, you have

y
1 oFx 5 0:  600 lb 1 

12
13(21040 lb) 1 

12
13(11560 lb) 1 Ex 5 0

 Ex 5 21080 lb Ex 5 1080 lbz b

Free Body: Entire Frame. Now that Ex is determined, you can return 

to the free-body diagram of the entire frame.

y
1 oFx 5 0:  600 lb 2 1080 lb 1 Fx 5 0

 Fx 5 1480 lb Fx 5 480 lby b

REFLECT and THINK: Check your computations by verifying that the 

equation oMB 5 0 is satisfied by the forces acting on member BDF.

 1loMB 5 2(12
13FCD)(2.5 ft) 1 (Fx)(7.5 ft)

 5 2
12
13(1560 lb)(2.5 ft) 1 (480 lb)(7.5 ft)

 5 23600 lb?ft 1 3600 lb?ft 5 0  (checks)

600 lb A

B

C

D

E F

Ey

Ex

Fy

Fx

6 ft

10 ft

Fig. 1 Free-body diagram of 
entire frame.

600 lb A

B

C

D

E F

2.5 ft

2.5 ft

2.5 ft

2.5 ft

6 ft

A

B

C

D

FAB

FAB

FCD

FCD

Fig. 2 Free-body diagrams of 
individual members.

600 lb A

B

C

D

E F

FAB

FAB

FCD

FCD

Ey = 1000 lb Fy = 1000 lb
Ex Fx

12

12

13

13

5

5

2.5 ft

5 ft

7.5 ft

2.5 ft

bee87302_ch06_297-366.indd   336bee87302_ch06_297-366.indd   336 10/24/14   4:18 PM10/24/14   4:18 PM

UPLOADED BY AHMAD T JUNDI



337 337

SOLVING PROBLEMS
ON YOUR OWN

In this section, we analyzed frames containing one or more multi-force members. 

In the problems that follow, you will be asked to determine the external reactions 

exerted on the frame and the internal forces that hold together the members of the 

frame.

In solving problems involving frames containing one or more multi-force members, 

follow these steps.

1. Draw a free-body diagram of the entire frame. To the greatest extent possible, 

use this free-body diagram to calculate the reactions at the supports. (In Sample 

Prob. 6.6 only two of the four reaction components could be found from the free body 

of the entire frame.)

2. Dismember the frame, and draw a free-body diagram of each member.

3. First consider the two-force members. Equal and opposite forces apply to each 

two-force member at the points where it is connected to another member. If the two-

force member is straight, these forces are directed along the axis of the member. If 

you cannot tell at this point whether the member is in tension or compression, assume 

that the member is in tension and direct both of the forces away from the member. 

Since these forces have the same unknown magnitude, give them both the same name 

and, to avoid any confusion later, do not use a plus sign or a minus sign.

4. Next consider the multi-force members. For each of these members, show all 

of the forces acting on the member, including applied loads, reactions, and internal 
forces at connections. Clearly indicate the magnitude and direction of any reaction 

or reaction component found earlier from the free-body diagram of the entire 

frame.

 a. Where a multi-force member is connected to a two-force member, apply 

a force to the multi-force member that is equal and opposite to the force drawn on 

the free-body diagram of the two-force member, giving it the same name.

b. Where a multi-force member is connected to another multi-force 
 member, use horizontal and vertical components to represent the internal forces at 

that point, since the directions and magnitudes of these forces are unknown. The 

direction you choose for each of the two force components exerted on the first 

 multi-force member is arbitrary, but you must apply equal and opposite force 
 components of the same name to the other multi-force member. Again, do not use a 
plus sign or a minus sign.

(continued)
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5. Now determine the internal forces as well as any reactions that you have not 

already found.

 a. The free-body diagram of each multi-force member can provide you with 

three equilibrium equations.

 b. To simplify your solution, seek a way to write an equation involving a 

single unknown. If you can locate a point where all but one of the unknown force 
components intersect, you can obtain an equation in a single unknown by summing 

moments about that point. If all unknown forces except one are  parallel, you can 

obtain an equation in a single unknown by summing force components in a direction 

perpendicular to the parallel forces.

 c. Since you arbitrarily chose the direction of each of the unknown forces, 
you cannot determine whether your guess was correct until the solution is complete. 

To do that, consider the sign of the value found for each of the unknowns: a positive 

sign means that the direction you selected was correct; a negative sign means that the 

direction is opposite to the direction you assumed.

6. To be more effective and efficient as you proceed through your solution, observe 

the following rules.

 a. If you can find an equation involving only one unknown, write that equa-

tion and solve it for that unknown. Immediately replace that unknown wherever it 

appears on other free-body diagrams by the value you have found. Repeat this process 

by seeking equilibrium equations involving only one unknown until you have found 

all of the internal forces and unknown reactions.

 b. If you cannot find an equation involving only one unknown, you may 

have to solve a pair of simultaneous equations. Before doing so, check that you have 

included the values of all of the reactions you obtained from the free-body diagram 

of the entire frame.

 c. The total number of equations of equilibrium for the entire frame and for 

the individual members will be larger than the number of unknown forces and  reactions. 

After you have found all of the reactions and all of the internal forces, you can use 

the remaining equations to check the accuracy of your computations.
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Problems
FREE-BODY PRACTICE PROBLEMS
 6.F1 For the frame and loading shown, draw the free-body diagram(s) 

needed to determine the force in member BD and the components 

of the reaction at C.

 6.F2 For the frame and loading shown, draw the free-body diagram(s) 

needed to determine the components of all forces acting on member 

ABC.

A

B

CDE

4 ft

20 kips

5 ft 5 ft

Fig. P6.F2

 6.F3 Draw the free-body diagram(s) needed to determine all the forces 

exerted on member AI if the frame is loaded by a clockwise couple 

of magnitude 1200 lb?in. applied at point D.

 6.F4 Knowing that the pulley has a radius of 0.5 m, draw the free-body 

diagram(s) needed to determine the components of the reactions at 

A and E.

1 m

1 m
3 m 3 m

2 m

700 N

C

B D

A E

Fig. P6.F4

A

B

C
D

510 mm

240 mm
135 mm

120 mm

400 N

450 mm

Fig. P6.F1

C

D E

F

H I

G

B

A

20 in.

10 in.

20 in.

10 in.

10 in.

20 in.

10 in.

48 in.

Fig. P6.F3
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END-OF-SECTION PROBLEMS

    6.75 and 6.76  Determine the force in member BD and the components 

of the reaction at C.

160 lb

24 in.

14 in. 8 in.

10 in.

8 in.

A B C

D

J

Fig. P6.76

 6.77 For the frame and loading shown, determine the force acting on 

member ABC (a) at B, (b) at C.

A

B
C

D
200 N

120 mm

90 mm

120 mm 120 mm

Fig. P6.77

 6.78 Determine the components of all forces acting on member ABCD of 

the assembly shown.

 6.79 For the frame and loading shown, determine the components of all 

forces acting on member ABC.

 6.80 Solve Prob. 6.79 assuming that the 18-kN load is replaced by a 

clockwise couple with a magnitude of 72 kN?m applied to member 

CDEF at point D.

 6.81 Determine the components of all forces acting on member ABCD
when θ 5 0.

A

B

C DJ

E

F

8 in.

12 in.4 in. 4 in.2 in.

q60 lb

6 in.

Fig. P6.81 and P6.82

6.82 Determine the components of all forces acting on member ABCD
when θ 5 90°.

r = 1.4 m

310 N A

B

D

C

30°

1.92 m

0.56 m
Fig. P6.75

D

C

E

B

JA

120 lb

4 in.
2 in.

2 in.
2 in.4 in. 4 in.

Fig. P6.78

C

D

E

F

B

A

3.6 m

18 kN 2 m

2 m

2 m

Fig. P6.79
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 6.83 Determine the components of the reactions at A and E, (a) if the 

800-N load is applied as shown, (b) if the 800-N load is moved along 

its line of action and is applied at point D.

800 N

CB

D E
200 mm

A

300 mm600 mm300 mm

Fig. P6.83

 6.84 Determine the components of the reactions at D and E if the frame 

is loaded by a clockwise couple of magnitude 150 N?m applied 

(a) at A, (b) at B.

A

C

B

D E

0.4 m

0.4 m

0.6 m0.6 m0.6 m
Fig. P6.84

 6.85 Determine the components of the reactions at A and E if a 750-N 

force directed vertically downward is applied (a) at B, (b) at D.

 6.86 Determine the components of the reactions at A and E if the frame 

is loaded by a clockwise couple with a magnitude of 36 N∙m applied 

(a) at B, (b) at D.

 6.87 Determine the components of the reactions at A and B, (a) if the 

100-lb load is applied as shown, (b) if the 100-lb load is moved 

along its line of action and is applied at point F.

A B

C

D

F

E

100 lb
4 in.

5 in.

5 in.

10 in.

Fig. P6.87

A B

CD

E

80 mm
170 mm

75 mm

125 mm

Fig. P6.85 and P6.86
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 6.88 The 48-lb load can be moved along the line of action shown and 

applied at A, D, or E. Determine the components of the reactions at 

B and F if the 48-lb load is applied (a) at A, (b) at D, (c) at E.

 6.89 The 48-lb load is removed and a 288-lb?in. clockwise couple is applied 

successively at A, D, and E. Determine the components of the reac-

tions at B and F if the couple is applied (a) at A, (b) at D, (c) at E.

 6.90 (a) Show that, when a frame supports a pulley at A, an equivalent 

loading of the frame and of each of its component parts can be obtained 

by removing the pulley and applying at A two forces equal and parallel 

to the forces that the cable exerted on the pulley. (b) Show that, if one 

end of the cable is attached to the frame at a point B, a force of mag-

nitude equal to the tension in the cable should also be applied at B.

T T
T T

T
T

T

TA A AB AB

= =

(a) (b)

Fig. P6.90

 6.91 Knowing that each pulley has a radius of 250 mm, determine the 

components of the reactions at D and E.

2 m

1.5 m

2 m

4.8 kN

C

B D

A E

Fig. P6.91

 6.92 Knowing that the pulley has a radius of 75 mm, determine the com-

ponents of the reactions at A and B.

240 N

C

D

A B

E
75 mm

300 mm300 mm

125 mm

Fig. P6.92

A

D

B

C

E F

5 in.

7 in.

48 lb

8 in. 8 in.
Fig. P6.88 and P6.89
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 6.93 A 3-ft-diameter pipe is supported every 16 ft by a small frame like 

that shown. Knowing that the combined weight of the pipe and its 

contents is 500 lb/ft and assuming frictionless surfaces, determine 

the components (a) of the reaction at E, (b) of the force exerted at C
on member CDE.

 6.94 Solve Prob. 6.93 for a frame where h 5 6 ft.

 6.95 A trailer weighing 2400 lb is attached to a 2900-lb pickup truck by 

a ball-and-socket truck hitch at D. Determine (a) the reactions at 

each of the six wheels when the truck and trailer are at rest, (b) the 

additional load on each of the truck wheels due to the trailer.

8 ft

6 ft

h 5 9 ft

r 5 1.5 ft

A

B

C

D

E

Fig. P6.93

 6.96 In order to obtain a better weight distribution over the four wheels 

of the pickup truck of Prob. 6.95, a compensating hitch of the type 

shown is used to attach the trailer to the truck. The hitch consists of 

two bar springs (only one is shown in the figure) that fit into bearings 

inside a support rigidly attached to the truck. The springs are also 

connected by chains to the trailer frame, and specially designed 

hooks make it possible to place both chains in tension. (a) Determine 

the tension T required in each of the two chains if the additional load 

due to the trailer is to be evenly distributed over the four wheels of 

the truck. (b) What are the resulting reactions at each of the six 

wheels of the trailer-truck combination?

DE

F

Bar spring

Chain under
tension T

1.7 ft

Fig. P6.96

A B C

D

2400 lb

2900 lb

2 ft
9 ft 3 ft 5 ft 4 ft

Fig. P6.95
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6.97 The cab and motor units of the front-end loader shown are connected 

by a vertical pin located 2 m behind the cab wheels. The distance 

from C to D is 1 m. The center of gravity of the 300-kN motor unit 

is located at Gm, while the centers of gravity of the 100-kN cab and 

75-kN load are located, respectively, at Gc and Gl. Knowing that the 

machine is at rest with its brakes released, determine (a) the reac-

tions at each of the four wheels, (b) the forces exerted on the motor 

unit at C and D.

A

C

D

B

Gc
Gm

3.2 m

0.8 m

1.2 m

2.8 m2 m

75 kN

100 kN
300 kN

Gl

Fig. P6.97

 6.98 Solve Prob. 6.97 assuming that the 75-kN load has been removed.

 6.99 Knowing that P 5 90 lb and Q 5 60 lb, determine the components 

of all forces acting on member BCDE of the assembly shown.

 6.100 Knowing that P 5 60 lb and Q 5 90 lb, determine the components 

of all forces acting on member BCDE of the assembly shown.

 6.101 and 6.102  For the frame and loading shown, determine the compo-

nents of all forces acting on member ABE.

A

B C D

E F

0.3 m

12 kN

0.9 m 0.9 m

1.2 m

0.6 m

Fig. P6.101     

2.7 m

2.7 m

3.6 m

2400 N

1.5 m

4.8 m

A

B C D

J

E F

Fig. P6.102

 6.103 For the frame and loading shown, determine the components of all 

forces acting on member ABD.

 6.104 Solve Prob. 6.103 assuming that the 360-lb load has been removed.

A
B

C E

D

6 in. 6 in. 4 in. 8 in.

4 in.

P

Q

Fig. P6.99 and P6.100

6 in.
9 in. 9 in. 9 in.

12 in.

12 in.

360 lb 240 lb

A

B D

E

C

Fig. P6.103
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6.105 For the frame and loading shown, determine the components of the 

forces acting on member DABC at B and D.

6.106 Solve Prob. 6.105 assuming that the 6-kN load has been removed.

 6.107 The axis of the three-hinge arch ABC is a parabola with vertex at B. 

Knowing that P 5 112 kN and Q 5 140 kN, determine (a) the 

components of the reaction at A, (b) the components of the force 

exerted at B on segment AB.

A

B
C

P Q

1.8 m

1.4 m

3 m 3 m

8 m 6 m
Fig. P6.107 and P6.108

 6.108 The axis of the three-hinge arch ABC is a parabola with vertex at B. 

Knowing that P 5 140 kN and Q 5 112 kN, determine (a) the 

components of the reaction at A, (b) the components of the force 

exerted at B on segment AB.

 6.109 and 6.110  Neglecting the effect of friction at the horizontal and  vertical 

surfaces, determine the forces exerted at B and C on member BCE.

A B

C
D

E

6 in.6 in.
50 lb

4 in.

2 in.

6 in.

12 in.

Fig. P6.109

 6.111, 6.112, and 6.113  Members ABC and CDE are pin-connected at C
and supported by four links. For the loading shown, determine the 

force in each link.

CBA

D

G H

E F

12 kN

6 kN

0.5 m

0.5 m

0.6 m 0.2 m 0.4 m

Fig. P6.105

A B C D E

F
G

H

P

a

aaaa

Fig. P6.111

A B C D E

F
G

H

P

aaaa

a

Fig. P6.112

I

A B C D E

F
G H

P

a

aaaa

Fig. P6.113

A B

C

E

6 in.6 in.
50 lb

6 in.

6 in.

12 in.

Fig. P6.110
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6.114 Members ABC and CDE are pin-connected at C and supported by 

the four links AF, BG, DG, and EH. For the loading shown, deter-

mine the force in each link.

 6.115 Solve Prob. 6.112 assuming that the force P is replaced by a clock-

wise couple of moment M0 applied to member CDE at D.

 6.116 Solve Prob. 6.114 assuming that the force P is replaced by a clock-

wise couple of moment M0 applied at the same point.

 6.117 Four beams, each with a length of 2a, are nailed together at their 

midpoints to form the support system shown. Assuming that only 

vertical forces are exerted at the connections, determine the vertical 

reactions at A, D, E, and H.

A

B C D

E F G

H

P

Fig. P6.117

 6.118 Four beams, each with a length of 3a, are held together by single 

nails at A, B, C, and D. Each beam is attached to a support located 

at a distance a from an end of the beam as shown. Assuming that 

only vertical forces are exerted at the connections, determine the 

vertical reactions at E, F, G, and H.

B

CD

E

F
G

H

a

a

2a

2a

A

P

Fig. P6.118

P

2a

2a

a

a

a

a

A
B

G

C

D

EH

F

Fig. P6.114
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 6.119 through 6.121  Each of the frames shown consists of two L-shaped 

members connected by two rigid links. For each frame, determine 

the reactions at the supports and indicate whether the frame is rigid.

BA

P

(a)

2a 2aa

a

(c)

BA

P

2a 2aa

a

A C

B

P

(b)

2a 2aa

a

Fig. P6.119

(a)

B

P

2a 2aa

A

a

1
4

a

(c)

B

P

2a 2aa

A

a

1
4

a

(b)

P

2a 2aa

A

B
a

1
4

a

Fig. P6.120

(a)

A

B

P

2a 2aa

a A

C

B

P

2a 2aa

a

(c)

A

B

P

2a 2aa

a

(b)

Fig. P6.121
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348 Analysis of Structures

6.4 MACHINES
Machines are structures designed to transmit and modify forces. Whether 

they are simple tools or include complicated mechanisms, their main pur-

pose is to transform input forces into output forces. Consider, for exam-

ple, a pair of cutting pliers used to cut a wire (Fig. 6.21a). If we apply 

two equal and opposite forces P and 2P on the handles, the pliers will 

exert two equal and opposite forces Q and 2Q on the wire (Fig. 6.21b).

Fig. 6.21 (a) Input forces on the handles of a 
pair of cutting pliers; (b) output forces cut a wire.

A

(a) (b)

P

–P

Q

–Qba

Fig. 6.23 Free-body diagrams of 
the members of the pliers, showing 
components of the internal forces at 
joint A.

–A x

A

A

(a)

(b)

Ay

–Ay

A x

P
Q

–P
–Q

a b

To determine the magnitude Q of the output forces when we know 

the magnitude P of the input forces (or, conversely, to determine P when 

Q is known), we draw a free-body diagram of the pliers alone (i.e., without 

the wire), showing the input forces P and 2P and the reactions 2Q and 

Q that the wire exerts on the pliers (Fig. 6.22). However, since a pair of 

pliers forms a nonrigid structure, we must treat one of the component parts 

as a free body in order to determine the unknown forces. Consider 

Fig. 6.23a, for example. Taking moments about A, we obtain the relation 

Pa 5 Qb, which defines the magnitude Q in terms of P (or P in terms of Q). 

We can use the same free-body diagram to determine the components of 

the internal force at A; we find Ax 5 0 and Ay 5 P 1 Q.

Fig. 6.22 To show a free-body diagram of 
the pliers in equilibrium, we include the input 
forces and the reactions to the output forces.

Q

–Q

A

P

–P

In the case of more complicated machines, it is generally necessary 

to use several free-body diagrams and, possibly, to solve simultaneous equa-

tions involving various internal forces. You should choose the free  bodies to 

include the input forces and the reactions to the output forces, and the total 

number of unknown force components involved should not exceed the num-

ber of available independent equations. It is advisable, before attempting to 

solve a problem, to determine whether the structure considered is determi-

nate. There is no point, however, in discussing the rigidity of a machine, 

since a machine includes moving parts and thus must be nonrigid.

Photo 6.7 This lamp can be placed in many 
different positions. To determine the forces 
in the springs and the internal forces at the 
joints, we need to consider the components 
of the lamp as free bodies.
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6.4 Machines 349

Sample Problem 6.7

A hydraulic-lift table is used to raise a 1000-kg crate. The 

table consists of a platform and two identical linkages on 

which hydraulic  cylinders exert equal forces. (Only one 

 linkage and one cylinder are shown.) Members EDB and CG
are each of length 2a, and member AD is pinned to the mid-

point of EDB. If the crate is placed on the table so that half 

of its weight is supported by the system shown, determine the 

force exerted by each cylinder in raising the crate for θ 5 60°, 

a 5 0.70 m, and L 5 3.20 m. Show that the result is inde-

pendent of the distance d.

STRATEGY: The free-body diagram of the entire frame 

will involve more than three unknowns, so it alone can not be 

used to solve this problem. Instead, draw free-body  diagrams 

of each component of the machine and work from them.

MODELING: The machine consists of the platform and the 

linkage. Its free-body diagram (Fig. 1) includes an input force 

FDH exerted by the cylinder; the weight W/2, which is equal 

and opposite to the output force; and reactions at E and G, 
which are assumed to be directed as shown. Dismember the 

mechanism and draw a free-body diagram for each of its com-

ponent parts (Fig. 2). Note that AD, BC, and CG are two-force 

members. Member CG has already been assumed to be in 

 compression; now assume that AD and BC are in tension and 

direct the forces exerted on them as shown. Use equal and 

opposite vectors to represent the forces exerted by the two-force 

members on the platform, on member BDE, and on roller C.

(continued)

A B C

D

E G
H

2a

W1
2

q

L
2

L
2

d

FDH

FCGEy

Ex
E G

A B C

D

W1
2

Fig. 1 Free-body diagram of machine.

FAD

A B

B

C

C

W1
2

q

d

A

D

FAD

FAD

FAD

FDH

FBC

Ey

Ex

a

a

f

B

B

D

E

q

B CFBC FBC

FCG

FCG

G

C

FCG

FBC
C

C

q

Fig. 2 Free-body diagram of each component part.
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350 Analysis of Structures

ANALYSIS:

Free Body: Platform ABC (Fig. 3).

  y1 oFx 5 0: FAD cos θ 5 0 FAD 5 0

1xoFy 5 0: B 1 C 2 
1
2W 5 0 B 1 C 5 

1
2W (1)

Free-Body Roller C (Fig. 4). Draw a force triangle and obtain 

FBC 5 C cot θ.

Free Body: Member BDE (Fig. 5). Recalling that FAD 5 0, you 

have

1loME 5 0:  FDH cos (ϕ 2 90°)a 2 B(2a cos θ) 2 FBC(2a sin θ) 5 0

FDHa sin ϕ 2 B(2a cos θ) 2 (C cot θ)(2a sin θ) 5 0

 FDH sin ϕ 2 2(B 1 C) cos θ 5 0

From Eq. (1), you obtain

 FDH 5 W  

 cos θ

 sin ϕ
 (2)

Note that the result obtained is independent of d. b

 Applying first the law of sines to triangle EDH (Fig. 6), you have

 
 sin ϕ

EH
5

 sin θ

DH
   sin ϕ 5

EH

DH
 sin θ (3)

Now using the law of cosines, you get

 (DH)2 5 a2 1 L2 2 2aL cos θ

 5 (0.70)2 1 (3.20)2 2 2(0.70)(3.20) cos 60°

 (DH)2 5 8.49  DH 5 2.91 m

Also note that

W 5 mg 5 (1000 kg)(9.81 m/s2) 5 9810 N 5 9.81 kN

Substituting for sin ϕ from Eq. (3) into Eq. (2) and using the numerical 

data, your result is

FDH 5 W  

DH

EH
 cot θ 5 (9.81 kN) 

2.91 m

3.20 m
 cot 608

FDH 5 5.15 kN b

REFLECT and THINK: Note that link AD ends up having zero force 

in this situation. However, this member still serves an important func-

tion, as it is necessary to enable the machine to support any horizontal 

load that might be exerted on the platform.

FAD

A B

B

C

C

W1
2

q

d

Fig. 3 Free-body diagram of platform ABC.

FAD

FDH

FBC

Ey

Ex

a

a

f

B

B

D

E

q

Fig. 5 Free-body diagram 
of member BDE.

Fig. 4 Free-body 
diagram of roller C 
and its force triangle.

FCG

FBC
C

C

q

FCG

FBC

C

q

a
f

D

H
E

q

L

Fig. 6 Geometry of triangle EDH.
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351 351

SOLVING PROBLEMS 
ON YOUR OWN

This section dealt with the analysis of machines. Since machines are designed to 

transmit or modify forces, they always contain moving parts. However, the 

machines considered here are always at rest, and you will be working with the set of 

forces required to maintain the equilibrium of the machine.

Known forces that act on a machine are called input forces. A machine transforms 
the input forces into output forces, such as the cutting forces applied by the pliers of 

Fig. 6.21. You will determine the output forces by finding the equal and opposite 

forces that should be applied to the machine to maintain its equilibrium.

In Sec. 6.3, you analyzed frames; you will use almost the same procedure to analyze 

machines by following these steps.

1. Draw a free-body diagram of the whole machine, and use it to determine as 

many as possible of the unknown forces exerted on the machine.

2. Dismember the machine and draw a free-body diagram of each member.

3. First consider the two-force members. Apply equal and opposite forces to each 

two-force member at the points where it is connected to another member. If you can-

not tell at this point whether the member is in tension or in compression, assume that 

the member is in tension and direct both of the forces away from the member. Since 

these forces have the same unknown magnitude, give them both the same name.

4. Next consider the multi-force members. For each of these members, show all of 

the forces acting on it, including applied loads and forces, reactions, and internal 

forces at connections.

 a. Where a multi-force member is connected to a two-force member, apply 

to the multi-force member a force that is equal and opposite to the force drawn on 

the free-body diagram of the two-force member, giving it the same name.

b. Where a multi-force member is connected to another multi-force 
 member, use horizontal and vertical components to represent the internal forces at 

that point. The directions you choose for each of the two force components exerted 

on the first multi-force member are arbitrary, but you must apply equal and opposite 
force components of the same name to the other multi-force member.

5. Write equilibrium equations after you have completed the various free-body 

diagrams.

a. To simplify your solution, you should, whenever possible, write and solve 

equilibrium equations involving single unknowns.

 b. Since you arbitrarily chose the direction of each of the unknown forces,
you must determine at the end of the solution whether your guess was correct. To that 

effect, consider the sign of the value found for each of the unknowns. A positive sign 

indicates that your guess was correct, and a negative sign indicates that it was not.

6. Finally, check your solution by substituting the results obtained into an equilib-

rium equation that you have not previously used.
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352

FREE-BODY PRACTICE PROBLEMS
 6.F5 An 84-lb force is applied to the toggle vise at C. Knowing that 

θ 5 90°, draw the free-body diagram(s) needed to determine the 

vertical force exerted on the block at D.

 6.F6 For the system and loading shown, draw the free-body diagram(s) 

needed to determine the force P required for equilibrium.

200 mm

100 N

50 N

A

B
C

D

E

30° P

75 mm

Fig. P6.F6

 6.F7 A small barrel weighing 60 lb is lifted by a pair of tongs as shown. 

Knowing that a 5 5 in., draw the free-body diagram(s) needed to 

determine the forces exerted at B and D on tong ABD.

 6.F8 The position of member ABC is controlled by the hydraulic cylinder 

CD. Knowing that θ 5 30°, draw the free-body diagram(s) needed 

to determine the force exerted by the hydraulic cylinder on pin C, 

and the reaction at B.

C

B

A

D
q10 kN

1.5 m

0.5 m 0.8 m

90°

Fig. P6.F8

Problems

A

B

C
D

q

84 lb

7 in.

24 in.

24 in.

9 in.

40 in.

Fig. P6.F5

A

B

C D

P

a

a

6 in.9 in.

18 in.

Fig. P6.F7
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353

END-OF-SECTION PROBLEMS

 6.122 The shear shown is used to cut and trim electronic-circuit-board 

laminates. For the position shown, determine (a) the vertical 

 component of the force exerted on the shearing blade at D, (b) the 

reaction at C.

 6.123 A 100-lb force directed vertically downward is applied to the toggle 

vise at C. Knowing that link BD is 6 in. long and that a 5 4 in., 

determine the horizontal force exerted on block E.

DA

B
a C

E

100 lb

6 in.

15°

Fig. P6.123 and P6.124

 6.124 A 100-lb force directed vertically downward is applied to the toggle 

vise at C. Knowing that link BD is 6 in. long and that a 5 8 in., 

determine the horizontal force exerted on block E.

 6.125 The control rod CE passes through a horizontal hole in the body of 

the toggle system shown. Knowing that link BD is 250 mm long, 

determine the force Q required to hold the system in equilibrium 

when β 5 20°.

A
B

C

D

E

100 N

35 mmβ Q

200 mm

150 mm

Fig. P6.125

 6.126 Solve Prob. 6.125 when (a) β 5 0, (b) β 5 6°.

 6.127 The press shown is used to emboss a small seal at E. Knowing that 

P 5 250 N, determine (a) the vertical component of the force exerted 

on the seal, (b) the reaction at A.

 6.128 The press shown is used to emboss a small seal at E. Knowing that 

the vertical component of the force exerted on the seal must be 

900 N, determine (a) the required vertical force P, (b) the corre-

sponding reaction at A.

400 N

300 mm

60 mm
45 mm

30°

30°

A

C

E

B

25 mm 30 mm

D

Fig. P6.122

A

B

C

D
E

20°

60°

15° P

400 mm

200 mm

Fig. P6.127 and P6.128
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 6.129 The pin at B is attached to member ABC and can slide freely along the 

slot cut in the fixed plate. Neglecting the effect of friction, determine 

the couple M required to hold the system in equilibrium when θ 5 30°.

 6.130 The pin at B is attached to member ABC and can slide freely along the 

slot cut in the fixed plate. Neglecting the effect of friction, determine 

the couple M required to hold the system in equilibrium when θ 5 60°.

 6.131 Arm ABC is connected by pins to a collar at B and to crank CD at C. 

Neglecting the effect of friction, determine the couple M required to 

hold the system in equilibrium when θ 5 0.

A

B

C

D

θ

M

160 mm 90 mm
240 N

180 mm

320 mm

300 mm

125 mm

Fig. P6.131 and P6.132

 6.132 Arm ABC is connected by pins to a collar at B and to crank CD at C. 

Neglecting the effect of friction, determine the couple M required to 

hold the system in equilibrium when θ 5 90°.

 6.133 The Whitworth mechanism shown is used to produce a quick-return 

motion of point D. The block at B is pinned to the crank AB and is 

free to slide in a slot cut in member CD. Determine the couple M 

that must be applied to the crank AB to hold the mechanism in 

equilibrium when (a) α 5 0, (b) α 5 30°.

 6.134 Solve Prob. 6.133 when (a) α 5 60°, (b) α 5 90°.

 6.135 and 6.136  Two rods are connected by a frictionless collar B. 

Knowing that the magnitude of the couple MA is 500 lb?in., deter-

mine (a) the couple MC required for equilibrium, (b) the correspond-

ing components of the reaction at C.

A

B

C

MA

MC

8 in.

6 in.

14 in.

Fig. P6.135    

A

B

C

MA

MC

8 in.

6 in.

14 in.

Fig. P6.136

A

B

C

D

θ

M

25 lb

10 in.

6 in.

8 in.

Fig. P6.129 and P6.130

700 mm

100 mm

400 mm

1200 ND

B
A

C

M

a

Fig. P6.133
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 6.137 and 6.138  Rod CD is attached to the collar D and passes through 

a collar welded to end B of lever AB. Neglecting the effect of fric-

tion, determine the couple M required to hold the system in equilib-

rium when θ 5 30°.

 6.139 Two hydraulic cylinders control the position of the robotic arm ABC. 

Knowing that in the position shown the cylinders are parallel, 

 determine the force exerted by each cylinder when P 5 160 N and 

Q 5 80 N.

A
B

C

D

E F G

150 mm

150 mm
200 mm

P

Q

600 mm300 mm

400 mm

Fig. P6.139 and P6.140

 6.140 Two hydraulic cylinders control the position of the robotic arm ABC. 

In the position shown, the cylinders are parallel and both are in ten-

sion. Knowing that FAE 5 600 N and FDG 5 50 N, determine the 

forces P and Q applied at C to arm ABC.

 6.141 A 39-ft length of railroad rail of weight 44 lb/ft is lifted by the tongs 

shown. Determine the forces exerted at D and F on tong BDF.

D

A

CB

9.6 in. 9.6 in.

FE

6 in.

8 in.

12 in.

0.8 in.
0.8 in.

Fig. P6.141

A

B

C

D

M

q
150 N

100 mm80 mm

Fig. P6.137

q
A

B
C

D
M

300 N
200 mm

Fig. P6.138

bee87302_ch06_297-366.indd   355bee87302_ch06_297-366.indd   355 10/24/14   4:19 PM10/24/14   4:19 PM

UPLOADED BY AHMAD T JUNDI



356

6.142 A log weighing 800 lb is lifted by a pair of tongs as shown. Deter-

mine the forces exerted at E and F on tong DEF.

A B

C D

E

F G

3 in.3 in.

1.5 in.

800 lb

1.5 in.

12 in.

2.5 in.

3.5 in.

12 in.

Fig. P6.142

 6.143 The tongs shown are used to apply a total upward force of 45 kN 

on a pipe cap. Determine the forces exerted at D and F on tong ADF.

 6.144 If the toggle shown is added to the tongs of Prob. 6.143 and a single 

vertical force is applied at G, determine the forces exerted at D and 

F on tong ADF.

 6.145 The pliers shown are used to grip a 0.3-in.-diameter rod. Knowing 

that two 60-lb forces are applied to the handles, determine (a) the 

magnitude of the forces exerted on the rod, (b) the force exerted by 

the pin at A on portion AB of the pliers.

BA

C

1.2 in. 60 lb

60 lb

30°

9.5 in.

Fig. P6.145

 6.146 Determine the magnitude of the gripping forces exerted along line aa
on the nut when two 50-lb forces are applied to the handles as 

shown. Assume that pins A and D slide freely in slots cut in the jaws.

A B

C D

E F

25 mm

60 mm

75 mm

85 mm

90 mm

Fig. P6.143

55 mm55 mm

45 kN

22 mmG

A B

Fig. P6.144

A B

a

a

C
D E

50 lb

50 lb

4.5 in.

0.75 in.

0.5 in.

Fig. P6.146
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 6.147 In using the bolt cutter shown, a worker applies two 300-N forces 

to the handles. Determine the magnitude of the forces exerted by the 

cutter on the bolt.

 6.148 Determine the magnitude of the gripping forces produced when two 

300-N forces are applied as shown.

 6.149 and 6.150  Determine the force P that must be applied to the toggle 

CDE to maintain bracket ABC in the position shown.

150 mm 150 mm

150 mm

30 mm
910 N

P

A

B

C

D

E

150 mm

150 mm

Fig. P6.149    

30 mm

910 N

P

A

B C

D

E

150 mm

150 mm

150 mm

150 mm 150 mm
Fig. P6.150

 6.151 Since the brace shown must remain in position even when the mag-

nitude of P is very small, a single safety spring is attached at D and E. 

The spring DE has a constant of 50 lb/in. and an unstretched length 

of 7 in. Knowing that l 5 10 in. and that the magnitude of P is 

800 lb, determine the force Q required to release the brace.

l

A

D

B

E

C

Q

P

15 in.

20 in.

2 in. 1 in.

Fig. P6.151

 6.152 The specialized plumbing wrench shown is used in confined areas 

(e.g., under a basin or sink). It consists essentially of a jaw BC pinned 

at B to a long rod. Knowing that the forces exerted on the nut are 

equivalent to a clockwise (when viewed from above) couple with a 

magnitude of 135 lb?in., determine (a) the magnitude of the force exerted 

by pin B on jaw BC, (b) the couple M0 that is applied to the wrench.

12 mm

24 mm

24 mm

24 mm

300 N

300 N

460 mm
96 mm

A
B

C
D

E

Fig. P6.147

A
B

C D

300 N

300 N

12 mm 120 mm
36 mm

30 mm

30 mm

6 mm

42 mm96 mm

Fig. P6.148

A

B

C

M0

5
8

in.

3
8

in.
1
8

in.1

Fig. P6.152
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 6.153 The motion of the bucket of the front-end loader shown is controlled 

by two arms and a linkage that are pin-connected at D. The arms are 

located symmetrically with respect to the central, vertical, and longi-

tudinal plane of the loader; one arm AFJ and its control cylinder EF
are shown. The single linkage GHDB and its control cylinder BC are 

located in the plane of symmetry. For the position and loading shown, 

determine the force exerted (a) by cylinder BC, (b) by  cylinder EF.

A
B C

D
E

F

G

H

12 in.

12 in.
12 in.

20 in.

20 in.

24 in.

22 in.

28 in.
75 in.

4500 lb

10 in.

18 in.

J

Fig. P6.153

 6.154 The bucket of the front-end loader shown carries a 3200-lb load. 

The motion of the bucket is controlled by two identical mechanisms, 

only one of which is shown. Knowing that the mechanism shown 

supports one-half of the 3200-lb load, determine the force exerted 

(a) by cylinder CD, (b) by cylinder FH.

A B

CD

E

F

3200 lb

Dimensions in inches

G

H

8

15

15

16

12
6

24

15 20 16 24 6

Fig. P6.154

 6.155 The telescoping arm ABC is used to provide an elevated platform 

for construction workers. The workers and the platform together have 

a mass of 200 kg and have a combined center of gravity located 

directly above C. For the position when θ 5 20°, determine (a) the 

force exerted at B by the single hydraulic cylinder BD, (b) the force 

exerted on the supporting carriage at A.

 6.156 The telescoping arm ABC of Prob. 6.155 can be lowered until end C 

is close to the ground, so that workers can easily board the platform. 

For the position when θ 5 220°, determine (a) the force exerted at 

B by the single hydraulic cylinder BD, (b) the force exerted on the 

supporting carriage at A.

AB

C

D

5 m

2.4 m

0.9 m

0.5 m

θ

Fig. P6.155
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6.157 The motion of the backhoe bucket shown is controlled by the hydrau-

lic cylinders AD, CG, and EF. As a result of an attempt to dislodge 

a portion of a slab, a 2-kip force P is exerted on the bucket teeth 

at J. Knowing that θ 5 45°, determine the force exerted by each 

cylinder.

A

B
C

G
H

J

D E

P

F

I

12 in.

10 in.

16 in.

60 in.

20 in.
48 in.

10 in.
15 in.

35 in.

36 in.

40 in.

8 in.

16 in.16 in.

18 in.

10 in.

θ

Fig. P6.157

6.158 Solve Prob. 6.157 assuming that the 2-kip force P acts horizontally 

to the right (θ 5 0).

 6.159 The gears D and G are rigidly attached to shafts that are held by 

frictionless bearings. If rD 5 90 mm and rG 5 30 mm, determine 

(a) the couple M0 that must be applied for equilibrium, (b) the reac-

tions at A and B.

x

y

z

H

E

A

B
D

G

rG

rD

M0

30 N.m

C

F

180 mm

120 mm

200 mm

120 mm

Fig. P6.159
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 6.160 In the planetary gear system shown, the radius of the central gear A
is a 5 18 mm, the radius of each planetary gear is b, and the radius 

of the outer gear E is (a 1 2b). A clockwise couple with a magnitude 

of MA 5 10 N?m is applied to the central gear A and a counterclock-

wise couple with a magnitude of MS 5 50 N?m is applied to the 

spider BCD. If the system is to be in equilibrium, determine (a) the 

required radius b of the planetary gears, (b) the magnitude ME of the 

couple that must be applied to the outer gear E.

 *6.161 Two shafts AC and CF, which lie in the vertical xy plane, are con-

nected by a universal joint at C. The bearings at B and D do not 

exert any axial force. A couple with a magnitude of 500 lb?in. (clock-

wise when viewed from the positive x axis) is applied to shaft CF 

at F. At a time when the arm of the crosspiece attached to shaft CF 

is horizontal, determine (a) the magnitude of the couple that must 

be applied to shaft AC at A to maintain equilibrium, (b) the reactions 

at B, D, and E. (Hint: The sum of the couples exerted on the cross-

piece must be zero.)

A

B

C

D

E
x

y

z

4 in.

6 in.

5 in.

30°

500 lb-in.

F

Fig. P6.161

*6.162 Solve Prob. 6.161 assuming that the arm of the crosspiece attached 

to shaft CF is vertical.

 *6.163 The large mechanical tongs shown are used to grab and lift a thick 

7500-kg steel slab HJ. Knowing that slipping does not occur between 

the tong grips and the slab at H and J, determine the components of 

all forces acting on member EFH. (Hint: Consider the symmetry of 

the tongs to establish relationships between the components of the 

force acting at E on EFH and the components of the force acting at 

D on DGJ.)

A

B

C

D

E

Fig. P6.160

A

B CD E

F G

H J

W

0.3 m

0.5 m

0.5 m

1.8 m

0.9 m

1.8 m

1.3 m

1 m

Fig. P6.163
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Review and Summary
In this chapter, you studied ways to determine the internal forces holding 

together the various parts of a structure.

Analysis of Trusses
The first half of the chapter presented the analysis of trusses, i.e., structures 

consisting of straight members connected at their extremities only. Because 

the members are slender and unable to support lateral loads, all of the loads 

must be applied at the joints; thus, we can assume that a truss consists of pins 
and two-force members [Sec. 6.1A].

Simple Trusses
A truss is rigid if it is designed in such a way that it does not greatly deform 

or collapse under a small load. A triangular truss consisting of three members 

connected at three joints is clearly a rigid truss (Fig. 6.24a). The truss obtained 

by adding two new members to the first one and connecting them at a new 

joint (Fig. 6.24b) is also rigid. Trusses obtained by repeating this procedure 

are called simple trusses. We may check that, in a simple truss, the total 

number of members is m 5 2n 2 3, where n is the total number of joints 

[Sec. 6.1A].

(a) (b)

A

B

C A

B

C

D

Fig. 6.24

Method of Joints
We can determine the forces in the various members of a simple truss by 

using the method of joints [Sec. 6.1B]. First, we obtain the reactions at the 

supports by considering the entire truss as a free body. Then we draw the 

free-body diagram of each pin, showing the forces exerted on the pin by 

the members or supports it connects. Since the members are straight two-

force members, the force exerted by a member on the pin is directed along 

that member, and only the magnitude of the force is unknown. In the case 

of a simple truss, it is always possible to draw the free-body diagrams of 

the pins in such an order that only two unknown forces are included in each 

diagram. We obtain these forces from the corresponding two equilibrium 

equations or—if only three forces are involved—from the  corresponding 

force triangle. If the force exerted by a member on a pin is directed toward 
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that pin, the member is in  compression; if it is directed away from the pin, 

the member is in tension [Sample Prob. 6.1]. The analysis of a truss is 

sometimes  expedited by first recognizing joints under special loading 
 conditions [Sec. 6.1C]. The method of joints also can be extended for the 

analysis of three-dimensional or space trusses [Sec. 6.1D].

Method of Sections
The method of sections is usually preferable to the method of joints when 

we want to determine the force in only one member—or very few members—

of a truss [Sec. 6.2A]. To determine the force in member BD of the truss of 

Fig. 6.25a, for example, we pass a section through members BD, BE, and CE;
remove these members; and use the portion ABC of the truss as a free body 

(Fig. 6.25b). Setting oME 5 0, we determine the magnitude of force FBD that 

represents the force in member BD. A positive sign indicates that the member 

is in tension; a negative sign indicates that it is in compression  [Sample Probs. 

6.2 and 6.3].

A B

C

A B

C

D

E

E

G

(a)

(b)

n

n
P1 P2

P1 P2

P3

FCE

FBD

FBE

Fig. 6.25

Compound Trusses
The method of sections is particularly useful in the analysis of compound 
trusses, i.e., trusses that cannot be constructed from the basic triangular truss 

of Fig. 6.24a but are built by rigidly connecting several simple trusses 

[Sec. 6.2B]. If the component trusses are properly connected (e.g., one pin 

and one link, or three non-concurrent and unparallel links) and if the  resulting 

structure is properly supported (e.g., one pin and one roller), the  compound 

truss is statically determinate, rigid, and completely  constrained. The 

 following necessary—but not sufficient—condition is then satisfied: 

m 1 r 5 2n, where m is the number of members, r is the number of 

unknowns representing the reactions at the supports, and n is the number of 

joints.
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Frames and Machines
In the second part of the chapter, we analyzed frames and machines. These 

structures contain multi-force members, i.e., members acted upon by three or 

more forces. Frames are designed to support loads and are usually stationary, 

fully constrained structures. Machines are designed to transmit or modify 

forces and always contain moving parts [Sec. 6.3].

Analysis of a Frame
To analyze a frame, we first consider the entire frame to be a free body and 

write three equilibrium equations [Sec. 6.3A]. If the frame remains rigid when 

detached from its supports, the reactions involve only three unknowns and 

may be determined from these equations [Sample Probs. 6.4 and 6.5]. On the 

other hand, if the frame ceases to be rigid when detached from its supports, 

the reactions involve more than three unknowns, and we cannot determine 

them completely from the equilibrium equations of the frame [Sec. 6.3B; 

Sample Prob. 6.6].

Multi-force Members
We then dismember the frame and identify the various members as either 

two-force members or multi-force members; we assume pins form an integral 

part of one of the members they connect. We draw the free-body diagram of 

each of the multi-force members, noting that, when two multi-force members 

are connected to the same two-force member, they are acted upon by that 

member with equal and opposite forces of unknown magnitude but known 
direction. When two multi-force members are connected by a pin, they exert 

on each other equal and opposite forces of unknown direction that should be 

represented by two unknown components. We can then solve the equilibrium 

equations obtained from the free-body diagrams of the multi-force members 

for the various internal forces [Sample Probs. 6.4 and 6.5]. We also can use 

the equilibrium equations to complete the determination of the reactions at 

the supports [Sample Prob. 6.6]. Actually, if the frame is statically determinate 
and rigid, the free-body diagrams of the multi-force members could provide 

as many equations as there are unknown forces (including the reactions) 

[Sec. 6.3B]. However, as suggested previously, it is advisable to first consider 

the free-body diagram of the entire frame to minimize the number of equations 

that must be solved simultaneously.

Analysis of a Machine
To analyze a machine, we dismember it and, following the same procedure 

as for a frame, draw the free-body diagram of each multi-force member. The 

corresponding equilibrium equations yield the output forces exerted by the 

machine in terms of the input forces applied to it as well as the internal 
forces at the various connections [Sec. 6.4; Sample Prob. 6.7].
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Review Problems
6.164 Using the method of joints, determine the force in each member 

of the truss shown. State whether each member is in tension or 

compression.

6.165 Using the method of joints, determine the force in each member of 

the double-pitch roof truss shown. State whether each member is in 

tension or compression.

C

D

E

F

G

HA

B

4 m4 m4 m
3 m 3 m

1 kN

2 kN

2 kN

1.75 kN

1.5 kN

0.75 kN
6 m

6 m6 m6 m

Fig. P6.165

 6.166 A stadium roof truss is loaded as shown. Determine the force in 

members AB, AG, and FG.

A
B

C
D

E F G H

I J

K L

0.9 kips

0.9 kips

1.8 kips
1.8 kips

8 ft 8 ft

31.5 ft

9 ft

12 ft 14 ft 14 ft

Fig. P6.166 and P6.167

 6.167 A stadium roof truss is loaded as shown. Determine the force in 

members AE, EF, and FJ.

 6.168 Determine the components of all forces acting on member ABD of 

the frame shown.

1.2 m

0.9 m

1.2 m

A

C D
E

B

6 kN

3 kN

Fig. P6.164

6 ft

4 ft 4 ft 4 ft 4 ft

A

B

J
D

E

C

300 lb 450 lb

Fig. P6.168
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6.169 Determine the components of the reactions at A and E if the frame 

is loaded by a clockwise couple of magnitude 36 N?m applied (a) at B, 

(b) at D.

6.170 Knowing that the pulley has a radius of 50 mm, determine the com-

ponents of the reactions at B and E.

A
B

C
D

E

300 N

180 mm 120 mm

150 mm

Fig. P6.170

6.171 For the frame and loading shown, determine the components of the 

forces acting on member CFE at C and F.

40 lb

A

B
C

D

E F

6 in.

4 in.

5 in. 4 in. 4 in.

Fig. P6.171

6.172 For the frame and loading shown, determine the reactions at A, B, 

D, and E. Assume that the surface at each support is frictionless.

8 in. 8 in.

6 in.

6 in.

30°

1000 lb

A B

C

D E

Fig. P6.172

A B

C

D

E

240 mm240 mm

240 mm

160 mm

Fig. P6.169
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6.173 Water pressure in the supply system exerts a downward force of 

135 N on the vertical plug at A. Determine the tension in the fusible 

link DE and the force exerted on member BCE at B.

24 mm

A
D

B

E
C

24 mm
6 mm

16 mm

Fig. P6.173

 6.174 A couple M with a magnitude of 1.5 kN?m is applied to the crank 

of the engine system shown. For each of the two positions shown, 

determine the force P required to hold the system in equilibrium.

M
A

B

P

(a) (b)

C

50 mm

75 mm
175 mm

A

B

M

P

C

75 mm 100 mm

50 mm

Fig. P6.174

6.175 The compound-lever pruning shears shown can be adjusted by plac-

ing pin A at various ratchet positions on blade ACE. Knowing that 

300-lb vertical forces are required to complete the pruning of a small 

branch, determine the magnitude P of the forces that must be applied 

to the handles when the shears are adjusted as shown.

A

B

C

D

E

3.5 in.
1.6 in.

0.5 in.
0.55 in.
0.25 in.

0.65 in. 0.75 in.

P

–P

Fig. P6.175
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The Assut de l’Or Bridge in the City of Arts and Science in 

Valencia, Spain, is cable-stayed, where the bridge deck is 

supported by cables attached to the curved tower. The tower 

itself is partially supported by four anchor cables. The deck 

of the bridge consists of a system of beams that support 

the roadway.

Internal Forces and 
Moments

7
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368 Internal Forces and Moments

Introduction
In previous chapters, we considered two basic problems involving struc-

tures: (1) determining the external forces acting on a structure (Chap. 4) 

and (2) determining the internal forces that hold together the various mem-

bers forming a structure (Chap. 6). Now we consider the problem of deter-

mining the internal forces that hold together the parts of a given individual 

member.

We will first analyze the internal forces in the members of a frame, 

such as the crane considered in Fig. 6.1. Note that, whereas the internal 

forces in a straight two-force member can produce only tension or com-
pression in that member, the internal forces in any other type of member 

usually produce shear and bending as well.

Most of this chapter is devoted to the analysis of the  internal forces 

in two important types of engineering elements:

 1. Beams, which are usually long, straight prismatic members designed to 

support loads applied at various points along it.

 2. Cables, which are flexible members capable of withstanding only ten-

sion and are designed to support either concentrated or distributed loads. 

Cables are used in many engineering applications, such as suspension 

bridges and power transmission lines.

7.1  INTERNAL FORCES IN 
MEMBERS

Consider a straight two-force member AB (Fig. 7.1a). From Sec. 4.2A, 

we know that the forces F and 2F acting at A and B, respectively, must 

be directed along AB in opposite sense and have the same magnitude F. 

Suppose we cut the member at C. To maintain equilibrium of the resulting 

free bodies AC and CB, we must apply to AC a force 2F equal and 

Introduction

 7.1 INTERNAL FORCES IN 
MEMBERS

 7.2 BEAMS
7.2A Various Types of Loading and 

Support
7.2B Shear and Bending Moment in 

a Beam
7.2C Shear and Bending-Moment 

Diagrams

 7.3 RELATIONS AMONG 
LOAD, SHEAR, AND 
BENDING MOMENT

*7.4 CABLES
7.4A Cables with Concentrated 

Loads
7.4B Cables with Distributed Loads
7.4C Parabolic Cables

*7.5 CATENARY CABLES

Objectives
• Consider the general state of internal member forces, 

which includes axial force, shearing force, and bending 
moment.

• Apply equilibrium analysis methods to obtain specifi c 
values, general expressions, and diagrams for shear 
and bending-moment in beams.

• Examine relations among load, shear, and bending-
moment, and use these to obtain shear and bending-
moment diagrams for beams.

• Analyze the tension forces in cables subjected to 
concentrated loads, loads uniformly distributed along the 
horizontal, and loads uniformly distributed along the 
cable itself.

(a) (b)

C

A

B

F

–F

–F

C

A

F

–F
B

C

F

Fig. 7.1 A straight two-force 
member in tension. (a) External forces 
act at the ends of the member; 
(b) internal axial forces do not 
depend on the location of section C.
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7.1 Internal Forces in Members 369

opposite to F and to CB a force F equal and opposite to 2F (Fig. 7.1b). 

These new forces are directed along AB in opposite sense and have the 

same magnitude F. Since the two parts AC and CB were in equilibrium 

before the member was cut, internal forces equivalent to these new forces 

must have existed in the member itself. We conclude that, in the case of 

a straight two-force member, the internal forces that the two portions of 

the member exert on each other are equivalent to axial forces. The com-

mon magnitude F of these forces does not depend upon the location of the 

section C and is referred to as the force in member AB. In the case shown 

in Fig. 7.1, the member is in tension and elongates under the action of the 

internal forces. In the case represented in Fig. 7.2, the member is in com-

pression and decreases in length under the action of the internal forces.

(a) (b)

C

A

B

F

–F

–F

C

A

F

–FB

C

F

Fig. 7.2 A straight two-force member 
in compression. (a) External forces act 
at the ends; (b) internal axial forces 
are independent of the location of 
section C.

T

FBE

Cx

Ay

Ax

Cy

T

A

B

C

D

E
F

W

G

(a)

A

B

C

D

J

(b)

FBE

Ay

Ax

Cy

Cx

–F
–M

–V

A

B

C
J

(d)

Ay

Ax

A

(e)

FBE

Cy

Cx

B

C
V

M
F

T

D D

J

(c)

Fig. 7.3 (a) Crane from Chapter 6; (b) free-body diagram of multi-force member AD; (c,d) free-body 
diagrams of sections of member AD showing internal force-couple systems; (e) deformation of member AD.

Next, consider a multi-force member. Take, for instance, member 

AD of the crane analyzed in Sec. 6.3A. This crane is shown again in 

Fig. 7.3a, and we drew the free-body diagram of member AD in Fig. 7.3b. 

Suppose we cut member AD at J and draw a free-body diagram for each 

of the portions JD and AJ (Fig. 7.3c and d). Considering the free body 

JD, we find that, to maintain its equilibrium, we need to apply at J a force 

F to balance the vertical component of T; a force V to balance the 
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370 Internal Forces and Moments

horizontal component of T; and a couple M to balance the moment of T 

about J. Again, we conclude that internal forces must have existed at J 

before member AD was cut, which is equivalent to the force-couple system 

shown in Fig. 7.3c. 

According to Newton’s third law, the internal forces acting on AJ 

must be equivalent to an equal and opposite force-couple system, as shown 

in Fig. 7.3d. Clearly, the action of the internal forces in member AD is 
not limited to producing tension or compression, as in the case of straight 

two-force members; the internal forces also produce shear and bending. 

The force F is an axial force; the force V is called a shearing force; and 

the moment M of the couple is known as the bending moment at J. 

Note that, when determining internal forces in a member, you should 

clearly indicate on which portion of the member the forces are supposed 

to act. The deformation that occurs in member AD is sketched in Fig. 7.3e. 

The actual analysis of such a deformation is part of the study of mechanics 

of materials.

Also note that, in a two-force member that is not straight, the 

internal forces are also equivalent to a force-couple system. This is shown 

in Fig. 7.4, where the two-force member ABC has been cut at D.

(a)

D

B

CAP

– P

(b)

D

AP

M

V

F

(c)

D

B

C

– P–F

–M

–V

Fig. 7.4 (a) Free-body diagram of a two-force member that is not straight; (b, c) free-body diagrams of sections of member 
ABC showing internal force-couple systems.

Photo 7.1 The design of the shaft of a circular saw 
must account for the internal forces resulting from 
the forces applied to the teeth of the blade. At a 
given point in the shaft, these internal forces are 
equivalent to a force-couple system consisting of 
axial and shearing forces and couples representing 
the bending and torsional moments.
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7.1 Internal Forces in Members 371

Sample Problem 7.1

In the frame shown, determine the internal forces (a) in member ACF at 

point J, (b) in member BCD at point K. This frame was previously ana-

lyzed in Sample Prob. 6.5.

STRATEGY: After isolating each member, you can cut it at the given 

point and treat the resulting parts as objects in equilibrium. Analysis of 

the equilibrium equations, as we did before in Sample Problem 6.5, will 

determine the internal force-couple system.

MODELING: The reactions and the connection forces acting on each 

member of the frame were determined previously in Sample Prob. 6.5. 

The results are repeated in Fig. 1.

1.2 m

1.5 m

2400 N
a

A

B C
D

K

J

FE

3.6 m

2.7 m

2.7 m

4.8 m

2400 N

A A

B

B C

C

DK

J

FE

1200 N

1200 N

3600 N

3600 N

1800 N

1800 N

1800 N

600 N

Fig. 1 Reactions and connection 
forces acting on each member of the 
frame.
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372 Internal Forces and Moments

ANALYSIS: 

a. Internal Forces at J. Cut member ACF at point J, obtaining the 

two parts shown in Fig. 2. Represent the internal forces at J by an 

equivalent force-couple system, which can be determined by considering 

the equilibrium of either part. Considering the free body AJ, you have

 1l oMJ 5 0: 2(1800 N)(1.2 m) 1 M 5 0

 M 5 12160 N?m  M 5 2160 N?m l b

1  oFx 5 0: F 2 (1800 N) cos 41.7° 5 0

 F 5 11344 N F 5 1344 N  b

 1  oFy 5 0: 2V 1 (1800 N) sin 41.7° 5 0

 V 5 11197 N V 5 1197 N  b

The internal forces at J are therefore equivalent to a couple M, an axial 

force F, and a shearing force V. The internal force-couple system acting 

on part JCF is equal and opposite.

 b. Internal Forces at K. Cut member BCD at K, obtaining the 

two parts shown in Fig. 3. Considering the free body BK, you obtain

1l oMK 5 0: (1200 N)(1.5 m) 1 M 5 0

 M 5 21800 N?m M 5 1800 N?m  b

   yoFx 5 0: F 5 0 F 5 0 b

 1xoFy 5 0: 21200 N 2 V 5 0

 V 5 21200 N V 5 1200 Nx b

1

REFLECT and THINK: The mathematical techniques involved in solv-

ing a problem of this type are not new; they are simply applications of 

concepts presented in earlier chapters. However, the physical interpretation 

is new: we are now determining the internal forces and moments within 

a structural member. These are of central importance in the study of 

mechanics of materials.

2400 N1200 N
3600 N

V
M

F
–M

–V

–FB C DKK

y

x

1.5 m

Fig. 3 Free-body diagrams of portion BK 
and DK of member BCD.

A

C

J

J

F

3600 N

1800 N

1800 N
a = 41.7° y

x

V M

F
1.2 m

–F

–M
–V

Fig. 2 Free-body diagrams of 
portion AJ and FJ of member ACF.
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373 373

In this section, we discussed how to determine the internal forces in the member of 

a frame. The internal forces at a given point in a straight two-force member reduce 

to an axial force, but in all other cases, they are equivalent to a force-couple system
consisting of an axial force F, a shearing force V, and a couple M representing the 

bending moment at that point.

To determine the internal forces at a given point J of the member of a frame, you 

should take the following steps.

1. Draw a free-body diagram of the entire frame, and use it to determine as many 

of the reactions at the supports as you can.

2. Dismember the frame and draw a free-body diagram of each of its members.
Write as many equilibrium equations as are necessary to find all of the forces acting 

on the member on which point J is located.

3. Cut the member at point J and draw a free-body diagram of each resulting 
portion. Apply to each portion at point J the force components and couple represent-

ing the internal forces exerted by the other portion. These force components and 

couples are equal in magnitude and opposite in sense.

4. Select one of the two free-body diagrams you have drawn and use it to write 

three equilibrium equations for the corresponding portion of the member.

 a. Summing moments about J and equating them to zero yields the bending 

moment at point J.

 b. Summing components in directions parallel and perpendicular to the mem-

ber at J and equating them to zero yields, respectively, the axial and shearing forces.

5. When recording your answers, be sure to specify the portion of the  member 

you have used, since the forces and couples acting on the two portions have opposite 

senses.

The solutions of the problems in this section require you to determine the forces 

exerted on each other by the various members of a frame, so be sure to review the 

methods used in Chap. 6 to solve this type of problem. When frames involve pulleys 

and cables, for instance, remember that the forces exerted by a pulley on the member 

of the frame to which it is attached have the same magnitude and direction as the 

forces exerted by the cable on the pulley [Prob. 6.90].

SOLVING PROBLEMS 
ON YOUR OWN
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374

      7.1 and 7.2  Determine the internal forces (axial force, shearing force, 

and bending moment) at point J of the structure indicated.

 7.1 Frame and loading of Prob. 6.76

 7.2 Frame and loading of Prob. 6.78

 7.3 Determine the internal forces at point J when α 5 90°.

Problems

300 mm 300 mm

480 mm

240 mm

J

A
B

D a
C

780 N

Fig. P7.3 and P7.4

80 mm 80 mm

40 mm

20 mm

20 mm

20 mm

A

K

J

B

250 N 250 N C

Fig. P7.5 and P7.6

B

A

J

C

D

24 in.
8 in.

16 in.

16 in.

32 in.

Fig. P7.7

 7.4 Determine the internal forces at point J when α 5 0.

      7.5 and 7.6  For the frame and loading shown, determine the internal 

forces at the point indicated:

 7.5 Point J
 7.6 Point K

 7.7 An archer aiming at a target is pulling with a 45-lb force on the 

bowstring. Assuming that the shape of the bow can be approximated 

by a parabola, determine the internal forces at point J.

 7.8 For the bow of Prob. 7.7, determine the magnitude and location of 

the maximum (a) axial force, (b) shearing force, (c) bending moment.
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375

 7.9 A semicircular rod is loaded as shown. Determine the internal forces 

at point J.

A

B

J

K

120 N

60°

30°

180 mm

180 mm

Fig. P7.9 and P7.10

A B

J

C

D

280 N

q

160 mm

120 mm

160 mm 160 mm

Fig. P7.11 and P7.12

P

a

A

B

J

L

h

Fig. P7.13 and P7.14

 7.10 A semicircular rod is loaded as shown. Determine the internal forces 

at point K.

 7.11 A semicircular rod is loaded as shown. Determine the internal forces 

at point J knowing that θ 5 30°.

 7.12 A semicircular rod is loaded as shown. Determine the magnitude and 

location of the maximum bending moment in the rod.

7.13 The axis of the curved member AB is a parabola with vertex at A. 

If a vertical load P of magnitude 450 lb is applied at A, determine 

the internal forces at J when h 5 12 in., L 5 40 in., and a 5 24 in.

7.14 Knowing that the axis of the curved member AB is a parabola with 

vertex at A, determine the magnitude and location of the maximum 

bending moment.

 7.15 Knowing that the radius of each pulley is 200 mm and neglecting 

friction, determine the internal forces at point J of the frame shown.

0.6 m
0.2 m

0.2 m
0.8 m0.8 m

A

B
C

D

K

J

EF

360 N

1 m

1.8 m

Fig. P7.15 and P7.16

 7.16 Knowing that the radius of each pulley is 200 mm and neglecting 

friction, determine the internal forces at point K of the frame shown.
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 7.17 A 5-in.-diameter pipe is supported every 9 ft by a small frame con-

sisting of two members as shown. Knowing that the combined 

weight of the pipe and its contents is 10 lb/ft and neglecting the 

effect of friction, determine the magnitude and location of the maxi-

mum bending moment in member AC.

A B

C
D

E

r = 2.5 in.

9 in.

6.75 in.12 in.

Fig. P7.17

0.2 m
0.8 m 0.8 m 0.8 m

A

B
C

D

K

J

E

360 N

1 m

1.8 m

Fig. P7.19 and P7.20

 7.18 For the frame of Prob. 7.17, determine the magnitude and location 

of the maximum bending moment in member BC.

 7.19 Knowing that the radius of each pulley is 200 mm and neglecting 

friction, determine the internal forces at point J of the frame shown.

 7.20 Knowing that the radius of each pulley is 200 mm and neglecting 

friction, determine the internal forces at point K of the frame shown.

    7.21 and 7.22  A force P is applied to a bent rod that is supported by a 

roller and a pin and bracket. For each of the three cases shown, 

determine the internal forces at point J.

3
4

3
4

B

C D

J

A

P

(a) (b) (c)

a

a

a a
B

C D

J

A

P

3
4

a

a

a a
B

C D

J

A

P

a

a

a a

Fig. P7.21

B

C D

J

P

(a) (b) (c)

a

a

a a

B

C

D

J

P

3

4

3
4

a

a

a a

B

C
D

J

A A A

P

a

a

a a

Fig. P7.22
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 7.23 A quarter-circular rod of weight W and uniform cross section is sup-

ported as shown. Determine the bending moment at point J when 

θ 5 30°.

B

J

A
q

r

Fig. P7.23

 7.24 For the rod of Prob. 7.23, determine the magnitude and location of 

the maximum bending moment.

 7.25 A semicircular rod of weight W and uniform cross section is sup-

ported as shown. Determine the bending moment at point J when 

θ 5 60°.

q

B

J

A

r

r

Fig. P7.25 and P7.26

r

q

B
J

CA O

Fig. P7.27

r

q
A

B

O C

J

Fig. P7.28

 7.26 A semicircular rod of weight W and uniform cross section is sup-

ported as shown. Determine the bending moment at point J when 

θ 5 150°.

    7.27 and 7.28  A half section of pipe rests on a frictionless horizontal 

surface as shown. If the half section of pipe has a mass of 9 kg and 

a diameter of 300 mm, determine the bending moment at point J
when θ 5 90°.

bee87302_ch07_367-428.indd   377bee87302_ch07_367-428.indd   377 11/8/14   10:53 AM11/8/14   10:53 AM

UPLOADED BY AHMAD T JUNDI



378 Internal Forces and Moments

7.2 BEAMS
A structural member designed to support loads applied at various points 

along the member is known as a beam. In most cases, the loads are per-

pendicular to the axis of the beam and cause only shear and bending in 

the beam. When the loads are not at a right angle to the beam, they also 

produce axial forces in the beam.

Beams are usually long, straight prismatic bars. Designing a beam 

for the most effective support of the applied loads is a two-part process: 

(1) determine the shearing forces and bending moments produced by the 

loads and (2) select the cross section best suited to resist these shearing 

forces and bending moments. Here we are concerned with the first part 

of the problem of beam design. The second part belongs to the study of 

mechanics of materials.

7.2A  Various Types of Loading 
and Support

A beam can be subjected to concentrated loads P1, P2, . . . that are expressed 

in newtons, pounds, or their multiples, kilonewtons and kips (Fig. 7.5a). We 

can also subject a beam to a distributed load w, expressed in N/m, kN/m, 

lb/ft, or kips/ft (Fig. 7.5b). In many cases, a beam is subjected to a combina-

tion of both types of load. When the load w per unit length has a constant 

value over part of the beam (as between A and B in Fig. 7.5b), the load is 

said to be uniformly distributed over that part of the beam. Determining 

the reactions at the supports is considerably simplified if we replace distrib-

uted loads by equivalent concentrated loads, as explained in Sec. 5.3A. 

However, you should not do this substitution, or at least perform it with care, 

when calculating internal forces (see Sample Prob. 7.3).

Beams are classified according to the way in which they are sup-

ported. Figure 7.6 shows several types of beams used frequently. 

(a) Concentrated loads

(b) Distributed load

A
B C

A
B

C

D

P1 P2

w

Fig. 7.5 A beam may be subjected to 
(a) concentrated loads or (b) distributed 
loads, or a combination of both.

Fig. 7.6 Some common types of beams and their supports.

(a) Simply supported beam

(d ) Continuous beam

(b) Overhanging beam

(e) Beam fixed at one end
     and simply supported

at the other end

( f ) Fixed beam

(c) Cantilever beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L L L

LLL1 L2

Roof support
(Continuous beam)

Roof extension
(Overhanging beam)

Viewing platform
(Cantilever beam)

Examples
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7.2 Beams 379

The distance L between supports is called the span. Note that the reactions 

are determinate if the supports involve only three unknowns. If more 

unknowns are involved, the reactions are statically indeterminate, and the 

methods of statics are not sufficient to determine the reactions. In such a 

case, we must take into account the properties of the beam with regard to 

its resistance to bending. Beams supported by only two rollers are not 

shown here; they are partially constrained and move under certain types 

of loadings.

Sometimes two or more beams are connected by hinges to form a 

single continuous structure. Two examples of beams hinged at a point H 

are shown in Fig. 7.7. Here the  reactions at the supports involve four 

unknowns and cannot be determined from the free-body diagram of the 

two-beam system. However, we can determine the reactions by consider-

ing the free-body diagram of each beam separately. Analysis of this situ-

ation involves six unknowns (including two force components at the 

hinge), and six equations are available.

7.2B  Shear and Bending Moment 
in a Beam

Consider a beam AB subjected to various concentrated and distributed 

loads (Fig. 7.8a). We propose to determine the shearing force and bending 

moment at any point of the beam. In the  example considered here, the 

beam is simply supported, but the method used could be applied to any 

type of statically determinate beam.

First we determine the reactions at A and B by choosing the entire 

beam as a free body (Fig. 7.8b). Setting oMA 5 0 and oMB  5  0, we 

obtain, respectively, RB and RA.

A

A
B

B
C

H

H

(a)

(b)

Fig. 7.7 Examples of two-beam systems 
connected by a hinge. In both cases, 
free-body diagrams of each individual 
beam enable you to determine the 
support reactions.

Photo 7.2 As a truck crosses a highway 
overpass, the internal forces vary in the 
beams of the overpass.

A B
C

A B
C

A B
C

C

w1 w2

(a)

(b)

(c)

P1 P2 P3

w1 w2P1

w1P1

P2 P3

w2P2 P3

M M'

V V'

RA RB

RA RB

Fig. 7.8 (a) A simply supported beam AB; (b) free-body diagram of the 
beam; (c) free-body diagrams of portions AC and CB of the beam, showing 
internal shearing forces and couples.

bee87302_ch07_367-428.indd   379bee87302_ch07_367-428.indd   379 11/8/14   10:53 AM11/8/14   10:53 AM

UPLOADED BY AHMAD T JUNDI



380 Internal Forces and Moments

To determine the internal forces at an arbitrary point C, we cut the 

beam at C and draw the free-body diagrams of the portions AC and CB 

(Fig. 7.8c). Using the free-body diagram of AC, we can determine the 

shearing force V at C by equating the sum of the vertical components of 

all forces acting on AC to zero. Similarly, we can find the bending 

moment M at C by equating the sum of the moments about C of all forces 

and couples acting on AC to zero. Alternatively, we could use the free-

body diagram of CB† and determine the shearing force V9 and the bending 

moment M9 by equating the sum of the vertical components and the sum 

of the moments about C of all forces and couples acting on CB to zero. 

Although this choice of free bodies may make the computation of the 

numerical values of the shearing force and bending moment easier, it 

requires us to indicate on which portion of the beam the internal forces 

considered are acting. If we want to calculate and efficiently record the 

shearing force and bending moment at every point of the beam, we must 

devise a way to avoid having to specify which portion of the beam is used 

as a free body every time. Therefore, we shall adopt the following 

conventions.

In determining the shearing force in a beam, we always assume 

that the internal forces V and V9 are directed as shown in Fig. 7.8c. A 

positive value obtained for their common magnitude V indicates that this 

assumption is correct and that the shearing forces are actually directed 

as shown. A negative value obtained for V indicates that the assumption 

is wrong and the shearing forces are directed in the opposite way. Thus, 

to define completely the shearing forces at a given point of the beam, 

we only need to record the magnitude V, together with a plus or minus 

sign. The scalar V is commonly referred to as the shear at the given point 

of the beam.

Similarly, we always assume that the internal couples M and M9 

are directed as shown in Fig. 7.8c. A positive value obtained for their 

magnitude M, commonly referred to as the bending moment, indicates 

that this assumption is correct, whereas a negative value indicates that it 

is wrong. 

Summarizing these sign conventions, we state:

The shear V and the bending moment M at a given point of a beam 
are said to be positive when the internal forces and couples acting on 
each portion of the beam are directed as shown in Fig. 7.9a.

You may be able to remember these conventions more easily by 

noting that:

 1. The shear at C is positive when the external forces (loads and reac-
tions) acting on the beam tend to shear off the beam at C as indicated 
in Fig. 7.9b.

 2. The bending moment at C is positive when the external forces acting 
on the beam tend to bend the beam at C in a concave-up fashion as 
indicated in Fig. 7.9c.

† We now designate the force and couple representing the internal forces acting on CB by 

V9 and M9, rather than by 2V and 2M as done earlier. The reason is to avoid confusion 

when applying the sign convention we are about to introduce. 

C

(b) Effect of external forces
(positive shear) 

(a) Internal forces at section
(positive shear and positive bending moment) 

(c) Effect of external forces
(positive bending moment)

C

M

V M'

V'

Fig. 7.9 Figure for remembering the 
signs of shear and bending moment.
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7.2 Beams 381

It may also help to note that the situation described in Fig. 7.9, in 

which the values of both the shear and the bending moment are positive, 

is precisely the situation that occurs in the left half of a simply supported 

beam carrying a single concentrated load at its midpoint. This particular 

example is fully discussed in the following section.

7.2C  Shear and Bending-Moment 
Diagrams

Now that we have clearly defined shear and bending moment in sense 

as well as in magnitude, we can easily record their values at any point 

along a beam by plotting these values against the distance x measured 

from one end of the beam. The graphs obtained in this way are called, 

respectively, the shear diagram and the bending-moment diagram. 

As an example, consider a simply supported beam AB of span L 

subjected to a single concentrated load P applied at its midpoint D 

(Fig. 7.10a). We first determine the reactions at the supports from the 

free-body diagram of the entire beam (Fig. 7.10b); we find that the mag-

nitude of each reaction is equal to P/2.

Next we cut the beam at a point C between A and D and draw the 

free-body diagrams of AC and CB (Fig. 7.10c). Assuming that shear and 
bending moment are positive, we direct the internal forces V and V9 and 

the internal couples M and M9 as indicated in Fig. 7.9a. Considering the 

free body AC, we set the sum of the vertical components and the sum 

of the moments about C of the forces acting on the free body to zero. 

From this, we find V 5 1P/2 and M 5 1Px/2. Therefore, both shear

and bending moment are positive. (You can check this by observing that 

the reaction at A tends to shear off and to bend the beam at C as indi-

cated in Fig. 7.9b and c.) Now let’s plot V and M between A and D 

(Fig. 7.10e and f ). The shear has a constant value V 5 P/2, whereas the 

bending moment increases linearly from M 5 0 at x 5 0 to M 5 PL/4 

at x 5 L/2.

Proceeding along the beam, we cut it at a point E between D and 

B and consider the free body EB (Fig. 7.10d). As before, the sum of the 

vertical components and the sum of the moments about E of the forces 

acting on the free body are zero. We obtain V 5 2P/2 and M 5 P(L 2 x)/2. 

The shear is therefore negative and the bending moment is positive. 

(Again, you can check this by observing that the reaction at B bends the 

beam at E as indicated in Fig. 7.9c but tends to shear it off in a manner 

opposite to that shown in Fig. 7.9b.) We can now complete the shear and 

bending-moment diagrams of Fig. 7.10e and f. The shear has a constant 

value V 5 2P/2 between D and B, whereas the bending moment decreases 

linearly from M 5 PL/4 at x 5 L/2 to M 5 0 at x 5 L.

Note that when a beam is subjected to concentrated loads only, the 

shear is of constant value between loads and the bending moment varies 

linearly between loads. However, when a beam is subjected to distributed 

loads, the shear and bending moment vary quite differently (see Sample 

Prob. 7.3).
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Fig. 7.10 (a) A beam supporting a 
single concentrated load at its midpoint; 
(b) free-body diagram of the beam; 
(c) free-body diagrams of parts of the beam 
after a cut at C ; (d) free-body diagrams of 
parts of the beam after a cut at E; (e) shear 
diagram of the beam; (f ) bending-moment 
diagram of the beam.
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382 Internal Forces and Moments

Sample Problem 7.2

Draw the shear and bending-moment diagrams for the beam and loading 

shown.

STRATEGY: Treat the entire beam as a free body to determine the reac-

tions, then cut the beam just before and just after each external concen-

trated force (Fig. 1) to see how the shear and bending moment change 

along the length of the beam.

MODELING and ANALYSIS: 

Free-Body, Entire Beam. From the free-body diagram of the entire 

beam, find the reactions at B and D:

RB 5 46 kNx  RD 5 14 kNx

Shear and Bending Moment. First, determine the internal forces 

just to the right of the 20-kN load at A. Consider the stub of beam to the 

left of point 1 as a free body, and assume V and M are positive (according 

to the standard convention). Then you have

1xoFy 5 0: 220 kN 2 V1 5 0 V1 5 220 kN

1 l oM1 5 0: (20 kN)(0 m) 1 M1 5 0 M1 5 0

Next, consider the portion of the beam to the left of point 2 as a free body: 

1xoFy 5 0: 220 kN 2 V2 5 0 V2 5 220 kN

1 l oM2 5 0: (20 kN)(2.5 m) 1 M2 5 0 M2 5 250 kN?m

Determine the shear and bending moment at sections 3, 4, 5, and 6 in a 

similar way from the free-body diagrams. The results are

V3 5 126 kN M3 5 250 kN?m

 V4 5 126 kN M4 5 128 kN?m

 V5 5 214 kN M5 5 128 kN?m

 V6 5 214 kN M6 5 0

For several of the later cuts, the results are easier to obtain by considering 

as a free body the portion of the beam to the right of the  cut. For example, 

consider the portion of the beam to the right of point 4. You have

1xoFy 5 0: V4 2 40 kN 1 14 kN 5 0 V4 5 126 kN

1 l oM4 5 0: 2M4 1 (14 kN)(2 m) 5 0 M4 5 128 kN?m

Shear and Bending-Moment Diagrams. Now plot the six points 

shown on the shear and bending-moment diagrams. As indicated in 

Sec. 7.2C, the shear is of constant value between concentrated loads, and 

the bending moment varies linearly. You therefore obtain the shear and 

bending-moment diagrams shown in Fig. 1.

REFLECT and THINK: The calculations are pretty similar for each 

new choice of free body. However, moving along the beam, the shear 

changes magnitude whenever you pass a transverse force and the graph 

of the bending moment changes slope at these points.

A D
B

C

20 kN 40 kN

2.5 m 3 m 2 m

A
DB
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V

M

M1

V1

M2
V2
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V3

M4V4

M5

V5

M6

V6

M'4

V'4

20 kN

20 kN

20 kN

20 kN

20 kN

20 kN

20 kN

40 kN

40 kN

40 kN

40 kN

46 kN

46 kN

46 kN

46 kN

46 kN

14 kN

1 2 3 4 5 6

–14 kN–20 kN

+28 kN·m

–50 kN·m

+26 kN

2.5 m 3 m 2 m

2.5 m 3 m 2 m

x

x

14 kN

Fig. 1 Free-body diagrams of beam 
sections, and the resulting shear and 
bending-moment diagrams.
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7.2 Beams 383

Sample Problem 7.3

Draw the shear and bending-moment diagrams for the beam AB. The 

distributed load of 40 lb/in. extends over 12 in. of the beam from A to C, 

and the 400-lb load is applied at E.

STRATEGY: Again, consider the entire beam as a free body to find the 

reactions. Then cut the beam within each region of continuous load. This 

will enable you to determine continuous functions for shear and bending 

moment, which you can then plot on a graph.

MODELING and ANALYSIS: 

Free-Body, Entire Beam. Determine the reactions by considering 

the entire beam as a free body (Fig. 1).

1l oMA 5 0: By(32 in.) 2 (480 lb)(6 in.) 2 (400 lb)(22 in.) 5 0

By 5 1365 lb By 5 365 lbx

1l oMB 5 0: (480 lb)(26 in.) 1 (400 lb)(10 in.) 2 A(32 in.) 5 0

 A 5 1515 lb A 5 515 lbx

y
1  oFx 5 0: Bx 5 0 Bx 5 0

Now, replace the 400-lb load by an equivalent force-couple system acting 

on the beam at point D and cut the beam at several points (Fig. 2).

A B
C D

E

40 lb/in.

400 lb

6 in. 4 in.
32 in.

12 in. 10 in.

A

A

B

C D
E

400 lb

6 in.
10 in.

480 lb

Bx

By

16 in.

Fig. 1 Free-body diagram of entire beam.
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C D
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400 lb
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6 in.

40 x

480 lb

480 lb

400 lb

515 lb

515 lb

515 lb

515 lb

515 lb

365 lb

1600 lb·in.

3300 lb·in.
3510 lb·in.

x
2

x – 6

x

x

x – 18

32 in.
12 in.

18 in.

–365 lb

35 lb

1 2 3

1600 lb·in.

5110 lb·in.

x

x

x

x – 6

14 in.

Fig. 2 Free-body diagrams of beam 
sections, and the resulting shear and 
bending-moment diagrams.
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384 Internal Forces and Moments

Shear and Bending Moment.  From A to C.  Determine the 

internal forces at a distance x from point A by considering the portion of 

the beam to the left of point 1. Replace that part of the distributed load 

acting on the free body by its resultant. You get

1xoFy 5 0: 515 2 40 x 2 V 5 0 V 5 515 2 40x

1 l oM1 5 0: 2515x 1 40x(
1
2 x) 1 M 5 0 M 5 515x 2 20x 2

Note that V and M are not numerical values, but they are expressed as 

functions of x. The free-body diagram shown can be used for all values 

of x smaller than 12 in., so the expressions obtained for V and M are valid 

throughout the region 0 , x , 12 in.

From C to D. Consider the portion of the beam to the left of point 2. 

Again replacing the distributed load by its resultant, you have

1xoFy 5 0: 515 2 480 2 V 5 0 V 5 35 lb

1 l oM2 5 0: 2515x 1 480(x 2 6) 1 M 5 0 M 5 (2880 1 35x) lb?in.

These expressions are valid in the region 12 in. , x , 18 in.

From D to B. Use the portion of the beam to the left of point 3 for the 

region 18 in. , x , 32 in. Thus, 

1xoFy 5 0: 515 2 480 2 400 2 V 5 0  V 5 2365 lb

1 l oM3 5 0: 2515x 1 480(x 2 6) 2 1600 1 400(x 2 18) 1 M 5 0

 M 5 (11,680 2 365x) lb?in.

Shear and Bending-Moment Diagrams. Plot the shear and bend-

ing-moment diagrams for the entire beam. Note that the couple of moment 

1600 lb?in. applied at point D introduces a discontinuity into the bending-

moment diagram. Also note that the bending-moment diagram under the 

distributed load is not straight but is slightly curved.

REFLECT and THINK: Shear and bending-moment diagrams typically 

feature various kinds of curves and discontinuities. In such cases, it is 

often useful to express V and M as functions of location x as well as to 

determine certain numerical values.
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385 385

SOLVING PROBLEMS 
ON YOUR OWN

In this section, you saw how to determine the shear V and the bending moment M 

at any point in a beam. You also learned to draw the shear diagram and the 

bending-moment diagram for the beam by plotting, respectively, V and M against 

the distance x measured along the beam.

A. Determining the shear and bending moment in a beam. To determine the 

shear V and the bending moment M at a given point C of a beam, take the following 

steps.

1. Draw a free-body diagram of the entire beam, and use it to determine the reac-

tions at the beam supports.

2. Cut the beam at point C, and using the original loading, select one of the two 

resulting portions of the beam.

3. Draw the free-body diagram of the portion of the beam you have selected. 
Show:

 a. The loads and the reactions exerted on that portion of the beam, replacing 

each distributed load by an equivalent concentrated load, as explained in Sec. 5.3A.

 b. The shearing force and the bending moment representing the internal 
forces at C. To facilitate recording the shear V and the bending moment M after 

determining them, follow the convention indicated in Figs. 7.8 and 7.9. Thus, if you 

are using the portion of the beam located to the left of C, apply at C a shearing 
force V directed downward and a bending moment M directed counterclockwise. If 

you are using the portion of the beam located to the right of C, apply at C a shearing 
force V9 directed upward and a bending moment M9 directed clockwise [Sample 

Prob. 7.2].

4. Write the equilibrium equations for the portion of the beam you have 
selected. Solve the equation oFy 5 0 for V and the equation oMC 5 0 for M.

5. Record the values of V and M with the sign obtained for each of them. A 

positive sign for V means that the shearing forces exerted at C on each of the two 

portions of the beam are directed as shown in Figs. 7.8 and 7.9; a negative sign means 

they have the opposite sense. Similarly, a positive sign for M means that the bending 

couples at C are directed as shown in these figures, and a negative sign means that 

they have the opposite sense. In addition, a positive sign for M means that the concav-

ity of the beam at C is directed upward, and a negative sign means that it is directed 

downward.
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B. Drawing the shear and bending-moment diagrams for a beam. Obtain these 

diagrams by plotting, respectively, V and M against the distance x measured along the 

beam. However, in most cases, you need to compute the values of V and M at only 

a few points.

1. For a beam supporting only concentrated loads, note [Sample Prob. 7.2] that

 a. The shear diagram consists of segments of horizontal lines. Thus, to draw 

the shear diagram of the beam, you need to compute V only just to the left or just to 

the right of the points where the loads or reactions are applied.

 b. The bending-moment diagram consists of segments of oblique straight 
lines. Thus, to draw the bending-moment diagram of the beam, you need to compute 

M only at the points where the loads or reactions are applied.

2. For a beam supporting uniformly distributed loads, note [Sample Prob. 7.3] 

that under each of the distributed loads:

 a. The shear diagram consists of a segment of an oblique straight line. Thus, 

you need to compute V only where the distributed load begins and where it ends.

 b. The bending-moment diagram consists of an arc of parabola. In most cases, 

you need to compute M only where the distributed load begins and where it ends.

3. For a beam with a more complicated loading, you need to consider the free-body 

diagram of a portion of the beam of arbitrary length x and determine V and M as 

functions of x. This procedure may have to be repeated several times, since V and M 

are often represented by different functions in various parts of the beam [Sample 

Prob. 7.3].

4. When a couple is applied to a beam, the shear has the same value on both sides 

of the point of application of the couple, but the bending-moment diagram shows a 

discontinuity at that point, rising or falling by an amount equal to the magnitude of 

the couple. Note that a couple can either be applied directly to the beam or result 

from the application of a load on a member rigidly attached to the beam [Sample 

Prob. 7.3].
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 7.29 through 7.32  For the beam and loading shown, (a) draw the shear and 

bending-moment diagrams, (b) determine the maximum absolute 

values of the shear and bending moment.

7.33 and 7.34  For the beam and loading shown, (a) draw the shear and 

bending-moment diagrams, (b) determine the maximum absolute 

values of the shear and bending moment.

 7.35 and 7.36  For the beam and loading shown, (a) draw the shear and 

bending-moment diagrams, (b) determine the maximum absolute 

values of the shear and bending moment.

7.37 and 7.38  For the beam and loading shown, (a) draw the shear and 

bending-moment diagrams, (b) determine the maximum absolute 

values of the shear and bending moment.

Problems
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0.2 m

A B
C D E

40 kN 32 kN 16 kN

1.5 m
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Fig. P7.38
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 7.39 through 7.42  For the beam and loading shown, (a) draw the shear 

and bending-moment diagrams, (b) determine the maximum absolute 

values of the shear and bending moment.

60 kN
25 kN/m

1 m

A BC D

2 m 2 m

Fig. P7.39

50 kN
20 kN/m

A BC D

2 m 2 m 2 m

Fig. P7.40

8 kips 8 kips
2 ft 2 ft

C D

5 ft

4 kips/ft

A B

Fig. P7.41

2.5 kips/ft

12 kips

A B
C

6 ft 4 ft

Fig. P7.42

A B
C ED

w wP

a a a a

Fig. P7.43

7.43 Assuming the upward reaction of the ground on beam AB to be 

uniformly distributed and knowing that P 5 wa, (a) draw the shear 

and bending-moment diagrams, (b) determine the maximum absolute 

values of the shear and bending moment.

7.44 Solve Prob. 7.43 knowing that P 5 3wa.

 7.45 Assuming the upward reaction of the ground on beam AB to be 

uniformly distributed, (a) draw the shear and bending-moment dia-

grams, (b) determine the maximum absolute values of the shear and 

bending moment.

 7.46 Solve Prob. 7.45 assuming that the 12-kip load has been removed.

 7.47 and 7.48  Assuming the upward reaction of the ground on beam AB
to be uniformly distributed, (a) draw the shear and bending-moment 

diagrams, (b) determine the maximum absolute values of the shear 

and bending moment.

A B
C

2 ft 2 ft

12 kips

4 ft4 ft

6 kips6 kips

Fig. P7.45

A B
C D

3 m
1.5 m 1.5 m

8 kN/m

Fig. P7.47
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C D

3 m
1.5 m1.5 m
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Fig. P7.48

120 N 120 N

200 mm 200 mm

A B
C

Fig. P7.49

A B
C D E

300 mm 300 mm 300 mm

300 mm 300 mm

400 N 400 N 400 N

150 mm150 mm

Fig. P7.50

 7.49 and 7.50  Draw the shear and bending-moment diagrams for the 

beam AB, and determine the maximum absolute values of the shear 

and bending moment.
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 7.51 and 7.52  Draw the shear and bending-moment diagrams for the 

beam AB, and determine the maximum absolute values of the shear 

and bending moment.

6 in. 6 in.

4 in.

10 in.

10 in.

8 in.

10 in.
50 lb 50 lb100 lb

A E F G

H
D

C

B

Fig. P7.51

A
B

C

G

D

E F4 in.

5 in.

9 in. 6 in.

45 lb 120 lb

6 in.

Fig. P7.52

7.53 Two small channel sections DF and EH have been welded to the 

uniform beam AB of weight W 5 3 kN to form the rigid structural 

member shown. This member is being lifted by two cables attached 

at D and E. Knowing that θ 5 30° and neglecting the weight of the 

channel sections, (a) draw the shear and bending-moment diagrams 

for beam AB, (b) determine the maximum absolute values of the 

shear and bending moment in the beam.

 7.54 Solve Prob. 7.53 when θ 5 60°.

 7.55 For the structural member of Prob. 7.53, determine (a) the angle θ

for which the maximum absolute value of the bending moment in 

beam AB is as small as possible, (b) the corresponding value of 

|M|max. (Hint: Draw the bending-moment diagram and then equate 

the absolute values of the largest positive and negative bending 

moments obtained.)

 7.56 For the beam of Prob. 7.43, determine (a) the ratio k 5 P/wa for 

which the maximum absolute value of the bending moment in the 

beam is as small as possible, (b) the corresponding value of |M|max. 

(See hint for Prob. 7.55.)

 7.57 Determine (a) the distance a for which the maximum absolute value 

of the bending moment in beam AB is as small as possible, (b) the 

corresponding value of |M|max. (See hint for Prob. 7.55.)

A

D

F G H

C

qq

0.5 m
B

E

1.5 m 1.5 m1 m1 m

Fig. P7.53

80 N

a a
100

40
50

100

A BC
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E

D

F

Fig. P7.57
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 7.58 For the beam and loading shown, determine (a) the distance a for 

which the maximum absolute value of the bending moment in the 

beam is as small as possible, (b) the corresponding value of |M|max. 

(See hint for Prob. 7.55.)

E
A B

C D

3 kN 3 kN 2 kN

0.6 m
a1 m0.8 m

Fig. P7.58
BA

L

a a

Fig. P7.59

P Q

A
B

C D
30 in. 30 in.

a

Fig. P7.60

w

A B
L

W

Fig. P7.62

 7.59 A uniform beam is to be picked up by crane cables attached at A
and B. Determine the distance a from the ends of the beam to the 

points where the cables should be attached if the maximum absolute 

value of the bending moment in the beam is to be as small as pos-

sible. (Hint: Draw the bending-moment diagram in terms of a, L, 

and the weight per unit length w, and then equate the absolute values 

of the largest positive and negative bending moments obtained.)

7.60 Knowing that P 5 Q 5 150 lb, determine (a) the distance a for 

which the maximum absolute value of the bending moment in 

beam AB is as small as possible, (b) the corresponding value of 

|M|max. (See hint for Prob. 7.55.)

7.61 Solve Prob. 7.60 assuming that P 5 300 lb and Q 5 150 lb.

 *7.62 In order to reduce the bending moment in the cantilever beam AB, 

a cable and counterweight are permanently attached at end B. Deter-

mine the magnitude of the counterweight for which the maximum 

absolute value of the bending moment in the beam is as small as 

possible and the corresponding value of |M|max. Consider (a) the case 

when the distributed load is permanently applied to the beam, (b) the 

more general case when the distributed load may either be applied 

or removed.
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7.3 Relations Among Load, Shear, and Bending Moment 391

7.3  RELATIONS AMONG LOAD, 
SHEAR, AND BENDING 
MOMENT

If a beam carries more than two or three concentrated loads or if it carries 

a distributed load, the method outlined in Sec. 7.2 for plotting shear and 

bending-moment diagrams is likely to be quite cumbersome. However, 

constructing a shear diagram and, especially, a bending-moment diagram, 

are much easier if we take into consideration some relations among load, 

shear, and bending moment.

Consider a simply supported beam AB carrying a distributed load w
per unit length (Fig. 7.11a). Let C and C9 be two points of the beam at a 

distance Dx from each other. We denote the shear and bending moment 

at C by V and M, respectively, and we assume they are positive. We denote 

the shear and bending moment at C9 by V 1 DV and M 1 DM.

Let us now detach the portion of beam CC9 and draw its free-body 

diagram (Fig. 7.11b). The forces exerted on the free body include a load 

with a magnitude of w Dx (indicated by a dashed arrow to distinguish it from 

the original distributed load from which it is derived) and internal forces and 

couples at C and C9. Since we assumed both shear and bending moment are 

positive, the forces and couples are directed as shown in the figure.

Relations Between Load and Shear. Because the free body 

CC9 is in equilibrium, we set the sum of the vertical components of the 

forces acting on it to zero:

V 2 (V 1 DV) 2 w D x 5 0

DV 5 2w D x

Dividing both sides of this equation by D x and then letting D x approach 

zero, we obtain

 
dV

dx
5 2w (7.1)

Equation (7.1) indicates that, for a beam loaded as shown in Fig. 7.11a, 

the slope d V/dx of the shear curve is negative and the numerical value of 

the slope at any point is equal to the load per unit length at that point.

Integrating (7.1) between arbitrary points C and D, we have

 VD 2 VC 5 2#
xD

xC

w dx (7.2)

or

 VD 2 VC 5 2(area under load curve between C and D) (7.29)

Note that we could also obtain this result by considering the equilibrium 

of the portion of beam CD, since the area under the load curve represents 

the total load applied between C and D.

Equation (7.1) is not valid at a point where a concentrated load is 

applied; the shear curve is discontinuous at such a point, as we saw in 

dV

dxdd
5 2w

VDVV 2 VCVV 5 2(area under load curve between C and C D)

(b)

w

A B
C C'

C C'

D

wΔx

(a)

M

V

M + ΔM

V + ΔV

Δx
2

Δxx

Δx

w

Fig. 7.11 (a) A simply supported beam 
carrying a distributed load; (b) free-body 
diagram of a portion CC 9 of the beam.

bee87302_ch07_367-428.indd   391bee87302_ch07_367-428.indd   391 11/8/14   10:53 AM11/8/14   10:53 AM

UPLOADED BY AHMAD T JUNDI



392 Internal Forces and Moments

Sec. 7.2. Similarly, formulas (7.2) and (7.29) cease to be valid when con-

centrated loads are applied between C and D, since they do not take into 

account the sudden change in shear caused by a concentrated load. For-

mulas (7.2) and (7.29), therefore, should be applied only between succes-

sive concentrated loads.

Relations Between Shear and Bending Moment. Returning 

to the free-body diagram of Fig. 7.11b, we can set the sum of the moments 

about C9 to be zero, obtaining

(M 1 DM) 2 M 2 V Dx 1 wDx 

Dx

2
5 0

DM 5 V Dx 2
1
2 w(Dx)2

Dividing both sides of this equation by Dx and then letting Dx approach 

zero, we have

 
dM

dx
5 V  (7.3)

Equation (7.3) indicates that the slope dM/dx of the bending-moment curve 

is equal to the value of the shear. This is true at any point where the shear 

has a well-defined value, i.e., at any point where no concentrated load is 

applied. Formula (7.3) also shows that the shear is zero at points where 

the bending moment is maximum. This property simplifies the determina-

tion of points where the beam is likely to fail under bending.

Integrating Eq. (7.3) between arbitrary points C and D, we obtain

 MD 2 MC 5 #
xD

xC

V dx (7.4)

 MD 2 MC 5 area under shear curve between C and D (7.49)

Note that the area under the shear curve should be considered  positive 

where the shear is positive and negative where the shear is negative. For-

mulas (7.4) and (7.49) are valid even when concentrated loads are applied 

between C and D, as long as the shear curve has been drawn correctly. 

The formulas cease to be valid, however, if a couple is applied at a point 

between C and D, since they do not take into account the sudden change 

in bending moment caused by a couple (see Sample Prob. 7.7).

In most engineering applications, you need to know the value of the 

bending moment at only a few specific points. Once you have drawn the 

shear diagram and determined M at one end of the beam, you can obtain 

the value of the bending moment at any given point by computing the 

area under the shear curve and using formula (7.49). For instance, since 

MA 5 0 for the beam of Fig. 7.12, you can determine the maximum 

value of the bending moment for that beam simply by measuring the area 

of the shaded triangle in the shear diagram as

Mmax 5
1

2
 
L

2
 
wL

2
5

wL2

8

In this example, the load curve is a horizontal straight line, the shear 

curve is an oblique straight line, and the bending-moment curve 

dMdd

dxdd
5 V

MDM 2 MC 5 area under shear curve between C and C D

(b)

w

A B
C C'

C C'

D

wΔx

(a)

M

V

M + ΔM

V + ΔV

Δx
2

Δxx

Δx

w

Fig. 7.11 (repeated)
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7.3 Relations Among Load, Shear, and Bending Moment 393

is a parabola. If the load curve had been an oblique straight line (first 

degree), the shear curve would have been a parabola (second degree), and 

the bending-moment curve would have been a cubic (third degree). The 

equations of the shear and bending-moment curves are always, respec-

tively, one and two degrees higher than the equation of the load curve. 

Thus, once you have computed a few values of the shear and bending 

moment, you should be able to sketch the shear and bending-moment 

diagrams without actually determining the functions V(x) and M(x). The 

sketches will be more accurate if you make use of the fact that, at any 

point where the curves are continuous, the slope of the shear curve is 

equal to 2w and the slope of the bending-moment curve is equal to V.

Concept Application 7.1 

Consider a simply supported beam AB with a span of L carrying a uni-

formly distributed load w (Fig. 7.12a). From the free-body diagram of the 

entire beam, we determine the magnitude of the reactions at the supports: 

RA 5 RB 5 wL/2 (Fig. 7.12b). Then we draw the shear diagram. Close to 

end A of the beam, the shear is equal to RA; that is, to wL/2, as we can 

check by considering a very small portion of the beam as a free body. 

Using formula (7.2), we can then determine the shear V at any distance x 

from A as 

           V 2 VA 5 2#
x

0

w dx 5 2wx

V 5 VA 2 wx 5
wL

2
2 wx 5 w aL

2
2 xb

The shear curve is thus an oblique straight line that crosses the x axis at 

x 5 L/2 (Fig. 7.12c). Now consider the bending moment. We first observe 

that MA 5 0. The value M of the bending moment at any distance x from 

A then can be obtained from Eq. (7.4), as

M 2 MA 5 #
x

0

V dx        

M 5 #
x

0

w aL

2
2 xb dx 5

w

2
 (Lx 2 x2)

The bending-moment curve is a parabola. The maximum value of the 

bending moment occurs when x 5 L/2, since V (and thus dM/dx) is zero 

for that value of x. Substituting x 5 L/2 in the last equation, we obtain 

Mmax 5 wL2/8.

(b)

(c)

(d)

A

A

B

B

L

(a)

wL
2

RA = wL
2

RB =

wL
2

wL2

8

L
2

L
2

wL
2

–

V

L

L

M

x

x

w

w

Fig. 7.12 (a) A simply supported beam 
carrying a uniformly distributed load; 
(b) free-body diagram of the beam to 
determine the reactions at the 
supports; (c) the shear curve is an 
oblique straight line; (d) the bending-
moment diagram is a parabola.
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394 Internal Forces and Moments

Sample Problem 7.4

Draw the shear and bending-moment diagrams for the beam and loading 

shown.

STRATEGY: The beam supports two concentrated loads and one dis-

tributed load. You can use the equations in this section between these loads 

and under the distributed load, but you should expect certain changes in 

the diagrams at the load points.

MODELING and ANALYSIS: 

Free-Body, Entire Beam. Consider the entire beam as a free body 

and determine the reactions (Fig. 1):

1l oMA 5 0:

 D(24 ft) 2 (20 kips)(6 ft) 2 (12 kips)(14 ft) 2 (12 kips)(28 ft) 5 0

D 5 126 kips D 5 26 kipsx

1xoFy 5 0: Ay 2 20 kips 2 12 kips 1 26 kips 2 12 kips 5 0

 Ay 5 118 kips Ay 5 18 kipsx

y
1 oFx 5 0: Ax 5 0 Ax 5 0

Note that the bending moment is zero at both A and E; thus, you know 

two points (indicated by small circles) on the bending-moment diagram.

Shear Diagram. Since dV/dx 5 2w, the slope of the shear diagram 

is zero (i.e., the shear is constant between concentrated loads and reactions). 

To find the shear at any point, divide the beam into two parts and consider 

either part as a free body. For example, using the portion of the beam to 

the left of point 1 (Fig. 1), you can obtain the shear between B and C:

1xoFy 5 0: 118 kips 2 20 kips 2 V 5 0 V 5 22 kips

You can also find that the shear is 112 kips just to the right of D and 

zero at end E. Since the slope dV/dx 5 2w is constant between D and E, 

the shear diagram between these two points is a straight line.

Bending-Moment Diagram. Recall that the area under the shear 

curve between two points is equal to the change in bending moment 

between the same two points. For convenience, compute the area of each 

portion of the shear diagram and indicate it on the diagram (Fig. 1). Since 

you know the bending moment MA at the left end is zero, you have

MB 2 MA 5 1108 MB 5 1108 kip?ft

MC 2 MB 5 216 MC 5 192 kip?ft

MD 2 MC 5 2140 MD 5 248 kip?ft

ME 2 MD 5 148 ME 5 0

Since you know ME is zero, this gives you a check of the calculations.

 Between the concentrated loads and reactions, the shear is constant; 

thus, the slope dM/dx is constant. Therefore, you can draw the bending-

moment diagram by connecting the known points with straight lines. 

A
B C D

E

20 kips 12 kips 1.5 kips/ft

6 ft
8 ft 8 ft10 ft

Ax

Ay

12 kips

1.5 kips/ft

4 ft

M

V

V(kips)
+18

M(kip·ft)

(+108)

(– 16)
+12

(+48)

–14

�2

+108
+92

�48

D

6 ft
8 ft 8 ft10 ft

A

B C D
E

20 kips 12 kips

B 1 C D
E

20 kips

18 kips

18 kips

20 kips
26 kips

12 kips

A

x

x
(�140)

Fig. 1 Free-body diagrams of beam, 
free-body diagram of section to left of 
cut, shear diagram, bending-moment 
diagram.
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7.3 Relations Among Load, Shear, and Bending Moment 395

Between D and E, where the shear diagram is an oblique straight line, the 

bending-moment diagram is a parabola.

 From the V and M diagrams, note that Vmax 5 18 kips and Mmax 5

108 kip?ft.

REFLECT and THINK: As expected, the values of shear and slopes of 

the bending-moment curves show abrupt changes at the points where con-

centrated loads act. Useful for design, these diagrams make it easier to 

determine the maximum values of shear and bending moment for a beam 

and its loading.

Sample Problem 7.5

Draw the shear and bending-moment diagrams for the beam and loading 

shown and determine the location and magnitude of the maximum bending 

moment.

STRATEGY: The load is a distributed load over part of the beam with 

no concentrated loads. You can use the equations in this section in two parts: 

for the load and no load regions. From the discussion in this section, you 

can expect the shear diagram will show an oblique line under the load, 

 followed by a horizontal line. The bending-moment diagram should show 

a parabola under the load and an oblique line under the rest of the beam.

MODELING and ANALYSIS: 

Free-Body, Entire Beam. Consider the entire beam as a free body 

(Fig. 1) to obtain the reactions

RA 5 80 kN x   RC 5 40 kN x

Shear Diagram. The shear just to the right of A is VA 5 180 kN. 

Because the change in shear between two points is equal to minus the area 

under the load curve between these points, you can obtain VB by writing

 VB 2 VA 5 2(20 kN/m)(6 m) 5 2120 kN

 VB 5 2120 1 VA 5 2120 1 80 5 240 kN

Since the slope dV/dx 5 2w is constant between A and B, the shear 

diagram between these two points is represented by a straight line. 

Between B and C, the area under the load curve is zero; therefore,

VC 2 VB 5 0  VC 5 VB 5 240 kN

and the shear is constant between B and C (Fig. 1).

Bending-Moment Diagram. The bending moment at each end of 

the beam is zero. In order to determine the maximum bending moment, 

you need to locate the section D of the beam where V 5 0. You have

 VD 2 VA 5 2wx

 0 2 80 kN 5 2(20 kN/m)x

A
B

C

20 kN/m

6 m 3 m

(�40)

A

A

A

B

BD

C

C

20 kN/m

6 m

w

V

M

x x

x

80 kN

80 kN

40 kN

�40 kN

(+160)

x = 4 m

(�120)

160 kN·m
120 kN·m

Fig. 1 Free-body diagram of beam, 
shear diagram, bending-moment 
diagram.
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396 Internal Forces and Moments

Solving for x: x 5 4 m b
 The maximum bending moment occurs at point D, where we have 

dM/dx 5 V 5 0. Calculate the areas of the various portions of the shear 

diagram and mark them (in parentheses) on the diagram (Fig. 1). Since 

the area of the shear diagram between two points is equal to the change 

in bending moment between those points, you can write

 MD 2 MA 5 1160 kN?m MD 5 1160 kN?m

 MB 2 MD 5 240 kN?m MB 5 1120 kN?m

 MC 2 MB 5 2120 kN?m MC 5 0

The bending-moment diagram consists of an arc of parabola followed by 

a segment of straight line; the slope of the parabola at A is equal to the 

value of V at that point.

 The maximum bending moment is

Mmax 5 MD 5 1160 kN?m b

REFLECT and THINK: The analysis conforms to our initial expecta-

tions. It is often useful to predict what the results of analysis will be as a 

way of checking against large-scale errors. However, final results can only 

depend on detailed modeling and analysis.

Sample Problem 7.6

Sketch the shear and bending-moment diagrams for the cantilever beam 

shown.

STRATEGY: Because no support reactions appear until the right end of 

the beam, you can rely on the equations from this section without needing 

to use free-body diagrams and equilibrium equations. Due to the non-

uniform load, you should expect the results to involve equations of higher 

degree with a parabolic curve in the shear diagram and a cubic curve in 

the bending-moment diagram.

MODELING and ANALYSIS: 

Shear Diagram. At the free end of the beam, VA 5 0. Between A and 

B, the area under the load curve is 
1
2  w 0  

a; we find VB by writing

VB 2 VA 5 2
1
2  w0 

a  VB 5 2   
1
2 w0 

a

Between B and C, the beam is not loaded; thus, VC 5 VB. At A, we have 

w 5 w0, and according to Eq. (7.1), the slope of the shear curve is 

dV/dx 5 2w0. At B, the slope is dV/dx 5 0. Between A and B, the loading 

decreases linearly, and the shear diagram is parabolic (Fig. 1). Between B 

and C, w 5 0 and the shear diagram is a horizontal line.

A
B C

x

M

V

w0

1
2�    w0a

1
2�    w0a

1
2

[�   w0a(L � a)]1
3

[�    w0a2]

1
6�    w0a(3L � a)

1
3�    w0a2

a
L

x

Fig. 1 Beam with load, shear diagram, 
bending-moment diagram.
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7.3 Relations Among Load, Shear, and Bending Moment 397

Bending-Moment Diagram. Note that MA 5 0 at the free end of 

the beam. You can compute the area under the shear curve, obtaining 

 MB 2 MA 5 2
1
3 w0 

a2    MB 5 2
1
3 w0 

a2

 MC 2 MB 5 2
1
2 w0 

a(L 2 a)   
 MC 5 2

1
6 w0a(3L 2 a)  

You can complete the sketch of the bending-moment diagram by recalling 

that dM/dx 5 V. The result is that between A and B the diagram is rep-

resented by a cubic curve with zero slope at A and between B and C the 

diagram is represented by a straight line.

REFLECT and THINK: Although not strictly required for the solution 

of this problem, determining the support reactions would serve as an 

excellent check of the final values of the shear and bending-moment 

diagrams.

Sample Problem 7.7

The simple beam AC is loaded by a couple of magnitude T applied at 

point B. Draw the shear and bending-moment diagrams for the beam.

STRATEGY: The load supported by the beam is a concentrated couple. 

Since the only vertical forces are those associated with the support reac-

tions, you should expect the shear diagram to be of constant value. How-

ever, the bending-moment diagram will have a discontinuity at B due to 

the couple.

MODELING and ANALYSIS: 

Free-Body, Entire Beam. Consider the entire beam as a free body 

and determine the reactions:

RA 5
T

L
↑     RB 5

T

L
w

Shear and Bending-Moment Diagrams (Fig. 1). The shear at 

any section is constant and equal to T/L. Since a couple is applied at B, 

the bending-moment diagram is discontinuous at B; because the couple is 

counterclockwise, the bending moment decreases suddenly by an amount 

equal to T. You can demonstrate this by taking a section to the immediate 

right of B and applying equilibrium to solve for the bending moment at 

this location.

REFLECT and THINK: You can generalize the effect of a couple 

applied to a beam. At the point where the couple is applied, the bending-

moment diagram increases by the value of the couple if it is clockwise 

and decreases by the value of the couple if it is counterclockwise.

x

V

M

a

T
L

A C
B

T

L

x

a
LT

–T(1 –    )a
L

Fig. 1 Beam with load, shear 
diagram, bending-moment diagram.
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398398

In this section, we described how to use the relations among load, shear, and bending 

moment to simplify the drawing of shear and bending-moment diagrams. These 

relations are

dV

dx
5 2w

dM

dx
5 V

 (7.1)
 (7.3)

 VD 2 VC 5 2(area under load curve between C and D) (7.29)

 MD 2 MC 5 (area under shear curve between C and D) (7.49)

Taking these relations into account, you can use the following procedure to draw the 

shear and bending-moment diagrams for a beam.

1. Draw a free-body diagram of the entire beam, and use it to determine the reac-

tions at the beam supports.

2. Draw the shear diagram. This can be done as in the preceding section by cutting 

the beam at various points and considering the free-body diagram of one of the two 

resulting portions of the beam [Sample Prob. 7.3]. You can, however, consider one of 

the following alternative procedures.

 a. The shear V at any point of the beam is the sum of the reactions and loads 
to the left of that point; an upward force is counted as positive, and a downward 

force is counted as negative.

 b. For a beam carrying a distributed load, you can start from a point where 

you know V and use Eq. (7.29) repeatedly to find V at all other points of interest.

3. Draw the bending-moment diagram, using the following procedure.

 a. Compute the area under each portion of the shear curve, assigning a posi-

tive sign to areas above the x axis and a negative sign to areas below the x axis.

 b. Apply Eq. (7.49) repeatedly [Sample Probs. 7.4 and 7.5], starting from the left 

end of the beam, where M 5 0 (except if a couple is applied at that end, or if the 

beam is a cantilever beam with a fixed left end).

 c. Where a couple is applied to the beam, be careful to show a discontinuity in 

the bending-moment diagram by increasing the value of M at that point by an amount 

equal to the magnitude of the couple if the couple is clockwise, or decreasing the 

value of M by that amount if the couple is counterclockwise [Sample Prob. 7.7].

SOLVING PROBLEMS 
ON YOUR OWN
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399 399

4. Determine the location and magnitude of |M|max. The maximum absolute value 

of the bending moment occurs at one of the points where dM/dx 5 0 [according to 

Eq. (7.3), that is at a point where V is equal to zero or changes sign]. You should

 a. Determine from the shear diagram the value of |M| where V changes sign;
this will occur under a concentrated load [Sample Prob. 7.4].

 b. Determine the points where V 5 0 and the corresponding values of |M|; 
this will occur under a distributed load. To find the distance x between point C where 

the distributed load starts and point D where the shear is zero, use Eq. (7.29). For VC, 

use the known value of the shear at point C; for VD, use zero and express the area 

under the load curve as a function of x [Sample Prob. 7.5].

5. You can improve the quality of your drawings by keeping in mind that, at any 

given point according to Eqs. (7.1) and (7.3), the slope of the V curve is equal to 2w
and the slope of the M curve is equal to V.

6. Finally, for beams supporting a distributed load expressed as a function w(x),
remember that you can obtain the shear V by integrating the function 2w(x), and you 

can obtain the bending moment M by integrating V(x) [Eqs. (7.2) and (7.4)].

bee87302_ch07_367-428.indd   399bee87302_ch07_367-428.indd   399 11/8/14   10:53 AM11/8/14   10:53 AM

UPLOADED BY AHMAD T JUNDI



400

Problems
 7.63 Using the method of Sec. 7.3, solve Prob. 7.29.

 7.64 Using the method of Sec. 7.3, solve Prob. 7.30.

 7.65 Using the method of Sec. 7.3, solve Prob. 7.31.

 7.66 Using the method of Sec. 7.3, solve Prob. 7.32.

7.67 Using the method of Sec. 7.3, solve Prob. 7.33.

7.68 Using the method of Sec. 7.3, solve Prob. 7.34.

     7.69 and 7.70  For the beam and loading shown, (a) draw the shear and 

bending-moment diagrams, (b) determine the maximum absolute 

values of the shear and bending moment.

 7.71 Using the method of Sec. 7.3, solve Prob. 7.39.

 7.72 Using the method of Sec. 7.3, solve Prob. 7.40.

 7.73 Using the method of Sec. 7.3, solve Prob. 7.41.

 7.74 Using the method of Sec. 7.3, solve Prob. 7.42.

7.75 and 7.76  For the beam and loading shown, (a) draw the shear and 

bending-moment diagrams, (b) determine the maximum absolute 

values of the shear and bending moment.

8 kN 10 kN

3 m 3 m 3 m 3 m

24 kN⋅m
A B C

8 kN

D
E

Fig. P7.69

9 kN 18 kN

1 m 1.5 m 2 m

3 kN⋅m12 kN⋅m
A B C D

Fig. P7.70

A E

3 ft 3 ft5 ft 4 ft

16 kips

B C D

45 kips 8 kips

Fig. P7.75

A B

10 in.
6 in. 6 in. 6 in. 6 in.

10 in.

100 lb
16 lb/in.

DC E F G

100 lb

150 lb

16 lb/in.

Fig. P7.76

A
B

C

15 kN/m

1.5 m
6 m

45 kN⋅m

Fig. P7.77

2.5 kN/m

A C
B

2.5 m 1 m

Fig. P7.78

     7.77 and 7.78  For the beam and loading shown, (a) draw the shear and 

bending-moment diagrams, (b) determine the magnitude and location 

of the maximum absolute value of the bending moment.
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401

    7.79 and 7.80  For the beam and loading shown, (a) draw the shear and 

bending-moment diagrams, (b) determine the magnitude and location 

of the maximum absolute value of the bending moment.

20 kN/m

A B
C D

1.25 m 0.5 m
2 m

Fig. P7.79

3.2 m
0.8 m

2 kN/m

4 kN

A
B

C

Fig. P7.80

A C

9 ft 6 ft

800 lb/ft

B

600 lb

Fig. P7.81

A C

2.5 ft
20 ft

400 lb/ft

B

3200 lb

Fig. P7.82

A B
C

D

300 lb/ft

300 lb

2 ft2 ft
4 ft

Fig. P7.83

    7.81 and 7.82  For the beam and loading shown, (a) draw the shear and 

bending-moment diagrams, (b) determine the magnitude and location 

of the maximum absolute value of the bending moment.

7.83 (a) Draw the shear and bending-moment diagrams for beam AB, 

(b) determine the magnitude and location of the maximum absolute 

value of the bending moment.

A
B

x

w
w = w0 cos p x

2L

L

Fig. P7.85

A
B x

w

L

w0

Fig. P7.86

7.84 Solve Prob. 7.83 assuming that the 300-lb force applied at D is 

directed upward.

7.85 and 7.86  For the beam and loading shown, (a) write the equations 

of the shear and bending-moment curves, (b) determine the magni-

tude and location of the maximum bending moment.
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402

    7.87 and 7.88  For the beam and loading shown, (a) write the equations 

of the shear and bending-moment curves, (b) determine the magni-

tude and location of the maximum bending moment.

w0
1
2

B

L

x

w0

w

A

Fig. P7.87

A B

w

L

x

w = w0 sin p x
L

Fig. P7.88

0.3 m 0.3 m 0.3 m0.3 m

A B
C D E

20 kN/m
P Q

Fig. P7.89

 *7.89 The beam AB is subjected to the uniformly distributed load shown 

and to two unknown forces P and Q. Knowing that it has been 

experimentally determined that the bending moment is 1800 N∙m 

at D and 11300 N∙m at E, (a) determine P and Q, (b) draw the 

shear and bending-moment diagrams for the beam.

2 ft 2 ft
4 ft

2 ft2 ft

A B
C D E F

P Q
250 lb/ft

Fig. P7.91

 *7.90 Solve Prob. 7.89 assuming that the bending moment was found to 

be 1650 N∙m at D and 11450 N∙m at E.

 *7.91 The beam AB is subjected to the uniformly distributed load shown 

and to two unknown forces P and Q. Knowing that it has been 

experimentally determined that the bending moment is 16.10 kip∙ft 

at D and 15.50 kip∙ft at E, (a) determine P and Q, (b) draw the 

shear and bending-moment diagrams for the beam.

 *7.92 Solve Prob. 7.91 assuming that the bending moment was found to 

be 15.96 kip∙ft at D and 16.84 kip∙ft at E.
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7.4 Cables 403

7.4 CABLES
Cables are used in many engineering applications, such as suspension 

bridges, transmission lines, aerial tramways, guy wires for high towers, etc. 

Cables may be divided into two categories, according to their loading: 

(1) supporting concentrated loads and (2) supporting distributed loads. 

7.4A  Cables with Concentrated Loads
Consider a cable attached to two fixed points A and B and supporting n 

vertical concentrated loads P1, P2, . . . , Pn (Fig. 7.13a). We assume that 

the cable is flexible, i.e., that its resistance to bending is small and can be 

neglected. We further assume that the weight of the cable is negligible
compared with the loads supported by the cable. We can therefore approxi-

mate any portion of cable between successive loads as a two-force mem-

ber. Thus, the internal forces at any point in the cable reduce to a force 
of tension directed along the cable.

We assume that each of the loads lies in a given vertical line, i.e., 

that the horizontal distance from support A to each of the loads is known. 

We also assume that we know the horizontal and vertical distances between 

the supports. With these assumptions, we want to determine the shape of 

the cable (i.e., the vertical distance from support A to each of the points C1, 

C2, . . . , Cn ) and also the tension T in each portion of the cable.

We first draw the free-body diagram of the entire cable (Fig. 7.13b). 

Since we do not know the slopes of the portions of cable attached at A
and B, we represent the reactions at A and B by two components each. 

Thus, four unknowns are involved, and the three equations of equilibrium 

are not sufficient to determine the reactions. (Clearly, a cable is not a rigid 

body; thus, the equilibrium equations represent necessary but not sufficient 
conditions. See Sec. 6.3B.) We must therefore obtain an additional equa-

tion by considering the equilibrium of a portion of the cable. This is 

possible if we know the coordinates x and y of a point D of the cable. 

We draw the free-body diagram of the portion of cable AD
(Fig. 7.14a). From the equilibrium condition oMD 5 0, we obtain an addi-

tional relation between the scalar components Ax and Ay and can determine 

*

Photo 7.3 The weight of the chairlift cables 
is negligible compared to the weights of the 
chairs and skiers, so we can use the methods 
of this section to determine the force at any 
point in the cable.

(b)

D

Ay

A x

By

Bx

A

B
C1

C2 C3

P1

P2 P3

L

d

x1

x2

x3

(a)

A

BC1

C2 C3P1

P2 P3

y3y2

y1

L

d

x1

x2

x3

Fig. 7.13 (a) A cable supporting vertical 
concentrated loads; (b) free-body diagram of 
the entire cable.

x1

x

(a)

D

Ay

A x

C1

P1 T

A

y

P2
qx1

x2

(b)

Ay

A x

C1

C2P1
T

A

y2

Fig. 7.14 (a) Free-body diagram of the portion of cable 
AD; (b) free-body diagram of the portion of cable AC2.
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404 Internal Forces and Moments

the reactions at A and B. However, the problem remains indeterminate if 

we do not know the coordinates of D unless we are given some other rela-

tion between Ax and Ay (or between Bx and By). The cable might hang in 

any of various possible ways, as indicated by the dashed lines in Fig. 7.13b.

Once we have determined Ax and Ay, we can find the vertical distance 

from A to any point of the cable. Considering point C2, for example, we 

draw the free-body diagram of the portion of cable AC2 (Fig. 7.14b). From 

oFC2
 5 0, we obtain an equation that we can solve for y2. From oFx 5 0 

and oFy 5 0, we obtain the components of force T representing the tension 

in the portion of cable to the right of C2. Note that T cos θ 5 2Ax; 

that is, the horizontal component of the tension force is the same at any 
point of the cable. It follows that the tension T is maximum when cos θ 

is minimum, i.e., in the portion of cable that has the largest angle of 

inclination θ. Clearly, this portion of cable must be adjacent to one of the 

two supports of the cable.

7.4B Cables with Distributed Loads
Consider a cable attached to two fixed points A and B and carrying a dis-
tributed load (Fig. 7.15a). We just saw that for a cable supporting concen-

trated loads, the internal force at any point is a force of tension directed 

along the cable. By contrast, in the case of a cable carrying a distributed 

load, the cable hangs in the shape of a curve, and the internal force at a 

point D is a force of tension T directed along the tangent to the curve. 

Here we examine how to determine the tension at any point of a cable 

supporting a given distributed load. In the following sections, we will deter-

mine the shape of the cable for two common types of distributed loads.

Considering the most general case of distributed load, we draw the 

free-body diagram of the portion of cable extending from the lowest point C 

to a given point D of the cable (Fig. 7.15b). The three forces acting on 

the free body are the tension force T0 at C, which is horizontal; the ten-

sion force T at D, which is directed along the tangent to the cable at D; 

and the resultant W of the distributed load supported by the portion of 

cable CD. Drawing the corresponding force triangle (Fig. 7.15c), we 

obtain the relations

 T cos θ 5 T0         T sin θ 5 W  (7.5)

 T 5 2T 
2
0 1 W 

2    tan θ 5
W

T0

 (7.6)

T cos θ 5 T0TT T sin θ 5 W

T 5 2T 2
0 1 W 22 tan θ 5

W

T0TT

A

B

C

(b) (c)(a)

D
T

T

W

T0
T0

q

q

W

C

D

Fig. 7.15 (a) A cable carrying a distributed load; (b) free-body diagram of 
the portion of the cable CD; (c) force triangle for the free-body diagram in 
part (b).

x1

x

(a)

D

Ay

A x

C1

P1 T

P2

A

q

y

x1

x2

(b)

Ay

A x

C1

C2P1
T

A

y2

Fig. 7.14 (repeated)
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7.4 Cables 405

From the relations in Eqs. (7.5), we see that the horizontal component of 

the tension force T is the same at any point. Furthermore, the vertical 

component of T at any point is equal to the magnitude W of the load when 

measured from the lowest point (C) to the point in question (D). Relations 

in Eq. (7.6) show that the tension T is minimum at the lowest point and 

maximum at one of the two support points.

7.4C Parabolic Cables
Now suppose that cable AB carries a load uniformly distributed along the 
horizontal (Fig. 7.16a). We can approximate the load on the cables of a 

suspension bridge in this way, since the weight of the cables is small 

compared with the uniform weight of the roadway. We denote the load 

per unit length by w (measured horizontally) and express it in N/m or 

lb/ft. Choosing coordinate axes with the origin at the lowest point C of 

the cable, we find that the magnitude W of the total load carried by the 

portion of cable extending from C to the point D with coordinates x and 

y is W 5 wx. The relations in Eqs. (7.6) defining the magnitude and direc-

tion of the tension force at D become

T 5 2T 
2
0 1 w2x2       tan θ 5

wx

T0

 (7.7)

Moreover, the distance from D to the line of action of the resultant W is 

equal to half of the horizontal distance from C to D (Fig. 7.16b). Summing 

moments about D, we have

1l oMD 5 0:  wx 

x

2
2 T0 

y 5 0

Solving for y, we have

Equation of parabolic cable

y 5
wx2

2T0

 (7.8)

This is the equation of a parabola with a vertical axis and its vertex at 

the origin of coordinates. Thus, the curve formed by cables loaded uni-

formly along the horizontal is a parabola.‡

When the supports A and B of the cable have the same elevation, 

the distance L between the supports is called the span of the cable and 

the vertical distance h from the supports to the lowest point is called the 

sag of the cable (Fig. 7.17a). If you know the span and sag of a cable 

and if the load w per unit horizontal length is given, you can find 

the minimum tension T0 by substituting x 5 L /2 and y 5 h in Eq. (7.8). 

Equations (7.7) then yield the tension and the slope at any point of the 

cable and Eq. (7.8) defines the shape of the cable.

‡ Cables hanging under their own weight are not loaded uniformly along the horizontal and 

do not form parabolas. However, the error introduced by assuming a parabolic shape for 

cables hanging under their own weight is small when the cable is sufficiently taut. In the 

next section, we give a complete discussion of cables hanging under their own weight.

y 5
wxww 2

2T0TT

(b)

(a)

A

B

C

y

y
T

T0

q

D(x,y)

x

x

w

W = wx

x
2

D

C
y

x
2

Fig. 7.16 (a) A cable carrying a 
uniformly distributed load along the 
horizontal; (b) free-body diagram of 
the portion of cable CD.

Photo 7.4 The main cables of 
suspension bridges, like the Golden 
Gate Bridge above, may be assumed 
to carry a loading uniformly 
distributed along the horizontal.
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406 Internal Forces and Moments

When the supports have different elevations, the position of the low-

est point of the cable is not known, and we must determine the coordinates 

xA, yA and xB, yB of the supports. To do this, we note that the coordinates 

of A and B satisfy Eq. (7.8) and that 

xB 2 xA 5 L and yB 2 yA 5 d

where L and d denote, respectively, the horizontal and vertical distances 

between the two supports (Fig. 7.17b and c).

We can obtain the length of the cable from its lowest point C to its 

support B from the formula

 sB 5 #
xB

0

 
B

1 1 ady

dx
b2

 dx (7.9)

Differentiating Eq. (7.8), we obtain the derivative dy/dx 5 wx/T0. Substi-

tuting this into Eq. (7.9) and using the binomial theorem to expand the 

radical in an infinite series, we have

sB 5#
xB

0

 
B

1 1
w2x2

T 
2
0

 dx 5#
xB

0

a1 1
w2x2

2T 
2
0

2
w4x4

8T 4
0

1 . . .b dx

sB 5 xB 
a1 1

w2x 
2
B

6T 
2
0

2
w4x4

B

40T 
4
0

1 . . .b

Then, since wx 
2
B/2T0 5 yB, we obtain

 sB 5 xB c 1 1
2

3
 ayB

xB
b2

2
2

5
 ayB

xB
b4

1 . . . d  (7.10)

This series converges for values of the ratio yB /xB less than 0.5. In most 

cases, this ratio is much smaller, and only the first two terms of the series 

need be computed.

(a)

A B

C

y

x

L

h

(b)

yB

yA

xBxA

y

x

L

d

A

B

C xA < 0

A

B

C

y

x

L

xB

yB

yA

d

(c)

Fig. 7.17 (a) The shape of a parabolic cable is determined by its span L and sag h; (b, c) span 
and vertical distance between supports for cables with supports at different elevations.
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7.4 Cables 407

Sample Problem 7.8

The cable AE supports three vertical loads from the points indicated. If 

point C is 5 ft below the left support, determine (a) the elevation of points B 

and D, (b) the maximum slope and the maximum tension in the cable.

STRATEGY: To solve for the support reactions at A, consider a free-

body diagram of the entire cable as well as one that takes a section at C, 

since you know the coordinates of this point. Taking subsequent sections 

at B and D will then enable you to determine their elevations. The result-

ing cable geometry establishes the maximum slope, which is where the 

maximum tension in the cable occurs.

MODELING and ANALYSIS: 

Free Body, Entire Cable. Determine the reaction components Ax and 

Ay as 

1loME 5 0:

Ax(20 ft) 2 Ay(60 ft) 1 (6 kips)(40 ft) 1 (12 kips)(30 ft) 1 (4 kips)(15 ft) 5 0

20Ax 2 60Ay 1 660 5 0

Free Body, ABC. Consider the portion ABC of the cable as a free body 

(Fig. 1). Then you have

1loMC 5 0:  2Ax(5 ft) 2 Ay(30 ft) 1 (6 kips)(10 ft) 5 0

 25Ax 2 30Ay 1 60 5 0

Solving the two equations simultaneously, you obtain

Ax 5 218 kips   Ax 5 18 kips z

 Ay 5 15 kips Ay 5 5 kipsx

 a. Elevation of Points B and D: 

Free Body, AB. Considering the portion of cable AB as a free body, 

you obtain

1l oMB 5 0:  (18 kips)yB 2 (5 kips)(20 ft) 5 0

yB 5 5.56 ft below A b

Free Body, ABCD. Using the portion of cable ABCD as a free body 

gives you

1loMD 5 0:

2(18 kips)yD 2 (5 kips)(45 ft) 1 (6 kips)(25 ft) 1 (12 kips)(15 ft) 5 0

yD 5 5.83 ft above A b

 b. Maximum Slope and Maximum Tension. Note that the 

maximum slope occurs in portion DE. Since the horizontal component of 

the tension is constant and equal to 18 kips, you have

 tan θ 5
14 .17

15 ft
 θ 5 43.4° b

 Tmax 5
18 kips

cos θ
 Tmax 5 24.8 kips b

D

B

A
C

E

6 kips 12 kips

4 kips

20 ft
5 ft

20 ft 15 ft 15 ft10 ft

D

BA C

E

6 kips 12 kips

4 kips
20 ft

5 ft

20 ft 15 ft 15 ft10 ft

yB

yD

Ax

Ay

Ex

Ey

D

BA C

E

6 kips

18 kips
5 kips

12 kips

4 kips

14.17 ft

5.83 ft

15 ft

Ex =18 kips
Ey

BA C

6 kips 12 kips

5 ft

20 ft 10 ft

Ax

Ay

q

BA

6 kips

5 kips

20 ft

20 ft 15 ft10 ft

D

BA C

6 kips

18 kips

18 kips

5 kips

12 kips
4 kips

Fig. 1 Free-body diagrams of cable 
system.
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408 Internal Forces and Moments

Sample Problem 7.9

A light cable is attached to a support at A, passes over a small frictionless 

pulley at B, and supports a load P. The sag of the cable is 0.5 m and the mass 

per unit length of the cable is 0.75 kg/m. Determine (a) the magnitude of the 

load P, (b) the slope of the cable at B, (c) the total length of the cable from A 

to B. Since the ratio of the sag to the span is small, assume the cable is para-

bolic. Also, neglect the weight of the portion of cable from B to D.

STRATEGY: Because the pulley is frictionless, the load P is equal in 

magnitude to the tension in the cable at B. You can determine the tension 

using the methods of this section and then use that value to determine the 

slope and length of the cable.

MODELING and ANALYSIS: 

 a. Load P. Denote the lowest point of the cable by C and draw 

the free-body diagram of the portion CB of cable (Fig. 1). Assuming the 

load is uniformly distributed along the horizontal, you have

w 5 (0.75 kg/m)(9.81 m/s2) 5 7.36 N/m

The total load for the portion CB of cable is

W 5 wxB 5 (7.36 N/m)(20 m) 5 147.2 N

This load acts halfway between C and B. Summing moments about B 

gives you

1loMB 5 0: (147.2 N)(10 m) 2 T0(0.5 m) 5 0 T0 5 2944 N

From the force triangle (Fig. 2), you obtain

 TB 5 2T2
0 1 W2

 5 2(2944 N)2 1 (147.2 N)2 5 2948 N

Since the tension on each side of the pulley is the same, you end up with

P 5 TB 5 2948 N b

 b. Slope of Cable at B. The force triangle also tells us that

tan θ 5
W

T0

5
147.2 N

2944 N
5 0.05

θ 5 2.9° b

 c. Length of Cable. Applying Eq. (7.10) between C and B (Fig. 3) 

gives you

 sB 5 xB c 1 1
2

3
 ayB

xB
b2

1 � d

 5 (20 m) c 1 1
2

3
 a0.5 m

20 m
b2

1 � d 5 20.00833 m

The total length of the cable between A and B is twice this value. Thus,

Length 5 2sB 5 40.0167 m b

REFLECT and THINK: Notice that the length of the cable is only very 

slightly more than the length of the span between A and B. This means 

that the cable must be very taut, which is consistent with the relatively 

large value of load P (compared to the weight of the cable).

A B

D0.5 m

P

40 m

C

B
y

x

yB = 0.5 m

xB = 20 m

Fig. 3 Dimensions used to 
determine length of cable.

C

B

W = 147.2 N

T0

TB

q
y

10 m 10 m

0.5 m

x

Fig. 1 Free-body diagram 
of cable portion CB.

W = 147.2 N

T0

TB

q

Fig. 2 Force triangle for 
cable portion CB.
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409 409

In the problems of this section, you will apply the equations of equilibrium to cables 
that lie in a vertical plane. We assume that a cable cannot resist bending, so the 

force of tension in the cable is always directed along the cable.

A. In the first part of this lesson, we considered cables subjected to concentrated 
loads. Since we assume the weight of the cable is negligible, the cable is straight 

between loads.

 Your solution will consist of the following steps.

1. Draw a free-body diagram of the entire cable showing the loads and the hori-

zontal and vertical components of the reaction at each support. Use this free-body 

diagram to write the corresponding equilibrium equations.

2. You will have four unknown components and only three equations of equilib-
rium (see Fig. 7.13). You must therefore find an additional piece of information, such 

as the position of a point on the cable or the slope of the cable at a given point.

3. After you have identified the point of the cable where the additional informa-
tion exists, cut the cable at that point, and draw a free-body diagram of one of the 

two resulting portions of the cable.

 a. If you know the position of the point where you have cut the cable, set oM 5 0 

about that point for the new free body. This will yield the additional equation required 

to solve for the four unknown components of the reactions [Sample Prob. 7.8].

 b. If you know the slope of the portion of the cable you have cut, set oFx 5 0 

and oFy 5 0 for the new free body. This will yield two equilibrium equations that, 

together with the original three, you can solve for the four reaction components and 

for the tension in the cable where it has been cut.

4. To find the elevation of a given point of the cable and the slope and tension 
at that point once you have found the reactions at the supports, you should cut the 

cable at that point and draw a free-body diagram of one of the two resulting portions 

of the cable. Setting oM 5 0 about the given point yields its elevation. Writing 

oFx 5 0 and oFy 5 0 yields the components of the tension force from which you 

can find its magnitude and direction.

5. For a cable supporting vertical loads only, the horizontal component of the ten-
sion force is the same at any point. It follows that, for such a cable, the maximum 
tension occurs in the steepest portion of the cable.

SOLVING PROBLEMS 
ON YOUR OWN

(continued )
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B. In the second portion of this section, we considered cables carrying a load that 
is uniformly distributed along the horizontal. The shape of the cable is then 

parabolic.

Your solution will use one or more of the following concepts.

1. Place the origin of coordinates at the lowest point of the cable and direct the x
and y axes to the right and upward, respectively. Then the equation of the parabola is

y 5
wx 

2

2T0

 (7.8)

The minimum cable tension occurs at the origin, where the cable is horizontal. The 

maximum tension is at the support where the slope is maximum.

2. If the supports of the cable have the same elevation, the sag h of the cable is 

the vertical distance from the lowest point of the cable to the horizontal line joining 

the supports. To solve a problem involving such a parabolic cable, use Eq. (7.8) for 

one of the supports; this equation can be solved for one unknown.

3. If the supports of the cable have different elevations, you will have to write 

Eq. (7.8) for each of the supports (see Fig. 7.17).

4. To find the length of the cable from the lowest point to one of the supports, you 

can use Eq. (7.10). In most cases, you will need to compute only the first two terms 

of the series.
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 7.93 Three loads are suspended as shown from the cable ABCDE. Know-

ing that dC 5 4 m, determine (a) the components of the reaction 

at E, (b) the maximum tension in the cable.

Problems

2 kN 6 kN
4 kN

A

5 m

B

E

D
C

dC
dDdB

5 m 5 m 5 m

Fig. P7.93 and P7.94

A

B C

D

E

300 lb

300 lb

200 lb

8 ft 8 ft 8 ft 8 ft

6 ft d C

Fig. P7.95 and P7.96

 7.94 Knowing that the maximum tension in cable ABCDE is 25 kN, deter-

mine the distance dC.

 7.95 If dC 5 8 ft, determine (a) the reaction at A, (b) the reaction at E.

 7.96 If dC 5 4.5 ft, determine (a) the reaction at A, (b) the reaction at E.

 7.97 Knowing that dC 5 3 m, determine (a) the distances dB and dD, 

(b) the reaction at E.

 7.98 Determine (a) distance dC for which portion DE of the cable is hori-

zontal, (b) the corresponding reactions at A and E.

 7.99 Knowing that dC 5 15 ft, determine (a) the distances dB and dD, 

(b) the maximum tension in the cable.

 7.100 Determine (a) the distance dC for which portion BC of the cable is 

horizontal, (b) the corresponding components of the reaction at E.

A

B

C

D

E

d B

2 m 2 m

5 kN

5 kN

10 kN

d C d D 4 m

3 m 3 m

Fig. P7.97 and P7.98

A

B
C

7.5 ft

6 ft 9 ft 6 ft 9 ft

d B

D

d D

d C

E

2 kips2 kips
2 kips

Fig. P7.99 and P7.100
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 7.101 Knowing that mB 5 70 kg and mC 5 25 kg, determine the magnitude 

of the force P required to maintain equilibrium.

P

A

B

C

D

4 m4 m 6 m

3 m
5 m

mB

mC

Fig. P7.101 and P7.102

 7.102 Knowing that mB 5 18 kg and mC 5 10 kg, determine the magnitude 

of the force P required to maintain equilibrium.

 7.103 Cable ABC supports two loads as shown. Knowing that b 5 21 ft, 

determine (a) the required magnitude of the horizontal force P, 

(b) the corresponding distance a.

 7.104 Cable ABC supports two loads as shown. Determine the distances 

a and b when a horizontal force P of magnitude 200 lb is applied 

at C.

7.105 If a 5 3 m, determine the magnitudes of P and Q required to main-

tain the cable in the shape shown.

180 lb

140 lb P

12 ft

9 ft

a
b

A

B

C

Fig. P7.103 and P7.104

P

A

B

C

D

E2 m

2 m

120 kN

Q

4 m 4 m 4 m 4 m

a

Fig. P7.105 and P7.106

7.106 If a 5 4 m, determine the magnitudes of P and Q required to main-

tain the cable in the shape shown.

 7.107 An electric wire having a mass per unit length of 0.6 kg/m is strung 

between two insulators at the same elevation that are 60 m apart. 

Knowing that the sag of the wire is 1.5 m, determine (a) the maxi-

mum tension in the wire, (b) the length of the wire.

7.108 The total mass of cable ACB is 20 kg. Assuming that the mass of 

the cable is distributed uniformly along the horizontal, determine 

(a) the sag h, (b) the slope of the cable at A.

A B

C

h

E

D

150 kg

8 m

4.5 m

6 m

Fig. P7.108
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 7.109 The center span of the George Washington Bridge, as originally con-

structed, consisted of a uniform roadway suspended from four cables. 

The uniform load supported by each cable was w 5 9.75 kips/ft 

along the horizontal. Knowing that the span L is 3500 ft and that the 

sag h is 316 ft, determine for the original configuration (a) the maxi-

mum tension in each cable, (b) the length of each cable.

 7.110 The center span of the Verrazano-Narrows Bridge consists of two 

uniform roadways suspended from four cables. The design of the 

bridge allows for the effect of extreme temperature changes that 

cause the sag of the center span to vary from hw 5 386 ft in winter 

to hs 5 394 ft in summer. Knowing that the span is L 5 4260 ft, 

determine the change in length of the cables due to extreme tem-

perature changes.

 7.111 Each cable of the Golden Gate Bridge supports a load w 5 11.1 kips/ft 

along the horizontal. Knowing that the span L is 4150 ft and that the 

sag h is 464 ft, determine (a) the maximum tension in each cable, 

(b) the length of each cable.

 7.112 Two cables of the same gauge are attached to a transmission tower 

at B. Since the tower is slender, the horizontal component of the 

resultant of the forces exerted by the cables at B is to be zero. Know-

ing that the mass per unit length of the cables is 0.4 kg/m, determine 

(a) the required sag h, (b) the maximum tension in each cable.

 7.113 A 76-m length of wire having a mass per unit length of 2.2 kg/m is 

used to span a horizontal distance of 75 m. Determine (a) the 

approximate sag of the wire, (b) the maximum tension in the wire. 

[Hint: Use only the first two terms of Eq. (7.10).]

 7.114 A cable of length L 1 D is suspended between two points that are 

at the same elevation and a distance L apart. (a) Assuming that D is 

small compared to L and that the cable is parabolic, determine the 

approximate sag in terms of L and D. (b) If L 5 100 ft and D 5 4 ft, 

determine the approximate sag. [Hint: Use only the first two terms 

of Eq. (7.10).]

 7.115 The total mass of cable AC is 25 kg. Assuming that the mass of the 

cable is distributed uniformly along the horizontal, determine the 

sag h and the slope of the cable at A and C.

A B C

h 3 m

90 m 60 m

Fig. P7.112

h

450 kg

A B

C

2.5 m

2.5 m

3 m

5 m

Fig. P7.115

bee87302_ch07_367-428.indd   413bee87302_ch07_367-428.indd   413 11/8/14   10:53 AM11/8/14   10:53 AM

UPLOADED BY AHMAD T JUNDI



414

 7.116 Cable ACB supports a load uniformly distributed along the horizontal 

as shown. The lowest point C is located 9 m to the right of A. Deter-

mine (a) the vertical distance a, (b) the length of the cable, (c) the 

components of the reaction at A.

A

C B

2.25 m

60 kg/m

6 m9 m

a

Fig. P7.116

A

B
1100 ft

496 ft

10.2 kips/ft

C

h = 30 ft

Fig. P7.117

 7.117 Each cable of the side spans of the Golden Gate Bridge supports a 

load w 5 10.2 kips/ft along the horizontal. Knowing that for the side 

spans the maximum vertical distance h from each cable to the 

chord AB is 30 ft and occurs at midspan, determine (a) the maximum 

tension in each cable, (b) the slope at B.

 7.118 A steam pipe weighing 45 lb/ft that passes between two buildings 

40 ft apart is supported by a system of cables as shown. Assuming 

that the weight of the cable system is equivalent to a uniformly 

distributed loading of 5 lb/ft, determine (a) the location of the lowest 

point C of the cable, (b) the maximum tension in the cable.

40 ft

A

BC
5 ft
4 ft
4 ft

Fig. P7.118
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 *7.119 A cable AB of span L and a simple beam A9B9 of the same span are 

subjected to identical vertical loadings as shown. Show that the mag-

nitude of the bending moment at a point C9 in the beam is equal to 

the product T0h, where T0 is the magnitude of the horizontal compo-

nent of the tension force in the cable and h is the vertical distance 

between point C and the chord joining the points of support A and B.

B

C

A'

A

B' 
C'

P1

P1

P2

P2

P3

P3

Pn

Pn

a
h

L

Fig. P7.119

A B

C D x

y

aa
q

Fig. P7.126

 7.120 through 7.123  Making use of the property established in Prob. 

7.119, solve the problem indicated by first solving the corresponding 

beam problem.

 7.120 Prob. 7.94.

 7.121 Prob. 7.97a.

 7.122 Prob. 7.99a.

 7.123 Prob. 7.100a.

 *7.124 Show that the curve assumed by a cable that carries a distributed 

load w(x) is defined by the differential equation d2y/dx2 5 w(x)/T0, 

where T0 is the tension at the lowest point.

 *7.125 Using the property indicated in Prob. 7.124, determine the curve 

assumed by a cable of span L and sag h carrying a distributed load 

w 5 w0 cos (πx/L), where x is measured from midspan. Also deter-

mine the maximum and minimum values of the tension in the cable.

 *7.126 If the weight per unit length of the cable AB is w0 / cos2 θ, prove that 

the curve formed by the cable is a circular arc. (Hint: Use the prop-

erty indicated in Prob. 7.124.)
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416 Internal Forces and Moments

7.5 CATENARY CABLES
Let us now consider a cable AB carrying a load that is uniformly distrib-
uted along the cable itself (Fig. 7.18a). Cables hanging under their own 

weight are loaded in this way. We denote the load per unit length by w 

(measured along the cable) and express it in N/m or lb/ft. The magnitude W 

of the total load carried by a portion of cable with a length of s, extending 

*

A

By

C

O c

x

D(x,y)

(a)

ds

dx

q

q

T

T

D

C
W = ws

W = ws

(b) (c)

T0
T0

s
s

dy

Fig. 7.18 (a) A cable carrying a load uniformly distributed along the cable; 
(b) free-body diagram of a portion of the cable CD; (c) force triangle for part (b).

from the lowest point C to some point D, is W 5 ws. Substituting this 

value for W in formula (7.6), we obtain the tension at D, as

T 5 2T 
2
0 1 w 

2s 
2

In order to simplify the subsequent computations, we introduce the con-

stant c 5 T0 /w. This gives us

T0 5 wc   W 5 ws   T 5 w2c2 1 s2   (7.11)

The free-body diagram of the portion of cable CD is shown in 

Fig. 7.18b. However, we cannot use this diagram directly to obtain the 

equation of the curve assumed by the cable, because we do not know 

the horizontal distance from D to the line of action of the resultant W of 

the load. To obtain this equation, we note that the horizontal projection 

(a) High-voltage power lines (b) A spider’s web (c) The Gateway Arch

Photo 7.5 Catenary cables occur in nature as well as in engineered structures. (a) High-voltage power lines, 
common all across the country and in much of the world, support only their own weight. (b) Catenary cables can be 
as delicate as the silk threads of a spider’s web. (c) The Gateway to the West Arch in St. Louis is an inverted catenary 
arch cast in concrete (which is in compression instead of tension).
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7.5 Catenary Cables 417

of a small element of cable of length ds is dx 5 ds cos θ. Observing from 

Fig. 7.18c that cos θ 5 T0 /T and using Eq. (7.11), we have

dx 5 ds cos θ 5
T0

T
 ds 5

wc ds

w2c2 1 s2
5

ds

21 1 s2/c2

Selecting the origin O of the coordinates at a distance c directly below C 

(Fig. 7.18a) and integrating from C(0, c) to D(x, y), we obtain†

x 5#
s

0

ds

21 1 s2/c2
5 c c sinh21 

s
c
d s

0

5 c sinh21 
s
c

This equation, which relates the length s of the portion of cable CD and 

the horizontal distance x, can be written in the form

Length of catenary cable

 s 5 c sinh 
x
c
 (7.15)

We can now obtain the relation between the coordinates x and y by 

writing dy 5 dx tan θ. Observing from Fig. 7.18c that tan θ 5 W/T0 and 

using (7.11) and (7.15), we have

dy 5 dx tan θ 5
W

T0

 dx 5
s
c

 dx 5 sinh 
x
c

 dx

Integrating from C(0, c) to D(x, y) and using Eqs. (7.12) and (7.13), we 

obtain

y 2 c 5 #
x

0

sinh  
x
c

 dx 5 c c cosh 
x
c
d x

0

5 c acosh 
x
c

2 1b

y 2 c 5 c cosh 
x
c

2 c

† This integral appears in all standard integral tables. The function

z 5 sinh21u

(read “arc hyperbolic sine u”)is the inverse of the function u 5 sinh z (read “hyperbolic sine 

z”). This function and the function v 5 cosh z (read “hyperbolic cosine z”) are defined as 

u 5  sinh z 5
1

2
(ez 2 e2z)     v 5  cosh z 5

1

2
(ez 1 e2z)

Numerical values of the functions sinh z and cosh z are listed in tables of hyperbolic func-

tions and also may be computed on most calculators, either directly or from the definitions. 

Refer to any calculus text for a complete description of the properties of these functions. In 

this section, we use only the following properties, which are easy to derive from the 

definitions:

d sinh z

dz
5  cosh z   d cosh z

dz
5  sinh z (7.12)

 sinh 0 5 0     cosh 0 5 1 (7.13)

 cosh2 z 2 sinh2 z 5 1 (7.14)

s 5 c sinh
x
c

A

By

C

O c

x

D(x,y)

(a)

q
T W = ws

(c)

T0

s

ds

dx

q

T

D

C
W = ws

(b)

T0

s

dy

Fig. 7.18 (continued).
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418 Internal Forces and Moments

which reduces to

Equation of catenary cable

y 5 c cosh 
x
c
 (7.16)

This is the equation of a catenary with vertical axis. The ordinate c of 

the lowest point C is called the parameter of the catenary. By squaring 

both sides of Eqs. (7.15) and (7.16), subtracting, and taking Eq. (7.14) 

into account, we obtain the following relation between y and s:

 y2 2 s2 5 c2 (7.17)

Solving Eq. (7.17) for s2 and carrying into the last of the relations in 

Eqs. (7.11), we write these relations as 

 T0 5 wc   W 5 ws   T 5 wy (7.18)

The last relation indicates that the tension at any point D of the cable is 

proportional to the vertical distance from D to the horizontal line repre-

senting the x axis.

When the supports A and B of the cable have the same elevation, 

the distance L between the supports is called the span of the cable and the 

vertical distance h from the supports to the lowest point C is called the 

sag of the cable. These definitions are the same as those given for para-

bolic cables; note that, because of our choice of coordinate axes, the sag 

h is now

 h 5 yA 2 c (7.19)

Also note that some catenary problems involve transcendental equations, 

which must be solved by successive approximations (see Sample 

Prob. 7.10). When the cable is fairly taut, however, we can assume that 

the load is uniformly distributed along the horizontal and replace the 

catenary by a parabola. This greatly simplifies the solution of the problem, 

and the error introduced is small.

When the supports A and B have different elevations, the position 

of the lowest point of the cable is not known. We can then solve the 

problem in a manner similar to that indicated for parabolic cables by not-

ing that the cable must pass through the supports and that xB 2 xA 5 L 

and yB 2 yA 5 d, where L and d denote, respectively, the horizontal and 

vertical distances between the two supports.

y 5 c cosh
x
c

y2 2 s2 5 c2

T0TT 5 wc  W 5 ws   T 5 wy

h 5 yAyy 2 c
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7.5 Catenary Cables 419

Sample Problem 7.10

A uniform cable weighing 3 lb/ft is suspended between two points A and 

B as shown. Determine (a) the maximum and minimum values of the 

tension in the cable, (b) the length of the cable.

STRATEGY: This is a cable carrying only its own weight that is sup-

ported by its ends at the same elevation. You can use the analysis in this 

section to solve the problem.

MODELING and ANALYSIS: 

Equation of Cable. Place the origin of coordinates at a distance c
below the lowest point of the cable (Fig. 1). The equation of the cable is 

given by Eq. (7.16), as

y 5 c cosh 
x
c

The coordinates of point B are

xB 5 250 ft   yB 5 100 1 c

Substituting these coordinates into the equation of the cable, you obtain

 100 1 c 5 c cosh 
250

c

 
100

c
1 1 5 cosh 

250

c

Determine the value of c by substituting successive trial values, as shown 

in the following table.

c 
250

c
 

100
c

 
100

c
1 1 cosh 

250
c

300 0.833 0.333 1.333 1.367
350 0.714 0.286 1.286 1.266
330 0.758 0.303 1.303 1.301
328 0.762 0.305 1.305 1.305

Taking c 5 328, you have

yB 5 100 1 c 5 428 ft

 a. Maximum and Minimum Values of the Tension. Using 

Eqs. (7.18), you obtain

 Tmin 5 T0 5 wc 5 (3 lb/ft)(328 ft) Tmin 5 984 lb b

 Tmax 5 TB 5 wyB 5 (3 lb/ft)(428 ft) Tmax 5 1284 lb b

 b. Length of Cable. You can find one-half of the length of the 

cable by solving Eq. (7.17). Hence, 

y2
B 2 s2

CB 5 c2  s2
CB 5 y2

B 2 c2 5 (428)2 2 (328)2  sCB 5 275 ft

The total length of the cable is therefore

 sAB 5 2sCB 5 2(275 ft) sAB 5 550 ft b

REFLECT and THINK: The sag in the cable is one-fifth of the cable’s 

span, so it is not very taut. The weight of the cable is ws 5 (3 lb/ft)(550 ft) 5 

1650 lb, while its maximum tension is only 1284 lb. This demonstrates 

that the total weight of a cable can exceed its maximum tension. 

A B

100 ft

500 ft

xB

yB

y

xO

c

A

C

B

Fig. 1 Cable geometry.
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420420

SOLVING PROBLEMS 
ON YOUR OWN

In the last section of this chapter, we described how to solve problems involving a 

cable carrying a load uniformly distributed along the cable. The shape assumed by 

the cable is a catenary and is defined by 

 y 5 c cosh 
x
c
 (7.16)

1. Keep in mind that the origin of coordinates for a catenary is located at a 
distance c directly below its lowest point. The length of the cable from the origin 

to any point is expressed as

 s 5 c sinh 
x
c
 (7.15)

2. You should first identify all of the known and unknown quantities. Then con-

sider each of the equations listed in the text (Eqs. 7.15 through 7.19) and solve an 

equation that contains only one unknown. Substitute the value found into another 

equation, and solve that equation for another unknown.

3. If the sag h is given, use Eq. (7.19) to replace y by h 1 c in Eq. (7.16) if x is 

known [Sample Prob. 7.10] or in Eq. (7.17) if s is known, and solve the resulting 

equation for the constant c.

4. Many of the problems you will encounter will involve the solution by trial and 
error of an equation involving a hyperbolic sine or cosine. You can make your work 

easier by keeping track of your calculations in a table, as in Sample Prob. 7.10, or 

by applying a numerical methods approach using a computer or calculator.
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 7.127 A 25-ft chain with a weight of 30 lb is suspended between two points 

at the same elevation. Knowing that the sag is 10 ft, determine 

(a) the distance between the supports, (b) the maximum tension in 

the chain.

 7.128 A 500-ft-long aerial tramway cable having a weight per unit length 

of 2.8 lb/ft is suspended between two points at the same elevation. 

Knowing that the sag is 125 ft, find (a) the horizontal distance 

between the supports, (b) the maximum tension in the cable.

 7.129 A 40-m cable is strung as shown between two buildings. The maxi-

mum tension is found to be 350 N, and the lowest point of the cable 

is observed to be 6 m above the ground. Determine (a) the horizontal 

distance between the buildings, (b) the total mass of the cable.

Problems

A B

C14 m

L

6 m

Fig. P7.129

A
B

C

P

h

L

Fig. P7.131, P7.132, and P7.133

 7.130 A 50-m steel surveying tape has a mass of 1.6 kg. If the tape is 

stretched between two points at the same elevation and pulled until 

the tension at each end is 60 N, determine the horizontal distance 

between the ends of the tape. Neglect the elongation of the tape due 

to the tension.

7.131 A 20-m length of wire having a mass per unit length of 0.2 kg/m is 

attached to a fixed support at A and to a collar at B. Neglecting the 

effect of friction, determine (a) the force P for which h 5 8 m, 

(b) the corresponding span L.

 7.132 A 20-m length of wire having a mass per unit length of 0.2 kg/m is 

attached to a fixed support at A and to a collar at B. Knowing that 

the magnitude of the horizontal force applied to the collar is 

P 5 20 N, determine (a) the sag h, (b) the span L.

 7.133 A 20-m length of wire having a mass per unit length of 0.2 kg/m is 

attached to a fixed support at A and to a collar at B. Neglecting the 

effect of friction, determine (a) the sag h for which L 5 15 m, 

(b) the corresponding force P.

 7.134 Determine the sag of a 30-ft chain that is attached to two points at 

the same elevation that are 20 ft apart.
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 7.135 A counterweight D is attached to a cable that passes over a small 

pulley at A and is attached to a support at B. Knowing that L 5 45 ft 

and h 5 15 ft, determine (a) the length of the cable from A to B, 

(b) the weight per unit length of the cable. Neglect the weight of the 

cable from A to D.

A B

C

D h

80 lb

L

Fig. P7.135

A B

h

L

Fig. P7.138

A B

C

M

h

10 m

Fig. P7.139 and P7.140

A

B

Ca

12 m

1.8 m

Fig. P7.141 and P7.142

 7.136 A 90-m wire is suspended between two points at the same elevation 

that are 60 m apart. Knowing that the maximum tension is 300 N, 

determine (a) the sag of the wire, (b) the total mass of the wire.

7.137 A cable weighing 2 lb/ft is suspended between two points at the 

same elevation that are 160 ft apart. Determine the smallest allow-

able sag of the cable if the maximum tension is not to exceed 

400 lb.

7.138 A uniform cord 50 in. long passes over a pulley at B and is attached 

to a pin support at A. Knowing that L 5 20 in. and neglecting the 

effect of friction, determine the smaller of the two values of h for 

which the cord is in equilibrium.

 7.139 A motor M is used to slowly reel in the cable shown. Knowing that 

the mass per unit length of the cable is 0.4 kg/m, determine the 

maximum tension in the cable when h 5 5 m.

 7.140 A motor M is used to slowly reel in the cable shown. Knowing that 

the mass per unit length of the cable is 0.4 kg/m, determine the 

maximum tension in the cable when h 5 3 m.

 7.141 The cable ACB has a mass per unit length of 0.45 kg/m. Knowing 

that the lowest point of the cable is located at a distance a 5 0.6 m 

below the support A, determine (a) the location of the lowest point C, 

(b) the maximum tension in the cable.

7.142 The cable ACB has a mass per unit length of 0.45 kg/m. Knowing 

that the lowest point of the cable is located at a distance a 5 2 m 

below the support A, determine (a) the location of the lowest point C, 

(b) the maximum tension in the cable.

bee87302_ch07_367-428.indd   422bee87302_ch07_367-428.indd   422 11/8/14   10:53 AM11/8/14   10:53 AM

UPLOADED BY AHMAD T JUNDI



423

 7.143 A uniform cable weighing 3 lb/ft is held in the position shown by a 

horizontal force P applied at B. Knowing that P 5 180 lb and θA 5

60°, determine (a) the location of point B, (b) the length of the cable.

 7.144 A uniform cable weighing 3 lb/ft is held in the position shown by a 

horizontal force P applied at B. Knowing that P 5 150 lb and θA 5

60°, determine (a) the location of point B, (b) the length of the cable.

 7.145 To the left of point B, the long cable ABDE rests on the rough hori-

zontal surface shown. Knowing that the mass per unit length of the 

cable is 2 kg/m, determine the force F when a 5 3.6 m.

A

B P

qA

a

b

Fig. P7.143 and P7.144

D

A B

E F

h = 4 m

a

Fig. P7.145 and P7.146

A

B

a
q = 30°

Fig. P7.147

qA qBA B

h

L

Fig. P7.151, P7.152 and P7.153

 7.146 To the left of point B, the long cable ABDE rests on the rough hori-

zontal surface shown. Knowing that the mass per unit length of the 

cable is 2 kg/m, determine the force F when a 5 6 m.

 *7.147 The 10-ft cable AB is attached to two collars as shown. The collar 

at A can slide freely along the rod; a stop attached to the rod prevents 

the collar at B from moving on the rod. Neglecting the effect of 

friction and the weight of the collars, determine the distance a.

 *7.148 Solve Prob. 7.147 assuming that the angle θ formed by the rod and 

the horizontal is 45°.

 7.149 Denoting the angle formed by a uniform cable and the horizontal 

by θ, show that at any point (a) s 5 c tan θ, (b) y 5 c sec θ.

 *7.150 (a) Determine the maximum allowable horizontal span for a uniform 

cable with a weight per unit length of w if the tension in the cable 

is not to exceed a given value Tm. (b) Using the result of part a, 

determine the maximum span of a steel wire for which w 5 0.25 lb/ft 

and Tm 5 8000 lb.

 *7.151 A cable has a mass per unit length of 3 kg/m and is supported as 

shown. Knowing that the span L is 6 m, determine the two values 

of the sag h for which the maximum tension is 350 N.

 *7.152 Determine the sag-to-span ratio for which the maximum tension in 

the cable is equal to the total weight of the entire cable AB.

 *7.153 A cable with a weight per unit length of w is suspended between 

two points at the same elevation that are a distance L apart. Deter-

mine (a) the sag-to-span ratio for which the maximum tension is as 

small as possible, (b) the corresponding values of θB and Tm.
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In this chapter, you learned to determine the internal forces that hold together 

the various parts of a given member in a structure.

Forces in Straight Two-Force Members
Considering first a straight two-force member AB [Sec. 7.1], recall that such 

a member is subjected at A and B to equal and opposite forces F and 2F 

directed along AB (Fig. 7.19a). Cutting member AB at C and drawing the 

free-body diagram of portion AC, we concluded that the internal forces exist-

ing at C in member AB are equivalent to an axial force 2F equal and opposite 

to F (Fig. 7.19b). Note that, in the case of a two-force member that is not 

straight, the internal forces reduce to a force-couple system and not to a single 

force.

Forces in Multi-Force Members
Consider next a multi-force member AD (Fig. 7.20a). Cutting it at J and 

drawing the free-body diagram of portion JD, we concluded that the internal 

forces at J are equivalent to a force-couple system consisting of the axial 
force F, the shearing force V, and a couple M (Fig. 7.20b). The magnitude 

of the shearing force measures the shear at point J, and the moment of the 

couple is referred to as the bending moment at J. Since an equal and opposite 

force-couple system is obtained by considering the free-body diagram of por-

tion AJ, it is necessary to specify which portion of member AD is used when 

recording the answers [Sample Prob. 7.1].

FBE

Cx

Ay

Ax

Cy

T

A

B

C

D

J

(a)

V

M
F

T

D

J

(b)

Fig. 7.20

Forces in Beams
Most of the chapter was devoted to the analysis of the internal forces in two 

important types of engineering structures: beams and cables. Beams are usu-

ally long, straight prismatic members designed to support loads applied at 

various points along the member. In general, the loads are perpendicular to 

the axis of the beam and produce only shear and bending in the beam. The 

loads may be either  concentrated at specific points or distributed along the 

entire length or a portion of the beam. The beam itself may be supported in 

various ways; since only statically determinate beams are considered in this 

Review and Summary

(a) (b)

C

A

B

F

– F

– F

C

A

F

Fig. 7.19
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text, we limited our analysis to that of simply supported beams, overhanging 

beams, and cantilever beams [Sec. 7.2].

Shear and Bending Moment in a Beam
To obtain the shear V and bending moment M at a given point C of a beam, 

we first determine the reactions at the supports by considering the entire beam 

as a free body. We then cut the beam at C and use the free-body diagram of 

one of the two resulting portions to determine V and M. In order to avoid any 

confusion regarding the sense of the shearing force V and couple M (which act 

in opposite directions on the two portions of the beam), we adopted the sign 

convention illustrated in Fig. 7.21 [Sec. 7.2B]. Once we have determined the 

values of the shear and bending moment at a few selected points of the beam, 

it is usually possible to draw a shear diagram and a bending-moment diagram 

representing, respectively, the shear and bending moment at any point of the 

beam [Sec. 7.2C]. When a beam is subjected to concentrated loads only, the 

shear is of constant value between loads, and the bending moment varies linearly 

between loads [Sample Prob. 7.2]. When a beam is subjected to distributed 

loads, the shear and bending moment vary quite differently [Sample Prob. 7.3].

Internal forces at section
(positive shear and positive bending moment)

M

V
M'

V'

Fig. 7.21

Relations among Load, Shear, and Bending Moment
Construction of the shear and bending-moment diagrams is simplified by tak-

ing into account the following relations. Denoting the distributed load per unit 

length by w (assumed positive if directed downward), we have [Sec. 7.3]:

 
dV

dx
5 2w (7.1)

 
dM

dx
5 V  (7.3)

In integrated form, these equations become

 VD 2 VC 5 2(area under load curve between C and D) (7.29)

 MD 2 MC 5 area under shear curve between C and D (7.49)

Equation (7.29) makes it possible to draw the shear diagram of a beam from 

the curve representing the distributed load on that beam and the value of V at 

one end of the beam. Similarly, Eq. (7.49) makes it possible to draw the 

bending-moment diagram from the shear diagram and the value of M at one 

end of the beam. However, discontinuities are introduced in the shear diagram 

by concentrated loads and in the bending-moment diagram by concentrated 

couples, none of which are accounted for in these equations [Sample Probs. 7.4 

and 7.7]. Finally, we note from Eq. (7.3) that the points of the beam where 

the bending moment is maximum or minimum are also the points where the 

shear is zero [Sample Prob. 7.5].
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Cables with Concentrated Loads
The second half of the chapter was devoted to the analysis of flexible cables. 

We first considered a cable of negligible weight supporting concentrated 
loads [Sec. 7.4A]. Using the entire cable AB as a free body (Fig. 7.22), we 

noted that the three available equilibrium equations were not sufficient to 

determine the four unknowns representing the reactions at supports A and B. 

However, if the coordinates of a point D of the cable are known, we can obtain 

an additional equation by considering the free-body diagram of portion AD
or DB of the cable. Once we have determined the reactions at the supports, 

we can find the elevation of any point of the cable and the tension in any 

portion of the cable from the appropriate free-body diagram [Sample Prob. 7.8]. 

We noted that the horizontal component of the force T representing the ten-

sion is the same at any point of the cable.

Cables with Distributed Loads
We next considered cables carrying distributed loads [Sec. 7.4B]. Using as a 

free body a portion of cable CD extending from the lowest point C to an arbi-

trary point D of the cable (Fig. 7.23), we observed that the horizontal component 

of the tension force T at D is constant and equal to the tension T0 at C, whereas 

its vertical component is equal to the weight W of the portion of cable CD. The 

magnitude and direction of T were obtained from the force triangle:

T 5 2T 
2
0 1 W 

2     tan θ 5
W

T0

 (7.6)

Parabolic Cable
In the case of a load uniformly distributed along the horizontal—as in a sus-

pension bridge (Fig. 7.24)—the load supported by portion CD is W 5 wx, 

where w is the constant load per unit horizontal length [Sec. 7.4C]. We also 

found that the curve formed by the cable is a parabola with equation

 y 5
wx2

2T0

 (7.8)

and that the length of the cable can be found by using the expansion in series 

given in Eq. (7.10) [Sample Prob. 7.9].

Catenary
In the case of a load uniformly distributed along the cable itself—e.g., a cable 

hanging under its own weight (Fig. 7.25)—the load supported by portion CD
is W 5 ws, where s is the length measured along the cable and w is the con-

stant load per unit length [Sec. 7.5]. Choosing the origin O of the coordinate 

axes at a distance c 5 T0 /w below C, we derived the relations

 
s 5 c sinh 

x
c (7.15)

 
y 5 c cosh 

x
c (7.16)

y2 2 s2 5 c2 (7.17)

T0 5 wc    W 5 ws    T 5 wy (7.18)

These equations can be used to solve problems involving cables hanging under 

their own weight [Sample Prob. 7.10]. Equation (7.16), which defines the 

shape of the cable, is the equation of a catenary.

A

B

C

y

D(x,y)

x

w

Fig. 7.24

A

By

C

O c

x

D(x,y)

s

Fig. 7.25

A x

Ay

A

Bx

By

C1

C2

C3

D

P1

P2 P3

B

L

d

x1

x2

x3

Fig. 7.22

D

C

T

T W

T0

q

q

W

T0

Fig. 7.23
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Review Problems
7.154 and 7.155  Knowing that the turnbuckle has been tightened until 

the tension in wire AD is 850 N, determine the internal forces at 

the point indicated:

 7.154 Point J 

  7.155 Point K

 7.156 Two members, each consisting of a straight and a quarter-circular 

portion of rod, are connected as shown and support a 75-lb load 

at A. Determine the internal forces at point J.

A

B

E

F
J

C

D

75 lb

K

6 in. 3 in. 3 in. 6 in. 3 in.

3 in.

3 in.

Fig. P7.156

 7.157 Knowing that the radius of each pulley is 150 mm, that α 5 20°, 

and neglecting friction, determine the internal forces at (a) point J, 

(b) point K.

A B

C

K

D

J

500 N

0.6 m

a

0.6 m

0.9 m

0.9 m

Fig. P7.157

 7.158 For the beam shown, determine (a) the magnitude P of the two 

upward forces for which the maximum absolute value of the bending 

moment in the beam is as small as possible, (b) the corresponding 

value of |M|max.

2 ft 2 ft2 ft2 ft2 ft

A B
C D E F

PP
60 kips 60 kips

Fig. P7.158

120 mm

A

E

F

D

J

K

C

B

100 mm

100 mm

100 mm

280 mm

Fig. P7.154 and P7.155
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7.159 For the beam and loading shown, (a) draw the shear and bending-

moment diagrams, (b) determine the magnitude and location of the 

maximum absolute value of the bending moment.

7.160 For the beam and loading shown, (a) draw the shear and bending-

moment diagrams, (b) determine the maximum absolute values of 

the shear and bending moment.

7.161 For the beam shown, draw the shear and bending-moment diagrams, 

and determine the magnitude and location of the maximum absolute 

value of the bending moment, knowing that (a) M 5 0, (b) M 5

24 kip∙ft.

7.162 The beam AB, which lies on the ground, supports the parabolic load 

shown. Assuming the upward reaction of the ground to be uniformly 

distributed, (a) write the equations of the shear and bending-moment 

curves, (b) determine the maximum bending moment.

A B

w

L

x

w0
w =   L x – x2

4w0

L2 (       )

Fig. P7.162

 7.163 Two loads are suspended as shown from the cable ABCD. Knowing 

that dB 5 1.8 m, determine (a) the distance dC, (b) the components 

of the reaction at D, (c) the maximum tension in the cable.

 7.164 A wire having a mass per unit length of 0.65 kg/m is suspended 

from two supports at the same elevation that are 120 m apart. If 

the sag is 30 m, determine (a) the total length of the wire, (b) the 

maximum tension in the wire.

 7.165 A 10-ft rope is attached to two supports A and B as shown. Deter-

mine (a) the span of the rope for which the span is equal to the sag, 

(b) the corresponding angle θB.

A B

C

qB

h

L

Fig. P7.165

4 m

25 kN/m
20 kN⋅m

A B

Fig. P7.159

A B
C

4 kips/ft

4 ft4 ft

M

Fig. P7.161

B
C

DA

6 kN
10 kN

3 m 3 m 4 m

dB dC

Fig. P7.163

A E
B C D

9 in.
12 in. 12 in. 12 in.

20 lb/in. 125 lb 125 lb

Fig. P7.160
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The tractive force that a railroad locomotive can develop 

depends upon the frictional resistance between the drive wheels 

and the rails. When the potential exists for wheel slip to occur, 

such as when a train travels upgrade over wet rails, sand is 

deposited on top of the railhead to increase this friction.

Friction

8
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430 Friction

Introduction

 8.1 THE LAWS OF DRY 
FRICTION

8.1A Coefficients of Friction
8.1B Angles of Friction
8.1C Problems Involving Dry Friction

 8.2 WEDGES AND SCREWS
8.2A Wedges
8.2B Square-Threaded Screws

 *8.3 FRICTION ON AXLES, 
DISKS, AND WHEELS

8.3A Journal Bearings and Axle 
Friction

8.3B Thrust Bearings and Disk 
Friction

8.3C Wheel Friction and Rolling 
Resistance

 8.4 BELT FRICTION

Objectives
• Examine the laws of dry friction and the associated 

coeffi cients and angles of friction.

• Consider the equilibrium of rigid bodies where dry 
friction at contact surfaces is modeled.

• Apply the laws of friction to analyze problems involv-
ing wedges and square-threaded screws.

• Study engineering applications of the laws of friction, 
such as in  modeling axle, disk, wheel, and belt friction.

Introduction
In the previous chapters, we assumed that surfaces in contact are either 

frictionless or rough. If they are frictionless, the force each surface exerts 

on the other is normal to the surfaces, and the two surfaces can move 

freely with respect to each other. If they are rough, tangential forces can 

develop that prevent the motion of one surface with respect to the other.

This view is a simplified one. Actually, no perfectly frictionless sur-

face exists. When two surfaces are in contact, tangential forces, called 

friction forces, always develop if you attempt to move one surface with 

respect to the other. However, these friction forces are limited in magnitude 

and do not prevent motion if you apply sufficiently large forces. Thus, the 

distinction between frictionless and rough surfaces is a matter of degree. 

You will see this more clearly in this chapter, which is devoted to the study 

of friction and its applications to common engineering situations.

There are two types of friction: dry friction, sometimes called 

 Coulomb friction, and fluid friction or viscosity. Fluid friction develops 

Photo 8.1 Examples of friction in an automobile. Depending upon the 
application, the degree of friction is controlled by design engineers.

Low friction—
pistons in
engine cylinders

Low friction—
journal bearings
on front axle

High friction—
disk brakes

Moderate friction—
shock absorbers

High friction—
tire treads

Low friction—
air bag release

High friction—
drive belt
from engine
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8.1 The Laws of Dry Friction  431

between layers of fluid moving at different velocities. This is of great 

importance in analyzing problems involving the flow of fluids through 

pipes and orifices or dealing with bodies immersed in moving  fluids. It is 

also basic for the analysis of the motion of lubricated mechanisms. Such 

problems are considered in texts on fluid mechanics. The present study is 

limited to dry friction, i.e., to situations involving rigid bodies that are in 

contact along unlubricated surfaces.

In the first section of this chapter, we examine the equilibrium of 

various rigid bodies and structures, assuming dry friction at the surfaces 

of contact. Afterward, we consider several specific engineering applications 

where dry friction plays an important role: wedges, square-threaded screws, 

journal bearings, thrust bearings, rolling resistance, and belt friction.

8.1  THE LAWS OF DRY 
FRICTION 

We can illustrate the laws of dry friction by the following experiment. Place 

a block of weight W on a horizontal plane surface (Fig. 8.1a). The forces 

acting on the block are its weight W and the reaction of the surface. Since 

the weight has no horizontal component, the reaction of the surface also 

has no horizontal component; the reaction is therefore normal to the surface 

and is represented by N in Fig. 8.1a. Now suppose that you apply a hori-

zontal force P to the block (Fig. 8.1b). If P is small, the block does not 

move; some other horizontal force must therefore exist, which balances P. 

This other force is the static-friction force F, which is actually the resultant 

of a great number of forces acting over the entire surface of contact between 

the block and the plane. The nature of these forces is not known exactly, 

but we generally assume that these forces are due to the irregularities of 

the surfaces in contact and, to a certain extent, to molecular attraction.

W

N

P

(a)

F

P

Fm

Fk

Equilibrium Motion

Impending
motion

A B

W

N

(b) (c)

A B

F

Fig. 8.1 (a) Block on a horizontal plane, friction force is zero; (b) a horizontally applied 
force P produces an opposing friction force F; (c) graph of F with increasing P.

If you increase the force P, the friction force F also increases, continu-

ing to oppose P, until its magnitude reaches a certain maximum value Fm 

(Fig. 8.1c). If P is further increased, the friction force cannot balance it any-

more, and the block starts sliding. As soon as the block has started in motion, 

the magnitude of F drops from Fm to a lower value Fk. This happens because 

less interpenetration occurs between the irregularities of the surfaces in contact 

when these surfaces move with respect to each other. From then on, the block 

keeps sliding with increasing velocity while the friction force, denoted by Fk 

and called the kinetic-friction force , remains approximately constant.
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432 Friction

Note that, as the magnitude F of the friction force increases from 0 

to Fm, the point of application A of the resultant N of the normal forces 

of contact moves to the right. In this way, the couples formed by P and 

F and by W and N, respectively, remain balanced. If N reaches B before 

F reaches its maximum value Fm, the block starts to tip about B before it 

can start sliding (see Sample Prob. 8.4).

8.1A Coefficients of Friction
Experimental evidence shows that the maximum value Fm of the static-

friction force is proportional to the normal component N of the reaction 

of the surface. We have

Static friction
 Fm 5 μsN (8.1)

where μs is a constant called the coefficient of static friction. Similarly, 

we can express the magnitude Fk of the kinetic-friction force in the form

Kinetic friction
 Fk 5 μkN (8.2)

where μk is a constant called the coefficient of kinetic friction. The coef-

ficients of friction μs and μk do not depend upon the area of the surfaces 

in contact. Both coefficients, however, depend strongly on the nature of 

the surfaces in contact. Since they also depend upon the exact condition 

of the surfaces, their value is seldom known with an accuracy greater than 

5%. Approximate values of coefficients of static friction for various com-

binations of dry surfaces are given in Table 8.1. The corresponding values 

of the coefficient of kinetic friction are about 25% smaller. Since coeffi-

cients of friction are dimensionless quantities, the values given in Table 8.1 

can be used with both SI units and U.S. customary units.

Table 8.1 Approximate
Values of Coefficient of 
Static Friction for Dry 
Surfaces

Metal on metal 0.15–0.60

Metal on wood 0.20–0.60

Metal on stone 0.30–0.70

Metal on leather 0.30–0.60

Wood on wood 0.25–0.50

Wood on leather 0.25–0.50

Stone on stone 0.40–0.70

Earth on earth 0.20–1.00

Rubber on concrete 0.60–0.90

From this discussion, it appears that four different situations can 

occur when a rigid body is in contact with a horizontal surface:

 1. The forces applied to the body do not tend to move it along the surface 

of contact; there is no friction force (Fig. 8.2a).

 2. The applied forces tend to move the body along the surface of contact 

but are not large enough to set it in motion. We can find the  static-friction 

force F that has developed by solving the equations of equilibrium for 

the body. Since there is no evidence that F has reached its maximum 

FmFF 5 μsNss

FkF 5 μkNkk

W

P

N

F = 0

Py

Px

F = Px

N = Py + W
F <    sN

N = P + W

(a) No friction (Px = 0)

WP

N

F

(b) No motion (Px < Fm)

Py

Px

Fm = Px

N = Py + W
Fm =    sN

WP

N

Fm

(c) Motion impending              (Px = Fm)

Py

Px

Fk < Px

N = Py + W
Fk =    kN

WP

N

Fk

(d) Motion             (Px > Fk)

μ

μ

μ

Fig. 8.2 (a) Applied force is vertical, friction 
force is zero; (b) horizontal component of 
applied force is less than Fm, no motion 
occurs; (c) horizontal component of applied 
force equals Fm, motion is impending; 
(d) horizontal component of applied force is 
greater than Fk, forces are unbalanced and 
motion continues.
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8.1 The Laws of Dry Friction  433

value, the equation Fm 5 μsN cannot be used to determine the friction 

force (Fig. 8.2b).

 3. The applied forces are such that the body is just about to slide. We say 

that motion is impending. The friction force F has reached its maximum 

value Fm and, together with the normal force N, balances the applied 

forces. Both the equations of equilibrium and the equation Fm 5 μsN
can be used. Note that the friction force has a sense opposite to the 

sense of impending motion (Fig. 8.2c).

 4. The body is sliding under the action of the applied forces, and the equa-

tions of equilibrium no longer apply.  However, F is now equal to Fk,
and we can use the equation Fk 5 μkN. The sense of Fk is opposite to 

the sense of motion (Fig. 8.2d).

8.1B Angles of Friction
It is sometimes convenient to replace the normal force N and the friction 

force F by their resultant R. Let’s see what happens when we do that.

Consider again a block of weight W resting on a horizontal plane 

surface. If no horizontal force is applied to the block, the resultant R 

reduces to the normal force N (Fig. 8.3a). However, if the applied force P 

has a horizontal component Px that tends to move the block, force R has 

a horizontal component F and, thus, forms an angle f with the normal to 

the surface (Fig. 8.3b). If you increase Px until motion becomes impend-

ing, the angle between R and the vertical grows and reaches a maximum 

value (Fig. 8.3c). This value is called the angle of static friction and is 

denoted by fs. From the geometry of Fig. 8.3c, we note that

Angle of static friction

tan fs 5
Fm

N
5

μs 
N

N

 tan fs 5 μs (8.3)

If motion actually takes place, the magnitude of the friction force 

drops to Fk; similarly, the angle between R and N drops to a lower value fk, 

which is called the angle of kinetic friction (Fig. 8.3d). From the geo-

metry of Fig. 8.3d, we have

Angle of kinetic friction

tan fk 5
Fk

N
5

μk 
N

N

 tan fk 5 μk (8.4)

Another example shows how the angle of friction can be used to advan-

tage in the analysis of certain types of problems. Consider a block resting 

on a board and subjected to no other force than its weight W and the reaction R 

of the board. The board can be given any desired inclination. If the board is 

horizontal, the force R exerted by the board on the block is perpendicular to 

the board and balances the weight W (Fig. 8.4a). If the board is given a 

small angle of inclination θ, force R deviates from the perpendicular to the 

board by angle θ and continues to balance W (Fig. 8.4b). The reaction R 

now has a normal component N with a  magnitude of N 5 W cos θ and a 

tangential component F with a magnitude of F 5 W sin θ.

tan fs 5 μs

tan fk 5 μk

R = N

P

P

(a) No friction

(b) No motion

(c) Motion impending

(d ) Motion

f < fs

P

R
N

Fk < Px

R
N

Fm = Px

RN

F = Px

Px

Py

Px

Py

Py

Px

P W

W

W

W

f = fs

f = fk

Fig. 8.3 (a) Applied force is vertical, friction 
force is zero; (b) applied force is at an angle, 
its horizontal component balanced by the 
horizontal component of the surface 
resultant; (c) impending motion, the 
horizontal component of the applied force 
equals the maximum horizontal component 
of the resultant; (d) motion, the horizontal 
component of the resultant is less than the 
horizontal component of the applied force.
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434 Friction

If we keep increasing the angle of inclination, motion soon becomes 

impending. At that time, the angle between R and the normal reaches its 

maximum value θ 5 fs (Fig. 8.4c). The value of the angle of inclination 

corresponding to impending motion is called the angle of repose. Clearly, 

the angle of repose is equal to the angle of static friction fs. If we further 

increase the angle of inclination θ, motion starts and the angle between R 

and the normal drops to the lower value fk (Fig. 8.4d). The reaction R is 

not vertical anymore, and the forces acting on the block are unbalanced.

8.1C Problems Involving Dry Friction
Many engineering applications involve dry friction. Some are simple situ-

ations, such as variations on the block sliding on a plane just described. 

Others involve more complicated situations, as in Sample Prob. 8.3. Many 

problems deal with the stability of rigid bodies in accelerated motion and 

will be studied in dynamics. Also, several common machines and mecha-

nisms can be analyzed by applying the laws of dry friction, including 

wedges, screws, journal and thrust bearings, and belt transmissions. We 

will study these applications in the following sections.

The methods used to solve problems involving dry friction are the same 

that we used in the preceding chapters. If a problem involves only a motion 

of translation with no possible rotation, we can usually treat the body under 

consideration as a particle and use the methods of Chap. 2. If the problem 

involves a possible rotation, we must treat the body as a rigid body and use 

the methods of Chap. 4. If the structure considered is made of several parts, 

we must apply the principle of action and reaction, as we did in Chap. 6.

If the body being considered is acted upon by more than three forces 

(including the reactions at the surfaces of contact), the reaction at each 

surface is represented by its components N and F, and we solve the prob-

lem using the equations of equilibrium. If only three forces act on the body 

under consideration, it may be more convenient to represent each reaction 

by the single force R and solve the problem by using a force triangle.

Most problems involving friction fall into one of the following three 

groups.

 1. All applied forces are given, and we know the coefficients of friction; 

we are to determine whether the body being considered remains at rest 

or slides. The friction force F required to maintain equilibrium is 

W

R

W
W

(a) No friction (b) No motion

q = 0
q < fs R

R R

W

q

q

(c) Motion impending (d ) Motion

q = fs = angle of repose

W sin q

W cos q

F = W sin q

N = W cos q
N = W cos q

q

Fm = W sin q Fk < W sin qq > fs

N = W cos q

q

q = fs

fk

Fig. 8.4 (a) Block on horizontal board, friction force is zero; (b) board's angle of inclination is less than angle of static 
friction, no motion; (c) board's angle of inclination equals angle of friction, motion is impending; (d) angle of inclination is 
greater than angle of friction, forces are unbalanced and motion occurs.

Photo 8.2 The coefficient of static friction 
between a crate and the inclined conveyer 
belt must be sufficiently large to enable the 
crate to be transported without slipping.

bee87302_ch08_429-484.indd   434bee87302_ch08_429-484.indd   434 11/13/14   11:13 AM11/13/14   11:13 AM

UPLOADED BY AHMAD T JUNDI



8.1 The Laws of Dry Friction  435

unknown (its magnitude is not equal to μsN) and needs to be deter-

mined, together with the normal force N, by drawing a free-body dia-

gram and solving the equations of equilibrium (Fig. 8.5a). We then 

compare the value found for the magnitude F of the friction force with 

the maximum value Fm 5 μsN. If F is smaller than or equal to Fm, the 

body remains at rest. If the value found for F is larger than Fm, equi-

librium cannot be maintained and motion takes place; the actual mag-

nitude of the friction force is then Fk 5 μkN.

 2. All applied forces are given, and we know the motion is impending; we 

are to determine the value of the coefficient of static friction. Here 

again, we determine the friction force and the normal force by drawing 

a free-body diagram and solving the equations of equilibrium (Fig. 8.5b). 

Since we know that the value found for F is the maximum value Fm, 

we determine the coefficient of friction by solving the equation 

Fm 5 μsN.

 3. The coefficient of static friction is given, and we know that the motion 

is impending in a given direction; we are to determine the magnitude 

or the direction of one of the applied forces. The friction force should 

be shown in the free-body diagram with a sense opposite to that of the 
impending motion and with a magnitude Fm 5 μsN (Fig. 8.5c). We can 

then write the equations of equilibrium and determine the desired force.

As noted previously, when only three forces are involved, it may be 

more convenient to represent the reaction of the surface by a single force 

R and to solve the problem by drawing a force triangle. Such a solution 

is used in Sample Prob. 8.2.

When two bodies A and B are in contact (Fig. 8.6a), the forces of 

friction exerted, respectively, by A on B and by B on A are equal and 

opposite (Newton’s third law). In drawing the free-body diagram of one 

of these bodies, it is important to include the appropriate friction force 

with its correct sense. Observe the following rule: The sense of the friction 
force acting on A is opposite to that of the motion (or impending motion) 
of A as observed from B (Fig. 8.6b). (It is therefore the same as the motion 

of B as observed from A.) The sense of the friction force acting on B is 

determined in a similar way (Fig. 8.6c). Note that the motion of A as 

observed from B is a relative motion. For example, if body A is fixed and 

body B moves, body A has a relative motion with respect to B. Also, if 

both B and A are moving down but B is moving faster than A, then body 

A is observed, from B, to be moving up.

F
m  = m

s N

W
P

N

Frequired

(a)

W
P

N
(b)

F
m  = ms N

WP

N
(c)

Sense ofimpending motion

Fig. 8.5 Three types of friction problems: 
(a) given the forces and coefficient of 
friction, will the block slide or stay? (b) given 
the forces and that motion is pending, 
determine the coefficient of friction; (c) given 
the coefficient of friction and that motion is 
impending, determine the applied force.
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A
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B B

Fig. 8.6 (a) Two blocks held in contact by forces; (b) free-body diagram for block A, 
including direction of friction force; (c) free-body diagram for block B, including 
direction of friction force.
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436 Friction

Sample Problem 8.1

A 100-lb force acts as shown on a 300-lb crate placed on an inclined 

plane. The coefficients of friction between the crate and the plane are 

μs 5 0.25 and μk 5 0.20. Determine whether the crate is in equilibrium, 

and find the value of the friction force.

STRATEGY: This is a friction problem of the first type: You know the 

forces and the friction coefficients and want to determine if the crate 

moves. You also want to find the friction force.

MODELING and ANALYSIS

Force Required for Equilibrium. First determine the value of the 

friction force required to maintain equilibrium. Assuming that F is directed 

down and to the left, draw the free-body diagram of the crate (Fig. 1) and 

solve the equilibrium equations:

 1   oFx 5 0:  100 lb 2 
3
5(300 lb) 2 F 5 0

  F 5 280 lb  F 5 80 lb

 1      oFy 5 0:   N 2 
4
5(300 lb) 5 0

  N 5 1240 lb  N 5 240 lb

The force F required to maintain equilibrium is an 80-lb force directed 

up and to the right; the tendency of the crate is thus to move down the 

plane.

Maximum Friction Force. The magnitude of the maximum friction 

force that may be developed between the crate and the plane is

Fm 5 μsN    Fm 5 0.25(240 lb) 5 60 lb

Since the value of the force required to maintain equilibrium (80 lb) is 

larger than the maximum value that may be obtained (60 lb), equilibrium 

is not maintained and the crate will slide down the plane.

Actual Value of Friction Force. The magnitude of the actual 

 friction force is 

Factual 5 Fk 5 μkN 5 0.20(240 lb) 5 48 lb

The sense of this force is opposite to the sense of motion; the force is 

thus directed up and to the right (Fig. 2):

Factual 5 48 lb    b

Note that the forces acting on the crate are not balanced. Their resultant is

3
5(300 lb) 2 100 lb 2 48 lb 5 32 lb 

REFLECT and THINK: This is a typical friction problem of the first 

type. Note that you used the coefficient of static friction to determine if 

the crate moves, but once you found that it does move, you needed the 

coefficient of kinetic friction to determine the friction force.

x

x

x

x

x

x

100 lb

3

4

5

300 lb

100 lb

F

N

x

300 lb

3

4
5y

Fig. 1 Free-body diagram of 
crate showing assumed 
direction of friction force.

Motio
n

F = 48 lb

N = 240 lb

100 lb

300 lb

Fig. 2 Free-body diagram of 
crate showing actual friction 
force.
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8.1 The Laws of Dry Friction  437

Sample Problem 8.2

A support block is acted upon by two forces as shown. Know-

ing that the coefficients of friction between the block and the 

incline are μs 5 0.35 and μk 5 0.25, determine the force P 

required to (a) start the block  moving up the incline; (b) keep 

it moving up; (c) prevent it from sliding down.

STRATEGY: This problem involves practical variations of 

the third type of friction problem. You can approach the solu-

tions through the concept of the angles of friction.

MODELING:

Free-Body Diagram. For each part of the problem, draw 

a free-body diagram of the block and a force triangle including 

the 800-N vertical force, the horizontal force P, and the force 

R exerted on the block by the incline. You must determine the 

direction of R in each separate case. Note that, since P is per-

pendicular to the 800-N force, the force triangle is a right tri-

angle, which easily can be solved for P. In most other problems, 

however, the force triangle will be an oblique triangle and 

should be solved by applying the law of sines.

ANALYSIS: 

a. Force P to Start Block Moving Up. In this case, 

motion is impending up the incline, so the resultant is directed 

at the angle of static friction (Fig. 1). Note that the resultant is 

oriented to the left of the normal such that its friction compo-

nent (not shown) is directed opposite the direction of impending 

motion.

P 5 (800 N) tan 44.29° P 5 780 Nz b

b. Force P to Keep Block Moving Up. Motion is 

 continuing, so the resultant is directed at the angle of kinetic 

friction (Fig. 2). Again, the resultant is oriented to the left of 

the normal such that its friction component is directed opposite 

the direction of motion.

P 5 (800 N) tan 39.04° P 5 649 Nz b

c. Force P to Prevent Block from Sliding Down. Here, 

motion is impending down the incline, so the resultant is 

directed at the angle of static friction (Fig. 3). Note that the 

resultant is oriented to the right of the normal such that its fric-

tion component is directed opposite the direction of impending 

motion.

 P 5 (800 N) tan 5.71° P 5 80.0 Nz b

REFLECT and THINK: As expected, considerably more 

force is required to begin moving the block up the slope than 

is necessary to restrain it from sliding down the slope.

800 N

25°
P

fs

tan fs = ms

25° + 19.29° = 44.29°
fs = 19.29°

= 0.35

800 N

800 N

25°

P

R

P

R

Fig. 1 Free-body diagram of block and its force 
triangle—motion impending up incline.

tan fk = mk

 fk
25° + 14.04° = 39.04°

fk = 14.04°
= 0.25

P

R

800 N

800 N

25°

P

R

Fig. 2 Free-body diagram of block and its force 
triangle—motion continuing up incline.

25° – 19.29° = 5.71°
fs = 19.29°

P

R
fs

800 N

800 N

25°

P

R

Fig. 3 Free-body diagram of block and its force 
triangle—motion prevented down the slope.
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438 Friction

Sample Problem 8.3

The movable bracket shown may be placed at any height on the 3-in.- 

diameter pipe. If the coefficient of static friction between the pipe and 

bracket is 0.25, determine the minimum distance x at which the load W 

can be supported. Neglect the weight of the bracket.

STRATEGY: In this variation of the third type of friction problem, you 

know the coefficient of static friction and that motion is impending. Since 

the problem involves consideration of resistance to rotation, you should 

apply both moment equilibrium and force equilibrium.

MODELING:

Free-Body Diagram. Draw the free-body diagram of the bracket 

(Fig. 1). When W is placed at the minimum distance x from the axis of 

the pipe, the bracket is just about to slip, and the forces of friction at A 

and B have reached their maximum values:

FA 5 μsNA 5 0.25 NA

FB 5 μsNB 5 0.25 NB

ANALYSIS:

Equilibrium Equations.

y
1 oFx 5 0: NB 2 NA 5 0

 NB 5 NA

 1xoFy 5 0: FA 1 FB 2 W 5 0

 0.25NA 1 0.25NB 5 W

Since NB is equal to NA,

0.50NA 5 W

 NA 5 2W

1loMB 5 0: NA(6 in.) 2 FA(3 in.) 2 W(x 2 1.5 in.) 5 0

  6NA 2 3(0.25NA) 2 Wx 1 1.5W 5 0

  6(2W) 2 0.75(2W) 2 Wx 1 1.5W 5 0

Dividing through by W and solving for x, you have

x 5 12 in. b

REFLECT and THINK: In a problem like this, you may not figure out 

how to approach the solution until you draw the free-body diagram and 

examine what information you are given and what you need to find. In 

this case, since you are asked to find a distance, the need to evaluate 

moment equilibrium should be clear.

W

6 in.

3 in.

x

NA

NB

FA

FB

W

A

B
3 in.

x – 1.5 in.

x

6 in.

Fig. 1 Free-body diagram of 
bracket.
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8.1 The Laws of Dry Friction  439

Sample Problem 8.4 

An 8400-kg truck is traveling on a level horizontal curve, resulting in an 

effective lateral force H (applied at the center of gravity G of the truck). 

Treating the truck as a rigid system with the center of gravity shown, and 

knowing that the distance between the outer edges of the tires is 1.8 m, 

determine (a) the maximum force H before tipping of the truck occurs, 

(b) the minimum coefficient of static friction between the tires and road-

way such that slipping does not occur before tipping.

STRATEGY: For the direction of H shown, the truck would tip about the 

outer edge of the right tire. At the verge of tip, the normal force and friction 

force are zero at the left tire, and the normal force at the right tire is at the 

outer edge. You can apply equilibrium to determine the value of H neces-

sary for tip and the required friction force such that slipping does not occur.

MODELING: Draw the free-body diagram of the truck (Fig. 1), which 

reflects impending tip about point B. Obtain the weight of the truck by 

multiplying its mass of 8400 kg by g 5 9.81 m/s2; that is, W 5 82 400 N 

or 82.4 kN.

ANALYSIS: 

Free Body: Truck (Fig. 1).

1loMB 5 0: (82.4 kN)(0.8 m) 2 H(1.4 m) 5 0

 H 5 147.1 kN H 5 47.1 kN y b

y
1 oFx 5 0: 47.1 kN 2 FB 5 0

 FB 5 147.1 kN

1xoFy 5 0: NB 2 82.4 kN 5 0

  NB 5 182.4 kN

Minimum Coefficient of Static Friction. The magnitude of the 

maximum friction force that can be developed is

Fm 5 μsNB 5 μs (82.4 kN)

Setting this equal to the friction force required, FB 5 47.1 kN, gives 

 μs (82.4 kN) 5 47.1 kN μs 5 0.572 b

REFLECT and THINK: Recall from physics that H represents the force 

due to the centripetal acceleration of the truck (of mass m), and its mag-

nitude is

H 5 m(v2/ρ)

where

 v 5 velocity of the truck

 ρ 5 radius of curvature

In this problem, if the truck were traveling around a curve of 100-m radius 

(measured to G), the velocity at which it would begin to tip would  be 

23.7 m/s (or 85.2 km/h). You will learn more about this aspect in your 

study of dynamics.

0.8 m

G
H

FB

NB

1.4 m

B
A

82.4 kN

1.8 m

GH

1.0 m

1.4 m

Fig. 1 Free-body 
diagram of truck.

bee87302_ch08_429-484.indd   439bee87302_ch08_429-484.indd   439 11/13/14   11:13 AM11/13/14   11:13 AM

UPLOADED BY AHMAD T JUNDI



440440

SOLVING PROBLEMS 
ON YOUR OWN

In this section, you studied and applied the laws of dry friction. Previously, you had 

encountered only (a) frictionless surfaces that could move freely with respect to each 

other or (b) rough surfaces that allowed no motion relative to each other.

A. In solving problems involving dry friction, keep the following ideas in mind.

1. The reaction R exerted by a surface on a free body can be resolved into a normal 

component N and a tangential component F. The tangential component is known as the 

friction force. When a body is in contact with a fixed surface, the direction of the friction 

force F is opposite to that of the actual or impending motion of the body.

 a. No motion will occur as long as F does not exceed the maximum value

Fm 5 μsN, where μs is the coefficient of static friction.

 b. Motion will occur if a value of F larger than Fm is required to maintain equi-

librium. As motion takes place, the actual value of F drops to Fk 5 μkN, where μk is the 

coefficient of kinetic friction [Sample Prob. 8.1].

 c. Motion may also occur at a value of F smaller than Fm if tipping of the rigid 

body is a possibility [Sample Prob. 8.4}

2. When only three forces are involved, you might prefer an alternative approach to the 

analysis of friction [Sample Prob. 8.2]. The reaction R is defined by its magnitude R and 

the angle f it forms with the normal to the surface. No motion occurs as long as f does 

not exceed the maximum value fs, where tan fs 5 μs. Motion does occur if a value of f 

larger than fs is required to maintain equilibrium, and the actual value of f drops to fk, 

where tan fk 5 μk.

3. When two bodies are in contact, you must determine the sense of the actual or 

impending relative motion at the point of contact. On each of the two bodies, a friction 

force F is in a direction opposite to that of the actual or impending motion of the body 

as seen from the other body (see Fig. 8.6).

B. Methods of solution. The first step in your solution is to draw a free-body diagram 

of the body under consideration, resolving the force exerted on each surface where friction 

exists into a normal component N and a friction force F. If several bodies are involved, 

draw a free-body diagram for each of them, labeling and directing the forces at each 

surface of contact, as described for analyzing frames in Chap. 6.
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441 441

  The problem you have to solve may fall in one of the following three categories.

1. You know all the applied forces and the coefficients of friction, and you must 
determine whether equilibrium is maintained. In this situation, the friction force is 

unknown and cannot be assumed to be equal to μsN.

 a. Write the equations of equilibrium to determine N and F.

b. Calculate the maximum allowable friction force, Fm 5 μsN. If F # Fm, 

equilibrium is maintained. If F $ Fm, motion occurs, and the magnitude of the friction 

force is Fk 5 μkN [Sample Prob. 8.1].

2. You know all the applied forces, and you must find the smallest allowable value 
of μs for which equilibrium is maintained.  Assume that motion is impending, and 

determine the corresponding value of μs.

 a. Write the equations of equilibrium to determine N and F.

 b. Since motion is impending, F 5 Fm. Substitute the values found for N and F 

into the equation Fm 5 μsN and solve for μs [Sample Prob. 8.4].

3. The motion of the body is impending and μs is known; you must find some 
unknown quantity, such as a distance, an angle, the magnitude of a force, or the direc-

tion of a force.

 a. Assume a possible motion of the body and, on the free-body diagram, draw 

the friction force in a direction opposite to that of the assumed motion.

 b. Since motion is impending, F 5 Fm 5 μsN. Substituting the known value for 

μs, you can express F in terms of N on the free-body diagram, thus eliminating one 

unknown.

 c. Write and solve the equilibrium equations for the unknown you seek [Sample 

Prob. 8.3].
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Problems
FREE-BODY PRACTICE PROBLEMS
 8.F1 Knowing that the coefficient of friction between the 25-kg block 

and the incline is μs 5 0.25, draw the free-body diagram needed to 

determine both the smallest value of P required to start the block 

moving up the incline and the corresponding value of β.

 8.F2 Two blocks A and B are connected by a cable as shown. Knowing that 

the coefficient of static friction at all surfaces of contact is 0.30 and 

neglecting the friction of the pulleys, draw the free-body diagrams 

needed to determine the smallest force P required to move the blocks.

P A B
60 lb 40 lb

Fig. P8.F2

 8.F3 A cord is attached to and partially wound around a cylinder with a 

weight of W and radius r that rests on an incline as shown. Know-

ing that θ 5 30°, draw the free-body diagram needed to determine 

both the tension in the cord and the smallest allowable value of the 

coefficient of static friction between the cylinder and the incline for 

which equilibrium is maintained.

25°

θ
D

B

A

C

T

Fig. P8.F3

 8.F4 A 40-kg packing crate must be moved to the left along the floor 

without tipping. Knowing that the coefficient of static friction 

between the crate and the floor is 0.35, draw the free-body diagram 

needed to determine both the largest allowable value of α and the 

corresponding magnitude of the force P. 

0.5 m

0.8 m

B
A

DC

α

P

Fig. P8.F4

P

30°

β

25 kg

Fig. P8.F1
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END-OF-SECTION PROBLEMS

 8.1 Determine whether the block shown is in equilibrium, and find the 

magnitude and direction of the friction force when P 5 150 N.

Fig. P8.1 and P8.2

P

ms = 0.30
mk = 0.25

20°

500 N

 8.2 Determine whether the block shown is in equilibrium, and find the 

magnitude and direction of the friction force when P 5 400 N.

 8.3 Determine whether the block shown is in equilibrium, and find the 

magnitude and direction of the friction force when P 5 120 lb.

 8.4 Determine whether the block shown is in equilibrium, and find the 

magnitude and direction of the friction force when P 5 80 lb.

 8.5 Determine the smallest value of P required to (a) start the block up 

the incline, (b) keep it moving up.

 8.6 The 20-lb block A hangs from a cable as shown. Pulley C is con-

nected by a short link to block E, which rests on a horizontal rail. 

Knowing that the coefficient of static friction between block E and 

the rail is μs 5 0.35 and neglecting the weight of block E and the 

friction in the pulleys, determine the maximum allowable value of θ

if the system is to remain in equilibrium.

 8.7 The 10-kg block is attached to link AB and rests on a moving belt. 

Knowing that μs 5 0.30 and μk 5 0.25 and neglecting the weight 

of the link, determine the magnitude of the horizontal force P that 

should be applied to the belt to maintain its motion (a) to the left as 

shown, (b) to the right.

Fig. P8.7

P

10 kg

35°
B

A

 8.8 Considering only values of θ less than 90°, determine the smallest 

value of θ required to start the block moving to the right when 

(a) W 5 75 lb, (b) W 5 100 lb.

Fig. P8.3, P8.4, and P8.5

50 lb

30°

40°

P

ms = 0.40
mk = 0.30

Fig. P8.6

q
T

20 lb

D
C

B

A

E

Fig. P8.8

W

q

mk = 0.20
ms = 0.25

30 lb
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 8.9 Knowing that θ 5 40°, determine the smallest force P for which 

equilibrium of the 7.5-kg block is maintained.

 8.10 Knowing that P 5 100 N, determine the range of values of θ for 

which equilibrium of the 7.5-kg block is maintained.

 8.11 The 50-lb block A and the 25-lb block B are supported by an incline 

that is held in the position shown. Knowing that the coefficient of 

static friction is 0.15 between the two blocks and zero between 

block B and the incline, determine the value of θ for which motion 

is impending.

 8.12 The 50-lb block A and the 25-lb block B are supported by an incline 

that is held in the position shown. Knowing that the coefficient of 

static friction is 0.15 between all surfaces of contact, determine the 

value of θ for which motion is impending.

 8.13 Three 4-kg packages A, B, and C are placed on a conveyor belt that 

is at rest. Between the belt and both packages A and C, the coeffi-

cients of friction are μs 5 0.30 and μk 5 0.20; between package B
and the belt, the coefficients are μs 5 0.10 and μk 5 0.08. The 

packages are placed on the belt so that they are in contact with each 

other and at rest. Determine which, if any, of the packages will move 

and the friction force acting on each package.

Fig. P8.13

A
B C

15°

4 kg
4 kg 4 kg

 8.14 Solve Prob. 8.13 assuming that package B is placed to the right of 

both packages A and C.

8.15 A uniform crate with a mass of 30 kg must be moved up along the 

15° incline without tipping. Knowing that force P is horizontal, 

determine (a) the largest allowable coefficient of static friction 

between the crate and the incline, (b) the corresponding magnitude 

of force P. 

8.16 A worker slowly moves a 50-kg crate to the left along a loading dock 

by applying a force P at corner B as shown. Knowing that the crate 

starts to tip about edge E of the loading dock when a 5 200 mm, 

determine (a) the coefficient of kinetic friction between the crate and 

the loading dock, (b) the corresponding magnitude P of the force.

Fig. P8.16

P

A

C

B

D

1.2 m

0.9 m

15°

a
E

Fig. P8.11 and P8.12

B

q

A

Fig. P8.15

A

B

C

D 15°

P

L

L

Fig. P8.9 and P8.10

μk = 0.35
μs = 0.45

P

7.5 kg

θ
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 8.17 A half-section of pipe weighing 200 lb is pulled by a cable as shown. 

The coefficient of static friction between the pipe and the floor is 

0.40. If α 5 30°, determine (a) the tension T required to move the 

pipe, (b) whether the pipe will slide or tip.

Fig. P8.17

a

T

BA

 8.18 A 120-lb cabinet is mounted on casters that can be locked to prevent 

their rotation. The coefficient of static friction between the floor and 

each caster is 0.30. Assuming that the casters at both A and B are 

locked, determine (a) the force P required to move the cabinet to the 

right, (b) the largest allowable value of h if the cabinet is not to tip 

over.

 8.19 Wire is being drawn at a constant rate from a spool by applying a 

vertical force P to the wire as shown. The spool and the wire wrapped 

on the spool have a combined weight of 20 lb. Knowing that the 

coefficients of friction at both A and B are μs 5 0.40 and μk 5 0.30, 

determine the required magnitude of force P.

 8.20 Solve Prob. 8.19 assuming that the coefficients of friction at B are 

zero.

 8.21 The cylinder shown has a weight W and radius r. Express in terms of 

W and r the magnitude of the largest couple M that can be applied to 

the cylinder if it is not to rotate, assuming the coefficient of static 

friction to be (a) zero at A and 0.30 at B, (b) 0.25 at A and 0.30 at B.

A

B

M

Fig. P8.21 and P.22

 8.22 The cylinder shown has a weight W and radius r, and the coefficient 

of static friction μs is the same at A and B. Determine the magnitude 

of the largest couple M that can be applied to the cylinder if it is 

not to rotate.

 8.23 and 8.24  End A of a slender, uniform rod with a length of L and 

weight W bears on a surface as shown, while end B is supported by 

a cord BC. Knowing that the coefficients of friction are μs 5 0.40 

and μk 5 0.30, determine (a) the largest value of θ for which motion 

is impending, (b) the corresponding value of the tension in the cord.

A

B

P

3 in.

3 in.

Fig. P8.19

C

A B

P

h

24 in.

Fig. P8.18

L

L

B

C

A
q

Fig. P8.23

A

C
B

L

L
q

Fig. P8.24
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 8.25 A 6.5-m ladder AB leans against a wall as shown. Assuming that the 

coefficient of static friction μs is zero at B, determine the smallest 

value of μs at A for which equilibrium is maintained.

 8.26 A 6.5-m ladder AB leans against a wall as shown. Assuming that the 

coefficient of static friction μs is the same at A and B, determine the 

smallest value of μs for which equilibrium is maintained.

 8.27 The press shown is used to emboss a small seal at E. Knowing that 

the coefficient of static friction between the vertical guide and the 

embossing die D is 0.30, determine the force exerted by the die on 

the seal.

A

B

C

D

E

20°

60°

15°

250 N

400 mm

200 mm

Fig. P8.27

 8.28 The machine base shown has a mass of 75 kg and is fitted with skids 

at A and B. The coefficient of static friction between the skids and 

the floor is 0.30. If a force P with a magnitude of 500 N is applied 

at corner C, determine the range of values of θ for which the base 

will not move.

 8.29 The 50-lb plate ABCD is attached at A and D to collars that can slide 

on the vertical rod. Knowing that the coefficient of static friction is 

0.40 between both collars and the rod, determine whether the plate 

is in equilibrium in the position shown when the magnitude of the 

vertical force applied at E is (a) P 5 0, (b) P 5 20 lb.

A

B

C

D

EG

P

50 lb

5 ft

2 ft

3 ft

Fig. P8.29 and P8.30

 8.30 In Prob. 8.29, determine the range of values of the magnitude P of 

the vertical force applied at E for which the plate will move 

downward.

A

B

6 m

2.5 m

Fig. P8.25 and P8.26

A B

C

G

q

0.4 m

P

0.8 m

0.5 m

0.6 m

Fig. P8.28
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8.31 A window sash weighing 10 lb is normally supported by two 5-lb 

sash weights. Knowing that the window remains open after one sash 

cord has broken, determine the smallest possible value of the coef-

ficient of static friction. (Assume that the sash is slightly smaller 

than the frame and will bind only at points A and D.)

A B

C D

27 in.

36 in.

Fig. P8.31

 8.32 A 500-N concrete block is to be lifted by the pair of tongs shown. 

Determine the smallest allowable value of the coefficient of static 

friction between the block and the tongs at F and G.

 8.33 A pipe with a diameter of 60 mm is gripped by the stillson wrench 

shown. Portions AB and DE of the wrench are rigidly attached to 

each other, and portion CF is connected by a pin at D. If the wrench 

is to grip the pipe and be self-locking, determine the required mini-

mum coefficients of friction at A and C.

A

B C

D
E

60 mm

15 mm 50 mm

F
P

500 mm

Fig. P8.33

 8.34 A safety device used by workers climbing ladders fixed to high struc-

tures consists of a rail attached to the ladder and a sleeve that can 

slide on the flange of the rail. A chain connects the worker’s belt to 

the end of an eccentric cam that can be rotated about an axle attached 

to the sleeve at C. Determine the smallest allowable common value 

of the coefficient of static friction between the flange of the rail, the 

pins at A and B, and the eccentric cam if the sleeve is not to slide 

down when the chain is pulled vertically downward.

A B

C D

E

F G

90 mm90 mm
45 mm

500 N

45 mm

75 mm

105 mm

360 mm

500 N

315 mm

Fig. P8.32

P

0.8 in.

B

D

C
A

E

4 in.

3 in.

4 in.

6 in.

Fig. P8.34
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 8.35 To be of practical use, the safety sleeve described in Prob. 8.34 must 

be free to slide along the rail when pulled upward. Determine the 

largest allowable value of the coefficient of static friction between 

the flange of the rail and the pins at A and B if the sleeve is to be 

free to slide when pulled as shown in the figure. Assume (a) θ 5 60°, 

(b) θ 5 50°, (c) θ 5 40°.

 8.36 Two 10-lb blocks A and B are connected by a slender rod of  negligible 

weight. The coefficient of static friction is 0.30 between all surfaces 

of contact, and the rod forms an angle θ 5 30° with the vertical. 

(a) Show that the system is in equilibrium when P 5 0. (b) Deter-

mine the largest value of P for which equilibrium is maintained.

A

B
W = 10 lb

W = 10 lb

P q

Fig. P8.36

 8.37 A 1.2-m plank with a mass of 3 kg rests on two joists. Knowing that 

the coefficient of static friction between the plank and the joists is 

0.30, determine the magnitude of the horizontal force required to 

move the plank when (a) a 5 750 mm, (b) a 5 900 mm.

 8.38 Two identical uniform boards, each with a weight of 40 lb, are 

 temporarily leaned against each other as shown. Knowing that the 

coefficient of static friction between all surfaces is 0.40, determine 

(a) the largest magnitude of the force P for which equilibrium will 

be maintained, (b) the surface at which motion will impend.

4 ft
A C

D

B
P

6 ft 6 ft

8 ft

Fig. P8.38

 8.39 Two rods are connected by a collar at B. A couple MA with a mag-

nitude of 15 N∙m is applied to rod AB. Knowing that the coefficient 

of static friction between the collar and the rod is 0.30, determine 

the largest couple MC for which equilibrium will be maintained.

 8.40 In Prob. 8.39, determine the smallest couple MC for which equilib-

rium will be maintained.

P

B

D

A

E

4 in.

4 in.

3 in.

C θ

Fig. P8.35

P
C

a
b

B

A

L = 1.2 m

Fig. P8.37

C

B

A

325 mm
100 mm

200 mm

MA MC

Fig. P8.39
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 8.41 A 10-ft beam, weighing 1200 lb, is to be moved to the left onto the 

platform as shown. A horizontal force P is applied to the dolly, 

which is mounted on frictionless wheels. The coefficients of friction 

between all surfaces are μs 5 0.30 and μk 5 0.25, and initially, 

x 5 2 ft. Knowing that the top surface of the dolly is slightly higher 

than the platform, determine the force P required to start moving the 

beam. (Hint: The beam is supported at A and D.)

8.42 (a) Show that the beam of Prob. 8.41 cannot be moved if the top 

surface of the dolly is slightly lower than the platform. (b) Show that 

the beam can be moved if two 175-lb workers stand on the beam at B, 

and determine how far to the left the beam can be moved.

 8.43 Two 8-kg blocks A and B resting on shelves are connected by a rod 

of negligible mass. Knowing that the magnitude of a horizontal 

force P applied at C is slowly increased from zero, determine the 

value of P for which motion occurs and what that motion is when 

the  coefficient of static friction between all surfaces is (a) μs 5 0.40, 

(b) μs 5 0.50.

 8.44 A slender steel rod with a length of 225 mm is placed inside a pipe 

as shown. Knowing that the coefficient of static friction between the 

rod and the pipe is 0.20, determine the largest value of θ for which 

the rod will not fall into the pipe.

A

B q

75 mm

Fig. P8.44

 8.45 In Prob. 8.44, determine the smallest value of θ for which the rod 

will not fall out of the pipe.

 8.46 Two slender rods of negligible weight are pin-connected at C and 

attached to blocks A and B, each with a weight W. Knowing that 

θ 5 80° and that the coefficient of static friction between the blocks 

and the horizontal surface is 0.30, determine the largest value of P
for which equilibrium is maintained.

 8.47 Two slender rods of negligible weight are pin-connected at C and 

attached to blocks A and B, each with a weight W. Knowing that 

P 5 1.260W and that the coefficient of static friction between the 

blocks and the horizontal surface is 0.30, determine the range of 

values of θ between 0 and 180° for which equilibrium is 

maintained.

100 mm

200 mm

25°

8 kg

8 kg

C

A

B

P

Fig. P8.43

A

C

B

WW
30°

P

60°

q

Fig. P8.46 and P8.47

x
2 ft

C D
P

10 ft

A B

Fig. P8.41
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450 Friction

8.2 WEDGES AND SCREWS
Friction is a key element in analyzing the function and operation of  several 

types of simple machines. Here we examine the wedge and the screw, which 

are both extensions of the inclined plane we analyzed in Sect. 8.1.

8.2A Wedges
Wedges are simple machines used to raise large stone blocks and other 

heavy loads. These loads are raised by applying to the wedge a force 

usually considerably smaller than the weight of the load. In addition, 

because of the friction between the surfaces in contact, a properly shaped 

wedge remains in place after being forced under the load. In this way, you 

can use a wedge advantageously to make small adjustments in the position 

of heavy pieces of machinery.

Consider the block A shown in Fig. 8.7a. This block rests against a 

vertical wall B, and we want to raise it slightly by forcing a wedge C between 

block A and a second wedge D. We want to find the minimum value of the 

force P that we must apply to wedge C to move the block. We assume that 

we know the weight W of the block, which is either given in pounds or 

determined in newtons from the mass of the block expressed in kilograms.

We have drawn the free-body diagrams of block A and wedge C in 

Fig. 8.7b and c. The forces acting on the block include its weight and the 

normal and friction forces at the surfaces of contact with wall B and 

wedge C. The magnitudes of the friction forces F1 and F2 are equal, 

respectively, to μsN1 and μsN2, because the motion of the block must be 

started. It is important to show the friction forces with their correct sense. 

Since the block will move upward, the force F1 exerted by the wall on 

the block must be directed downward. On the other hand, since wedge C 

moves to the right, the relative motion of A with respect to C is to the 

left, and the force F2 exerted by C on A must be directed to the right.

Now consider the free body C in Fig. 8.7c. The forces acting on C 

include the applied force P and the normal and friction forces at the 

 surfaces of contact with A and D. The weight of the wedge is small 

 compared with the other forces involved and can be neglected. The forces 

exerted by A on C are equal and opposite to the forces N2 and F2 exerted 

by C on A, so we denote them, respectively, by 2N2 and 2F2; the friction 

force 2F2 therefore must be directed to the left. We check that the force 

F3 exerted by D is also directed to the left.

We can reduce the total number of unknowns involved in the two 

free-body diagrams to four if we express the friction forces in terms of 

the normal forces. Then, since block A and wedge C are in equilibrium, 

we obtain four equations that we can solve to obtain the magnitude of P. 

Note that, in the example considered here, it is more convenient to replace 

each pair of normal and friction forces by their resultant. Each free body 

is then subjected to only three forces, and we can solve the problem by 

drawing the corresponding force triangles (see Sample Prob. 8.5).

8.2B Square-Threaded Screws
Square-threaded screws are frequently part of jacks, presses, and other 

mechanisms. Their analysis is similar to the analysis of a block sliding 

along an inclined plane. (Screws are also commonly used as fasteners, but 

the threads on these screws are shaped differently.)

Photo 8.3 Wedges are used as shown to split 
tree trunks because the normal forces exerted 
by a wedge on the wood are much larger 
than the force required to insert the wedge.

Fig. 8.7 (a) A wedge C used to raise a 
block A; (b) free-body diagram of block A; 
(c) free-body diagram of wedge C. Note the 
directions of the friction forces.

W

P

N2

(b)

(a)

(c)

A

A

B

C

P C

D

N1

N3

–N2

–F2

F1 = msN1

F2 = msN2

F3 = msN3

6°
6°
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8.2 Wedges and Screws 451

Consider the jack shown in Fig. 8.8. The screw carries a load W and 

is supported by the base of the jack. Contact between the screw and the 

base takes place along a portion of their threads. By applying a force P on 

the handle, the screw can be made to turn and to raise the load W.

In Fig. 8.9a, we have unwrapped the thread of the base and shown 

it as a straight line. We obtained the correct slope by horizontally drawing 

the product 2πr, where r is the mean radius of the thread, and vertically 

drawing the lead L of the screw, i.e., the distance through which the screw 

advances in one turn. The angle θ this line forms with the horizontal is 

the lead angle. Since the force of friction between two surfaces in contact 

does not depend upon the area of contact, we can assume a much smaller 

than actual area of contact between the two threads, which allows us to 

represent the screw as the block shown in Fig. 8.9a. Note that, in this 

analysis of the jack, we neglect the small friction force between cap and 

screw.

The free-body diagram of the block includes the load W, the reac-

tion R of the base thread, and a horizontal force Q, which has the same 

effect as the force P exerted on the handle. The force Q should have the 

same moment as P about the axis of the screw, so its magnitude should 

be Q 5 Pa/r. We can obtain the value of force Q, and thus that of force P 

required to raise load W, from the free-body diagram shown in Fig. 8.9a. 

The friction angle is taken to be equal to fs , since presumably the load 

is raised through a succession of short strokes. In mechanisms providing 

for the continuous rotation of a screw, it may be desirable to distinguish 

between the force required to start motion (using fs) and that required to 

maintain motion (using fk).

If the friction angle fs is larger than the lead angle θ, the screw is 

said to be self-locking; it will remain in place under the load. To lower 

the load, we must then apply the force shown in Fig. 8.9b. If fs is smaller 

than θ, the screw will unwind under the load; it is then necessary to apply 

the force shown in Fig. 8.9c to maintain equilibrium.

The lead of a screw should not be confused with its pitch. The lead 

is defined as the distance through which the screw advances in one turn; 

the pitch is the distance measured between two consecutive threads. Lead 

and pitch are equal in the case of single-threaded screws, but they are 

different in the case of multiple-threaded screws, i.e., screws having 

several independent threads. It is easily verified that for double-threaded 

screws the lead is twice as large as the pitch; for triple-threaded screws, 

it is three times as large as the pitch; etc.

Fig. 8.8 A screw as part of a jack carrying a 
load W.

Cap

Screw

Base

P

W

r

a

Fig. 8.9 Block-and-incline analysis of a screw. We can represent the screw as a block, because the force of friction does 
not depend on the area of contact between two surfaces.

(c) Impending motion downward with fs < q(b) Impending motion downward with fs > q(a) Impending motion upward

fs

Q

W

R

q

q

fs

Q

W

R

q

q

fs

Q

W

R

q

q

L

�2   r

Photo 8.4 An example of a square-
threaded screw, fitted to a sleeve, as might 
be used in an industrial application.

Pitch
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452 Friction

19.3°
19.3°

11.3°

11.3°
P

P

R3 R3

R1 = 381 lb

381 lb

90° – 19.3° = 70.7°

19.3° + 11.3°
= 30.6°

A

Fig. 4

19.3°
19.3°

11.3°

11.3°
P

P

R3 R3

R1 = 381 lb

381 lb

90° – 19.3° = 70.7°

19.3° + 11.3°
= 30.6°

AAAAAA

Fig. 4

Sample Problem 8.5

The position of the machine block B is adjusted by moving the wedge A. 

Knowing that the coefficient of static friction is 0.35 between all surfaces of 

contact, determine the force P required to (a) raise block B, (b) lower block B.

STRATEGY: For both parts of the problem, normal forces and friction 

forces act between the wedge and the block. In part (a), you also have 

normal and friction forces at the left surface of the block; for part (b), they 

are on the right surface of the block. If you combine the normal and 

 friction forces at each surface into resultants, you have a total of three 

forces acting on each body and can use force triangles to solve.

400 lb

P

B

A8°

φs = 19.3°

φs = 19.3°

R2

R2R1

R1

400 lb

400 lb

8°

8° + 19.3° = 27.3°

27.3°

90° + 19.3°
= 109.3°

180° – 27.3° – 109.3°
= 43.4°

B

Fig. 1 Free-body diagram of block and its force 
triangle—block being raised.

19.3°

19.3°

R3

R3

P

P
R1 = 549 lb

549 lb

27.3°

27.3°

90° – 19.3° = 70.7°

27.3° + 19.3°
= 46.6°

A

Fig. 2 Free-body diagram of wedge and its force 
triangle—block being raised.

φs = 19.3°

φs = 19.3°

11.3°R2

R2

R1

R1

400 lb

400 lb

8°

90° – 19.3° = 70.7°

19.3° – 8°
= 11.3°

180° – 70.7° – 11.3°
= 98.0°B

Fig. 3 Free-body diagram of block and its force 
triangle—block being lowered.

MODELING: For each part, draw the free-body 

 diagrams of block B and wedge A together with the 

corresponding force triangles. Then use the law of 

sines to find the desired forces. Note that, since μs 5 0.35, 

the angle of friction is

fs 5 tan21 0.35 5 19.3°

ANALYSIS: a. Force P to raise block

Free Body: Block B (Fig. 1). The friction force 

on block B due to wedge A is to the left, so the resul-

tant R1 is at an angle equal to the slope of the wedge 

plus the angle of friction.

 
R1

sin 109.38
5

400 lb

sin 43.48
 R1 5 549  lb

Free Body: Wedge A (Fig. 2). The friction 

forces on wedge A are to the right.

P

sin 46.68
5

549 lb

sin 70.78
 P 5 423 lb z b

b. Force P to lower block

Free Body: Block B (Fig. 3). Now the friction 

force on block B due to wedge A is to the right, so 

the resultant R1 is at an angle equal to the angle of 

friction minus the slope of the wedge.

 
R1

sin 70.78
5

400 lb

sin 98.08
 R1 5 381 lb

Free Body: Wedge A (Fig. 4). The friction 

forces on wedge A are to the left.

 
P

sin 30.68
5

381 lb

sin 70.78
 P 5 206 lb y b

REFLECT and THINK: The force needed to lower 

the block is much less than the force needed to raise 

the block, which makes sense.

19.3°
19.3°

11.3°

11.3°
P

P

R3 R3

R1 = 381 lb

381 lb

90° – 19.3° = 70.7°

19.3° + 11.3°
= 30.6°

A

Fig. 4 Free-body diagram of wedge and its force 
triangle—block being lowered.
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8.2 Wedges and Screws 453

Sample Problem 8.6

A clamp is used to hold two pieces of wood together as shown. The clamp 

has a double square thread with a mean diameter of 10 mm and a pitch of 

2 mm. The coefficient of friction between threads is μs 5 0.30. If a maximum 

couple of 40 N?m is applied in tightening the clamp, determine (a) the force 

exerted on the pieces of wood, (b) the couple required to loosen the clamp.

STRATEGY: If you represent the screw by a block, as in the analysis 

of this section, you can determine the incline of the screw from the geo-

metry given in the problem, and you can find the force applied to the 

block by setting the moment of that force equal to the applied couple.

MODELING and ANALYSIS:

a. Force Exerted by Clamp. The mean radius of the screw is r 5 

5 mm. Since the screw is double-threaded, the lead L is equal to twice 

the pitch: L 5 2(2 mm) 5 4 mm. Obtain the lead angle θ and the friction 

angle fs from

tan θ 5
L

2πr
5

4 mm

10π mm
5 0.1273   θ 5 7.38

 tan fs 5 μs 5 0.30 fs 5 16.7°

You can find the force Q that should be applied to the block representing 

the screw by setting its moment Qr about the axis of the screw equal to 

the applied couple.

  Q(5 mm) 5 40 N?m

 Q 5
40 N?m

5 mm
5

40 N?m

5 3 1023 m
5 8000 N 5 8 kN

Now you can draw the free-body diagram and the corresponding force 

triangle for the block (Fig. 1). Solve the triangle to find the magnitude of 

the force W exerted on the pieces of wood.

W 5
Q

tan(θ 1 ϕs)
5

8 kN

tan 24.08
W 5 17.97 kN b

b. Couple Required to Loosen Clamp. You can obtain the force Q 

required to loosen the clamp and the corresponding couple from the free-

body diagram and force triangle shown in Fig. 2.

 Q 5 W tan (fs 2 θ) 5 (17.97 kN) tan 9.4°

 5 2.975 kN

Couple 5 Qr 5 (2.975 kN)(5 mm)

 5 (2.975 3 103 N)(5 3 1023 m) 5 14.87 N?m
Couple 5 14.87 N?m b

REFLECT and THINK: In practice, you often have to determine the force 

effectively acting on a screw by setting the moment of that force about the 

axis of the screw equal to an applied couple. However, the rest of the analy-

sis is mostly an application of dry friction. Also note that the couple required 

to loosen a screw is not the same as the couple required to tighten it.

Fig. 1 Free-body diagram of block 
and its force triangle—clamp being 
tightened.

fs = 16.7°

Q = 8 kN

q = 7.3°

q = 7.3°

R

W

L = 4 mm

2   r = 10    mm��

q + fs = 24.0°

Q = 8 kN

R
W

Fig. 2 Free-body diagram of block 
and its force triangle—clamp being 
loosened.

W = 17.97 kN
Q

fs = 16.7°

q = 7.3°

q = 7.3°

R

L = 4 mm

2   r = 10    mm��

fs – q = 9.4°

Q

R W = 17.97 kN
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454454

SOLVING PROBLEMS 
ON YOUR OWN

In this section, you saw how to apply the laws of friction to the solution of problems 

involving wedges and square-threaded screws.

1. Wedges. Keep the following steps in mind when solving a problem involving a 

wedge.

 a. First draw a free-body diagram of the wedge and of each of the other bodies 
involved. Carefully note the sense of the relative motion of all surfaces of contact and 

show each friction force acting in a direction opposite to the direction of that relative 

motion.

 b. Show the maximum static friction force Fm at each surface if the wedge is to 

be inserted or removed, since motion will be impending in each of these cases.

 c. The reaction R and the angle of friction, rather than the normal force and the 

friction force, are most useful in many applications. You can then draw one or more force 

triangles and determine the unknown quantities either graphically or by trigonometry 

[Sample Prob. 8.5].

2. Square-Threaded Screws. The analysis of a square-threaded screw is equivalent to 

the analysis of a block sliding on an incline. To draw the appropriate incline, you need to 

unwrap the thread of the screw and represent it as a straight line [Sample Prob. 8.6]. When 

solving a problem involving a square-threaded screw, keep the following steps in mind.

 a. Do not confuse the pitch of a screw with the lead of a screw. The pitch of 

a screw is the distance between two consecutive threads, whereas the lead of a screw is 

the distance the screw advances in one full turn. The lead and the pitch are equal only in 

single-threaded screws. In a double-threaded screw, the lead is twice the pitch.

 b. The couple required to tighten a screw is different from the couple required 
to loosen it. Also, screws used in jacks and clamps are usually self-locking; that is, the 

screw will remain stationary as long as no couple is applied to it, and a couple must be 

applied to the screw to loosen it [Sample Prob. 8.6].
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Problems

 8.48 The machine part ABC is supported by a frictionless hinge at B and 

a 10° wedge at C. Knowing that the coefficient of static friction is 

0.20 at both surfaces of the wedge, determine (a) the force P required 

to move the wedge to the left, (b) the components of the correspond-

ing reaction at B.

 8.49 Solve Prob. 8.48 assuming that the wedge is moved to the right.

 8.50 and 8.51  Two 8° wedges of negligible weight are used to move 

and position the 800-kg block. Knowing that the coefficient of static 

friction is 0.30 at all surfaces of contact, determine the smallest force 

P that should be applied as shown to one of the wedges.

8°

8°

800 kg

P

Fig. P8.50

8°

8°

800 kg

P

Fig. P8.51

 8.52 The elevation of the end of the steel beam supported by a concrete 

floor is adjusted by means of the steel wedges E and F. The base 

plate CD has been welded to the lower flange of the beam, and the 

end reaction of the beam is known to be 18 kips. The coefficient of 

static friction is 0.30 between two steel surfaces and 0.60 between 

steel and concrete. If horizontal motion of the beam is prevented by 

the force Q, determine (a) the force P required to raise the beam, 

(b) the corresponding force Q.

 8.53 Solve Prob. 8.52 assuming that the end of the beam is to be 

lowered.

 8.54 Block A supports a pipe column and rests as shown on wedge B. 

Knowing that the coefficient of static friction at all surfaces of 

 contact is 0.25 and that θ 5 45°, determine the smallest force P 

required to raise block A.

 8.55 Block A supports a pipe column and rests as shown on wedge B. 

Knowing that the coefficient of static friction at all surfaces of 

 contact is 0.25 and that θ 5 45°, determine the smallest force P for 

which equilibrium is maintained.

 8.56 Block A supports a pipe column and rests as shown on wedge B. 

The coefficient of static friction at all surfaces of contact is 0.25. If 

P 5 0, determine (a) the angle θ for which sliding is impending, 

(b) the corresponding force exerted on the block by the vertical wall.

600 N

P

200 mm

250 mm 10°

C

D

B

A

Fig. P8.48 and P8.49

18 kips

12°

Q

P

A

B
C

D

E F

Fig. P8.52

3 kN

A

B

Pq

Fig. P8.54, P8.55, and P8.56
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 8.57 A wedge A of negligible weight is to be driven between two 100-lb 

blocks B and C resting on a horizontal surface. Knowing that the 

coefficient of static friction between all surfaces of contact is 0.35, 

determine the smallest force P required to start moving the wedge 

(a) if the blocks are equally free to move, (b) if block C is securely 

bolted to the horizontal surface.

CB 4 in.

0.75 in.0.75 in.

A

P

Fig. P8.57

8.58 A 15° wedge is forced into a saw cut to prevent binding of the 

circular saw. The coefficient of static friction between the wedge and 

the wood is 0.25. Knowing that a horizontal force P with a magni-

tude of 30 lb was required to insert the wedge, determine the mag-

nitude of the forces exerted on the board by the wedge after 

insertion.

 8.59 A 12° wedge is used to spread a split ring. The coefficient of static 

friction between the wedge and the ring is 0.30. Knowing that a 

force P with a magnitude of 120 N was required to insert the wedge, 

determine the magnitude of the forces exerted on the ring by the 

wedge after insertion.

 8.60 The spring of the door latch has a constant of 1.8 lb/in. and in the 

position shown exerts a 0.6-lb force on the bolt. The coefficient of 

static friction between the bolt and the strike plate is 0.40; all other 

surfaces are well lubricated and may be assumed frictionless. Deter-

mine the magnitude of the force P required to start closing the door.

A

B C

3
8

in.

1
2

in.

P

45°

Fig. P8.60

 8.61 In Prob. 8.60, determine the angle that the face of the bolt near B
should form with line BC if the force P required to close the door 

is to be the same for both the position shown and the position when 

B is almost at the strike plate.

7.5°

P

Fig. P8.58

12°

P

Fig. P8.59
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 8.62 A 5° wedge is to be forced under a 1400-lb machine base at A. 

Knowing that the coefficient of static friction at all surfaces is 0.20, 

(a) determine the force P required to move the wedge, (b) indicate 

whether the machine base will move.

 8.63 Solve Prob. 8.62 assuming that the wedge is to be forced under the 

machine base at B instead of A.

 8.64 A 15° wedge is forced under a 50-kg pipe as shown. The coefficient 

of static friction at all surfaces is 0.20. (a) Show that slipping will 

occur between the pipe and the vertical wall. (b) Determine the 

force P required to move the wedge.

 8.65 A 15° wedge is forced under a 50-kg pipe as shown. Knowing that 

the coefficient of static friction at both surfaces of the wedge is 0.20, 

determine the largest coefficient of static friction between the pipe 

and the vertical wall for which slipping will occur at A.

 *8.66 A 200-N block rests as shown on a wedge of negligible weight. The 

coefficient of static friction μs is the same at both surfaces of the 

wedge, and friction between the block and the vertical wall may be 

neglected. For P 5 100 N, determine the value of μs for which 

motion is impending. (Hint: Solve the equation obtained by trial and 

error.)

P

200 N

15°

A

B

Fig. P8.66

 *8.67 Solve Prob. 8.66 assuming that the rollers are removed and that μs 
is the coefficient of friction at all surfaces of contact.

 8.68 Derive the following formulas relating the load W and the force P 

exerted on the handle of the jack discussed in Sec. 8.2B. (a) P 5 
(Wr/a) tan (θ 1 fs) to raise the load; (b) P 5 (Wr/a) tan (fs 2 θ) to lower 

the load if the screw is self-locking; (c) P 5 (Wr/a) tan (θ 2 fs) to 

hold the load if the screw is not self-locking.

 8.69 The square-threaded worm gear shown has a mean radius of 2 in. 

and a lead of 0.5 in. The large gear is subjected to a constant clock-

wise couple of 9.6 kip∙in. Knowing that the coefficient of static 

 friction between the two gears is 0.12, determine the couple that 

must be applied to shaft AB in order to rotate the large gear coun-

terclockwise. Neglect friction in the bearings at A, B, and C.

 8.70 In Prob. 8.69, determine the couple that must be applied to shaft AB 

in order to rotate the large gear clockwise.

G
P

50 in.
20 in.

BA

1400 lb

Fig. P8.62

P

A

B

G

15°

Fig. P8.64 and P8.65

16 in. 9.6 kip⋅in.

A

B

C

Fig. P8.69
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 8.71 High-strength bolts are used in the construction of many steel 

 structures. For a 1-in.-nominal-diameter bolt, the required minimum 

bolt tension is 51 kips. Assuming the coefficient of friction to be 

0.30, determine the required couple that should be applied to the bolt 

and nut. The mean diameter of the thread is 0.94 in., and the lead 

is 0.125 in. Neglect friction between the nut and washer, and assume 

the bolt to be square-threaded.

 8.72 The position of the automobile jack shown is controlled by a screw 

ABC that is single-threaded at each end (right-handed thread at A, 

left-handed thread at C). Each thread has a pitch of 2.5 mm and a 

mean diameter of 9 mm. If the coefficient of static friction is 0.15, 

determine the magnitude of the couple M that must be applied to 

raise the automobile.

A
B

C

D

E

M20°

20°

6000 N

Fig. P8.72

 8.73 For the jack of Prob. 8.72, determine the magnitude of the couple M
that must be applied to lower the automobile.

 8.74 The vise shown consists of two members connected by two double-

threaded screws with a mean radius of 0.25 in. and pitch of 0.08 in. 

The lower member is threaded at A and B (μs 5 0.35), but the upper 

member is not threaded. It is desired to apply two equal and opposite 

forces of 120 lb on the blocks held between the jaws. (a) What screw 

should be adjusted first? (b) What is the maximum couple applied 

in tightening the second screw?

8.75 The ends of two fixed rods A and B are each made in the form of a 

single-threaded screw with a mean radius of 6 mm and pitch of 

2 mm. Rod A has a right-handed thread, and rod B has a left-handed 

thread. The coefficient of static friction between the rods and the 

threaded sleeve is 0.12. Determine the magnitude of the couple that 

must be applied to the sleeve in order to draw the rods closer 

together.

2 kN 2 kNA B

Fig. P8.75

 8.76 Assuming that in Prob. 8.75 a right-handed thread is used on both 

rods A and B, determine the magnitude of the couple that must be 

applied to the sleeve in order to rotate it.

Fig. P8.71

5 in.

A B

5 in.

Fig. P8.74
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8.3 Friction on Axles, Disks, and Wheels 459

*8.3  FRICTION ON AXLES, 
DISKS, AND WHEELS

Journal bearings are used to provide lateral support to rotating shafts 

and axles. Thrust bearings are used to provide axial support to shafts 

and axles. If the journal bearing is fully lubricated, the frictional resis-

tance depends upon the speed of rotation, the clearance between axle 

and  bearing, and the viscosity of the lubricant. As indicated in Sec. 8.1, 

such problems are studied in fluid mechanics. However, we can apply 

the  methods of this chapter to the study of axle friction when the bear-

ing is not lubricated or only partially lubricated. In this case, we can 

assume that the axle and the bearing are in direct contact along a single 

straight line.

8.3A  Journal Bearings and Axle 
Friction

Consider two wheels, each with a weight of W, rigidly mounted on an 

axle supported symmetrically by two journal bearings (Fig. 8.10a). If the 

wheels rotate, we find that, to keep them rotating at constant speed, it is 

Fig. 8.10 (a) Two wheels supported by two journal bearings; (b) point of contact when the axle 
is rotating; (c) free-body diagram of one wheel and corresponding half axle; (d) frictional 
resistance produces a couple that opposes the couple maintaining the axle in motion; 
(e) graphical analysis with circle of friction.

φ

–M

W

RR

M

W

r rf

(b)

Wheels

Journal
bearings

Axle

(a)

(c) (d) (e)

N

F
B

R

r

B

OOO

NF

R

BA
O

M

W

M

k

φk
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460 Friction

necessary to apply a couple M to each of them. The free-body diagram 

in Fig. 8.10c represents one of the wheels and the corresponding half axle 

in projection on a plane perpendicular to the axle. The forces acting on 

the free body include the weight W of the wheel, the couple M required 

to maintain its motion, and a force R representing the reaction of the 

bearing. This force is vertical, equal, and opposite to W, but it does not 

pass through the center O of the axle; R is located to the right of O at a 

distance such that its moment about O balances the moment M of the 

couple. Therefore, when the axle rotates, contact between the axle and 

bearing does not take place at the lowest point A. Instead, contact takes 

place at point B (Fig. 8.10b) or, rather, along a straight line intersecting 

the plane of the figure at B. 

Physically, the location of contact is explained by the fact that, when 

the wheels are set in motion, the axle “climbs” in the bearings until slip-

page occurs. After sliding back slightly, the axle settles more or less in 

the position shown. This position is such that the angle between the reac-

tion R and the normal to the surface of the bearing is equal to the angle 

of kinetic friction fk. The distance from O to the line of action of R is 

thus r sin fk, where r is the radius of the axle. Setting oMO 5 0 for the 

forces acting on the free body (the wheel), we obtain the magnitude of 

the couple M required to overcome the frictional resistance of one of the 

bearings:

 M 5 Rr sin fk (8.5)

For small values of the angle of friction, we can replace sin fk by tan fk; 

that is, by μk. This gives us the approximate formula

 M < R r μ k (8.6)

In the solution of certain problems, it may be more convenient to 

let the line of action of R pass through O, as it does when the axle does 

not rotate. In such a case, you need to add a couple 2M, with the same 

magnitude as the couple M but of opposite sense, to the reaction R 

(Fig. 8.10d). This couple represents the frictional resistance of the 

bearing.

If a graphical solution is preferred, you can readily draw the line of 

action of R (Fig. 8.10e) if you note that it must be tangent to a circle 

centered at O and with a radius

 rf 5 r sin fk < r μ k (8.7)

This circle is called the circle of friction of the axle and bearing, and it 

is independent of the loading conditions of the axle.

8.3B  Thrust Bearings and Disk 
Friction

Two types of thrust bearings are commonly used to provide axial support 

to rotating shafts and axles: (1) end bearings and (2) collar bearings 

(Fig. 8.11). In the case of collar bearings, friction forces develop between 
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8.3 Friction on Axles, Disks, and Wheels 461

Fig. 8.11 In thrust bearings, an axial force keeps the rotating axle in 
contact with the support bearing.

MM

PP

(a) End bearing (b) Collar bearing

Fig. 8.12 Geometry of the frictional contact surface in a thrust bearing.

M

M

P R1

R2
ΔN

ΔF

ΔA

r
q

the two ring-shaped areas in contact. In the case of end bearings, friction 

takes place over full circular areas or over ring-shaped areas when the 

end of the shaft is hollow. Friction between circular areas, called disk 
friction, also occurs in other mechanisms, such as disk clutches.

To obtain a formula for the most general case of disk friction, let 

us consider a rotating hollow shaft. A couple M keeps the shaft rotating 

at constant speed, while an axial force P maintains it in contact with a 

fixed bearing (Fig. 8.12). Contact between the shaft and the bearing takes 

place over a ring-shaped area with an inner radius of R1 and an outer 

radius of R2. Assuming that the pressure between the two surfaces in 

contact is uniform, we find that the magnitude of the normal force DN 

exerted on an element of area DA is DN 5 P DA/A, where A 5 π (R2
2 2 R2

1) 
and that the magnitude of the friction force DF acting on DA is DF 5 μk DN. 

Let’s use r to denote the distance from the axis of the shaft to the element 

of area DA. Then the magnitude DM of the moment of DF about the axis 

of the shaft is

DM 5 r DF 5
rmkP DA

π(R2
2 2 R2

1)

Equilibrium of the shaft requires that the moment M of the couple applied 

to the shaft be equal in magnitude to the sum of the moments of the 
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462 Friction

 friction forces DF opposing the motion of the shaft. Replacing DA by the 

infinitesimal element dA 5 r dθ dr used with polar coordinates and 

 integrating over the area of contact, the expression for the magnitude of 

the couple M required to overcome the frictional resistance of the 

bearing is

 M 5
μkP

π(R2
2 2 R2

1)
#

2π

0

#
R2

R1

r2 dr dθ

 5
mkP

π(R2
2 2 R2

1)
#

2π

0

1
3(R3

2 2 R3
1)dθ

  M 5
2
3 mkP 

R3
2 2 R3

1

R2
2 2 R2

1

 (8.8)

When contact takes place over a full circle with a radius of R, 

 formula (8.8) reduces to

 M 5
2
3mkPR  (8.9)

This value of M is the same value we would obtain if contact between 

shaft and bearing took place at a single point located at a distance 2R/3 

from the axis of the shaft.

The largest couple that can be transmitted by a disk clutch without 

causing slippage is given by a formula similar to Eq. (8.9), where μk has 

been replaced by the coefficient of static friction μs.

8.3C  Wheel Friction and Rolling 
Resistance

The wheel is one of the most important inventions of our civilization. 

Among many other uses, with a wheel we can move heavy loads with 

relatively little effort. Because the point where the wheel is in contact with 

the ground at any given instant has no relative motion with respect to the 

ground, use of the wheel avoids the large friction forces that would arise 

if the load were in direct contact with the ground. However, some resis-

tance to the wheel’s motion does occur. This resistance has two distinct 

causes. It is due to (1) a combined effect of axle friction and friction at 

the rim and (2) the fact that the wheel and the ground deform, causing 

contact between wheel and ground to take place over an area rather than 

at a single point.

To understand better the first cause of resistance to the motion of 

a wheel, consider a railroad car supported by eight wheels mounted on 
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8.3 Friction on Axles, Disks, and Wheels 463

axles and bearings. We assume the car is moving to the right at constant 

speed along a straight horizontal track. The free-body diagram of one 

of the wheels is shown in Fig. 8.13a. The forces acting on the free body 

include the load W supported by the wheel and the normal reaction N 

of the track. Since W passes through the center O of the axle, we rep-

resent the  frictional resistance of the bearing by a counterclockwise 

couple M (see Sec. 8.3A). Then to keep the free body in equilibrium, 

we must add two equal and opposite forces P and F, forming a clock-

wise couple of moment 2M. The force F is the friction force exerted 

by the track on the wheel, and P represents the force that should be 

applied to the wheel to keep it rolling at constant speed. Note that the 

forces P and F would not exist if there were no friction between the 

wheel and the track. The couple M representing the axle friction would 

then be zero; the wheel would slide on the track without turning in its 

bearing.

The couple M and the forces P and F also reduce to zero when 

there is no axle friction. For example, a wheel that is not held in bearings 

but rolls freely and at constant speed on horizontal ground (Fig. 8.13b) 

is subjected to only two forces: its own weight W and the normal reaction 

N of the ground. No friction force acts on the wheel regardless of the 

value of the coefficient of friction between wheel and ground. Thus, a 

wheel rolling freely on horizontal ground should keep rolling 

indefinitely.

Experience, however, indicates that a free wheel does slow down 

and eventually come to rest. This is due to the second type of resistance 

mentioned at the beginning of this section, known as rolling resistance. 

Under the load W, both the wheel and the ground deform slightly, caus-

ing the contact between wheel and ground to take place over a certain 

area. Experimental evidence shows that the resultant of the forces exerted 

by the ground on the wheel over this area is a force R applied at a point B, 

which is not located directly under the center O of the wheel but slightly 

in front of it (Fig. 8.13c). To balance the moment of W about B and to 

keep the wheel rolling at constant speed, it is necessary to apply a 

 horizontal force P at the center of the wheel. Setting oMB 5 0, we 

obtain

 Pr 5 Wb (8.10)

where r 5 radius of wheel

 b 5 horizontal distance between O and B

The distance b is commonly called the coefficient of rolling resistance. 

Note that b is not a dimensionless coefficient, since it represents a length; 

b is usually expressed in inches or in millimeters. The value of b depends 

upon several parameters in a manner that has not yet been clearly 

 established. Values of the coefficient of rolling resistance vary from about 

0.01 in. or 0.25 mm for a steel wheel on a steel rail to 5.0 in. or 125 mm 

for the same wheel on soft ground.

Fig. 8.13 (a) Free-body diagram of a rolling 
wheel, showing the effect of axle friction; 
(b) free-body diagram of a free wheel, not 
connected to an axle; (c) free-body diagram 
of a rolling wheel, showing the effect of 
rolling resistance.

W

N

O

A

(b) Free wheel

P

W

O

B

b R

(c) Rolling resistance

r

M

P

W
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N

O

A

(a) Effect of axle friction
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464 Friction

Sample Problem 8.7

A pulley with a diameter of 4 in. can rotate about a fixed shaft with a 

diameter of 2 in. The coefficient of static friction between the pulley and 

shaft is 0.20. Determine (a) the smallest vertical force P required to start 

raising a 500-lb load, (b) the smallest vertical force P required to hold the 

load, (c) the smallest horizontal force P required to start raising the same 

load.

STRATEGY: You can use the radius of the circle of friction to position 

the reaction of the pulley in each scenario and then apply the principles 

of equilibrium.

MODELING and ANALYSIS: 

a. Vertical Force P Required to Start Raising the Load. When 

the forces in both parts of the rope are equal, contact between the pulley 

and shaft takes place at A (Fig. 1). When P is increased, the pulley rolls 

around the shaft slightly and contact takes place at B. Draw the free-body 

diagram of the pulley when motion is impending. The perpendicular dis-

tance from the center O of the pulley to the line of action of R is

rf 5 r sin fs < r μ s  rf < (1 in.)0.20 5 0.20 in.

Summing moments about B, you obtain

1l oMB 5 0:   (2.20 in.)(500 lb) 2 (1.80 in.)P 5 0

 P 5 611 lb P 5 611 lbw b

b. Vertical Force P to Hold the Load. As the force P is decreased, 

the pulley rolls around the shaft, and contact takes place at C (Fig. 2). 

Considering the pulley as a free body and summing moments about C, 

you find

1l oMC 5 0:   (1.80 in.)(500 lb) 2 (2.20 in.)P 5 0

 P 5 409 lb P 5 409 lbw b

c. Horizontal Force P to Start Raising the Load. Since the three 

forces W, P, and R are not parallel, they must be concurrent (Fig. 3). The 

direction of R is thus determined from the fact that its line of action must 

pass through the point of intersection D of W and P and must be tangent 

to the circle of friction. Recall that the radius of the circle of friction is 

rf 5 0.20 in., so you can calculate the angle marked θ in Fig. 3 as

sin θ 5
OE

OD
5

0.20 in.

(2 in.)12
5 0.0707  θ 5 4.18

From the force triangle, you can determine

P 5 W cot (45° 2 θ) 5 (500 lb) cot 40.9°

 5 577 lb P 5 577 lb y b

REFLECT and THINK: Many elementary physics problems treat pul-

leys as frictionless, but when you do take friction into account, the results 

can be quite different, depending on the direction of motion, the directions 

of the forces involved, and especially the coefficient of friction.

Fig. 1 Free-body diagram 
of pulley—smallest vertical 
force to raise the load.

W = 500 lb

A B

O

R
P

fs

2.20 in. 1.80 in.

Fig. 2 Free-body diagram 
of pulley—smallest vertical 
force to hold load.

W = 500 lb

C A

R
P

1.80 in. 2.20 in.

O

fs

Fig. 3 Free-body diagram of 
pulley and force triangle—
smallest horizontal force to 
raise load.

W = 500 lb

D

O

E

R

P

q

rf

45° – q
W = 500 lb

P

R
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465 465

SOLVING PROBLEMS 
ON YOUR OWN

In this section, we described several additional engineering applications of the laws of 

friction.

1. Journal bearings and axle friction. In journal bearings, the reaction does not pass 

through the center of the shaft or axle that is being supported. The distance from the center 

of the shaft or axle to the line of action of the reaction (Fig. 8.10) is defined by 

rf 5 r sin fk < r μ k

if motion is actually taking place. 

 It is defined by

rf 5 r sin fs < r μ s

if motion is impending.

 Once you have determined the line of action of the reaction, you can draw a free-

body diagram and use the corresponding equations of equilibrium to complete the solution 

[Sample Prob. 8.7]. In some problems, it is useful to observe that the line of action of the 

reaction must be tangent to a circle with a radius of rf < r μ k or rf < r μ s, which is known 

as the circle of friction [Sample Prob. 8.7, part c].

2. Thrust bearings and disk friction. In a thrust bearing, the magnitude of the couple 

required to overcome frictional resistance is equal to the sum of the moments of the kinetic 
friction forces exerted on the end of the shaft [Eqs. (8.8) and (8.9)].

 An example of disk friction is the disk clutch. It is analyzed in the same way as a 

thrust bearing, except that to determine the largest couple that can be transmitted you must 

compute the sum of the moments of the maximum static friction forces exerted on the 

disk.

3. Wheel friction and rolling resistance. The rolling resistance of a wheel is caused by 

deformations of both the wheel and the ground. The line of action of the reaction R of 

the ground on the wheel intersects the ground at a horizontal distance b from the center 

of the wheel. The distance b is known as the coefficient of rolling resistance and is 

expressed in inches or millimeters.

4. In problems involving both rolling resistance and axle friction, the free-body dia-

gram should show that the line of action of the reaction R of the ground on the wheel is 

tangent to the friction circle of the axle and intersects the ground at a horizontal distance 

from the center of the wheel equal to the coefficient of rolling resistance.
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Problems
 8.77 A lever of negligible weight is loosely fitted onto a 75-mm-diameter 

fixed shaft. It is observed that the lever will just start rotating if a 

3-kg mass is added at C. Determine the coefficient of static friction 

between the shaft and the lever.

A B
O

DC

150 mm 100 mm

30 kg20 kg

75 mm

O

Fig. P8.77

 8.78 A hot-metal ladle and its contents weigh 130 kips. Knowing that the 

coefficient of static friction between the hooks and the pinion is 0.30, 

determine the tension in cable AB required to start tipping the ladle.

 8.79 and 8.80  The double pulley shown is attached to a 10-mm-radius 

shaft that fits loosely in a fixed bearing. Knowing that the coefficient 

of static friction between the shaft and the poorly lubricated bearing 

is 0.40, determine the magnitude of the force P required to start 

raising the load.

T

64 in.

16 in.

B

A

Fig. P8.78

20 kg
P

90 mm
45 mm

Fig. P8.79 and P8.81

20 kg

P

90 mm
45 mm

Fig. P8.80 and P8.82

 8.81 and 8.82  The double pulley shown is attached to a 10-mm-radius 

shaft that fits loosely in a fixed bearing. Knowing that the coefficient 

of static friction between the shaft and the poorly lubricated bearing 

is 0.40, determine the magnitude of the smallest force P required to 

maintain equilibrium.
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8.83 The block and tackle shown are used to raise a 150-lb load. Each of 

the 3-in.-diameter pulleys rotates on a 0.5-in.-diameter axle. Know-

ing that the coefficient of static friction is 0.20, determine the tension 

in each portion of the rope as the load is slowly raised.

 8.84 The block and tackle shown are used to lower a 150-lb load. Each 

of the 3-in.-diameter pulleys rotates on a 0.5-in.-diameter axle. 

Knowing that the coefficient of static friction is 0.20, determine the 

tension in each portion of the rope as the load is slowly lowered.

8.85 A scooter is to be designed to roll down a 2 percent slope at a con-

stant speed. Assuming that the coefficient of kinetic friction between 

the 25-mm-diameter axles and the bearings is 0.10, determine the 

required diameter of the wheels. Neglect the rolling resistance 

between the wheels and the ground.

 8.86 The link arrangement shown is frequently used in highway bridge 

construction to allow for expansion due to changes in temperature. 

At each of the 60-mm-diameter pins A and B, the coefficient of static 

friction is 0.20. Knowing that the vertical component of the force 

exerted by BC on the link is 200 kN, determine (a) the horizontal 

force that should be exerted on beam BC to just move the link, 

(b) the angle that the resulting force exerted by beam BC on the link 

will form with the vertical.

 8.87 and 8.88  A lever AB of negligible weight is loosely fitted onto a 

2.5-in.-diameter fixed shaft. Knowing that the coefficient of static 

friction between the fixed shaft and the lever is 0.15, determine the 

force P required to start the lever rotating counterclockwise.

2.5 in.

5 in.

B

A

50 lb

P

2 in.

Fig. P8.87 and P8.89

 8.89 and 8.90  A lever AB of negligible weight is loosely fitted onto a 

2.5-in.-diameter fixed shaft. Knowing that the coefficient of static 

friction between the fixed shaft and the lever is 0.15, determine the 

force P required to start the lever rotating clockwise.

 8.91 A loaded railroad car has a mass of 30 Mg and is supported by eight 

800-mm-diameter wheels with 125-mm-diameter axles. Knowing 

that the coefficients of friction are μs 5 0.020 and μk 5 0.015, 

determine the horizontal force required (a) to start the car moving, 

(b) to keep the car moving at a constant speed. Neglect rolling resis-

tance between the wheels and the rails.

A

B
C

D E

F

150 lb

TEF

Fig. P8.83 and P8.84

500 mm
A

B
C

Fig. P8.86

2.5 in.

2 in.

5 in.

50 lb

P

B

A

Fig. P8.88 and P8.90
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 8.92 Knowing that a couple of magnitude 30 N∙m is required to start the 

vertical shaft rotating, determine the coefficient of static friction 

between the annular surfaces of contact.

 8.93 A 50-lb electric floor polisher is operated on a surface for which the 

coefficient of kinetic friction is 0.25. Assuming that the normal force 

per unit area between the disk and the floor is uniformly distributed, 

determine the magnitude Q of the horizontal forces required to pre-

vent motion of the machine.

 *8.94 The frictional resistance of a thrust bearing decreases as the shaft 

and bearing surfaces wear out. It is generally assumed that the wear 

is directly proportional to the distance traveled by any given point 

of the shaft and thus to the distance r from the point to the axis of 

the shaft. Assuming then that the normal force per unit area is 

inversely proportional to r, show that the magnitude M of the couple 

required to overcome the frictional resistance of a worn-out end 

 bearing (with contact over the full circular area) is equal to 75 percent 

of the value given by Eq. (8.9) for a new bearing.

 *8.95 Assuming that bearings wear out as indicated in Prob. 8.94, show 

that the magnitude M of the couple required to overcome the fric-

tional resistance of a worn-out collar bearing is

M 5 
1
2 μk P(R1 1 R2)

  where P 5 magnitude of the total axial force

   R1, R2 5 inner and outer radii of collar 

 *8.96 Assuming that the pressure between the surfaces of contact is uni-

form, show that the magnitude M of the couple required to overcome 

frictional resistance for the conical bearing shown is

M 5
2

3
 
mk 

P

sin θ
 
R3

2 2 R3
1

R2
2 2 R2

1

 8.97 Solve Prob. 8.93 assuming that the normal force per unit area 

between the disk and the floor varies linearly from a maximum at 

the center to zero at the circumference of the disk.

 8.98 Determine the horizontal force required to move a 2500-lb automo-

bile with 23-in.-diameter tires along a horizontal road at a constant 

speed. Neglect all forms of friction except rolling resistance, and 

assume the coefficient of rolling resistance to be 0.05 in.

 8.99 Knowing that a 6-in.-diameter disk rolls at a constant velocity down 

a 2 percent incline, determine the coefficient of rolling resistance 

between the disk and the incline.

 8.100 A 900-kg machine base is rolled along a concrete floor using a series 

of steel pipes with outside diameters of 100 mm. Knowing that the 

coefficient of rolling resistance is 0.5 mm between the pipes and the 

base and 1.25 mm between the pipes and the concrete floor, deter-

mine the magnitude of the force P required to slowly move the base 

along the floor.

 8.101 Solve Prob. 8.85 including the effect of a coefficient of rolling resis-

tance of 1.75 mm.

 8.102 Solve Prob. 8.91 including the effect of a coefficient of rolling resis-

tance of 0.5 mm.

M

4 kN

50 mm

120 mm

Fig. P8.92

P

θ θ

R1

R2

M

Fig. P8.96

P

Fig. P8.100

20 in.

18 in.
Q

–Q

Fig. P8.93

bee87302_ch08_429-484.indd   468bee87302_ch08_429-484.indd   468 11/13/14   11:13 AM11/13/14   11:13 AM

UPLOADED BY AHMAD T JUNDI



8.4 Belt Friction 469

8.4 BELT FRICTION
Another common application of dry friction concerns belts, which serve 

many different purposes in engineering, such as transmitting a torque from 

a lawn mower engine to its wheels. Some of the same analysis affects the 

design of band brakes and the operation of ropes and pulleys. 

Consider a flat belt passing over a fixed cylindrical drum (Fig. 8.14a). 

We want to determine the relation between the values T1 and T2 of the 

tension in the two parts of the belt when the belt is just about to slide 

toward the right.

Fig. 8.14 (a) Tensions at the ends of a 
belt passing over a drum; (b) free-body 
diagram of an element of the belt, 
indicating the condition that the belt 
is about to slip to the right.

P

O

P'

θ
βP1 P2

T1

T

T2

(a)

P

O

P'

(b)

x

y

ΔN ΔF =    sΔ N

T'= T + ΔT

2 2

θΔ

θΔ θΔ

θΔ

μ

First we detach from the belt a small element PP9 subtending an 

angle Dθ. Denoting the tension at P by T and the tension at P9 by T 1 DT, 

we draw the free-body diagram of the element of the belt (Fig. 8.14b). 

Besides the two forces of tension, the forces acting on the free body are 

the normal component DN of the reaction of the drum and the friction 

force DF. Since we assume motion is impending, we have DF 5 μs DN. 

Note that if Dθ approaches zero, the magnitudes DN and DF and the 

 difference DT between the tension at P and the tension at P9 also approach 

zero; the value T of the tension at P, however, remains unchanged. This 

observation helps in understanding our choice of notation.

Choosing the coordinate axes shown in Fig. 8.14b, we can write the 

equations of equilibrium for the element PP9 as

 oFx 5 0:   (T 1 DT) cos 
Dθ

2
2 T cos 

Dθ

2
2 msDN 5 0 (8.11)
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470 Friction

oFy 5 0:   DN 2 (T 1 DT) sin 
Dθ

2
2 T sin 

Dθ

2
5 0 (8.12)

Solving Eq. (8.12) for DN and substituting into Eq. (8.11), we obtain after 

reductions

DT cos 
Dθ

2
2 μs(2T 1 DT) sin 

Dθ

2
5 0

Now we divide both terms by Dθ. For the first term, we do this simply 

by dividing DT by Dθ. We carry out the division of the second term by 

dividing the terms in parentheses by 2 and the sine by Dθ/2. The result 

is

DT

Dθ
 cos 

Dθ

2
2 μs 

aT 1
DT

2
b sin(Dθ/2)

Dθ/2
5 0

If we now let Dθ approach zero, the cosine approaches one and DT/2 

approaches zero, as noted above. The quotient of sin (Dθ/2) over Dθ/2 

approaches one, according to a lemma derived in all calculus textbooks. 

Since the limit as Dθ approaches 0 of DT/Dθ is equal to the derivative 

dT/dθ by definition, we get

dT

dθ
2 μsT 5 0     dT

T
5 μs dθ

Now we integrate both members of the last equation from P1 to P2 (see 

Fig. 8.14a). At P1, we have θ 5 0 and T 5 T1; at P2, we have θ 5 β and 

T 5 T2. Integrating between these limits, we have

 #
T2

T1

 

dT

T
5 #

β

0
 

ms dθ

 ln T2 2 ln T1 5 μsβ

Noting that the left-hand side is equal to the natural logarithm of the 

quotient of T2 and T1, this reduces to

 ln 
T2

T1

5 μsβ (8.13)

We can also write this relation in the form

Belt friction, 
impending slip

T2

T1

5 eμ sβ (8.14)

The formulas we have derived apply equally well to problems 

involving flat belts passing over fixed cylindrical drums and to problems 

ln
T2TT

T1TT
5 μsβ

T2TT

T1TT
5 eμ sβ

Fig. 8.14a (repeated) 

P

O

P'

θ
βP1 P2

T1 T2

(a)

θΔ

Photo 8.5 A sailor wraps a rope around the 
smooth post (called a bollard) in order to 
control the rope using much less force than 
the tension in the taut part of the rope.
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8.4 Belt Friction 471

involving ropes wrapped around a post or capstan. They also can be used 

to solve problems involving band brakes. (In this situation, the drum is 

about to rotate, but the band remains fixed.) The formulas also can be 

applied to problems involving belt drives. In these problems, both the 

pulley and the belt rotate; our concern is then to find whether the belt will 

slip; i.e., whether it will move with respect to the pulley.

Formulas (8.13) and (8.14) should be used only if the belt, rope, or 

brake is about to slip. Generally, it is easier to use Eq. (8.14) if you need 

to find T1 or T2; it is preferable to use Eq. (8.13) if you need to find either 

μs or the angle of contact β. Note that T2 is always larger than T1. T2 

therefore represents the tension in that part of the belt or rope that pulls, 
whereas T1 is the tension in the part that resists. Also observe that the 

angle of contact β must be expressed in radians. The angle of contact β 

may be larger than 2π ; for example, if a rope is wrapped n times around 

a post, β is equal to 2π n.

If the belt, rope, or brake is actually slipping, you should use 

formulas similar to Eqs. (8.13) and (8.14) involving the coefficient of 

kinetic friction μk to find the difference in forces. If the belt, rope, or 

brake is not slipping and is not about to slip, none of these formulas 

can be used.

The belts used in belt drives are often V-shaped. In the V belt shown 

in Fig. 8.15a, contact between belt and pulley takes place along the sides 

of the groove. Again, we can obtain the relation between the values T1 

and T2 of the tension in the two parts of the belt when the belt is just 

about to slip by drawing the free-body diagram of an element of the belt 

(Fig. 8.15b and c). Formulas similar to Eqs. (8.11) and (8.12) are derived, 

but the magnitude of the total friction force acting on the element is 

now 2 DF, and the sum of the y components of the normal forces is 

2 DN sin (α/2). Proceeding as previoulsy, we obtain

 ln 
T2

T1

5
μsβ

sin (α/2)
 (8.15)

or

 
T2

T1

5 eμ s β/sin (α/2) (8.16)

Fig. 8.15 (a) A V belt lying in the groove of a pulley; (b) free-body diagram of a cross-sectional element of 
the belt; (c) free-body diagram of a short length of belt.

(a) (b) (c)

x

y
y

z α
2

α
2

ΔN ΔN

2
T sin

2
 (T + ΔT) sin

2 2

T + ΔTT

2ΔF

α
2

2ΔN sin

α
Δ

α
θ

Δθ

ΔθΔθ

Δθ
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472 Friction

Sample Problem 8.8

A hawser (a thick docking rope) thrown from a ship to a pier is wrapped 

two full turns around a bollard. The tension in the hawser is 7500 N; by 

exerting a force of 150 N on its free end, a dockworker can just keep the 

hawser from slipping. (a) Determine the coefficient of friction between 

the hawser and the bollard. (b) Determine the tension in the hawser that 

could be resisted by the 150-N force if the hawser were wrapped three 

full turns around the bollard.

STRATEGY: You are given the difference in forces and the angle of con-

tact through which the friction acts. You can insert these data in the equations 

of belt friction to determine the coefficient of friction, and then you can use 

the result to determine the ratio of forces in the second situation. 

MODELING and ANALYSIS: 

a. Coefficient of Friction. Since slipping of the hawser is impend-

ing, we use Eq. (8.13):

ln 

T2

T1

5 ms β

Since the hawser is wrapped two full turns around the bollard, you have

β 5 2(2π rad) 5 12.57 rad

T1 5 150 N   T2 5 7500 N

Therefore,

 μsβ 5 ln 
T2

T1

ms(12.57 rad) 5 ln 
7500 N

150 N
5 ln 50 5 3.91

 μs 5 0.311 μs 5 0.311 b 

b. Hawser Wrapped Three Turns Around Bollard. Using the 

value of μs obtained in part a, you now have (Fig. 1)

 β 5 3(2π rad) 5 18.85 rad

T1 5 150 N  μs 5 0.311

Substituting these values into Eq. (8.14), you obtain

 
T2

T1

5 eμ s β

T2

150 N
5 e(0.311)(18.85) 5 e5.862 5 351.5

 T2 5 52 725 N

T2 5 52.7 kN b

REFLECT and THINK: You can see how the use of a simple post or 

pulley can have an enormous effect of the magnitude of a force. This is 

why such systems are commonly used to control, load, and unload 

 container ships in a harbor.

150 N
7500 N

T1 = 150 N
T2

Fig. 1 Hawser wrapped three 
turns around bollard.

Photo 8.6 Dockworker mooring a ship 
using a hawser wrapped around 
a bollard.
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8.4 Belt Friction 473

Sample Problem 8.9

A flat belt connects pulley A, which drives a machine tool, to pulley B, 

which is attached to the shaft of an electric motor. The coefficients of 

friction are μs 5 0.25 and μk 5 0.20 between both pulleys and the belt. 

Knowing that the maximum allowable tension in the belt is 600 lb, deter-

mine the largest torque that the belt can exert on pulley A.

STRATEGY: The key to solving this problem is to identify the pulley 

where slippage would first occur, and then find the corresponding belt 

tensions when slippage is impending. The resistance to slippage depends 

upon the angle of contact β between pulley and belt, as well as upon the 

coefficient of static friction μs. Since μs is the same for both pulleys, slip-

page occurs first on pulley B, for which β is smaller (Fig. 1).

MODELING and ANALYSIS: 

Pulley B. Using Eq. (8.14) with T2 5 600 lb, μs 5 0.25, and β 5 120° 

5 2π/3 rad (Fig. 2), you obtain

T2

T1

5 eμ s β    600 lb

T1

5 e0.25(2π/3) 5 1.688

T1 5
600 lb

1.688
5 355.4 lb

Pulley A. Draw the free-body diagram of pulley A (Fig. 3). The couple 

MA is applied to the pulley using the machine tool to which it is attached 

and is equal and opposite to the torque exerted by the belt. Setting the 

sum of the moments equal to zero gives 

1l  oMA 5 0:  MA 2 (600 lb)(8 in.) 1 (355.4 lb)(8 in.) 5 0

 MA 5 1957 lb?in. MA 5 163.1 lb?ft b

REFLECT and THINK: You may check that the belt does not slip on 

pulley A by computing the value of μs required to prevent slipping at A 

and verify that it is smaller than the actual value of μs. From Eq. (8.13), 

you have

μsβ 5 ln 
T2

T1

5 ln 
600 lb

355.4 lb
5 0.524

Since β 5 240° 5 4π/3 rad,

4π

3
 μs 5 0.524     μs 5 0.125 , 0.25

60°

A

B

r = 1 in.
8 in.

Fig. 1 Angles of contact for 
the pulleys.

60°

30°

b = 240°

b = 120°

A

B

T2 = 600 lb

T1 b = 120°
B

Fig. 2 Belt tensions 
at pulley B.

T1 = 355.4 lb

A x
A y

MA

T2 = 600 lb
A

8 in.

Fig. 3 Free-body diagram 
of pulley A.
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474474

SOLVING PROBLEMS 
ON YOUR OWN

In the preceding section, you studied belt friction. The problems you will solve include 

belts passing over fixed drums, band brakes in which the drum rotates when the band 

remains fixed, and belt drives.

1. Problems involving belt friction fall into one of the following two categories.

 a. Problems in which slipping is impending. You can use one of the following 

formulas involving the coefficient of static friction μs.

 ln 

T2

T1

5 μsβ (8.13)

or

 
T2

T1

5 eμ sβ (8.14)

 b. Problems in which slipping is occurring. You can obtain the formulas to be 

used from Eqs. (8.13) and (8.14) by replacing μs with the coefficient of kinetic friction μk.

2. As you start solving a belt-friction problem, remember these conventions:

 a. The angle β must be expressed in radians. In a belt-and-drum problem, this 

is the angle subtending the arc of the drum on which the belt is wrapped.

 b. The larger tension is always denoted by T2 and the smaller tension is denoted 

by T1.

 c. The larger tension occurs at the end of the belt which is in the direction of 
the motion, or impending motion, of the belt relative to the drum.

3. In each of the problems you will be asked to solve, three of the four quantities T1, 

T2, β, and μs (or μk) will either be given or readily found, and you will then solve the 

appropriate equation for the fourth quantity. You will encounter two kinds of problems.

 a. Find μs between belt and drum, knowing that slipping is impending. From 

the given data, determine T1, T2, and β; substitute these values into Eq. (8.13) and solve 

for μs [Sample Prob. 8.8, part a]. Follow the same procedure to find the smallest value of 

μs for which slipping will not occur.

 b. Find the magnitude of a force or couple applied to the belt or drum, know-
ing that slipping is impending. The given data should include μs and β. If it also includes 

T1 or T2, use Eq. (8.14) to find the other tension. If neither T1 nor T2 is known but some 

other data is given, use the free-body diagram of the belt-drum system to write an equi-

librium equation that you can solve simultaneously with Eq. (8.14) for T1 and T2. You then 

will be able to find the magnitude of the specified force or couple from the free-body 

diagram of the system. Follow the same procedure to determine the largest value of a 

force or couple that can be applied to the belt or drum if no slipping is to occur [Sample 

Prob. 8.9].
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Problems
 8.103 A rope having a weight per unit length of 0.4 lb/ft is wound 2

1
2 times 

around a horizontal rod. Knowing that the coefficient of static fric-

tion between the rope and the rod is 0.30, determine the minimum 

length x of rope that should be left hanging if a 100-lb load is to be 

supported.

 8.104 A hawser is wrapped two full turns around a bollard. By exerting 

an 80-lb force on the free end of the hawser, a dockworker can 

resist a force of 5000 lb on the other end of the hawser. Determine 

(a) the coefficient of static friction between the hawser and the 

bollard, (b) the number of times the hawser should be wrapped 

around the bollard if a 20,000-lb force is to be resisted by the same 

80-lb force.

 8.105 Two cylinders are connected by a rope that passes over two fixed 

rods as shown. Knowing that the coefficient of static friction between 

the rope and the rods is 0.40, determine the range of the mass m of 

cylinder D for which equilibrium is maintained.

 8.106 Two cylinders are connected by a rope that passes over two fixed 

rods as shown. Knowing that for cylinder D upward motion impends 

when m 5 20 kg, determine (a) the coefficient of static friction 

between the rope and the rods, (b) the corresponding tension in 

 portion BC of the rope.

 8.107 Knowing that the coefficient of static friction is 0.25 between the 

rope and the horizontal pipe and 0.20 between the rope and the 

 vertical pipe, determine the range of values of P for which equilib-

rium is maintained.

P400 N

Fig. P8.107 and P8.108

 8.108 Knowing that the coefficient of static friction is 0.30 between the 

rope and the horizontal pipe and that the smallest value of P for 

which equilibrium is maintained is 80 N, determine (a) the largest 

value of P for which equilibrium is maintained, (b) the coefficient 

of static friction between the rope and the vertical pipe.

x

10 ft

100 lb

Fig. P8.103

D

A

B

50 kg

m

C

Fig. P8.105 and P8.106
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 8.109 A band belt is used to control the speed of a flywheel as shown. 

Determine the magnitude of the couple being applied to the fly-

wheel, knowing that the coefficient of kinetic friction between the 

belt and the flywheel is 0.25 and that the flywheel is rotating clock-

wise at a constant speed. Show that the same result is obtained if 

the flywheel rotates counterclockwise.

 8.110 The setup shown is used to measure the output of a small turbine. 

When the flywheel is at rest, the reading of each spring scale is 14 lb. 

If a 105-lb∙in. couple must be applied to the flywheel to keep it 

rotating clockwise at a constant speed, determine (a) the reading of 

each scale at that time, (b) the coefficient of kinetic friction. Assume 

that the length of the belt does not change.

BA

18.75 in.

Fig. P8.110 and P8.111

 8.111 The setup shown is used to measure the output of a small turbine. 

The coefficient of kinetic friction is 0.20, and the reading of each 

spring scale is 16 lb when the flywheel is at rest. Determine (a) the 

reading of each scale when the flywheel is rotating clockwise at a 

constant speed, (b) the couple that must be applied to the flywheel. 

Assume that the length of the belt does not change.

 8.112 A flat belt is used to transmit a couple from drum B to drum A. 

Knowing that the coefficient of static friction is 0.40 and that the 

allowable belt tension is 450 N, determine the largest couple that can 

be exerted on drum A.

 8.113 A flat belt is used to transmit a couple from pulley A to pulley B. 

The radius of each pulley is 60 mm, and a force of magnitude 

P 5 900 N is applied as shown to the axle of pulley A. Knowing 

that the coefficient of static friction is 0.35, determine (a) the largest 

couple that can be transmitted, (b) the corresponding maximum 

value of the tension in the belt.

A B
P

240 mm

Fig. P8.113

 8.114 Solve Prob. 8.113 assuming that the belt is looped around the pulleys 

in a figure eight.

80 mm

B C

A

D
P = 100 N

320 mm

150 mm

80 mm

E

Fig. P8.109

B

A

15° 15°

rA = 120 mm

rB = 50 mm

Fig. P8.112
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8.115 The speed of the brake drum shown is controlled by a belt attached 

to the control bar AD. A force P with a magnitude of 25 lb is applied 

to the control bar at A. Determine the magnitude of the couple 

being applied to the drum knowing that the coefficient of kinetic 

friction between the belt and the drum is 0.25, that a 5 4 in., and 

that the drum is rotating at a constant speed (a) counterclockwise, 

(b) clockwise.

 8.116 The speed of the brake drum shown is controlled by a belt attached 

to the control bar AD. Knowing that a 5 4 in., determine the maxi-

mum value of the coefficient of static friction for which the brake is 

not self-locking when the drum rotates counterclockwise.

 8.117 The speed of the brake drum shown is controlled by a belt attached 

to the control bar AD. Knowing that the coefficient of static friction 

is 0.30 and that the brake drum is rotating counterclockwise, determine 

the minimum value of a for which the brake is not self-locking.

 8.118 Bucket A and block C are connected by a cable that passes over 

drum B. Knowing that drum B rotates slowly counterclockwise and 

that the coefficients of friction at all surfaces are μs 5 0.35 and 

μk 5 0.25, determine the smallest combined mass m of the bucket 

and its contents for which block C will (a) remain at rest, (b) start 

moving up the incline, (c) continue moving up the incline at a 

 constant speed.

 8.119 Solve Prob. 8.118 assuming that drum B is frozen and cannot rotate.

 8.120 and 8.122  A cable is placed around three parallel pipes. Knowing 

that the coefficients of friction are μs 5 0.25 and μk 5 0.20, deter-

mine (a) the smallest weight W for which equilibrium is maintained, 

(b) the largest weight W that can be raised if pipe B is slowly rotated 

counterclockwise while pipes A and C remain fixed.

50 lb

W

A

C

B

Fig. P8.120 and P8.121

 8.121 and 8.123  A cable is placed around three parallel pipes. Two of the 

pipes are fixed and do not rotate; the third pipe is slowly rotated. 

Knowing that the coefficients of friction are μs 5 0.25 and μk 5 0.20, 

determine the largest weight W that can be raised (a) if only pipe A 

is rotated counterclockwise, (b) if only pipe C is rotated clockwise.

A
B

C

D

a

P

24 in.

r � 8 in.
E

Fig. P8.115, P8.116, and 
P8.117

A

B
C

m

100 kg

30°

Fig. P8.118

A

C

B

W50 lb

Fig. P8.122 and P8.123
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 8.124 A recording tape passes over the 20-mm-radius drive drum B and 

under the idler drum C. Knowing that the coefficients of friction 

between the tape and the drums are μs 5 0.40 and μk 5 0.30 and 

that drum C is free to rotate, determine the smallest allowable value 

of P if slipping of the tape on drum B is not to occur.

 8.125 Solve Prob. 8.124 assuming that the idler drum C is frozen and 

 cannot rotate.

 8.126 The strap wrench shown is used to grip the pipe firmly without 

 marring the external surface of the pipe. Knowing that the coefficient 

of static friction is the same for all surfaces of contact, determine 

the smallest value of μs for which the wrench will be self-locking 

when a 5 200 mm, r 5 30 mm, and θ 5 65°.

θ

r a

D

P

C

B

A

Fig. P8.126

 8.127 Solve Prob. 8.126 assuming that θ 5 75°.

 8.128 The 10-lb bar AE is suspended by a cable that passes over a 

5-in.-radius drum. Vertical motion of end E of the bar is prevented 

by the two stops shown. Knowing that μs 5 0.30 between the cable 

and the drum, determine (a) the largest counterclockwise couple M0 

that can be applied to the drum if slipping is not to occur, (b) the 

corresponding force exerted on end E of the bar.

 8.129 Solve Prob. 8.128 assuming that a clockwise couple M0 is applied 

to the drum.

 8.130 Prove that Eqs. (8.13) and (8.14) are valid for any shape of surface 

provided that the coefficient of friction is the same at all points of 

contact.

 8.131 Complete the derivation of Eq. (8.15), which relates the tension in 

both parts of a V belt.

 8.132 Solve Prob. 8.112 assuming that the flat belt and drums are replaced 

by a V belt and V pulleys with α 5 36°. (The angle α is as shown 

in Fig. 8.15a.)

 8.133 Solve Prob. 8.113 assuming that the flat belt and pulleys are replaced 

by a V belt and V pulleys with α 5 36°. (The angle α is as shown in 

Fig. 8.15a.)

A C E

B D

5 in. 5 in. 3 in.

10 lb

M0

Fig. P8.128

A

B

C

D

P

TA

0.3 N⋅m

Fig. P8.124

T2T1

β

T2T1

β

Fig. P8.130
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This chapter was devoted to the study of dry friction, i.e., to problems involv-

ing rigid bodies in contact along unlubricated surfaces.

Fig. 8.16 

N

F

W

P

P

F Equilibrium Motion

Fm

Fk

Static and Kinetic Friction
If we apply a horizontal force P to a block resting on a horizontal surface 

[Sec. 8.1], we note that at first the block does not move. This shows that a 

friction force F must have developed to balance P (Fig. 8.16). As the 

 magnitude of P increases, the magnitude of F also increases until it reaches 

a maximum value Fm. If P is further increased, the block starts sliding, and 

the magnitude of F drops from Fm to a lower value Fk. Experimental evidence 

shows that Fm and Fk are proportional to the normal component N of the 

reaction of the surface. We have

 Fm 5 μsN   Fk 5 μkN (8.1, 8.2)

where μs and μk are called, respectively, the coefficient of static  friction and 

the coefficient of kinetic friction. These coefficients depend on the nature 

and the condition of the surfaces in contact. Approximate values of the coef-

ficients of static friction are given in Table 8.1.

Angles of Friction
It is sometimes convenient to replace the normal force N and the friction force F 

by their resultant R (Fig. 8.17). As the friction force increases and reaches its 

maximum value Fm 5 μsN, the angle f that R forms with the normal to the 

surface increases and reaches a maximum value fs, which is called the angle 
of static friction. If motion actually takes place, the magnitude of F drops to 

Fk; similarly, the angle f drops to a lower value fk, which is called the angle 
of kinetic friction. As shown in Sec. 8.1B, we have

 tan fs 5 μs   tan fk 5 μk (8.3, 8.4)

Problems Involving Friction
When solving equilibrium problems involving friction, you should keep in 

mind that the magnitude F of the friction force is equal to Fm 5 μsN only if 
the body is about to slide [Sec. 8.1C]. If motion is not impending, you should 

Review and Summary

Fig. 8.17 

R

W

P

φ
N

F
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treat F and N as independent unknowns to be determined from the equilibrium 

equations (Fig. 8.18a). You should also check that the value of F required to 

maintain equilibrium is not larger than Fm; if it were, the body would move, 

and the magnitude of the friction force would be Fk 5 μkN [Sample Prob. 8.1]. 

On the other hand, if motion is known to be impending, F has reached its 

maximum value Fm 5 μsN (Fig. 8.18b), and you should substitute this expres-

sion for F in the equilibrium equations [Sample Prob. 8.3]. When only three 

forces are involved in a free-body diagram, including the reaction R of the 

surface in contact with the body, it is usually more convenient to solve the 

problem by drawing a force triangle [Sample Prob. 8.2]. In some problems, 

impending motion can be due to tipping instead of slipping; the assessment 

of this condition requires a moment equilibrium analysis of the body [Sample 

Prob. 8.4].

Fig. 8.18 

W P

N

W P

N

Frequired

Fm  = ms N

(a) (b)

 When a problem involves the analysis of the forces exerted on each 

other by two bodies A and B, it is important to show the friction forces with 

their correct sense. The correct sense for the friction force exerted by B on A, 

for instance, is opposite to that of the relative motion (or impending motion) 

of A with respect to B [Fig. 8.6].

Wedges and Screws
In the later sections of this chapter, we considered several specific engineering 

applications where dry friction plays an important role. In the case of wedges, 
which are simple machines used to raise heavy loads [Sec. 8.2A], we must 

draw two or more free-body diagrams, taking care to show each friction force 

with its correct sense [Sample Prob. 8.5]. The analysis of square-threaded 
screws, which are frequently used in jacks, presses, and other mechanisms, 

is reduced to the analysis of a block sliding on an incline by unwrapping the 

thread of the screw and showing it as a straight line [Sec. 8.2B]. This is shown 

again in Fig. 8.19, where r denotes the mean radius of the thread, L is the 

lead of the screw (i.e., the distance through which the screw advances in one 

turn), W is the load, and Qr is equal to the couple exerted on the screw. We 

noted in the case of multiple-threaded screws that the lead L of the screw is 

not equal to its pitch, which is the distance measured between two consecutive 

threads.

 Other engineering applications considered in this chapter were journal 
bearings and axle friction [Sec. 8.3A], thrust bearings and disk friction 

[Sec. 8.3B], wheel friction and rolling resistance [Sec. 8.3C], and belt 
 friction [Sec. 8.4].Fig. 8.19 

φs

Q

W

R

θ

θ

L

2   rp
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Belt Friction
In solving a problem involving a flat belt passing over a fixed cylinder, it is 

important to first determine the direction in which the belt slips or is about to 

slip. If the drum is rotating, the motion or impending motion of the belt should 

be determined relative to the rotating drum. For instance, if the belt shown in 

Fig. 8.20 is about to slip to the right relative to the drum, the friction

Fig. 8.20 

P

O

P'

q
b

Δq
P1 P2

T1 T2

forces exerted by the drum on the belt are directed to the left, and the tension 

is larger in the right-hand portion of the belt than in the left-hand portion. 

Denoting the larger tension by T2, the smaller tension by T1, the coefficient of 

static friction by μs, and the angle (in radians) subtended by the belt by β, we 

derived in Sec. 8.4 the formulas

  ln 

T2

T1

5 μsβ (8.13)

  
T2

T1

5 eμ sβ (8.14)

that we used in solving Sample Probs. 8.8 and 8.9. If the belt actually slips 

on the drum, the coefficient of static friction μs should be replaced by the 

coefficient of kinetic friction μk in both of these formulas.
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8.134 and 8.135  The coefficients of friction are μs 5 0.40 and μk 5 0.30 

between all surfaces of contact. Determine the smallest force P
required to start the 30-kg block moving if cable AB (a) is attached 

as shown, (b) is removed.

Fig. P8.135 

P

A B20 kg

30 kg

 8.136 A 120-lb cabinet is mounted on casters that can be locked to prevent 

their rotation. The coefficient of static friction between the floor and 

each caster is 0.30. If h 5 32 in., determine the magnitude of the force P 
required to move the cabinet to the right (a) if all casters are locked, 

(b) if the casters at B are locked and the casters at A are free to rotate, 

(c) if the casters at A are locked and the casters at B are free to rotate. 

Fig. P8.136 

C

A B

P

h

24 in.

 8.137 A slender rod with a length of L is lodged between peg C and the 

vertical wall, and supports a load P at end A. Knowing that the 

coefficient of static friction between the peg and the rod is 0.15 and 

neglecting friction at the roller, determine the range of values of the 

ratio L/a for which equilibrium is maintained.

Fig. P8.137 

A

B

C

L

a

30°

P

Review Problems

Fig. P8.134 

P

A

B

20 kg

30 kg
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8.138 The hydraulic cylinder shown exerts a force of 3 kN directed to the right 

on point B and to the left on point E. Determine the magnitude of the 

couple M required to rotate the drum clockwise at a constant speed.

Fig. P8.138 

D

E

150 mm

300 mm

A

B

150 mm

300 mm

250 mm

ms = 0.40
mk = 0.30

M
C

150 mm 150 mm

8.139 A rod DE and a small cylinder are placed between two guides as 

shown. The rod is not to slip downward, however large the force P
may be; i.e., the arrangement is said to be self-locking. Neglecting 

the weight of the cylinder, determine the minimum allowable coef-

ficients of static friction at A, B, and C.

8.140 Bar AB is attached to collars that can slide on the inclined rods 

shown. A force P is applied at point D located at a distance a from 

end A. Knowing that the coefficient of static friction μs between 

each collar and the rod upon which it slides is 0.30 and neglecting 

the weights of the bar and of the collars, determine the smallest 

value of the ratio a/L for which equilibrium is maintained.

Fig. P8.140 

45° 45°

A
D

B

P
a

L

 8.141 Two 10° wedges of negligible weight are used to move and position 

the 400-lb block. Knowing that the coefficient of static friction is 

0.25 at all surfaces of contact, determine the smallest force P that 

should be applied as shown to one of the wedges.

Fig. P8.141 

400 lb

P
10°

Fig. P8.139 

B

q

A

D

E

C

P
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8.142 A 10° wedge is used to split a section of a log. The coefficient of 

static friction between the wedge and the log is 0.35. Knowing that 

a force P with a magnitude of 600 lb was required to insert the wedge, 

determine the magnitude of the forces exerted on the wood by the 

wedge after insertion.

Fig. P8.142 

P

10°

 8.143 In the gear-pulling assembly shown, the square-threaded screw AB
has a mean radius of 15 mm and a lead of 4 mm. Knowing that the 

coefficient of static friction is 0.10, determine the couple that must 

be applied to the screw in order to produce a force of 3 kN on the 

gear. Neglect friction at end A of the screw.

8.144 A lever of negligible weight is loosely fitted onto a 30-mm-radius 

fixed shaft as shown. Knowing that a force P of magnitude 275 N 

will just start the lever rotating clockwise, determine (a) the 

coefficient of static friction between the shaft and the lever, 

(b) the smallest force P for which the lever does not start rotating 

counterclockwise.

Fig. P8.144 

100 mm 160 mm

P

30 mm

40 kg

A
B

C

 8.145 In the pivoted motor mount shown, the weight W of the 175-lb 

motor is used to maintain tension in the drive belt. Knowing that 

the coefficient of static friction between the flat belt and drums A
and B is 0.40 and neglecting the weight of platform CD, determine 

the largest couple that can be transmitted to drum B when the drive 

drum A is rotating clockwise.

Fig. P8.143 

A

B

Fig. P8.145 

A
B

C D

W

10 in.

12 in.

6 in.
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The strength of structural members used in the construction of 

buildings depends to a large extent on the properties of their 

cross sections. This includes the second moments of area, or 

moments of inertia, of these cross sections.

Distributed Forces: 
Moments of Inertia

9
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486 Distributed Forces: Moments of Inertia

Introduction

 9.1 MOMENTS OF INERTIA OF 
AREAS

9.1A Second Moment, or Moment 
of Inertia, of an Area

9.1B Determining the Moment of 
Inertia of an Area by 
Integration

9.1C Polar Moment of Inertia
9.1D Radius of Gyration of an Area

 9.2 PARALLEL-AXIS THEOREM 
AND COMPOSITE AREAS

9.2A The Parallel-Axis Theorem
9.2B Moments of Inertia of 

Composite Areas

 *9.3 TRANSFORMATION OF 
MOMENTS OF INERTIA

9.3A Product of Inertia
9.3B Principal Axes and Principal 

Moments of Inertia

 *9.4 MOHR’S CIRCLE FOR 
MOMENTS OF INERTIA

 9.5 MASS MOMENTS OF 
INERTIA

9.5A Moment of Inertia of a Simple 
Mass

9.5B Parallel-Axis Theorem for Mass 
Moments of Inertia

9.5C Moments of Inertia of Thin 
Plates

9.5D Determining the Moment of 
Inertia of a Three-Dimensional 
Body by Integration

9.5E Moments of Inertia of 
Composite Bodies

 *9.6 ADDITIONAL CONCEPTS 
OF MASS MOMENTS OF 
INERTIA

9.6A Mass Products of Inertia
9.6B Principal Axes and Principal 

Moments of Inertia
9.6C Principal Axes and Moments 

of Inertia for a Body of 
Arbitrary Shape

Objectives
• Describe the second moment, or moment of inertia, 

of an area.

• Determine the rectangular and polar moments of 
inertia of areas and their corresponding radii of 
 gyration by integration.

• Develop the parallel-axis theorem and apply it to 
determine the moments of  inertia of composite areas.

• Introduce the product of inertia and apply it to 
 analyze the transformation of moments of inertia 
when  coordinate axes are rotated.

• Describe the moment of inertia of a mass with 
respect to an axis.

• Apply the parallel-axis theorem to facilitate mass 
moment of inertia computations.

• Analyze the transformation of mass moments of 
 inertia when coordinate axes are rotated.

Introduction
In Chap. 5, we analyzed various systems of forces distributed over an area 

or volume. The three main types of forces considered were (1) weights of 

homogeneous plates of uniform thickness (Secs. 5.1 and 5.2); (2) distrib-

uted loads on beams and submerged surfaces (Sec. 5.3); and (3) weights 

of homogeneous three-dimensional bodies (Sec. 5.4). In all of these cases, 

the distributed forces were proportional to the elemental areas or volumes 

associated with them. Therefore, we could obtain the resultant of these 

forces by summing the corresponding areas or volumes, and we deter-

mined the moment of the resultant about any given axis by computing the 

first moments of the areas or volumes about that axis.

In the first part of this chapter, we consider distributed forces DF
where the magnitudes depend not only upon the elements of area DA on 

which these forces act but also upon the distance from DA to some given 

axis. More precisely, we assume the magnitude of the force per unit area 

DF/DA varies linearly with the distance to the axis. Forces of this type 

arise in the study of the bending of beams and in problems involving 

submerged nonrectangular surfaces. 

Starting with the assumption that the elemental forces involved are 

distributed over an area A and vary linearly with the distance y to the 

x axis, we will show that the magnitude of their resultant R depends upon 

the first moment Qx of the area A. However, the location of the point where 

R is applied depends upon the second moment, or moment of inertia, Ix

of the same area with respect to the x axis. You will see how to compute 

the moments of inertia of various areas with respect to given x and y axes. 

We also introduce the polar moment of inertia JO of an area. To facilitate 

these computations, we establish a relation between the moment of inertia Ix
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9.1 Moments of Inertia of Areas 487

of an area A with respect to a given x axis and the moment of inertia Ix9 

of the same area with respect to the parallel centroidal x9 axis (a  relation 

known as the parallel-axis theorem). You will also study the transforma-

tion of the moments of inertia of a given area when the coordinate axes 

are rotated.

In the second part of this chapter, we will explain how to determine 

the moments of inertia of various masses with respect to a given axis. 

Moments of inertia of masses are common in dynamics problems involv-

ing the rotation of a rigid body about an axis. To facilitate the computation 

of mass moments of inertia, we introduce another version of the parallel-

axis theorem. Finally, we will analyze the transformation of moments of 

inertia of masses when the coordinate axes are rotated.

9.1  MOMENTS OF INERTIA 
OF AREAS

In the first part of this chapter, we consider distributed forces DF whose 

magnitudes DF are proportional to the elements of area DA on which the 

forces act and, at the same time, vary linearly with the distance from DA 

to a given axis.

9.1A  Second Moment, or Moment of 
Inertia, of an Area

Consider a beam with a uniform cross section that is subjected to two 

equal and opposite couples: one applied at each end of the beam. Such a 

beam is said to be in pure bending. The internal forces in any section of 

the beam are distributed forces whose magnitudes DF 5 ky DA vary lin-

early with the distance y between the element of area DA and an axis 

passing through the centroid of the section. (This statement can be derived 

in a course on mechanics of materials.) This axis, represented by the x axis 

in Fig. 9.1, is known as the neutral axis of the section. The forces on one 

side of the neutral axis are forces of compression, whereas those on the 

other side are forces of tension. On the neutral axis itself, the forces are 

zero.

The magnitude of the resultant R of the elemental forces DF that 

act over the entire section is

R 5 #ky dA 5 k#y dA

You might recognize this last integral as the first moment Qx of the 

 section about the x axis; it is equal to yA and is thus equal to zero, since 

the centroid of the section is located on the x axis. The system of forces 

DF thus reduces to a couple. The magnitude M of this couple (bending 

moment) must be equal to the sum of the moments DMx 5 y DF 5 ky2 DA 

of the elemental forces. Integrating over the entire section, we obtain

M 5 #ky2
 dA 5 k#y2

 dA

Fig. 9.1 Representative forces on a cross 
section of a beam subjected to equal and 
opposite couples at each end.

y

x
y

ΔF = ky Δ A

Δ A
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488 Distributed Forces: Moments of Inertia

This last integral is known as the second moment, or moment of  inertia,†

of the beam section with respect to the x axis and is denoted by Ix. We 

obtain it by multiplying each element of area dA by the square of its 
distance from the x axis and integrating over the beam section. Since each 

product y2 dA is positive, regardless of the sign of y, or zero (if y is zero), 

the integral Ix is always positive.

Another example of a second moment, or moment of inertia, of an 

area is provided by the following problem from hydrostatics. A vertical 

circular gate used to close the outlet of a large reservoir is submerged 

under water as shown in Fig. 9.2. What is the resultant of the forces 

exerted by the water on the gate, and what is the moment of the resultant 

about the line of intersection of the plane of the gate and the water surface 

(x axis)?

If the gate were rectangular, we could determine the resultant of the 

forces due to water pressure from the pressure curve, as we did in 

Sec. 5.3B. Since the gate is circular, however, we need to use a more general 

method. Denoting the depth of an element of area DA by y and the specific 

weight of water by γ, the pressure at an element is p 5 γ  y, and the 

 magnitude of the elemental force exerted on DA is DF 5 p DA 5 γ  y DA. 

The magnitude of the resultant of the elemental forces is thus

R 5 #γ y dA 5 γ#y dA

We can obtain this by computing the first moment Qx 5 e y dA of the area 

of the gate with respect to the x axis. The moment Mx of the resultant 

must be equal to the sum of the moments DMx 5 y DF 5 γy2 DA of the 

elemental forces. Integrating over the area of the gate, we have

Mx 5 #γ
 
y2

 dA 5 γ#y2
 dA

Here again, the last integral represents the second moment, or moment of 

inertia, Ix of the area with respect to the x axis.

9.1B  Determining the Moment of 
Inertia of an Area by Integration

We just defined the second moment, or moment of inertia, Ix of an area 

A with respect to the x axis. In a similar way, we can also define the 

moment of inertia Iy of the area A with respect to the y axis (Fig. 9.3a):

Moments of inertia of an area

 Ix 5 #y2
 dA   Iy 5 #x2

 dA (9.1)IxII 5 #y2dAdd IyII 5 #x2dAdd

Fig. 9.2 Vertical circular gate, submerged 
under water, used to close the outlet of a 
reservoir.

y

x

y

C

Δ A ΔF = gy ΔA

†The term second moment is more proper than the term moment of inertia, which logically 

should be used only to denote integrals of mass (see Sec. 9.5). In engineering practice, 

however, moment of inertia is used in connection with areas as well as masses. 
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9.1 Moments of Inertia of Areas 489

We can evaluate these integrals, which are known as the rectangular 
moments of inertia of the area A, more easily if we choose dA to be a 

thin strip parallel to one of the coordinate axes. To compute Ix, we choose 

the strip parallel to the x axis, so that all points of the strip are at the same 

distance y from the x axis (Fig. 9.3b). We obtain the moment of inertia 

dIx of the strip by multiplying the area dA of the strip by y2. To compute 

Iy, we choose the strip parallel to the y axis, so that all points of the strip 

are at the same distance x from the y axis (Fig. 9.3c). Then the moment 

of inertia dIy of the strip is x2 dA.

Moment of Inertia of a Rectangular Area. As an example, 

let us determine the moment of inertia of a rectangle with respect to its 

base (Fig. 9.4). Dividing the rectangle into strips parallel to the x axis, we 

have

dA 5 b dy   dIx 5 y2b dy

 Ix 5 #
h

0

by2
 dy 5

1

3
 bh3 (9.2)

Computing lx and ly Using the Same Elemental Strips. We 

can use Eq. (9.2) to determine the moment of inertia dIx with respect to 

the x axis of a rectangular strip that is parallel to the y axis, such as the 

strip shown in Fig. 9.3c. Setting b 5 dx and h 5 y in formula (9.2), we 

obtain

dIx 5
1

3
 y3

 dx

We also have

dIy 5 x2 dA 5 x2y dx

Thus, we can use the same element to compute the moments of inertia Ix 

and Iy of a given area (Fig. 9.5).

Fig. 9.3 (a) Rectangular moments of inertia dIx and dIy of an area dA; (b) calculating Ix 
with a horizontal strip; (c) calculating Iy with a vertical strip.

x

y

y

x

(a)

dA = dx dy

dx
dy

dIx = y2 dA dIy = x2 dA

x

y

y

x

(b)

a

dA = ( a – x ) dy

dy

dIx = y2 dA

y
x

y

x

(c)

dA = y dx

dx
dIy = x2 dA

Fig. 9.4 Calculating the moment of inertia 
of a rectangular area with respect to its base.

h

y

y

b

dy

x

dA = b dy

Fig. 9.5 Using the same strip element of a 
given area to calculate Ix and Iy.

y

x

y

xdx

dIx =     y3 dx1
3

dIy = x2 y  dx
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490 Distributed Forces: Moments of Inertia

9.1C Polar Moment of Inertia
An integral of great importance in problems concerning the torsion of 

cylindrical shafts and in problems dealing with the rotation of slabs is

Polar moment of inertia

 JO 5 #r2
 dA (9.3)

where r is the distance from O to the element of area dA (Fig. 9.6). This 

integral is called the polar moment of inertia of the area A with respect 

to the “pole” O.

We can compute the polar moment of inertia of a given area from 

the rectangular moments of inertia Ix and Iy of the area if these quantities 

are already known. Indeed, noting that r2 5 x2 1 y2, we have

JO 5 #r2d A 5 # (x2 1 y2)d A 5 #y2d A 1 #x 
2d A

that is,

 JO 5 Ix 1 Iy (9.4)

9.1D Radius of Gyration of an Area
Consider an area A that has a moment of inertia Ix with respect to the x 

axis (Fig. 9.7a). Imagine that we concentrate this area into a thin strip 

parallel to the x axis (Fig. 9.7b). If the concentrated area A is to have the 

same moment of inertia with respect to the x axis, the strip should be 

placed at a distance kx from the x axis, where kx is defined by the 

relation

Ix 5 kx
2 A

Solving for kx, we have

Radius of gyration

 kx 5
B

Ix

A
 (9.5)

The distance kx is referred to as the radius of gyration of the area with 

respect to the x axis. In a similar way, we can define the radii of gyration 

ky and kO (Fig. 9.7c and d); we have

 Iy 5 ky
2 A   ky 5

B

Iy

A
 (9.6)

  JO 5 k2
O 

A    kO 5
B

JO

A
 (9.7)

If we rewrite Eq. (9.4) in terms of the radii of gyration, we find that

 kO
2 5 kx

2 1 ky
2 (9.8)

Fig. 9.7 (a) Area A with given moment of 
inertia Ix; (b) compressing the area to a 
horizontal strip with radius of gyration kx; 
(c) compressing the area to a vertical strip with 
radius of gyration ky; (d) compressing the area to 
a circular ring with polar radius of gyration kO.

kx

y

x

A

O

(a)

y

x

A

O

(b)

ky

y

x

A

O

(c)

kO

y

x

A

O

(d)

Fig. 9.6 Distance r used to evaluate the 
polar moment of inertia of area A.

y

y

x

dA

A

x
r

O
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9.1 Moments of Inertia of Areas 491

Sample Problem 9.1

Determine the moment of inertia of a triangle with respect to its base.

STRATEGY: To find the moment of inertia with respect to the base, it 

is expedient to use a differential strip of area parallel to the base. Use the 

geometry of the situation to carry out the integration.

MODELING: Draw a triangle with a base b and height h, choosing the 

x axis to coincide with the base (Fig. 1). Choose a differential strip parallel 

to the x axis to be dA. Since all portions of the strip are at the same dis-

tance from the x axis, you have

dIx 5 y2 dA   dA 5 l dy

ANALYSIS: Using similar triangles, you have

l

b
5

h 2 y

h
    l 5 b 

h 2 y

h
    d A 5 b 

h 2 y

h
 d y

Integrating dIx from y 5 0 to y 5 h, you obtain

 Ix 5#  y
2

 dA 5#
h

0
 y

2b 

h 2 y

h
 dy 5

b

h #
h

0

(hy2 2 y3) dy

 5
b

h
 c h 

y3

3
2

y4

4
d h

0

 Ix 5
bh3

12
 b

REFLECT and THINK: This problem also could have been solved 

using a differential strip perpendicular to the base by applying Eq. (9.2) 

to express the moment of inertia of this strip. However, because of the 

geometry of this triangle, you would need two integrals to complete the 

solution.

x

y

y

dy

b

h

h – y

l

Fig. 1 Triangle with differential 
strip element parallel to its base.

Concept Application 9.1

For the rectangle shown in Fig. 9.8, compute the radius of gyration kx with 

respect to its base. Using formulas (9.5) and (9.2), you have

k2
x 5

Ix

A
5

1
3 
bh3

bh
5

h2

3
    kx 5

h

13

The radius of gyration kx of the rectangle is shown in Fig. 9.8. Do not 

confuse it with the ordinate y 5 h/2 of the centroid of the area. The radius 

of gyration kx depends upon the second moment of the area, whereas the 

ordinate y is related to the first moment of the area.
Fig. 9.8 Radius of gyration of a 
rectangle with respect to its base.

h

b

kx   y

C
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492 Distributed Forces: Moments of Inertia

Sample Problem 9.2

(a) Determine the centroidal polar moment of inertia of a circular area by 

direct integration. (b) Using the result of part (a), determine the moment 

of inertia of a circular area with respect to a diameter.

STRATEGY: Since the area is circular, you can evaluate part (a) by 

using an annular differential area. For part (b), you can use symmetry and 

Eq. (9.4) to solve for the moment of inertia with respect to a diameter.

MODELING and ANALYSIS:

a. Polar Moment of  Inertia. Choose an annular differential element 

of area to be dA (Fig. 1). Since all portions of the differential area are at the 

same distance from the origin, you have

dJO 5 u2
 dA  dA 5 2πu du

JO 5#  dJO 5#
r

0
 u

2(2πu du) 5 2π#
r

0

 
u3

 du

JO 5
π

2
 r4 b

b. Moment of Inertia with Respect to a Diameter. Because 

of the symmetry of the circular area, Ix 5 Iy. Then from Eq. (9.4), you 

have

JO 5 Ix 1 Iy 5 2Ix   π

2
 r4 5 2Ix    Idiameter 5 Ix 5

π

4
 r4 b

REFLECT and THINK: Always look for ways to simplify a problem 

by the use of symmetry. This is especially true for situations involving 

circles or spheres.

x

y

r
du

u
O

Fig. 1 Circular area with an 
annular differential element.

Sample Problem 9.3

(a) Determine the moment of inertia of the shaded region shown with 

respect to each of the coordinate axes. (Properties of this region were 

considered in Sample Prob. 5.4.) (b) Using the results of part (a),  determine 

the radius of gyration of the shaded area with respect to each of the 

 coordinate axes.

STRATEGY: You can determine the moments of inertia by using a 

single differential strip of area; a vertical strip will be more convenient. 

You can calculate the radii of gyration from the moments of inertia and 

the area of the region.

x

y

b
y = kx2

a
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9.1 Moments of Inertia of Areas 493

MODELING: Referring to Sample Prob. 5.4, you can find the equation 

of the curve and the total area using

y 5
b

a2
  x2   A 5

1
3ab

ANALYSIS:

a. Moments of Inertia.

Moment of Inertia Ix. Choose a vertical differential element of area 

for dA (Fig. 1). Since all portions of this element are not at the same 

distance from the x axis, you must treat the element as a thin rectangle. 

The moment of inertia of the element with respect to the x axis is then

 dIx 5
1
3 y3 dx 5

1

3
 a b

a2
  x2b3

 dx 5
1

3
  

b3

a6
  x6 dx

  Ix 5#  dIx 5#
a

0

 1

3
  

b3

a6
  x6 dx 5  c 1

3
  

b3

a6
  

x7

7
d a

0

Ix 5
ab3

21
 b

Moment of Inertia Iy. Use the same vertical differential element of 

area. Since all portions of the element are at the same distance from the 

y axis, you have

dIy 5 x2 dA 5 x2(y dx) 5 x2 a b

a2
  x2b 

dx 5
b

a2
  x4 dx

Iy 5#  
dIy 5#

a

0

 b

a2
  x4 dx 5 c b

a2
  

x5

5
d a

0

Iy 5
a3b

5
 b

b. Radii of Gyration kx and ky. From the definition of radius of 

gyration, you have

 k2
x 5

Ix

A
5

ab3/21

ab/3
5

b2

7
 kx 5 21

7 b b

and

 k2
y 5

Iy

A
5

a3b/5

ab/3
5

3
5a2  ky 5 23

5a b

REFLECT and THINK: This problem demonstrates how you can 

 calculate Ix and Iy using the same strip element. However, the general 

mathematical approach in each case is distinctly different.

dxx
x

y

a

y

Fig. 1 Subject area with vertical 
differential strip element.
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494494

SOLVING PROBLEMS 
ON YOUR OWN

In this section, we introduced the rectangular and polar moments of inertia of areas
and the corresponding radii of gyration. Although the problems you are about to solve 

may appear more appropriate for a calculus class than for one in mechanics, we hope that 

our introductory comments have convinced you of the relevance of moments of inertia to 

your study of a variety of engineering topics.

1. Calculating the rectangular moments of inertia Ix and Iy. We defined these  quantities 

as

Ix 5 #y2
 dA   Iy 5 #x2

 dA (9.1)

where dA is a differential element of area dx dy. The moments of inertia are the second moments 
of the area; it is for that reason that Ix, for example, depends on the perpendicular distance y
to the area dA. As you study Sec. 9.1, you should recognize the importance of carefully defining 

the shape and the orientation of dA. Furthermore, you should note the following points.

a. You can obtain the moments of inertia of most areas by means of a single 
integration. You can use the expressions given in Figs. 9.3b and c and Fig. 9.5 to calculate 

Ix and Iy. Regardless of whether you use a single or a double integration, be sure to show 

the element dA that you have chosen on your sketch.

 b. The moment of inertia of an area is always positive, regardless of the location 

of the area with respect to the coordinate axes. The reason is that the moment of inertia 

is obtained by integrating the product of dA and the square of distance. (Note how this 

differs from the first moment of the area.) Only when an area is removed (as in the case 

for a hole) does its moment of inertia enter in your computations with a minus sign.

 c. As a partial check of your work, observe that the moments of inertia are equal to 

an area times the square of a length. Thus, every term in an expression for a moment of 

inertia must be a length to the fourth power.

2. Computing the polar moment of inertia JO. We defined JO as

 JO 5 #r2
 dA (9.3)

where r2 5 x2 1 y2. If the given area has circular symmetry (as in Sample Prob. 9.2), it 

is possible to express dA as a function of r and to compute JO with a single integration. 

When the area lacks circular symmetry, it is usually easier first to calculate Ix and Iy and 

then to determine JO from

 JO 5 Ix 1 Iy (9.4)

Lastly, if the equation of the curve that bounds the given area is expressed in polar coor-

dinates, then dA 5 r dr dθ, and you need to perform a double integration to compute the 

integral for JO [see Prob. 9.27].

3. Determining the radii of gyration kx and ky and the polar radius of gyration kO. 
These quantities are defined in Sec. 9.1D. You should realize that they can be determined 

only after you have computed the area and the appropriate moments of inertia. It is impor-

tant to remember that kx is measured in the y direction, whereas ky is measured in the x 

direction; you should carefully study Sec. 9.1D until you understand this point.
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495

Problems
      9.1 through 9.4  Determine by direct integration the moment of inertia 

of the shaded area with respect to the y axis.

9.5 through 9.8  Determine by direct integration the moment of inertia 

of the shaded area with respect to the x axis.

y

b

x
a

y 5 k(x 2 a)2

Fig. P9.1 and P9.5

x

y

b

y 5 kx1/3

a

Fig. P9.2 and P9.6

h

b

y

x

Fig. P9.3 and P9.7

x

y

y 5 kx3

b

a

Fig. P9.4 and P9.8

      9.9 through 9.11  Determine by direct integration the moment of inertia 

of the shaded area with respect to the x axis.

      9.12 through 9.14  Determine by direct integration the moment of  inertia 

of the shaded area with respect to the y axis. b

y

x
a 2a

y = k(x − a)3

Fig. P9.9 and P9.12

b

b

y

x

a

y = c(1 − kx1/2)

y = − c(1 − kx1/2)

Fig. P9.10 and P9.13

b

y

x
a

y = kex/a

Fig. P9.11 and P9.14
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496

      9.15 and 9.16  Determine the moment of inertia and the radius of  gyration 

of the shaded area shown with respect to the x axis.

y

h

x
a a

y 5 kx2

Fig. P9.16 and P9.18

      9.17 and 9.18  Determine the moment of inertia and the radius of  gyration 

of the shaded area shown with respect to the y axis.

 9.19 Determine the moment of inertia and the radius of gyration of the 

shaded area shown with respect to the x axis.

h

h

y

x
a a

y = mx + b

y = c sin kx

Fig. P9.19 and P9.20

 9.20 Determine the moment of inertia and the radius of gyration of the 

shaded area shown with respect to the y axis.

      9.21 and 9.22  Determine the polar moment of inertia and the polar 

radius of gyration of the shaded area shown with respect to point P.

a a a a

a

a

P

Fig. P9.21   

b

b 3b

aa

P

Fig. P9.22

Fig. P9.15 and P9.17

b

y

x
a

y2 = k2x1/2

y1 = k1x2
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497

      9.23 and 9.24  Determine the polar moment of inertia and the polar 

radius of gyration of the shaded area shown with respect to point P.

a

a

2a2a

P

y

x

y = c + k2x2

y = k1x2

Fig. P9.23

 9.25 (a) Determine by direct integration the polar moment of inertia of 

the annular area shown with respect to point O. (b) Using the result 

of part a, determine the moment of inertia of the given area with 

respect to the x axis.

R1

R2

y

xO

Fig. P9.25 and P9.26

 9.26 (a) Show that the polar radius of gyration kO of the annular area 

shown is approximately equal to the mean radius Rm 5 (R1 1 R2)/2 

for small values of the thickness t 5 R2 2 R1. (b) Determine the 

percentage error introduced by using Rm in place of kO for the 

 following values of t/Rm: 1, 
1
2, and 

1
10.

 9.27 Determine the polar moment of inertia and the polar radius of 

 gyration of the shaded area shown with respect to point O.

 9.28 Determine the polar moment of inertia and the polar radius of 

 gyration of the isosceles triangle shown with respect to point O.

 *9.29 Using the polar moment of inertia of the isosceles triangle of Prob. 

9.28, show that the centroidal polar moment of inertia of a circular 

area of radius r is πr4/2. (Hint: As a circular area is divided into an 

increasing number of equal circular sectors, what is the approximate 

shape of each circular sector?)

 *9.30 Prove that the centroidal polar moment of inertia of a given area A 

cannot be smaller than A2/2π. (Hint: Compare the moment of inertia 

of the given area with the moment of inertia of a circle that has the 

same area and the same centroid.)

O

y

x
a2a

q
R = a + kq

Fig. P9.27

y

xO

b
2

b
2

h

Fig. P9.28

P
r

r
2

Fig. P9.24
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498 Distributed Forces: Moments of Inertia

9.2  PARALLEL-AXIS THEOREM 
AND COMPOSITE AREAS

In practice, we often need to determine the moment of inertia of a com-

plicated area that can be broken down into a sum of simple areas. How-

ever, in doing these calculations, we have to determine the moment of 

inertia of each simple area with respect to the same axis. In this section, 

we first derive a formula for computing the moment of inertia of an area 

with respect to a centroidal axis parallel to a given axis. Then we show 

how you can use this formula for finding the moment of inertia of a 

composite area.

9.2A The Parallel-Axis Theorem
Consider the moment of inertia I of an area A with respect to an axis AA9

(Fig. 9.9). We denote the distance from an element of area dA to AA9 by y. 

This gives us

I 5 #y2
 dA

Let us now draw through the centroid C of the area an axis BB9 parallel 

to AA9; this axis is called a centroidal axis. Denoting the distance from 

the element dA to BB9 by y9, we have y 5 y9 1 d, where d is the distance 

between the axes AA9 and BB9. Substituting for y in the previous integral, 

we obtain

 I 5#  y2 dA 5#  (y¿ 1 d)2 dA

 5#  y92 dA 1 2d # y9 dA 1 d2 # dA

The first integral represents the moment of inertia I  of the area with 

respect to the centroidal axis BB9. The second integral represents the first 

moment of the area with respect to BB9, but since the centroid C of the 

area is located on this axis, the second integral must be zero. The last 

integral is equal to the total area A. Therefore, we have

Parallel-axis theorem 

 I 5 I 1 Ad2 (9.9)

This formula states that the moment of inertia I of an area with 

respect to any given axis AA9 is equal to the moment of inertia I  of the 

area with respect to a centroidal axis BB9 parallel to AA9 plus the product 

of the area A and the square of the distance d between the two axes. This 

theorem is known as the parallel-axis theorem. Substituting k 2A for I 
and k 

2A for I , we can also express this theorem as

 k 
2 5 k 

2 1 d 
2 (9.10)

A similar theorem relates the polar moment of inertia JO of an area 

about a point O to the polar moment of inertia JC of the same area about 

its centroid C. Denoting the distance between O and C by d, we have

 JO 5 JC 1 Ad2  or  k2
O 5 k 2

C 1 d2 (9.11)

I 5 I 1 Ad2

Fig. 9.9 The moment of inertia of an 
area A with respect to an axis AA9 can be 
determined from its moment of inertia 
with respect to the centroidal axis BB9 by a 
calculation involving the distance d between 
the axes.

A'A

B'B
C

y

y'

d

dA
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9.2 Parallel-Axis Theorem and Composite Areas 499

9.2B  Moments of Inertia of 
Composite Areas

Consider a composite area A made of several component areas A1, A2, 

A3, . . . . The integral representing the moment of inertia of A can be 

subdivided into integrals evaluated over A1, A2, A3, . . . . Therefore, we can 

obtain the moment of inertia of A with respect to a given axis by adding the 

moments of inertia of the areas A1, A2, A3, . . . with respect to the same axis. 

Concept Application 9.2

As an application of the parallel-axis theorem, let us determine the 

moment of inertia IT of a circular area with respect to a line tangent 

to the circle (Fig. 9.10). We found in Sample Prob. 9.2 that the 

moment of inertia of a circular area about a centroidal axis is 

I 5
1
4πr4. Therefore, we have

 IT 5 II  1 Ad2 5 
1
4πr4 1 (πr2)r2 5 

5
4πr4

r

T

C

d = r

Fig. 9.10 Finding the moment of inertia 
of a circle with respect to a line tangent 
to it.

Concept Application 9.3

We can also use the parallel-axis theorem to determine the centroidal 

moment of inertia of an area when we know the moment of inertia 

of the area with respect to a parallel axis. Consider, for instance, a 

triangular area (Fig. 9.11). We found in Sample Prob. 9.1 that the 

moment of inertia of a triangle with respect to its base AA9 is equal 

to 
1

12 bh3. Using the parallel-axis theorem, we have

 IAA¿ 5 I BB¿ 1 Ad2

 I BB¿ 5 IAA¿ 2 Ad2 5
1
12bh3 2

1
2bh(

1
3h)2 5

1
36bh3

Note that we subtracted the product Ad2 from the given moment of 

inertia in order to obtain the centroidal moment of inertia of the 

triangle. That is, this product is added when transferring from a 

centroidal axis to a parallel axis, but it is subtracted when transfer-

ring to a centroidal axis. In other words, the moment of inertia of 

an area is always smaller with respect to a centroidal axis than with 

respect to any parallel axis.

 Returning to Fig. 9.11, we can obtain the moment of inertia of 

the triangle with respect to the line DD9 (which is drawn through a 

vertex) by writing

IDD¿ 5 I BB¿ 1 Ad¿2 5
1
36bh3 1

1
2bh(

2
3h)2 5

1
4bh3

Note that we could not have obtained IDD9 directly from IAA9. We can 

apply the parallel -axis theorem only if one of the two parallel axes 

passes through the centroid of the area.

Fig. 9.11 Finding the centroidal moment 
of inertia of a triangle from the moment 
of inertia about a parallel axis.

b
A'A

C
B'B

D'D

h

d' =    h2
3

d =    h1
3
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500 Distributed Forces: Moments of Inertia

Fig. 9.12 Moments of inertia of common geometric shapes.

Quarter circle

C
Rectangle

Triangle

Circle

Semicircle

Ellipse

b

y y'

x'

x

1
12

⎯Ix' =     bh3

1
12

⎯Iy' =     b3h

1
8

Ix = Iy =       r4

1
4

J
O

 =       r4

1
4

⎯Ix =⎯Iy =       r 4

1
2

J
O

 =       r4

1
36

⎯Ix' =     bh3

1
12

Ix =     bh3

1
3

Iy =    b3h

1
12

J
C

 =    bh(b2 + h2)

1
3

Ix =     bh3
h

b

x'

x

x

r

O

y

h C
h
3

xO

C

y

r

xO

C

y

r

x

b

y

a

1
16

Ix = Iy =        r4

1
8

J
O

 =       r4

1
4

⎯Ix =      ab3

1
4

⎯Iy =      a3b
1
4

J
O

 =      ab(a2 + b2)

O

�

�

�

�

�

�

�

�

�

Figure 9.12 shows several common geometric shapes along with 

formulas for the moments of inertia of each one. Before adding the 

moments of inertia of the component areas, however, you may have to use 

the parallel-axis theorem to transfer each moment of inertia to the desired 

axis. Sample Probs. 9.4 and 9.5 illustrate the technique.

Properties of the cross sections of various structural shapes are given 

in Fig. 9.13. As we noted in Sec. 9.1A, the moment of inertia of a beam 

Photo 9.1 Figure 9.13 tabulates data for a 
small sample of the rolled-steel shapes that 
are readily available. Shown above are 
examples of wide-flange shapes that are 
commonly used in the construction of 
buildings.
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9.2 Parallel-Axis Theorem and Composite Areas 501

Fig. 9.13A Properties of rolled-steel shapes (U.S. customary units).*

Designation
Area
in2

Depth
in.

Width
in.

Axis X–X

X X

X X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Y

Axis Y–Y

W Shapes
(Wide-Flange
Shapes)

S Shapes
(American Standard
Shapes)

C Shapes
(American Standard
Channels)

Angles

∗Courtesy of the American Institute of Steel Construction, Chicago, Illinois

†Nominal depth in inches and weight in pounds per foot

‡Depth, width, and thickness in inches

W18 × 76†
W16 × 57
W14 × 38
W8 × 31

22.3
16.8
11.2
  9.12

18.2
16.4
14.1
  8.00

11.0
  7.12
  6.77
  8.00

1330
  758
  385
  110

7.73
6.72
5.87
3.47

  152
    43.1
    26.7
    37.1

2.61
1.60
1.55
2.02

S18 × 54.7†
S12 × 31.8
S10 × 25.4
S6 × 12.5

16.0
  9.31
  7.45
  3.66

18.0
12.0
10.0
  6.00

801
217
123
  22.0

6.00
5.00
4.66
3.33

7.07
4.83
4.07
2.45

4.61
3.87
3.11
2.34

20.7
  9.33
  6.73
  1.80

1.14
1.00
0.950
0.702

C12 × 20.7†
C10 × 15.3
C8 × 11.5
C6 × 8.2

6.08
4.48
3.37
2.39

12.0
10.0
  8.00
  6.00

2.94
2.60
2.26
1.92

129
  67.3
  32.5
  13.1

35.4
  5.52
  1.23
17.3
  9.43
  1.09

3.86
2.27
1.31
0.687

0.797
0.711
0.623
0.536

0.698
0.634
0.572
0.512

11.0
  3.75
  1.44
  4.75
  3.75
  1.19

1.79
1.21
0.926
1.91
1.58
0.953

1.86  
1.18
0.836
1.98
1.74
0.980

35.4
  5.52
  1.23
  6.22
  2.55
  0.390

1.79
1.21
0.926
1.14
0.824
0.569

1.86
1.18
0.836
0.981
0.746
0.487

L6 × 6 × 1‡
L4 × 4 ×
L3 × 3 × 
L6 × 4 × 
L5 × 3 × 
L3 × 2 × 

⎯Ix, in4 ⎯kx, in. ⎯y, in. ⎯Iy, in4 ⎯ky, in. ⎯x, in.

4
1
2
1

2
1

2
1

4
1

  y

  x

  x

section about its neutral axis is closely related to the computation of the 

bending moment in that section of the beam. Thus, determining moments of 

inertia is a prerequisite to the analysis and design of structural members.

Note that the radius of gyration of a composite area is not equal to 

the sum of the radii of gyration of the component areas. In order to deter-

mine the radius of gyration of a composite area, you must first compute 

the moment of inertia of the area.
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502 Distributed Forces: Moments of Inertia

Fig. 9.13B Properties of rolled-steel shapes (SI units).

⎯Ix
106 mm4

⎯Iy
106 mm4

⎯y
mm

⎯x
mm

⎯x

Designation
Area
mm2

Depth
mm

Width
mm

Axis X–X

X X

X X

X X

Y

Y

Y

Y

Y

Y

⎯kx
mm

⎯ky
mm

Axis Y–Y

W Shapes
(Wide-Flange
Shapes)

S Shapes
(American Standard
Shapes)

C Shapes
(American Standard
Channels)

†Nominal depth in millimeters and mass in kilograms per meter

‡Depth, width, and thickness in millimeters

W460 × 113†
W410 × 85
W360 × 57.8
W200 × 46.1

14 400
10 800
  7230
  5880

462
417
358
203

279
181
172
203

554
316
160
  45.8

196
171
149
  88.1

63.3
17.9
11.1
15.4

66.3
40.6
39.4
51.3

S460 × 81.4†
S310 × 47.3
S250 × 37.8
S150 × 18.6

10 300
  6010
  4810
  2360

457
305
254
152

333
  90.3
  51.2
    9.16

152
127
118
  84.6

180
123
103
  62.2

8.62
3.88
2.80
0.749

29.0
25.4
24.1
17.8

C310 × 30.8†
C250 × 22.8
C200 × 17.1
C150 × 12.2

3920
2890
2170
1540

305
254
203
152

74.7
66.0
57.4
48.8

53.7
28.0
13.5
  5.45

117
  98.3
  79.0
  59.4

1.61
0.945
0.545
0.286

20.2
18.1
15.8
13.6

17.7
16.1
14.5
13.0

7100
2420
  929
3060
2420
  768

14.7
  2.30
  0.512
  7.20
  3.93
  0.454

45.5
30.7
23.5
48.5
40.1
24.2

47.2
30.0
21.2
50.3
44.2
24.9

14.7
  2.30
  0.512
  2.59
  1.06
  0.162

45.5
30.7
23.5
29.0
20.9
14.5

47.2
30.0
21.2
24.9
18.9
12.4

L152 × 152 × 25.4‡
L102 × 102 × 12.7
L76 × 76 × 6.4
L152 × 102 × 12.7
L127 × 76 × 12.7
L76 × 51 × 6.4

X X

Y

Y

Angles

  y

  x
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9.2 Parallel-Axis Theorem and Composite Areas 503

Sample Problem 9.4

The strength of a W14 3 38 rolled-steel beam is increased by attaching 

a 9 3 3/4-in. plate to its upper flange as shown. Determine the moment 

of inertia and the radius of gyration of the composite section with respect 

to an axis that is parallel to the plate and passes through the centroid C 

of the section.

STRATEGY: This problem involves finding the moment of inertia of a 

composite area with respect to its centroid. You should first determine the 

location of this centroid. Then, using the parallel-axis theorem, you can 

determine the moment of inertia relative to this centroid for the overall 

section from the centroidal moment of inertia for each component part.

MODELING and ANALYSIS: Place the origin O of coordinates at the 

centroid of the wide-flange shape, and compute the distance Y  to the 

centroid of the composite section by using the methods of Chap. 5 (Fig. 1). 

Refer to Fig. 9.13A for the area of the wide-flange shape. The area and 

the y coordinate of the centroid of the plate are

 A 5 (9 in.)(0.75 in.) 5 6.75 in2

y 5
1
2(14.1 in.) 1 

1
2(0.75 in.) 5 7.425 in.

Section Area, in2 y , in. yA, in3

Plate 6.75 7.425 50.12

Wide-fl ange shape 11.2  0 0

 oA 5 17.95 oyA 5 50.12

YoA 5 oyA    Y(17.95) 5 50.12     Y 5 2.792 in.

Moment of Inertia. Use the parallel-axis theorem to determine the 

moments of inertia of the wide-flange shape and the plate with respect to 

the x9 axis. This axis is a centroidal axis for the composite section but not 
for either of the elements considered separately. You can obtain the value 

of I x for the wide-flange shape from Fig. 9.13A.

 For the wide-flange shape,

Ix9 5 I x 1 AY 2 5 385 1 (11.2)(2.792)2 5 472.3 in4

 For the plate,

 Ix9 5 I x 1 Ad2 5 (
1
12)(9)(

3
4)3 1 (6.75)(7.425 2 2.792)2 5 145.2 in4

 For the composite area,

 Ix9 5 472.3 1 145.2 5 617.5 in4 Ix9 5 618 in4 b

Radius of Gyration. From the moment of inertia and area just 

 calculated, you obtain

 k2
x¿ 5

Ix¿

A
5

617.5 in4

17.95 in2
 kx¿ 5 5.87 in. b

REFLECT and THINK: This is a common type of calculation for many 

different situations. It is often helpful to list data in a table to keep track 

of the numbers and identify which data you need.

9 in.

14.1 in.

6.77 in.

C

3
4

in.

x

y

d

C

O

7.425 in.
x'

⎯Y

Fig. 1 Origin of coordinates 
placed at centroid of wide-
flange shape.
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504 Distributed Forces: Moments of Inertia

Sample Problem 9.5

Determine the moment of inertia of the shaded area with respect to the x 

axis.

STRATEGY: You can obtain the given area by subtracting a half circle 

from a rectangle (Fig. 1). Then compute the moments of inertia of the 

rectangle and the half circle separately.

240 mm

120 mm

y

x

r = 90 mm

A

C
a

240 mm

120 mm

y y y

x
x

x

A'

x'

=b
−

Fig. 1 Modeling given area by 
subtracting a half circle from a 
rectangle.

A'A

C
a = 38.2 mm

x'
120 mm

y

x

b = 81.8 mm

Fig. 2 Centroid location of the half 
circle.

MODELING and ANALYSIS:

Moment of Inertia of Rectangle. Referring to Fig. 9.12, you have

Ix 5
1
3 bh3 5

1
3 (240 mm)(120 mm)3 5 138.2 3 106 mm4

Moment of Inertia of Half Circle. Refer to Fig. 5.8 and determine 

the location of the centroid C of the half circle with respect to diameter 

AA9. As shown in Fig. 2, you have

a 5
4r

3π
5

(4)(90 mm)

3π
5 38.2 mm

The distance b from the centroid C to the x axis is

b 5 120 mm 2 a 5 120 mm 2 38.2 mm 5 81.8 mm

Referring now to Fig. 9.12, compute the moment of inertia of the half  circle 

with respect to diameter AA9 and then compute the area of the half circle.

 IAA¿ 5
1
8 πr4 5

1
8 π(90 mm)4 5 25.76 3 106 mm4

 A 5
1
2 πr2 5

1
2 π(90 mm)2 5 12.72 3 103 mm2

Next, using the parallel-axis theorem, obtain the value of Ix9 as

 IAA¿ 5 I x¿ 1 Aa2

 25.76 3 106 mm4 5 I x9 1 (12.72 3 103 mm2)(38.2 mm)2

 I x¿ 5 7.20 3 106 mm4

Again using the parallel-axis theorem, obtain the value of Ix as

 Ix 5 I x¿ 1 Ab2 5 7.20 3 106 mm4 1 (12.72 3 103 mm2)(81.8 mm)2

 5 92.3 3 106 mm4

Moment of Inertia of Given Area. Subtracting the moment of 

inertia of the half circle from that of the rectangle, you obtain

Ix 5 138.2 3 106 mm4 2 92.3 3 106 mm4

Ix 5 45.9 3 106 mm4
 b

REFLECT and THINK: Figures 5.8 and 9.12 are useful references for 

locating  centroids and moments of inertia of common areas; don’t forget 

to use them.
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505 505

SOLVING PROBLEMS 
ON YOUR OWN

In this section, we introduced the parallel-axis theorem and showed how to use it to 

simplify the computation of moments and polar moments of inertia of composite areas. 

The areas that you will consider in the following problems will consist of common shapes 

and rolled-steel shapes. You will also use the parallel-axis theorem to locate the point of 

application (the center of pressure) of the resultant of the hydrostatic forces acting on a 

submerged plane area.

1. Applying the parallel-axis theorem. In Sec. 9.2, we derived the parallel-axis 

theorem

I 5 I 1 Ad2 (9.9)

which states that the moment of inertia I of an area A with respect to a given axis is equal 

to the sum of the moment of inertia I  of that area with respect to a parallel centroidal 
axis and the product Ad 2, where d is the distance between the two axes. It is important 

that you remember the following points as you use the parallel-axis theorem.

a. You can obtain the centroidal moment of inertia I
_
 of an area A by subtracting 

the product Ad 2 from the moment of inertia I of the area with respect to a parallel axis. 

It follows that the moment of inertia I  is smaller than the moment of inertia I of the same 

area with respect to any parallel axis.

b. You can apply the parallel-axis theorem only if one of the two axes involved is 
a centroidal axis. Therefore, as we noted in Concept Application 9.3, to compute the 

moment of inertia of an area with respect to a noncentroidal axis when the moment of 

inertia of the area is known with respect to another noncentroidal axis, it is necessary to 

first compute the moment of inertia of the area with respect to a centroidal axis parallel 

to the two given axes.

2. Computing the moments and polar moments of inertia of composite areas. Sample 

Probs. 9.4 and 9.5 illustrate the steps you should follow to solve problems of this type. 

As with all composite-area problems, you should show on your sketch the common shapes 

or rolled-steel shapes that constitute the various elements of the given area, as well as the 

distances between the centroidal axes of the elements and the axes about which the 

moments of inertia are to be computed. In addition, it is important to note the following 

points.

 a. The moment of inertia of an area is always positive, regardless of the location 

of the axis with respect to which it is computed. As pointed out in the comments for the 

preceding section, only when an area is removed (as in the case of a hole) should you 

enter its moment of inertia in your computations with a minus sign.

(continued)
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506

b. The moments of inertia of a semiellipse and a quarter ellipse can be determined 

by dividing the moment of inertia of an ellipse by 2 and 4, respectively. Note, however, 

that the moments of inertia obtained in this manner are with respect to the axes of  symmetry 
of the ellipse. To obtain the centroidal moments of inertia of these shapes, use the parallel-

axis theorem. This remark also applies to a semicircle and to a quarter circle. Also note 

that the expressions given for these shapes in Fig. 9.12 are not centroidal moments of 

inertia.

c. To calculate the polar moment of inertia of a composite area, you can use either 

the expressions given in Fig. 9.12 for JO or the relationship

 JO 5 Ix 1 Iy (9.4)

depending on the shape of the given area.

 d. Before computing the centroidal moments of inertia of a given area, you may 

find it necessary to first locate the centroid of the area using the methods of Chap. 5.

3. Locating the point of application of the resultant of a system of hydrostatic 
forces. In Sec. 9.1, we found that

 R 5 γ #  y dA 5 γ y A

 Mx 5 γ
 #  

y2 dA 5 γIx

where y is the distance from the x axis to the centroid of the submerged plane area. Since 

R is equivalent to the system of elemental hydrostatic forces, it follows that

oMx:   yPR 5 Mx

where yP is the depth of the point of application of R. Then

yP(γ y A) 5 γIx  or  yP 5
Ix

yA

In closing, we encourage you to carefully study the notation used in Fig. 9.13 for the 

rolled-steel shapes, as you will likely encounter it again in subsequent engineering courses.
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507

Problems
      9.31 and 9.32  Determine the moment of inertia and the radius of gyra-

tion of the shaded area with respect to the x axis.

y

xO

12 mm12 mm

8 mm

24 mm 24 mm

24 mm

6 mm

24 mm

6 mm

 Fig. P9.31   and   P9.33  

      9.33 and 9.34  Determine the moment of inertia and the radius of gyra-

tion of the shaded area with respect to the y axis.

      9.35 and 9.36  Determine the moments of inertia of the shaded area 

shown with respect to the x and y axes.

y

x
aa

a

a
O

Fig. P9.35   

y

2a 2a

a
a

a

a

3
2

a3
2

x
O

Fig. P9.36

 9.37 The centroidal polar moment of inertia JC of the 24-in2 shaded area 

is 600 in4. Determine the polar moments of inertia JB and JD of the 

shaded area knowing that JD 5 2JB and d 5 5 in.

 9.38 Determine the centroidal polar moment of inertia JC of the 25-in2 

shaded area knowing that the polar moments of inertia of the area 

with respect to points A, B, and D are, respectively, JA 5 281 in4, 

JB 5 810 in4, and JD 5 1578 in4. Fig. P9.37 and P9.38

y

xC

A

D2a
B

a

d

y

xO

2 in.

in.

2 in.

2 in.

1 in.

1 in.

1 in.

1 in.

1
2

in.1
2 in.1

2

in.1
2

 Fig. P9.32   and   P9.34  
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 9.39 Determine the shaded area and its moment of inertia with respect to 

the centroidal axis parallel to AA9 knowing that d1 5 25 mm and 

d2 5 10 mm and that its moments of inertia with respect to AA9 and 

BB9 are 2.2 3 106 mm4 and 4 3 106 mm4, respectively.

C

A'

d1

d2
A

B'B

Fig. P9.39 and P9.40

 9.40 Knowing that the shaded area is equal to 6000 mm2 and that its 

moment of inertia with respect to AA9 is 18 3 106 mm4, determine 

its moment of inertia with respect to BB9 for d1 5 50 mm and 

d2 5 10 mm.

      9.41 through 9.44  Determine the moments of inertia I x and I y of the 

area shown with respect to centroidal axes respectively parallel and 

 perpendicular to side AB.

 

1.2 in.

A B

1.8 in.

5.0 in.

0.9 in.
2.0 in. 2.1 in.

Fig. P9.43   

A B

1.3 in.

1.0 in.

0.5 in.

3.8 in.
0.5 in.

3.6 in.

Fig. P9.44

      9.45 and 9.46  Determine the polar moment of inertia of the area shown 

with respect to (a) point O, (b) the centroid of the area.

O

6 in. 6 in.

4.5 in.

Semicircle

Fig. P9.45    

4 in.

4 in.

4 in. 4 in.

O

Fig. P9.46

180
A B

60 60 60

Dimensions in mm

80

40

Fig. P9.41

42 mm

28 mm

36 mm
A B

Fig. P9.42
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509

      9.47 and 9.48  Determine the polar moment of inertia of the area shown 

with respect to (a) point O, (b) the centroid of the area.

O

40

Dimensions in mm

4040 40

60
80

Fig. P9.47

 9.49 Two channels and two plates are used to form the column section 

shown. For b 5 200 mm, determine the moments of inertia and the 

radii of gyration of the combined section with respect to the centroi-

dal x and y axes.

10 mm

C250 3 22.8

C

b

y

x

375 mm

Fig. P9.49

 9.50 Two L6 3 4 3 
1
2-in. angles are welded together to form the section 

shown. Determine the moments of inertia and the radii of gyration 

of the combined section with respect to the centroidal x and y axes.

 9.51 Four L3 3 3 3 
1
4-in. angles are welded to a rolled W section as 

shown. Determine the moments of inertia and the radii of gyration 

of the combined section with respect to the centroidal x and y axes.

 9.52 Two 20-mm steel plates are welded to a rolled S section as shown. 

Determine the moments of inertia and the radii of gyration of the 

combined section with respect to the centroidal x and y axes.

S310 × 47.3

C x

80 mm80 mm

20 mm

y

Fig. P9.52

O

84 mm
54 mm

27 mm

42 mm

Semiellipses

Fig. P9.48

C

y

x

5 in. 5 in.

1
4

W 8 3 31

L 3 3 3 3

Fig. P9.51

C

y

x
6 in.

4 in.in.1
2

Fig. P9.50

bee87302_ch09_485-572.indd   509bee87302_ch09_485-572.indd   509 10/25/14   10:58 AM10/25/14   10:58 AM

UPLOADED BY AHMAD T JUNDI



510

9.53 A channel and a plate are welded together as shown to form a section 

that is symmetrical with respect to the y axis. Determine the moments 

of inertia of the combined section with respect to its centroidal x and 

y axes.

12 in.

0.5 in.

y

x

C8 × 11.5

C

Fig. P9.53

 9.54 The strength of the rolled W section shown is increased by welding 

a channel to its upper flange. Determine the moments of inertia of 

the combined section with respect to its centroidal x and y axes.

 9.55 Two L76 3 76 3 6.4-mm angles are welded to a C250 3 22.8 

channel. Determine the moments of inertia of the combined section 

with respect to centroidal axes respectively parallel and perpendicu-

lar to the web of the channel.

C250 × 22.8

L76 × 76 × 6.4

Fig. P9.55

 9.56 Two steel plates are welded to a rolled W section as indicated. 

Knowing that the centroidal moments of inertia Ix and Iy of the com-

bined section are equal, determine (a) the distance a, (b) the moments 

of inertia with respect to the centroidal x and y axes.

      9.57 and 9.58  The panel shown forms the end of a trough that is filled 

with water to the line AA9. Referring to Sec. 9.1A, determine the 

depth of the point of application of the resultant of the hydrostatic 

forces acting on the panel (the center of pressure).

A

a

h

A'

Fig. P9.57    

A A'

h

h

bb

Fig. P9.58

C

W460 × 113

C250 × 22.8

y

x

Fig. P9.54

C

y

x

13 in.
1.0 in.

a

13 in.

W 14 × 38

Fig. P9.56
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      9.59 and *9.60  The panel shown forms the end of a trough that is filled 

with water to the line AA9. Referring to Sec. 9.1A, determine the 

depth of the point of application of the resultant of the hydrostatic 

forces acting on the panel (the center of pressure).

r

A′A

Fig. P9.59

9.61 A vertical trapezoidal gate that is used as an automatic valve is held 

shut by two springs attached to hinges located along edge AB. Know-

ing that each spring exerts a couple of magnitude 1470 N?m, deter-

mine the depth d of water for which the gate will open.

 9.62 The cover for a 0.5-m-diameter access hole in a water storage tank 

is attached to the tank with four equally spaced bolts as shown. 

Determine the additional force on each bolt due to the water pressure 

when the center of the cover is located 1.4 m below the water 

surface.

0.25 m

0.32 m
C D

A B

Fig. P9.62

 *9.63 Determine the x coordinate of the centroid of the volume shown. 

(Hint: The height y of the volume is proportional to the x coordinate; 

consider an analogy between this height and the water pressure on 

a submerged surface.)

 *9.64 Determine the x coordinate of the centroid of the volume shown; this 

volume was obtained by intersecting an elliptic cylinder with an 

oblique plane. (See hint of Prob. 9.63.)

x

y

z
64 mm 64 mm

39 mm

39 mm

Fig. P9.64

a

h

a
A'A

Parabola

Fig. P9.60

1.2 m

0.84 m

0.51 m

0.28 m

d
A

B

D

E

Fig. P9.61

z

a

b

h

2b

y

x

Fig. P9.63
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 *9.65 Show that the system of hydrostatic forces acting on a submerged 

plane area A can be reduced to a force P at the centroid C of the area 

and two couples. The force P is perpendicular to the area and has 

a magnitude of P 5 γAy sin θ, where γ is the specific weight of the 

liquid. The couples are Mx9 5 (γIx9 sin θ)i and My9 5 (γI x9y9 sin θ)j, 
where Ix9y9 5 ex9y9dA (see Sec. 9.3). Note that the couples are 

 independent of the depth at which the area is submerged.

x

x'

y
y'

C

A

q
⎯y

Mx'

My'

⎯x

P

Fig. P9.65

 *9.66 Show that the resultant of the hydrostatic forces acting on a sub-

merged plane area A is a force P perpendicular to the area and of 

magnitude P 5 γAy sin θ 5 pA, where γ is the specific weight of 

the liquid and p is the pressure at the centroid C of the area. Show 

that P is applied at a point CP, called the center of pressure, whose 

coordinates are xp 5 Ixy 
/Ay and yp 5 Ix 

/Ay, where Ixy 5 exy dA (see 

Sec. 9.3). Show also that the difference of ordinates yp 2 y is equal 

to k 
2
x¿/ y and thus depends upon the depth at which the area is 

submerged.

P

x

y

x'

y'

AC

CP

q ⎯y

⎯x

yP

xP

Fig. P9.66
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9.3 Transformation of Moments of Inertia 513

*9.3  TRANSFORMATION OF 
MOMENTS OF INERTIA

The moments of inertia of an area can have different values depending on 

what axes we use to calculate them. It turns out that it is often important 

to determine the maximum and minimum values of the moments of  inertia, 

which means finding the particular orientation of axes that produce these 

values. The first step in calculating moments of inertia with regard to 

rotated axes is to determine a new kind of second moment, called the 

product of inertia. In this section, we illustrate the procedures for this.

9.3A Product of Inertia
The product of inertia of an area A with respect to the x and y axes is 

defined by the integral

Product of inertia

 Ixy 5 #xy dA (9.12)

We calculate it by multiplying each element dA of an area A by its coor-

dinates x and y and integrating over the area (Fig. 9.14). Unlike the 

moments of inertia Ix and Iy, the product of inertia Ixy can be positive, 

negative, or zero. We will see shortly that the product of inertia is neces-

sary for transforming moments of inertia with respect to a different set of 

axes; in a course on mechanics of materials, you will find other applica-

tions of this quantity.

When one or both of the x and y axes are axes of symmetry for the 

area A, the product of inertia Ixy is zero. Consider, for example, the channel 

section shown in Fig. 9.15. Since this section is symmetrical with respect 

to the x axis, we can associate with each element dA of coordinates x and 

y an element dA9 of coordinates x and 2y. Clearly, the contributions to 

Ixy of any pair of elements chosen in this way cancel out, and the integral 

of Eq. (9.12) reduces to zero.

We can derive a parallel-axis theorem for products of inertia similar 

to the one established in Sec. 9.2 for moments of inertia.  Consider an area 

A and a system of rectangular coordinates x and y (Fig. 9.16). Through 

the centroid C of the area, with coordinates x and y, we draw two  centroidal 

axes x9 and y9 that are parallel, respectively, to the x and y axes. We denote 

the coordinates of an element of area dA with respect to the original axes 

by x and y, and the coordinates of the same element with respect to the 

centroidal axes by x9 and y9. This gives us

x 5 x¿ 1 x  and  y 5 y¿ 1 y

Substituting into Eq. (9.12), we obtain the expression for the product of 

inertia Ixy as

 Ixy 5#  
xy dA 5#  (x¿ 1 x)(y¿ 1 y) dA

 5#  x¿y¿ dA 1 y #  x¿ dA 1 x #  y¿ dA 1 x y #  dA

Fig. 9.14 An element of area dA with 
coordinates x and y.

dA

x

y

A
O

x

y

Fig. 9.15 If an area has an axis of symmetry, 
its product of inertia is zero.

dA'

dA

x

y

O

–y

y

x

Fig. 9.16 An element of area dA with 
respect to x and y axes and the centroidal 
axes x9 and y9 for area A.

x

y

O

C

⎯y

⎯x

dA

x

y

y'

y'

x'

x'

bee87302_ch09_485-572.indd   513bee87302_ch09_485-572.indd   513 10/25/14   10:58 AM10/25/14   10:58 AM

UPLOADED BY AHMAD T JUNDI



514 Distributed Forces: Moments of Inertia

The first integral represents the product of inertia Ixy of the area A with 

respect to the centroidal axes x9 and y9. The next two integrals represent 

first moments of the area with respect to the centroidal axes; they reduce 

to zero, since the centroid C is located on these axes. The last integral is 

equal to the total area A. Therefore, we have

Parallel-axis theorem for products of inertia

Ixy 5 Ix9y9 1 xyA (9.13)

9.3B  Principal Axes and Principal 
Moments of Inertia

Consider an area A with coordinate axes x and y (Fig. 9.17) and assume 

that we know the moments and product of inertia of the area A. We have

Ix 5#  
y2 dA   Iy 5#  

x2 dA   Ixy 5#  
xy dA (9.14)

We propose to determine the moments and product of inertia Ix9, Iy9, and 

Ix9y9 of A with respect to new axes x9 and y9 that we obtain by rotating the 

original axes about the origin through an angle θ.

Fig. 9.17 An element of area dA with 
respect to x and y axes and a set of x9 and y9 
axes rotated about the origin through an 
angle θ.

dA

x
x

y

y

O

y'

y'

x'

x'

q

x cos q

y sin q

We first note that the relations between the coordinates x9, y9 and 

x, y of an element of area dA are

x9 5 x cos θ 1 y sin θ   y9 5 y cos θ 2 x sin θ

Substituting for y9 in the expression for Ix9, we obtain

Ix¿ 5#  
(y¿ )2 dA 5#  (y cos θ 2 x sin θ)2 dA

 5 cos2 θ #  y2 dA 2 2 sin θ cos θ #  xy dA 1 sin2 θ #  x2 dA

IxII y 5 IxII 9y9 1 xyAyyA
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9.3 Transformation of Moments of Inertia 515

Fig. 9.18 Plots of Ix9y9 versus (a) Ix9 and (b) Iy9 
for different values of the parameter θ are 
identical circles. The circle in part (a) indicates 
the average, maximum, and minimum values 
of the moment of inertia.

O

M

C A

R

B

Ix'y'

Ix'

Ix'

Ix'y'

Imin

Iave

Imax

(a)

Iy'

O C

N R

Ix'y'

(b)

Iave

Iy'

–Ix'y'

Using the relations in Eq. (9.14), we have

 Ix9 5 Ix cos2 θ 2 2Ixy sin θ cos θ 1 Iy sin2 θ (9.15)

Similarly, we obtain for Iy9 and Ix9y9 the expressions

 Iy9 5 Ix sin2 θ 1 2Ixy sin θ cos θ 1 Iy cos2 θ (9.16)

 Ix9y9 5 (Ix 2 Iy) sin θ cos θ 1 Ixy(cos2 θ 2 sin2 θ) (9.17)

Recalling the trigonometric relations

sin 2θ 5 2 sin θ cos θ   cos 2θ 5 cos2 θ 2 sin2 θ

and

cos2 θ 5
1 1 cos 2θ

2
   sin2 θ 5

1 2 cos 2θ

2

we can write Eqs. (9.15), (9.16), and (9.17) as 

  Ix¿ 5
Ix 1 Iy

2
1

Ix 2 Iy

2
 cos 2θ 2 Ixy sin 2θ (9.18)

  Iy¿ 5
Ix 1 Iy

2
2

Ix 2 Iy

2
 cos 2θ 1 Ixy sin 2θ (9.19)

  Ix¿y¿ 5
Ix 2 Iy

2
 sin 2θ 1 Ixy cos 2θ  (9.20)

Now, adding Eqs. (9.18) and (9.19), we observe that

 Ix9 1 Iy9 5 Ix 1 Iy (9.21)

We could have anticipated this result, since both members of Eq. (9.21) 

are equal to the polar moment of inertia JO.

Equations (9.18) and (9.20) are the parametric equations of a circle. 

This means that, if we choose a set of rectangular axes and plot a point M 

of abscissa Ix9 and ordinate Ix9y9 for any given value of the parameter θ, all 

of the points will lie on a circle. To establish this property algebraically, 

we can eliminate θ from Eqs. (9.18) and (9.20) by transposing (Ix 1 Iy)/2 

in Eq. (9.18), squaring both sides of Eqs. (9.18) and (9.20), and adding. 

The result is

 aIx9 2
Ix 1 Iy

2
b2

1 I2
x9y9 5 aIx 2 Iy

2
b2

1 I2
xy (9.22)

Setting

 Iave 5
Ix 1 Iy

2
  and  R 5

B
aIx 2 Iy

2
b2

1 I2
xy (9.23)

we can write the identity equation (9.22) in the form

 (Ix9 2 Iave)
2 1 I2

x9y9 5 R2 (9.24)

This is the equation of a circle of radius R centered at the point C whose 

x and y coordinates are Iave and 0, respectively (Fig. 9.18a). 

Note that Eqs. (9.19) and (9.20) are parametric equations of the 

same circle. Furthermore, because of the symmetry of the circle about the 
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516 Distributed Forces: Moments of Inertia

horizontal axis, we would obtain the same result if we plot a point N of 

coordinates Iy9 and 2 Ix9y9 (Fig. 9.18b) instead of plotting M. We will use 

this property in Sec. 9.4.

The two points A and B where this circle intersects the horizontal 

axis (Fig. 9.18a) are of special interest: Point A corresponds to the 

 maximum value of the moment of inertia Ix9, whereas point B corresponds 

to its minimum value. In addition, both points correspond to a zero value 

of the product of inertia Ix9y9. Thus, we can obtain the values θm of the 

parameter θ corresponding to the points A and B by setting Ix9y9 5 0 in 

Eq. (9.20). The result is†

  tan 2θm 5
2Ixy

Ix 2 Iy
 (9.25)

This equation defines two values (2θm) that are 180° apart and thus two 

values (θm) that are 90° apart. One of these values corresponds to point A 

in Fig. 9.18a and to an axis through O in Fig. 9.17 with respect to which 

the moment of inertia of the given area is maximum. The other value 

corresponds to point B and to an axis through O with respect to which 

the moment of inertia of the area is minimum. These two perpendicular 

axes are called the principal axes of the area about O. The correspond-

ing values Imax and Imin of the moment of inertia are called the principal 
moments of inertia of the area about O. Since we obtained the two 

values θm defined by Eq. (9.25) by setting Ix9y9 5 0 in Eq. (9.20), it is 

clear that the product of inertia of the given area with respect to its prin-

cipal axes is zero.

Note from Fig. 9.18a that

 Imax 5 Iave 1 R    Imin 5 Iave 2 R (9.26)

Using the values for Iave and R from formulas (9.23), we obtain

 Imax, min 5
Ix 1 Iy

2
6
B
aIx 2 Iy

2
b2

1 I2
xy (9.27)

Unless you can tell by inspection which of the two principal axes corre-

sponds to Imax and which corresponds to Imin, you must substitute one of 

the values of θm into Eq. (9.18) in order to determine which of the two 

corresponds to the maximum value of the moment of inertia of the area 

about O.

Referring to Sec. 9.3A, note that, if an area possesses an axis of 

symmetry through a point O, this axis must be a principal axis of the area 

about O. On the other hand, a principal axis does not need to be an axis 

of symmetry; whether or not an area possesses any axes of symmetry, it 

will always have two principal axes of inertia about any point O.

The properties we have established hold for any point O located 

inside or outside the given area. If we choose the point O to coincide with 

the centroid of the area, any axis through O is a centroidal axis; the two 

principal axes of the area about its centroid are referred to as the principal 
centroidal axes of the area.

†We can also obtain this relation by differentiating Ix9 in Eq. (9.18) and setting dIx9/dθ 5 0.
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9.3 Transformation of Moments of Inertia 517

Sample Problem 9.6

Determine the product of inertia of the right triangle shown (a) with 

respect to the x and y axes and (b) with respect to centroidal axes parallel 

to the x and y axes.

STRATEGY: You can approach this problem by using a vertical 

 differential strip element. Because each point of the strip is at a different 

distance from the x axis, it is necessary to describe this strip mathemati-

cally using the parallel-axis theorem. Once you have completed the solu-

tion for the product of inertia with respect to the x and y axes, a second 

application of the parallel-axis theorem yields the product of inertia with 

respect to the centroidal axes.

MODELING and ANALYSIS:

a. Product of Inertia Ixy. Choose a vertical rectangular strip as the 

differential element of area (Fig. 1). Using a differential version of the 

parallel-axis theorem, you have

dIxy 5 dIx¿y¿ 1 xel yel dA

The element is symmetrical with respect to the x9 and y9 axes, so dIx9y9 5 0. 

From the geometry of the triangle, you can express the variables in terms 

of x and y.

 y 5 h a1 2
x

b
b      dA 5 y dx 5 h a1 2

x

b
b dx

 xel 5 x      yel 5
1
2y 5

1
2h a1 2

x

b
b

Integrating dIxy from x 5 0 to x 5 b gives you Ixy:

 Ixy 5#  
dIxy 5#  xel yel  dA 5#

b

0
 

x(
1
2)h2 a1 2

x

b
b2

 dx

 5 h2#
b

0

ax

2
2

x2

b
1

x3

2b2
b dx 5 h2 c x2

4
2

x3

3b
1

x4

8b2
d b

0

Ixy 5
1
24 b2h2 b

b. Product of Inertia I
_

x0y0 . The coordinates of the centroid of the 
 triangle relative to the x and y axes are (Fig. 2 and Fig. 5.8A)

x 5
1

3
 b   y 5

1

3
 h

Using the expression for Ixy obtained in part a, apply the parallel-axis 

theorem again:

 Ixy 5 I x–y– 1 x   yA

 
1
24b2h2 5 I x–y– 1 (

1
3b)(

1
3h)(

1
2bh)

 I x–y– 5
1
24 b2h2 2

1
18 b2h2

Ix–y– 5 2
1
72b2h2 b

REFLECT and THINK: An equally effective alternative strategy would 

be to use a horizontal strip element. Again, you would need to use the 

parallel-axis theorem to describe this strip, since each point in the strip 

would be a different distance from the y axis.

y

x

h

b

y y'

x

x'y

h

x dx

b

⎯xel

⎯yel

Fig. 1 Using a vertical rectangular 
strip as the differential element.

y y�

x

x�
C

b

⎯y

⎯xh

Fig. 2 Centroid of the triangular 
area.
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518 Distributed Forces: Moments of Inertia

Sample Problem 9.7

For the section shown, the moments of inertia with respect to the x and y 

axes have been computed and are known to be

Ix 5 10.38 in4   Iy 5 6.97 in4

Determine (a) the orientation of the principal axes of the section about O, 

(b) the values of the principal moments of inertia of the section about O.

STRATEGY: The first step is to compute the product of inertia with 

respect to the x and y axes, treating the section as a composite area of 

three rectangles. Then you can use Eq. (9.25) to find the principal axes 

and Eq. (9.27) to find the principal moments of inertia.

MODELING and ANALYSIS: Divide the area into three rectangles as 

shown (Fig. 1). Note that the product of inertia Ix9y9 with respect to 

 centroidal axes parallel to the x and y axes is zero for each rectangle. Thus, 

using the parallel-axis theorem

Ixy 5 Ix¿y¿ 1 xÊ yÊA

you find that Ixy reduces to x y A for each rectangle.

Rectangle Area, in2 x
_

, in. y
_

, in. x
_
y 
_

A, in4

I 1.5 21.25 11.75 23.28

II 1.5 0 0 0

III 1.5 11.25 21.75 23.28

    o xyA 5 26.56

Ixy 5 ox  yA 5 26.56 in4

a. Principal Axes. Since you know the magnitudes of Ix, Iy, and Ixy, 

you can use Eq. (9.25) to determine the values of θm (Fig. 2):

 tan 2θm 5 2
2Ixy

Ix 2 Iy
5 2

2(26.56)

10.38 2 6.97
5 13.85

 2θm 5 75.48 and 255.48

θm 5 37.78  and  θm 5 127.78 b

b. Principal Moments of Inertia. Using Eq. (9.27), you have

 Imax,min 5
Ix 1 Iy

2
6
B
aIx 2 Iy

2
b2

1 I2
xy

 5
10.38 1 6.97

2
6
B
a10.38 2 6.97

2
b2

1 (26.56)2

Imax 5 15.45 in4  Imin 5 1.897 in4 b

REFLECT and THINK: Note that the elements of the area of the 

 section are more closely distributed about the b axis than about the a axis. 

Therefore, you can conclude that Ia 5 Imax 5 15.45 in4 and Ib 5 Imin 5

1.897 in4. You can verify this conclusion by substituting θ 5 37.7° into 

Eqs. (9.18) and (9.19).

O

3 in.

3 in.

in.1
2

4 in.

y

x
in.1

2
in.1

2

1.25 in.

1.25 in.

1.75 in.

1.75 in.

I

II

III

O

y

x

Fig. 1 Modeling the given 
area as three rectangles.

b

a

qm = 127.7°

qm = 37.7°
O

y

x

Fig. 2 Orientation of principal 
axes.
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519 519

SOLVING PROBLEMS 
ON YOUR OWN

In the problems for this section, you will continue your work with moments of inertia
and use various techniques for computing products of inertia. Although the problems 

are generally straightforward, several items are worth noting.

1. Calculating the product of inertia Ixy by integration. We defined this quantity as

 Ixy 5 #xy dA (9.12)

and stated that its value can be positive, negative, or zero. You can compute the product 

of inertia directly from this equation using double integration, or you can find it by using 

single integration as shown in Sample Prob. 9.6. When applying single integration and 

using the parallel-axis theorem, it is important to remember that in the equation

dIxy 5 dIx9y9 1 xel yel 
dA

x el and y el are the coordinates of the centroid of the element of area dA. Thus, if dA is 

not in the first quadrant, one or both of these coordinates is negative.

2. Calculating the products of inertia of composite areas. You can easily compute these 

quantities from the products of inertia of their component parts by using the parallel-axis 

theorem, as

 Ixy 5 I x9y9 1 x yA (9.13)

The proper technique to use for problems of this type is illustrated in Sample Probs. 9.6 

and 9.7. In addition to the usual rules for composite-area problems, it is essential that you 

remember the following points.

 a. If either of the centroidal axes of a component area is an axis of symmetry for 
that area, the product of inertia I

_
x9y9 for that area is zero. Thus, I x9y9 is zero for com-

ponent areas such as circles, semicircles, rectangles, and isosceles triangles, which possess 

an axis of symmetry parallel to one of the coordinate axes.

b. Pay careful attention to the signs of the coordinates x
_
 and y

_
 of each  component 

area when you use the parallel-axis theorem [Sample Prob. 9.7].

3. Determining the moments of inertia and the product of inertia for rotated coor-
dinate axes. In Sec. 9.3B, we derived Eqs. (9.18), (9.19), and (9.20) from which you can 

compute the moments of inertia and the product of inertia for coordinate axes that have 

been rotated about the origin O. To apply these equations, you must know a set of values 

Ix, Iy, and Ixy for a given orientation of the axes, and you must remember that θ is positive 

for counterclockwise rotations of the axes and negative for clockwise rotations of the axes.

4. Computing the principal moments of inertia. We showed in Sec. 9.3B that a  particular 

orientation of the coordinate axes exists for which the moments of inertia attain their maxi-

mum and minimum values, Imax and Imin, and for which the product of inertia is zero. Equa-

tion (9.27) can be used to compute these values that are known as the  principal moments 
of inertia of the area about O. The corresponding axes are referred to as the principal axes
of the area about O, and their orientation is defined by Eq. (9.25). To determine which of 

the principal axes corresponds to Imax and which corresponds to Imin, you can either follow 

the procedure outlined in the text after Eq. (9.27) or observe about which of the two principal 

axes the area is more closely distributed; that axis corresponds to Imin [Sample Prob. 9.7].
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520520

Problems
 9.67 through 9.70  Determine by direct integration the product of  inertia 

of the given area with respect to the x and y axes.

x

y

h

b

Fig. P9.68

x

y

a

a a

y 5 k
x

Fig. P9.70

 9.71 through 9.74  Using the parallel-axis theorem, determine the 

 product of inertia of the area shown with respect to the centroidal 

x and y axes.

x

y

40 mm

40 mm

60 mm 60 mm

C

Fig. P9.72

0.25 in.
3 in.

2 in.

0.25 in.

0.487 in.

0.980 in.
y

xC

L3 × 2 × 1
4

Fig. P9.74

x

y

O

x2

4a2

y2

a2
+ = 1

a

2a

Fig. P9.67

x

y

b

y 5 kx1/2

a

Fig. P9.69

20 mm

20 mm

60 mm
10 mm

10 mm 10 mm100 mm

60 mm

y

x

C

Fig. P9.71

6 in.

6 in.

y

xC

Fig. P9.73
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521

19 in.

15 in.

9 in. 3 in.

9 in.3 in.

2 in.
2 in.

y

xC

Fig. P9.76

y

C x

50.3 mm

152 mm

L 152 3 102 3 12.7

24.9 mm

12.7 mm

102 mm

12.7 mm

Fig. P9.78

 9.75 through 9.78  Using the parallel-axis theorem, determine the 

 product of inertia of the area shown with respect to the centroidal 

x and y axes.

40 mm

8 mm

100 mm

8 mm

8 mm

40 mm

y

xC

Fig. P9.75

1.3 in.

5.3 in.

1.0 in.

0.412 in.

0.5 in.

0.5 in.

2.25 in.

3.6 in.

y

C
x

Fig. P9.77

 9.79 Determine for the quarter ellipse of Prob. 9.67 the moments of inertia 

and the product of inertia with respect to new axes obtained by 

 rotating the x and y axes about O (a) through 45° counterclockwise, 

(b) through 30° clockwise.

 9.80 Determine the moments of inertia and the product of inertia of the 

area of Prob. 9.72 with respect to new centroidal axes obtained by 

rotating the x and y axes 30° counterclockwise.

 9.81 Determine the moments of inertia and the product of inertia of the 

area of Prob. 9.73 with respect to new centroidal axes obtained by 

rotating the x and y axes 60° counterclockwise.

 9.82 Determine the moments of inertia and the product of inertia of the 

area of Prob. 9.75 with respect to new centroidal axes obtained by 

rotating the x and y axes 45° clockwise.

 9.83 Determine the moments of inertia and the product of inertia of the 

L3 3 2 3 
1
4-in. angle cross section of Prob. 9.74 with respect to new 

centroidal axes obtained by rotating the x and y axes 30° 

clockwise.

bee87302_ch09_485-572.indd   521bee87302_ch09_485-572.indd   521 10/25/14   10:58 AM10/25/14   10:58 AM

UPLOADED BY AHMAD T JUNDI



522

9.84 Determine the moments of inertia and the product of inertia of the 

L152 3 102 3 12.7-mm angle cross section of Prob. 9.78 with 

respect to new centroidal axes obtained by rotating the x and y axes 

30° clockwise.

 9.85 For the quarter ellipse of Prob. 9.67, determine the orientation of the 

principal axes at the origin and the corresponding values of the 

moments of inertia.

 9.86 through 9.88  For the area indicated, determine the orientation of 

the principal axes at the origin and the corresponding values of the 

moments of inertia.

 9.86 Area of Prob. 9.72

 9.87 Area of Prob. 9.73

 9.88 Area of Prob. 9.75

 9.89 and 9.90  For the angle cross section indicated, determine the 

 orientation of the principal axes at the origin and the corresponding 

values of the moments of inertia.

 9.89 The L3 3 2 3 
1
4-in. angle cross section of Prob. 9.74

 9.90  The L152 3 102 3 12.7-mm angle cross section of 

Prob. 9.78
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9.4 Mohr’s Circle for Moments of Inertia 523

*9.4  MOHR’S CIRCLE FOR 
MOMENTS OF INERTIA

The circle introduced in the preceding section to illustrate the relations 

between the moments and products of inertia of a given area with respect 

to axes passing through a fixed point O was first introduced by the  German 

engineer Otto Mohr (1835–1918) and is known as Mohr’s circle. Here, 

we show that, if we know the moments and product of inertia of an area A 

with respect to two rectangular x and y axes that pass through a point O, 

we can use Mohr’s circle to graphically determine (a) the principal axes 

and principal moments of inertia of the area about O and (b) the moments 

and product of inertia of the area with respect to any other pair of rect-

angular axes x9 and y9 through O.

Consider a given area A and two rectangular coordinate axes x and y 

(Fig. 9.19a). Assuming that we know the moments of inertia Ix and Iy and 

the product of inertia Ixy, we can represent them on a diagram by plotting 

a point X with coordinates Ix and Ixy and a point Y with coordinates Iy and 

2Ixy (Fig. 9.19b). If Ixy is positive, as assumed in Fig. 9.19a, then point 

X is located above the horizontal axis and point Y is located below, as 

shown in Fig. 9.19b. If Ixy is negative, X is located below the horizontal 

axis and Y is located above. Joining X and Y with a straight line, we denote 

the point of intersection of line XY with the horizontal axis by C. Then 

we draw the circle of center C and diameter XY. Noting that the abscissa 

of C and the radius of the circle are respectively equal to the quantities 

Iave and R defined by formula (9.23), we conclude that the circle obtained 

is Mohr’s circle for the given area about point O. Thus, the abscissas of 

the points A and B where the circle intersects the horizontal axis  represent, 

respectively, the principal moments of inertia Imax and Imin of the area.

Also note that, since tan (XCA) 5 2Ixy/(Ix 2 Iy), the angle XCA is 

equal in magnitude to one of the angles 2θm that satisfy Eq. (9.25). Thus, 

the angle θm, which in Fig. 9.19a defines the principal axis Oa  corresponding 

Fig. 9.19  (a) An area A with principal axes Oa and Ob and axes Ox9 and Oy9 
obtained by rotation through an angle θ; (b) Mohr’s circle used to calculate angles 
and moments of inertia.

x'

x
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O

b

a

y

(a)

2q

AB C

Y

2qm

O

Imin

Imax

Ixy

Ix'
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524 Distributed Forces: Moments of Inertia

to point A in Fig. 9.19b, is equal to half of the angle XCA of Mohr’s circle. 

In addition, if Ix . Iy and Ixy . 0, as in the case considered here, the rota-

tion that brings CX into CA is clockwise. Also, under these conditions, the 

angle θm obtained from Eq. (9.25) is negative; thus, the rotation that brings 

Ox into Oa is also clockwise. We conclude that the senses of rotation in 

both parts of Fig. 9.19 are the same. If a clockwise rotation through 2θm is 

required to bring CX into CA on Mohr’s circle, a clockwise rotation through 

θm will bring Ox into the corresponding principal axis Oa in Fig. 9.19a.

Since Mohr’s circle is uniquely defined, we can obtain the same 

circle by considering the moments and product of inertia of the area A 

with respect to the rectangular axes x9 and y9 (Fig. 9.19a). The point X9

with coordinates Ix9 and Ix9y9 and the point Y9 with coordinates Iy9 and 2Ix9y9 

are thus located on Mohr’s circle, and the angle X9CA in Fig. 9.19b must 

be equal to twice the angle x9Oa in Fig. 9.19a. Since, as noted previously, 

the angle XCA is twice the angle xOa, it  follows that the angle XCX9 in 

Fig. 9.19b is twice the angle xOx9 in Fig. 9.19a. The diameter X9Y9, which 

defines the moments and product of inertia Ix9, Iy9, and Ix9y9 of the given 

area with respect to rectangular axes x9 and y9 forming an angle θ with 

the x and y axes, can be obtained by rotating through an angle 2θ the 

diameter XY, which corresponds to the moments and product of inertia Ix , 
Iy, and Ixy. Note that the rotation that brings the diameter XY into the 

diameter X9Y9 in Fig. 9.19b has the same sense as the rotation that brings 

the x and y axes into the x9 and y9 axes in Fig. 9.19a.

Finally, also note that the use of Mohr’s circle is not limited to 

graphical solutions, i.e., to solutions based on the careful drawing and 

measuring of the various parameters involved. By merely sketching Mohr’s 

circle and using trigonometry, you can easily derive the various relations 

required for a numerical solution of a given problem (see Sample Prob. 9.8).

Sample Problem 9.8

For the section shown, the moments and product of inertia with respect 

to the x and y axes are 

Ix 5 7.20 3 106 mm4  Iy 5 2.59 3 106 mm4  Ixy 5 22.54 3 106 mm4

Using Mohr’s circle, determine (a) the principal axes of the section 

about O, (b) the values of the principal moments of inertia of the  section 

about O, and (c) the moments and product of inertia of the section with 

respect to the x9 and y9 axes that form an angle of 60° with the x and 

y axes.

STRATEGY: You should carefully draw Mohr’s circle and use the 

geometry of the circle to determine the orientation of the principal axes. 

Then complete the analysis for the requested moments of inertia.

MODELING:

Drawing Mohr’s Circle. First plot point X with coordinates 

Ix 5 7.20, Ixy 5 22.54, and plot point Y with coordinates Iy 5 2.59, 

2Ixy 5 12.54. Join X and Y with a straight line to define the center C 

y

x

y�

x�

O

q = 60°
L152 × 102 × 12.7
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9.4 Mohr’s Circle for Moments of Inertia 525

of Mohr’s circle (Fig. 1). You can measure the abscissa of C, which 

represents Iave, and the radius R of the circle either directly or using 

Iave 5 OC 5
1
2(Ix 1 Iy) 5

1
2(7.20 3 106 1 2.59 3 106) 5 4.895 3 106 mm4

 CD 5
1
2(Ix 2 Iy) 5

1
2(7.20 3 106 2 2.59 3 106) 5 2.305 3 106 mm4

  R 5 2(CD)2 1 (DX)2 5 2(2.305 3 106)2 1 (2.54 3 106)2

 5 3.430 3 106 mm4

ANALYSIS:

a. Principal Axes. The principal axes of the section correspond to 

points A and B on Mohr’s circle, and the angle through which you 

should rotate CX to bring it into CA defines 2θm. You obtain

tan 2θm 5
DX

CD
5

2.54

2.305
5 1.102   2θm 5 47.88 l   θm 5 23.98 l b

Thus, the principal axis Oa corresponding to the maximum value of 

the moment of inertia is obtained by rotating the x axis through 23.9° 

counterclockwise; the principal axis Ob corresponding to the minimum 

value of the moment of inertia can be obtained by rotating the y axis 

through the same angle (Fig. 2).

b. Principal Moments of Inertia. The principal moments of 

inertia are represented by the abscissas of A and B. The results are

Imax 5 OA 5 OC 1 CA 5 Iave 1 R 5 (4.895 1 3.430)106 mm4

Imax 5 8.33 3 106 mm4
 b

Imin 5 OB 5 OC 2 BC 5 Iave 2 R 5 (4.895 2 3.430)106 mm4

Imin 5 1.47 3 106 mm4
 b

c. Moments and Product of Inertia with Respect to the x9 
and y9 Axes. On Mohr’s circle, you obtain the points X9 and Y9, 

which  correspond to the x9 and y9 axes, by rotating CX and CY through 

an angle 2θ 5 2(60°) 5 120° counterclockwise (Fig. 3). The  coordinates 

of X9 and Y9 yield the desired moments and product of inertia. Noting 

that the angle that CX9 forms with the horizontal axis is ϕ 5 120° 

2 47.8° 5 72.2°, you have

  Ix9 5 OF 5 OC 1 CF 5 4.895 3 106 mm4 1 (3.430 3 106 mm4) cos 72.2°

Ix9 5 5.94 3 106 mm4 b

   Iy9 5 OG 5 OC 2 GC 5 4.895 3 106 mm4 2 (3.430 3 106 mm4) cos 72.2°

Iy9 5 3.85 3 106 mm4 b

Ix9y9 5 FX9 5 (3.430 3 106 mm4) sin 72.2°

Ix9y9 5 3.27 3 106 mm4 b

REFLECT and THINK: This problem illustrates typical calculations 

with Mohr’s circle. The technique is a useful one to learn and 

remember.

2qm = 47.8°

2q = 120°

4.895 × 106 mm4

3.430 × 106 

mm4

Ixy

X

Y

FG

X'

Y'

f

O C Ix, Iy 

Fig. 3 Using Mohr’s circle to determine 
the moments and product of inertia with 
respect to x9 and y9 axes.

O
B E

C D A

Ixy (106 mm4)

Y(2.59, +2.54)

X(7.20, –2.54)

2qm Ix, Iy
(106 mm4) 

Fig. 1 Mohr’s circle.

y

x

b

a

O

qm = 23.9°

Fig. 2 Orientation of the 
principal axes.
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526526

SOLVING PROBLEMS 
ON YOUR OWN

In the problems for this section, you will use Mohr’s circle to determine the moments 

and products of inertia of a given area for different orientations of the coordinate axes. 

Although in some cases using Mohr’s circle may not be as direct as substituting into the 

appropriate equations [Eqs. (9.18) through (9.20)], this method of solution has the advan-

tage of providing a visual representation of the relationships among the variables involved. 

Also, Mohr’s circle shows all of the values of the moments and products of inertia that 

are possible for a given problem.

Using Mohr’s circle. We presented the underlying theory in Sec. 9.3B, and we discussed 

the application of this method in Sec. 9.4 and in Sample Prob. 9.8. In the same problem, 

we presented the steps you should follow to determine the principal axes, the principal 
moments of inertia, and the moments and product of inertia with respect to a specified 
orientation of the coordinates axes. When you use Mohr’s circle to solve problems, it 

is important that you remember the following points.

 a. Mohr’s circle is completely defined by the quantities R and Iave, which represent, 

respectively, the radius of the circle and the distance from the origin O to the center C of 

the circle. You can obtain these quantities from Eqs. (9.23) if you know the moments and 

product of inertia for a given orientation of the axes. However, Mohr’s circle can be defined 

by other combinations of known values [Probs. 9.103, 9.106, and 9.107]. For these cases, 

it may be necessary to first make one or more assumptions, such as choosing an arbitrary 

location for the center when Iave is unknown, assigning relative magnitudes to the moments 

of inertia (for example, Ix . Iy), or selecting the sign of the product of inertia.

 b. Point X of coordinates (Ix, Ixy) and point Y of coordinates (Iy, 2Ixy) are both 

located on Mohr’s circle and are diametrically opposite.

 c. Since moments of inertia must be positive, all of Mohr’s circle must lie to the 

right of the Ixy axis; it follows that Iave . R for all cases.

 d. As the coordinate axes are rotated through an angle θ, the associated rotation of 

the diameter of Mohr’s circle is equal to 2θ and is in the same sense (clockwise or coun-

terclockwise). We strongly suggest that you label the known points on the circumference 

of the circle with the appropriate capital letter, as was done in Fig. 9.19b and for the Mohr 

circles of Sample Prob. 9.8. This will enable you to determine the sign of the correspond-

ing product of inertia for each value of θ and which moment of inertia is associated with 

each of the coordinate axes [Sample Prob. 9.8, parts a and c].

Although we have introduced Mohr’s circle within the specific context of the study of 

moments and products of inertia, the Mohr circle technique also applies to the solution of 

analogous but physically different problems in mechanics of materials. This multiple use 

of a specific technique is not unique, and as you pursue your engineering studies, you will 

encounter several methods of solution that can be applied to a variety of problems.
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527

Problems
 9.91 Using Mohr’s circle, determine for the quarter ellipse of Prob. 9.67 

the moments of inertia and the product of inertia with respect to new 

axes obtained by rotating the x and y axes about O (a) through 45° 

counterclockwise, (b) through 30° clockwise.

 9.92 Using Mohr’s circle, determine the moments of inertia and the  product 

of inertia of the area of Prob. 9.72 with respect to new centroidal axes 

obtained by rotating the x and y axes 30° counterclockwise.

 9.93 Using Mohr’s circle, determine the moments of inertia and the  product 

of inertia of the area of Prob. 9.73 with respect to new centroidal axes 

obtained by rotating the x and y axes 60° counterclockwise.

 9.94 Using Mohr’s circle, determine the moments of inertia and the product 

of inertia of the area of Prob. 9.75 with respect to new centroidal axes 

obtained by rotating the x and y axes 45° clockwise.

 9.95 Using Mohr’s circle, determine the moments of inertia and the 

 product of inertia of the L3 3 2 3 
1
4-in. angle cross section of 

Prob. 9.74 with respect to new centroidal axes obtained by rotating 

the x and y axes 30° clockwise.

 9.96 Using Mohr’s circle, determine the moments of inertia and the 

 product of inertia of the L152 3 102 3 12.7-mm angle cross section 

of Prob. 9.78 with respect to new centroidal axes obtained by rotating 

the x and y axes 30° clockwise.

 9.97 For the quarter ellipse of Prob. 9.67, use Mohr’s circle to determine 

the orientation of the principal axes at the origin and the correspond-

ing values of the moments of inertia.

 9.98 through 9.102  Using Mohr’s circle, determine for the area 

 indicated the orientation of the principal centroidal axes and the 

 corresponding values of the moments of inertia.

 9.98 Area of Prob. 9.72

 9.99 Area of Prob. 9.76

 9.100 Area of Prob. 9.73

 9.101 Area of Prob. 9.74

9.102 Area of Prob. 9.77

(The moments of inertia Ix and Iy of the area of Prob. 9.102 were 

determined in Prob. 9.44)

 9.103 The moments and product of inertia of an L4 3 3 3 
1
4-in. angle cross 

section with respect to two rectangular axes x and y through C are, 

respectively, Ix 5 1.33 in4, Iy 5 2.75 in4, and Ixy , 0, with the mini-

mum value of the moment of inertia of the area with respect to any 

axis through C being Imin5 0.692 in4. Using Mohr’s circle, determine 

(a) the product of inertia Ixy of the area, (b) the orientation of the 

principal axes, (c) the value of Imax.
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528

 9.104 and 9.105  Using Mohr’s circle, determine the orientation of the 

principal centroidal axes and the corresponding values of the 

moments of inertia for the cross section of the rolled-steel angle 

shown. (Properties of the cross sections are given in Fig. 9.13.)

C
x

y

18.9 mm

L127 × 76 × 12.7

12.7 mm

12.7 mm

127 mm

44.2 mm

76 mm

Fig. P9.105

 *9.106 For a given area, the moments of inertia with respect to two rectangular 

centroidal x and y axes are Ix 5 1200 in4 and Iy 5 300 in4, respectively. 

Knowing that, after rotating the x and y axes about the centroid 30° 

counterclockwise, the moment of inertia relative to the rotated x axis 

is 1450 in4, use Mohr’s circle to determine (a) the orientation of the 

principal axes, (b) the principal centroidal moments of inertia.

 9.107 It is known that for a given area Iy 5 48 3 106 mm4 and Ixy 5 220 3 

106 mm4, where the x and y axes are rectangular centroidal axes. If 

the axis corresponding to the maximum product of inertia is obtained 

by rotating the x axis 67.5° counterclockwise about C, use Mohr’s 

circle to determine (a) the moment of inertia Ix of the area, (b) the 

principal centroidal moments of inertia.

 9.108 Using Mohr’s circle, show that for any regular polygon (such as a 

pentagon) (a) the moment of inertia with respect to every axis 

through the centroid is the same, (b) the product of inertia with 

respect to every pair of rectangular axes through the centroid is zero.

 9.109 Using Mohr’s circle, prove that the expression Ix¿Iy¿ 2 I2
x¿y¿ is 

 independent of the orientation of the x9 and y9 axes, where Ix9, Iy9, 

and Ix9y9 represent the moments and product of inertia, respectively, 

of a given area with respect to a pair of rectangular axes x9 and y9 

through a given point O. Also show that the given expression is equal 

to the square of the length of the tangent drawn from the origin of 

the coordinate system to Mohr’s circle.

 9.110 Using the invariance property established in the preceding problem, 

express the product of inertia Ixy of an area A with respect to a pair 

of rectangular axes through O in terms of the moments of inertia Ix 

and Iy of A and the principal moments of inertia Imin and Imax of A 

about O. Use the formula obtained to calculate the product of inertia 

Ixy of the L3 3 2 3 
1
4-in. angle cross section shown in Fig. 9.13A, 

knowing that its maximum moment of inertia is 1.257 in4.

6.4 mm
76 mm

51 mm

6.4 mm

12.4 mm

24.9 mm
y

xC

L76 × 51 × 6.4

Fig. P9.104
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9.5 Mass Moments of Inertia  529

9.5  MASS MOMENTS OF 
INERTIA 

So far in this chapter, we have examined moments of inertia of areas. In 

the rest of this chapter, we consider moments of inertia associated with 

the masses of bodies. This will be an important concept in dynamics when 

studying the  rotational motion of a rigid body about an axis.

9.5A  Moment of Inertia of a Simple 
Mass

Consider a small mass Dm mounted on a rod of negligible mass that can 

rotate freely about an axis AA9 (Fig. 9.20a). If we apply a couple to the 

system, the rod and mass (assumed to be initially at rest) start rotating 

about AA9. We will study the details of this motion later in dynamics. At 

present, we wish to indicate only that the time required for the system to 

reach a given speed of rotation is proportional to the mass Dm and to the 

square of the distance r. The product r 2 Dm thus provides a measure of 

the inertia of the system; i.e., a measure of the resistance the system offers 

when we try to set it in motion. For this reason, the product r 2 Dm is 

called the moment of inertia of the mass Dm with respect to axis AA9.

Now suppose a body of mass m is to be rotated about an axis AA9 

(Fig. 9.20b). Dividing the body into elements of mass Dm1, Dm2, etc., we 

find that the body’s resistance to being rotated is measured by the sum 

r 
2
1 Dm1 1 r 

2
2 Dm2 1 . . . . This sum defines the moment of inertia of the 

body with respect to axis AA9. Increasing the number of elements, we find 

that the moment of inertia is equal, in the limit, to the integral

Moment of inertia of a mass

 I 5 #r 
2

 dm (9.28)I 5 #r 2dmdd

Fig. 9.20  (a) An element of mass Dm at a distance r from an axis AA9; 
(b) the moment of inertia of a rigid body is the sum of the moments of 
inertia of many small masses; (c) the moment of inertia is unchanged if all 
the mass is concentrated at a point at a distance from the axis equal to the 
radius of gyration.

A'

A

r1

r2 r3

Δm1

Δm2
Δm

Δm3

A'

A

m

A'

A

r k

(a) (b) (c)
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530 Distributed Forces: Moments of Inertia

We define the radius of gyration k of the body with respect to axis 

AA9 by the relation

Radius of gyration 
of a mass

 I 5 k2m  or  k 5
B

I
m

 (9.29)

The radius of gyration k represents the distance at which the entire mass 

of the body should be concentrated if its moment of inertia with respect 

to AA9 is to remain unchanged (Fig. 9.20c). Whether it stays in its original 

shape (Fig. 9.20b) or is concentrated as shown in Fig. 9.20c, the mass m
reacts in the same way to a rotation (or gyration) about AA9.

If SI units are used, the radius of gyration k is expressed in meters 

and the mass m in kilograms, so the unit for the moment of inertia of a 

mass is kg?m2. If U.S. customary units are used, the radius of gyration is 

expressed in feet and the mass in slugs (i.e., in lb?s2/ft), so the derived 

unit for the moment of inertia of a mass is lb?ft?s2.†

We can express the moment of inertia of a body with respect to a 

coordinate axis in terms of the coordinates x, y, z of the element of mass 

dm (Fig. 9.21). Noting, for example, that the square of the distance r from 

the element dm to the y axis is z2 1 x2, the moment of inertia of the body 

with respect to the y axis is

Iy 5 #r2
 dm 5 # (z2 1 x2) dm

We obtain similar expressions for the moments of inertia with respect to 

the x and z axes. 

Moments of inertia with 
respect to coordinate axes

Ix 5 # (y2 1 z2) dm

 Iy 5 # (z2 1 x2) dm (9.30)

Iz 5 # (x2 1 y2) dm

9.5B  Parallel-Axis Theorem for Mass 
Moments of Inertia

Consider again a body of mass m and let Oxyz be a system of rectangular 

coordinates whose origin is at the arbitrary point O. Let Gx9y9z9 be a 

system of parallel centroidal axes; i.e., a system whose origin is at the 

I 5 k2m or k 5
B

I
mB

IxII 5 # (y2 1 z2)dmdd

IyII 5 # (z2 1 x2)dmdd

IzII 5 # (x2 1 y2)dmdd

Fig. 9.21  An element of mass dm in an 
x, y, z coordinate system.

dm

x

y

y

O

z

r z
x

†When converting the moment of inertia of a mass from U.S. customary units to SI units, 

keep in mind that the base unit (pound) used in the derived unit (lb?ft?s2) is a unit of force 

(not of mass). Therefore, it should be converted into newtons. We have

 1 lb ?ft?s2 5 (4.45 N)(0.3048 m)(1 s)2 5 1.356 N?m?s2

or since 1 N 5 1 kg?m/s2

 1 lb?ft?s2 5 1.356 kg?m2

Photo 9.2 The rotational behavior of this 
crankshaft depends upon its mass moment of 
inertia with respect to its axis of rotation, as 
you will see in a dynamics course.
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9.5 Mass Moments of Inertia  531

center of gravity G of the body and whose axes x9, y9, z9 are parallel to 

the x, y, and z axes, respectively (Fig. 9.22). (Note that we use the term 

centroidal here to define axes passing through the center of gravity G of 

the body, regardless of whether or not G coincides with the centroid of 

the volume of the body.) We denote by x, y, z the coordinates of G with 

respect to Oxyz. Then we have the following relations between the coor-

dinates x, y, z of the element dm with respect to Oxyz and its coordinates 

x9, y9, z9 with respect to the centroidal axes Gx9y9z9: 

 x 5 x9 1 x   y 5 y9 1 y   z 5 z9 1 z (9.31)

Referring to Eqs. (9.30), we can express the moment of inertia of the body 

with respect to the x axis as 

 Ix 5#  
(y2 1 z2) dm 5#  [(y¿ 1 y )2 1 (z¿ 1 z )2] dm

 5#   (y¿2 1 z¿2) dm 1 2 y #  y¿ dm 1 2z #  z¿  dm 1 (y 
2 1 z 

2)#  dm

The first integral in this expression represents the moment of inertia I x¿ of 

the body with respect to the centroidal axis x9. The second and third 

integrals represent the first moment of the body with respect to the z9x9 

and x9y9 planes, respectively, and since both planes contain G, these two 

integrals are zero. The last integral is equal to the total mass m of the 

body. Therefore, we have

 Ix 5 Ix¿ 1 m(y 
2 1 z 

2) (9.32)

Similarly,

 Iy 5 Iy9 1 m(z 
2 1 x 

2)   Iz 5 Iz9 1 m(x 
2 1 y 

2) (9.329)

We easily verify from Fig. 9.22 that the sum z 
2 1 x 

2 represents the 

square of the distance OB between the y and y9 axes. Similarly, y 
2 1 z 

2 

and x 
2 1 y 

2 represent the squares of the distance between the x and x9 

axes and the z and z9 axes, respectively. We denote the distance between 

an arbitrary axis AA9 and a parallel centroidal axis BB9 by d (Fig. 9.23). 

Then the general relation between the moment of inertia I of the body 

with respect to AA9 and its moment of inertia I  with respect to BB9, known 

as the parallel-axis theorem for mass moments of inertia, is

Parallel-axis theorem for 
mass moments of inertia

I 5 I 1 md 
2 (9.33)

Expressing the moments of inertia in terms of the corresponding radii of 

gyration, we can also write

k 
2 5 k 

2 1 d 
2
 (9.34)

where k and k represent the radii of gyration of the body about AA9 and BB9, 

respectively.

IxII 5 IxII ¿ 1 m(y 2 1 z 2)

IyII 5 IyII 9 1 m(z 2 1 x 2) IzII 5 IzII 9 1 m(x 2 1 y 2)

I 5 I 1 md 2

Fig. 9.23  We use d to denote the distance 
between an arbitrary axis AA9 and a parallel 
centroidal axis BB9.

A'

B'

A

B

G

d

Fig. 9.22  A body of mass m with an 
arbitrary rectangular coordinate system at O 
and a parallel centroidal coordinate system 
at G. Also shown is an element of mass dm.

dm

y

O

G

B

z

x

y'

x'

z'

⎯ z⎯ y

⎯ x
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532 Distributed Forces: Moments of Inertia

9.5C Moments of Inertia of Thin Plates
Now imagine a thin plate of uniform thickness t, made of a homogeneous 

material of density ρ (density 5 mass per unit volume). The mass moment 

of inertia of the plate with respect to an axis AA9 contained in the plane of 

the plate (Fig. 9.24a) is

IAA9, mass 5 #r2
 dm

Fig. 9.24  (a) A thin plate with an axis AA9 in the plane of the plate; (b) an axis BB9 
in the plane of the plate and perpendicular to AA9; (c) an axis CC9 perpendicular to 
the plate and passing through the intersection of AA9 and BB9.

t

B'

C'

rr

A'

A

dA

C

(a) (b) (c)

A'

A

B

B'

B

dAdA

rr

t t

Since dm 5 ρt dA, we have

IAA9, mass 5 ρt#r2
 d A 

However, r represents the distance of the element of area dA to the axis 
AA9. Therefore, the integral is equal to the moment of inertia of the area 

of the plate with respect to AA9.

 IAA9, mass 5 ρtIAA9, area (9.35)

Similarly, for an axis BB9 that is contained in the plane of the plate and 

is perpendicular to AA9 (Fig. 9.24b), we have

 IBB9, mass 5 ρtIBB9, area (9.36)

Consider now the axis CC9, which is perpendicular to the plate and 

passes through the point of intersection C of AA9 and BB9 (Fig. 9.24c). This 

time we have

 ICC9, mass 5 ρtJC, area (9.37)

where JC is the polar moment of inertia of the area of the plate with 

respect to point C.

Recall the relation JC 5 IAA9 1 IBB9 between the polar and rectan-

gular moments of inertia of an area. We can use this to write the relation 

between the mass moments of inertia of a thin plate as

 ICC9 5 IAA9 1 IBB9 (9.38)
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9.5 Mass Moments of Inertia  533

Rectangular Plate. In the case of a rectangular plate of sides a and b 

(Fig. 9.25), we obtain the mass moments of inertia with respect to axes 

through the center of gravity of the plate as

 IAA¿, mass 5 rtIAA¿, area 5 rt( 1
12 a3b)

 IBB¿, mass 5 rtIBB¿, area 5 rt( 1
12 ab3)

Since the product ρabt is equal to the mass m of the plate, we can also 

write the mass moments of inertia of a thin rectangular plate as 

  IAA9 5
1
12 ma2   IBB9 5

1
12 mb2 (9.39)

  ICC¿ 5 IAA¿ 1 IBB¿ 5
1
12 m(a2 1 b2) (9.40)

Circular Plate. In the case of a circular plate, or disk, of radius r 

(Fig. 9.26), Eq. (9.35) becomes

IAA¿, mass 5 rtIAA¿, area 5 rt(1
4 pr4)

In this case, the product ρπr2t is equal to the mass m of the plate, and 

IAA9 5 IBB9. Therefore, we can write the mass moments of inertia of a 

circular plate as 

  IAA¿ 5 IBB¿ 5
1
4 mr2  (9.41)

  ICC¿ 5 IAA¿ 1 IBB¿ 5
1
2 mr2 (9.42)

9.5D  Determining the Moment of 
Inertia of a Three-Dimensional 
Body by Integration

We obtain the moment of inertia of a three-dimensional body by evaluating 

the integral I 5 er2
 dm. If the body is made of a homogeneous material 

with a density ρ, the element of mass dm is equal to ρ dV, and we have 

I 5 ρer2
 dV. This integral depends only upon the shape of the body. Thus, 

in order to compute the moment of inertia of a three-dimensional body, it 

is generally necessary to perform a triple, or at least a double, integration.

However, if the body possesses two planes of symmetry, it is usually 

possible to determine the body’s moment of inertia with a single integra-

tion. We do this by choosing as the element of mass dm a thin slab that 

is perpendicular to the planes of symmetry. In the case of bodies of revo-

lution, for example, the element of mass is a thin disk (Fig. 9.27). Using 

formula (9.42), we can express the moment of inertia of the disk with 

respect to the axis of revolution as indicated in Fig. 9.27. Its moment of 

inertia with respect to each of the other two coordinate axes is obtained 

by using formula (9.41) and the parallel-axis theorem. Integration of these 

expressions yields the desired moment of inertia of the body.

9.5E  Moments of Inertia of Composite 
Bodies

Figure 9.28 lists the moments of inertia of a few common shapes. For a 

body consisting of several of these simple shapes in combination, you can 

obtain the moment of inertia of the body with respect to a given axis by 

first computing the moments of inertia of its component parts about the 

desired axis and then adding them together. As was the case for areas, 

the radius of gyration of a composite body cannot be obtained by adding 

the radii of gyration of its component parts.

Fig. 9.27  Using a thin disk to determine the 
moment of inertia of a body of revolution.

O

y'

y

z
dx r

z'

x

x

dm = r   r2 dx

dIx =    r2 dm1
2

dIy = dIy' + x2 dm = (   r2 + x2)dm

dIz = dIz' + x2 dm = (  r2 + x2)dm

1
4
1
4

�

Fig. 9.25  A thin rectangular plate of sides 
a and b.

t

C'

B'

A

B
b

a

A'

C

Fig. 9.26  A thin circular plate of radius r.
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A
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534 Distributed Forces: Moments of Inertia

Fig. 9.28 Mass moments of inertia of common geometric shapes.
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2

Iy = Iz =     m(3a2 + L2)1
12
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9.5 Mass Moments of Inertia  535

Sample Problem 9.9

Determine the moment of inertia of a slender rod of length L and mass m with 

respect to an axis that is perpendicular to the rod and passes through one end.

STRATEGY: Approximating the rod as a one-dimensional body enables 

you to solve the  problem by a single integration.

MODELING and ANALYSIS: Choose the differential element of 

mass shown in Fig. 1 and express it as a mass per unit length.

dm 5
m

L
 dx

Iy 5#  
x2 dm 5#

L

0
 

x2
 

m

L
 dx 5 cm

L
 

x3

3
d L

0

  Iy 5
1
3 mL2 b

REFLECT and THINK: This problem could also have been solved by 

starting with the moment of inertia for a slender rod with respect to its 

centroid, as given in Fig. 9.28, and using the parallel-axis theorem to 

obtain the moment of inertia with respect to an end of the rod.

x

y

z
L

x
x

y

z L
dx

Fig. 1 Differential element 
of mass.

Sample Problem 9.10

For the homogeneous rectangular prism shown, determine the moment of 

inertia with respect to the z axis.

STRATEGY: You can approach this problem by choosing a differential 

element of mass perpendicular to the long axis of the prism; find its 

moment of inertia with respect to a centroidal axis parallel to the z axis; 

and then apply the parallel-axis theorem.

MODELING and ANALYSIS: Choose as the differential element of 

mass the thin slab shown in Fig. 1. Then

dm 5 ρbc dx

Referring to Sec. 9.5C, the moment of inertia of the element with respect 

to the z9 axis is

dIz9 5
1
12 b2

 dm

Applying the parallel-axis theorem, you can obtain the mass moment of 

inertia of the slab with respect to the z axis.

dIz 5 dIz9 1 x2
 dm 5

1
12 b2

 dm 1 x2
 dm 5 (

1
12 b2 1 x2)rbc dx

Integrating from x 5 0 to x 5 a gives you

Iz 5#  
dIz 5#

a

0
 

(
1
12 b2 1 x2)ρbc dx 5 ρabc(

1
12 b2 1

1
3a

2)

Since the total mass of the prism is m 5 ρabc, you can write

 Iz 5 m(
1
12 b2 1

1
3 a2)  Iz 5

1
12 m(4a2 1 b2) b

REFLECT and THINK: Note that if the prism is thin, b is small com-

pared to a, and the expression for Iz reduces to 
1
3 
ma2, which is the result 

obtained in Sample Prob. 9.9 when L 5 a.

x

y

a c

b

z

dx

y

z'

x

x

z

Fig. 1 Differential element 
of mass.
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536 Distributed Forces: Moments of Inertia

Sample Problem 9.11

Determine the moment of inertia of a right circular cone with respect to 

(a) its longitudinal axis, (b) an axis through the apex of the cone and 

perpendicular to its longitudinal axis, (c) an axis through the centroid of 

the cone and perpendicular to its longitudinal axis.

STRATEGY: For parts (a) and (b), choose a differential element of mass in 

the form of a thin circular disk perpendicular to the longitudinal axis of the 

cone. You can solve part (c) by an application of the parallel-axis theorem.

MODELING and ANALYSIS: Choose the differential element of 

mass shown in Fig. 1. Express the radius and mass of this disk as

r 5 a 

x

h
     dm 5 ρπr2

 dx 5 ρπ 

a2

h2
 x2dx

a. Moment of Inertia Ix. Using the expression derived in Sec. 9.5C 

for a thin disk, compute the mass moment of inertia of the differential 

element with respect to the x axis.

dIx 5
1
2 r2 dm 5

1
2 aa 

x

h
b2arπ 

a2

h2
 x2

 dxb 5
1
2 rπ 

a4

h4
 x4

 dx

Integrating from x 5 0 to x 5 h gives you

Ix 5#  
dIx 5#

h

0

 

1
2 rπ 

a4

h4
 x4 dx 5

1
2 rπ 

a4

h4
 

h5

5
5

1
10 rπa4h

Since the total mass of the cone is m 5
1
3 
rπa2 h, you can write this as

Ix 5
1
10rπa4h 5

3
10 a2(

1
3rπa2h) 5

3
10 ma2 Ix 5

3
10 ma2 b

b. Moment of Inertia Iy. Use the same differential element. Apply-

ing the parallel-axis theorem and using the expression derived in Sec. 9.5C 

for a thin disk, you have

dIy 5 dIy9 1 x2dm 5
1
4 r2dm 1 x2dm 5 (

1
4 r2 1 x2) dm

Substituting the expressions for r and dm into this equation yields

dIy 5 a1

4
 

a2

h2
 x2 1 x2b arπ 

a2

h2
 x2

 dxb 5 rπ 

a2

h2
 a a2

4h2
1 1b x4 dx

Iy 5#  
dIy 5#

h

0
 

rπ
a2

h2
 a a2

4h2
1 1b x4

 dx 5 rπ
a2

h2
 a a2

4h2
1 1b 

h5

5

Introducing the total mass of the cone m, you can rewrite Iy as 

Iy 5
3
5(

1
4 a2 1 h2)

1
3rπa2h    Iy 5

3
5 m(

1
4 a2 1 h2) b

c. Moment of Inertia I
_

y0. Apply the parallel-axis theorem to obtain

Iy 5 Iy– 1 mx 
2

Solve for Iy0 and recall from Fig. 5.21 that x 5
3
4 
h (Fig. 2). The result is

Iy– 5 Iy 2 mx 
2 5

3
5 m(

1
4 a2 1 h2) 2 m(

3
4 h)2

Iy– 5
3
20 m(a2 1

1
4 h2) b

REFLECT and THINK: The parallel-axis theorem for masses can be 

just as useful as the version for areas. Don’t forget to use the reference 

figures for centroids of volumes when needed.

z

y

x

h

a

z

y

x dx

y'

x

h

r a

Fig. 1 Differential element 
of mass.

z

y

x

h

y"

⎯x  =    h3
4

Fig. 2 Centroid of a right circular 
cone.
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9.5 Mass Moments of Inertia  537

Sample Problem 9.12

A steel forging consists of a 6 3 2 3 2-in. rectangular prism and two 

cylinders with a diameter of 2 in. and length of 3 in. as shown. Deter-

mine the moments of inertia of the forging with respect to the coordi-

nate axes. The specific weight of steel is 490 lb/ft3.

STRATEGY: Compute the moments of inertia of each component 

from Fig. 9.28 using the parallel-axis theorem when necessary. Note 

that all lengths should be expressed in feet to be consistent with the 

units for the given specific weight.

MODELING and ANALYSIS:
Computation of Masses.
Prism

 V 5 (2 in.)(2 in.)(6 in.) 5 24 in3

 W 5
(24 in3)(490 lb/ft3)

1728 in3/ft3
5 6.81 lb

 m 5
6.81 lb

32.2 ft/s2
5 0.211 lb?s2/ft

Each Cylinder

 V 5 π(1 in.)2(3 in.) 5 9.42 in3

 W 5
(9.42 in3)(490 lb/ft3)

1728 in3/ft3
5 2.67 lb

m 5
2.67 lb

32.2 ft/s2
5 0.0829 lb?s2/ft

Moments of Inertia (Fig. 1). 
Prism

Ix 5 Iz 5
1
12 (0.211 lb?s2/ft)[(

6
12 ft)

2 1 (
2
12 ft)

2] 5 4.88 3 1023 lb?ft?s2

Iy 5
1
12 (0.211 lb?s2/ft)[(

2
12 ft)2 1 (

2
12 ft)2] 5 0.977 3 1023 lb?ft?s2

Each Cylinder

Ix 5
1
2 ma2 1 my 

2 5
1
2(0.0829 lb?s2/ft)(

1
12 ft)

2

1 (0.0829 lb?s2/ft)(
2
12 ft)

2 5 2.59 3 1023 lb?ft?s2

Iy 5
1
12 m(3a2 1 L2) 5 mx 

2 5
1
12(0.0829 lb?s2/ft)[3(

1
12 ft)

2 1 (
3
12 ft)

2]

1 (0.0829 lb?s2/ft)(
2.5
12 ft)2 5 4.17 3 1023 lb?ft?s2

Iz 5
1
12 m(3a2 1 L2) 1 m(x 

2 1 y 
2) 5

1
12(0.0829 lb?s2/ft)[3(

1
12 ft)

2 1 (
3
12 ft)

2]

1 (0.0829 lb?s2/ft)[(
2.5
12  ft)2 1 (

2
12 ft)

2] 5 6.48 3 1023 lb?ft?s2

Entire Body. Adding the values obtained for the prism and two 

 cylinders, you have

Ix 5 4.88 3 1023 1 2(2.59 3 1023) Ix 5 10.06 3 1023 lb?ft?s2 b

Iy 5 0.977 3 1023 1 2(4.17 3 1023) Iy 5 9.32 3 1023 lb?ft?s2 b

 Iz 5 4.88 3 1023 1 2(6.48 3 1023) Iz 5 17.84 3 1023 lb?ft?s2 b

REFLECT and THINK: The results indicate this forging has more 

resistance to rotation about the z axis (largest moment of inertia) than 

about the x or y axes. This makes intuitive sense, because more of the 

mass is farther from the z axis than from the x or y axes.

2 in.

2 in.

1 in.
A

B

y

x

3 in.

2 in.

2 in.

z

2 in.
6 in.

1 in.
A

B

y

z

x

3 in.

2.5 in.

2 in.

2 in.2 in.

Fig. 1 Geometry of each component.

bee87302_ch09_485-572.indd   537bee87302_ch09_485-572.indd   537 10/25/14   10:59 AM10/25/14   10:59 AM

UPLOADED BY AHMAD T JUNDI



538 Distributed Forces: Moments of Inertia

Sample Problem 9.13

A thin steel plate that is 4 mm thick is cut and bent to form the machine 

part shown. The density of the steel is 7850 kg/m3. Determine the moments 

of inertia of the machine part with respect to the coordinate axes.

STRATEGY: The machine part consists of a semicircular plate and a 

 rectangular plate from which a circular plate has been removed (Fig. 1). After 

calculating the moments of inertia for each part, add those of the semicircular 

plate and the rectangular plate, then subtract those of the circular plate to 

determine the moments of inertia for the entire machine part.

MODELING and ANALYSIS:
Computation of Masses. Semicircular Plate

 V1 5
1
2 pr2t 5

1
2 p(0.08 m)2(0.004 m) 5 40.21 3 1026 m3

m1 5 ρV1 5 (7.85 3 103 kg/m3)(40.21 3 1026 m3) 5 0.3156 kg

Rectangular Plate
 V2 5 (0.200 m)(0.160 m)(0.004 m) 5 128 3 1026 m3

 m2 5 ρV2 5 (7.85 3 103 kg/m3)(128 3 1026 m3) 5 1.005 kg

Circular Plate
 V3 5 πa2t 5 π(0.050 m)2(0.004 m) 5 31.42 3 1026 m3

 m3 5 ρV3 5 (7.85 3 103 kg/m3)(31.42 3 1026 m3) 5 0.2466 kg

Moments of Inertia. Compute the moments of inertia of each com-

ponent, using the method presented in Sec. 9.5C.

Semicircular Plate. Observe from Fig. 9.28 that, for a circular plate of 

mass m and radius r,

Ix 5
1
2 mr2   Iy 5 Iz 5

1
4 mr2

Because of symmetry, halve these values for a semicircular plate. Thus, 

Ix 5
1
2(

1
2 mr2)   Iy 5 Iz 5

1
2(

1
4 mr2)

Since the mass of the semicircular plate is m1 5
1
2 
m, you have

 Ix 5
1
2 m1r

2 5
1
2(0.3156 kg)(0.08 m)2 5 1.010 3 1023 kg? m2

 Iy 5 Iz5
1
4(

1
2 mr2)5

1
4 m1r

2 5
1
4(0.3156 kg)(0.08 m)2 5 0.505 3 1023 kg? m2

Rectangular Plate
 Ix 5

1
12 m2c

2 5
1
12(1.005 kg)(0.16 m)2 5 2.144 3 1023 kg?m2

 Iz 5
1
3 m2b

2 5
1
3(1.005 kg)(0.2 m)2 5 13.400 3 1023 kg?m2

 Iy 5 Ix 1 Iz 5 (2.144 1 13.400)(1023) 5 15.544 3 1023 kg?m2

Circular Plate

 Ix 5
1
4 m3a

2 5
1
4(0.2466 kg)(0.05 m)2 5 0.154 3 1023 kg? m2

 Iy 5
1
2 m3a

2 1 m3d
2

 5
1
2(0.2466 kg)(0.05 m)2 1 (0.2466 kg)(0.1 m)2 5 2.774 3 1023 kg ?   m2

 Iz 5
1
4 m3a

2 1 m3d 2 5
1
4(0.2466 kg)(0.05 m)2 1 (0.2466 kg)(0.1 m)2

 5 2.620 3 1023 kg? m2

Entire Machine Part

Ix 5 (1.010 1 2.144 2 0.154)(1023) kg?m2 Ix 5 3.00 3 1023 kg?m2 b
Iy 5 (0.505 1 15.544 2 2.774)(1023) kg?m2 Iy 5 13.28 3 1023 kg?m2 b
Iz 5 (0.505 1 13.400 2 2.620)(1023) kg?m2 Iz 5 11.29 3 1023 kg?m2 b

y

z

80

x

Dimensions in mm

80

80

50

100
100

z

z
x

x

r = 0.08 m

d = 0.1 m

c = 0.16 m

a = 0.05 m

++

__

y

y

y

z
xb = 0.2 m

Fig. 1 Modeling the machine part as a 
combination of simple geometric shapes.
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539 539

SOLVING PROBLEMS 
ON YOUR OWN

In this section, we introduced the mass moment of inertia and the radius of gyration of 

a three-dimensional body with respect to a given axis [Eqs. (9.28) and (9.29)]. We also 

derived a parallel-axis theorem for use with mass moments of inertia and discussed the 

computation of the mass moments of inertia of thin plates and three-dimensional bodies.

1. Computing mass moments of inertia. You can calculate the mass moment of inertia I
of a body with respect to a given axis directly from the definition given in Eq. (9.28) for 

simple shapes [Sample Prob. 9.9]. In most cases, however, it is necessary to divide the body 

into thin slabs, compute the moment of inertia of a typical slab with respect to the given 

axis—using the parallel-axis theorem if necessary—and integrate the resulting expression.

2. Applying the parallel-axis theorem. In Sec. 9.5B, we derived the parallel-axis theo-

rem for mass moments of inertia as

I 5 I 1 md2 (9.33)

This theorem states that the moment of inertia I of a body of mass m with respect to a 

given axis is equal to the sum of the moment of inertia I  of that body with respect to a 

parallel centroidal axis and the product md 2, where d is the distance between the two axes. 

When you calculate the moment of inertia of a three-dimensional body with respect to 

one of the coordinate axes, you can replace d 2 by the sum of the squares of distances 

measured along the other two coordinate axes [Eqs. (9.32) and (9.329)].

3. Avoiding unit-related errors. To avoid errors, you must be consistent in your use of 

units. Thus, all lengths should be expressed in meters or feet, as appropriate, and for 

problems using U.S. customary units, masses should be given in lb?s2/ft. In addition, we 

strongly recommend that you include units as you perform your calculations [Sample 

Probs. 9.12 and 9.13].

4. Calculating the mass moment of inertia of thin plates. We showed in 

Sec. 9.5C that you can obtain the mass moment of inertia of a thin plate with respect to 

a given axis by multiplying the corresponding moment of inertia of the area of the plate 

by the density ρ and the thickness t of the plate [Eqs. (9.35) through (9.37)]. Note that, 

since the axis CC9 in Fig. 9.24c is perpendicular to the plate, ICC9, mass is associated with 

the polar moment of inertia JC, area.

 Instead of calculating the moment of inertia of a thin plate with respect to a specified 

axis directly, you may sometimes find it convenient to first compute its moment of inertia 

with respect to an axis parallel to the specified axis and to then apply the parallel-axis 

theorem. Furthermore, to determine the moment of inertia of a thin plate with respect to 

an axis perpendicular to the plate, you may wish to first determine its moments of inertia 

with respect to two perpendicular in-plane axes and to then use Eq. (9.38). Finally, remem-

ber that the mass of a plate consists of area A, thickness t, and density ρ, as m 5 ρtA.

(continued)
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540

5. Determining the moment of inertia of a body by direct single integration. We 

discussed in Sec. 9.5D and illustrated in Sample Probs. 9.10 and 9.11 how you can use 

single integration to compute the moment of inertia of a body that can be divided into a 

series of thin, parallel slabs. For such cases, you will often need to express the mass of 

the body in terms of the body’s density and dimensions. Assuming that the body has been 

divided, as in the sample problems, into thin slabs perpendicular to the x axis, you will 

need to express the dimensions of each slab as functions of the variable x.

a. In the special case of a body of revolution, the elemental slab is a thin disk, and 

you can use the equations given in Fig. 9.27 to determine the moments of inertia of the 

body [Sample Prob. 9.11].

 b. In the general case, when the body is not a solid of revolution, the differential 

element is not a disk but a thin slab of a different shape. You cannot use the equations of 

Fig. 9.27 in this case. See, for example, Sample Prob. 9.10, where the element was a thin, 

rectangular slab. For more complex configurations, you may want to use one or more of 

the following equations, which are based on Eqs. (9.32) and (9.329) of Sec. 9.5B.

 dIx 5 dIx9 1 (y 
2
el 1 z 

2
el) dm

  dIy 5 dIy9 1 (z 
2
el 1 x 

2
el) dm

  dIz 5 dIz9 1 (x 
2
el 1 y 

2
el) dm

Here, the primes denote the centroidal axes of each elemental slab and xel, yel, and zel 

represent the coordinates of its centroid. Determine the centroidal moments of inertia of 

the slab in the manner described earlier for a thin plate: Refer to Fig. 9.12, calculate the 

corresponding moments of inertia of the area of the slab, and multiply the result by the 

density ρ and the thickness t of the slab. Also, assuming that the body has been divided 

into thin slabs perpendicular to the x axis, remember that you can obtain dIx9 by adding 

dIy9 and dIz9 instead of computing it directly. Finally, using the geometry of the body, 

express the result obtained in terms of the single variable x, and integrate in x.

6. Computing the moment of inertia of a composite body. As stated in Sec. 9.5E, the 

moment of inertia of a composite body with respect to a specified axis is equal to the sum 

of the moments of its components with respect to that axis. Sample Probs. 9.12 and 9.13 

illustrate the appropriate method of solution. Also remember that the moment of inertia 

of a component is negative only if the component is removed (as in the case of a hole).

Although the composite-body problems in this section are relatively straightforward, you 

will have to work carefully to avoid computational errors. In addition, if some of the 

moments of inertia that you need are not given in Fig. 9.28, you will have to derive your 

own formulas, using the techniques described in this section.
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Problems

 9.111 A thin plate with a mass m is cut in the shape of an equilateral 

triangle of side a. Determine the mass moment of inertia of the plate 

with respect to (a) the centroidal axes AA9 and BB9, (b) the centroidal 

axis CC9 that is perpendicular to the plate.

B

A'

A

B'

C'

C

Fig. P9.111    
A

B

A�

C�

B�

C

r1

r2

Fig. P9.112

 9.112 A ring with a mass m is cut from a thin uniform plate. Determine 

the mass moment of inertia of the ring with respect to (a) the axis 

AA9, (b) the centroidal axis CC9 that is perpendicular to the plane of 

the ring.

 9.113 A thin, semielliptical plate has a mass m. Determine the mass 

moment of inertia of the plate with respect to (a) the centroidal axis 

BB9, (b) the centroidal axis CC9 that is perpendicular to the plate.

 9.114 The parabolic spandrel shown was cut from a thin, uniform plate. 

Denoting the mass of the spandrel by m, determine its mass moment 

of inertia with respect to (a) the axis BB9, (b) the axis DD9 that is 

perpendicular to the spandrel. (Hint: See Sample Prob. 9.3.)

A

A'

B

B'

D'

D

a
b

y = kx2

Fig. P9.114

C

a A
B

A9

B9

C9b

Fig. P9.113
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9.115 A piece of thin, uniform sheet metal is cut to form the machine com-

ponent shown. Denoting the mass of the component by m,  determine 

its mass moment of inertia with respect to (a) the x axis, (b) the y axis.

9.116 A piece of thin, uniform sheet metal is cut to form the machine com-

ponent shown. Denoting the mass of the component by m,  determine 

its mass moment of inertia with respect to (a) the axis AA9, (b) the 

axis BB9, where the AA9 and BB9 axes are parallel to the x axis and 

lie in a plane parallel to and at a distance a above the xz plane.

 9.117 A thin plate with a mass m has the trapezoidal shape shown. Deter-

mine the mass moment of inertia of the plate with respect to (a) the 

x axis, (b) the y axis.

C'

C

xy

z

a

1.5a

2a

2a

A'

A

Fig. P9.117 and P9.118

 9.118 A thin plate with a mass m has the trapezoidal shape shown. Determine 

the mass moment of inertia of the plate with respect to (a) the cen-

troidal axis CC9 that is perpendicular to the plate, (b) the axis AA9 that 

is parallel to the x axis and is located at a distance 1.5a from the plate.

 9.119 Determine by direct integration the mass moment of inertia with 

respect to the z axis of the right circular cylinder shown, assuming 

that it has a uniform density and a mass m.

 9.120 The area shown is revolved about the x axis to form a homogeneous 

solid of revolution of mass m. Using direct integration, express the 

mass moment of inertia of the solid with respect to the x axis in 

terms of m and h.

 9.121 The area shown is revolved about the x axis to form a homogeneous 

solid of revolution of mass m. Determine by direct integration the 

mass moment of inertia of the solid with respect to (a) the x axis, 

(b) the y axis. Express your answers in terms of m and the dimen-

sions of the solid.

a

h

2a

y

x

y = kx

Fig. P9.121

A

B

A'

B'

x

y

z

a
2

a

a

a

a

Fig. P9.115 and P9.116

h

2h

a
x

y

Fig. P9.120

Fig. P9.119

y

x

a

z

L
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 9.122 Determine by direct integration the mass moment of inertia with 

respect to the x axis of the tetrahedron shown, assuming that it has 

a uniform density and a mass m.

y

z

x
b

a

h

Fig. P9.122 and P9.123

 9.123 Determine by direct integration the mass moment of inertia with 

respect to the y axis of the tetrahedron shown, assuming that it has 

a uniform density and a mass m.

 9.124 Determine by direct integration the mass moment of inertia and the 

radius of gyration with respect to the x axis of the paraboloid shown, 

assuming that it has a uniform density and a mass m.

 9.125 A thin, rectangular plate with a mass m is welded to a vertical shaft 

AB as shown. Knowing that the plate forms an angle θ with the y 

axis, determine by direct integration the mass moment of inertia of 

the plate with respect to (a) the y axis, (b) the z axis.

x

y

z

A

1
b

a

2 1
b2

B

q

Fig. P9.125

 *9.126 A thin steel wire is bent into the shape shown. Denoting the mass 

per unit length of the wire by m9, determine by direct integration the 

mass moment of inertia of the wire with respect to each of the 

 coordinate axes.

z

x

y
kxy2 z2+ = 

a

h

Fig. P9.124

a

a
z

x

y

y = (a2/3 – x2/3)3/2

Fig. P9.126
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 9.127 Shown is the cross section of an idler roller. Determine its mass 

moment of inertia and its radius of gyration with respect to the axis 

AA9. (The specific weight of bronze is 0.310 lb/in3; of aluminum, 

0.100 lb/in3; and of neoprene, 0.0452 lb/in3.)

 9.128 Shown is the cross section of a molded flat-belt pulley. Determine 

its mass moment of inertia and its radius of gyration with respect to 

the axis AA9. (The density of brass is 8650 kg/m3, and the density 

of the fiber-reinforced polycarbonate used is 1250 kg/m3.)

Brass

Polycarbonate
2 mm

A'A
11 mm

22 mm

9.5 mm

17.5 mm

5 mm
17 mm

28 mm

Fig. P9.128

 9.129 The machine part shown is formed by machining a conical surface 

into a circular cylinder. For b 5 
1
2h, determine the mass moment of 

inertia and the radius of gyration of the machine part with respect 

to the y axis.

x

z

a
a

h
b

y

Fig. P9.129

 9.130 Knowing that the thin hemispherical shell shown has a mass m and 

thickness t, determine the mass moment of inertia and the radius of 

gyration of the shell with respect to the x axis. (Hint: Consider the 

shell as formed by removing a hemisphere of radius r from a hemi-

sphere of radius r 1 t; then neglect the terms containing t2 and t3 

and keep those terms containing t.)

A A'

Neoprene

Aluminum

Bronze

in.11
16

in.13
16

in.1 1
8

in.3
8

in.1
2

in.1
4

Fig. P9.127

z

x

y

r

Fig. P9.130
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 9.131 A square hole is centered in and extends through the aluminum 

machine component shown. Determine (a) the value of a for which 

the mass moment of inertia of the component is maximum with 

respect to the axis AA9 that bisects the top surface of the hole, 

(b) the corresponding values of the mass moment of inertia and the 

radius of gyration with respect to the axis AA9. (The specific weight 

of aluminum is 0.100 lb/in3.)

 9.132 The cups and the arms of an anemometer are fabricated from a mate-

rial of density ρ. Knowing that the mass moment of inertia of a thin, 

hemispherical shell with a mass m and thickness t with respect to its 

centroidal axis GG9 is 5ma2/12, determine (a) the mass moment of 

inertia of the anemometer with respect to the axis AA9, (b) the ratio 

of a to l for which the centroidal moment of inertia of the cups is 

equal to 1 percent of the moment of inertia of the cups with respect 

to the axis AA9.

l

d

a

A

A'

G

G'

a
2

Fig. P9.132

 9.133 After a period of use, one of the blades of a shredder has been worn 

to the shape shown and is of mass 0.18 kg. Knowing that the mass 

moments of inertia of the blade with respect to the AA9 and BB9 axes 

are 0.320 g?m2 and 0.680 g?m2, respectively, determine (a) the loca-

tion of the centroidal axis GG9, (b) the radius of gyration with 

respect to axis GG9.

A

A' B

B'

80 mm
G'

G

Fig. P9.133

 9.134 Determine the mass moment of inertia of the 0.9-lb machine com-

ponent shown with respect to the axis AA9.

A

A'

4.2 in.

a

a

a
2

4.2 in.

15 in.

Fig. P9.131

A

A'

0.4 in.

1.2 in.
1.6 in.

2.4 in.

Fig. P9.134
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 9.135 and 9.136  A 2-mm thick piece of sheet steel is cut and bent into 

the machine component shown. Knowing that the density of steel is 

7850 kg/m3, determine the mass moment of inertia of the component 

with respect to each of the coordinate axes.

z
x

y

350 mm 150 mm

195 mm

Fig. P9.136

9.137 A subassembly for a model airplane is fabricated from three pieces 

of 1.5-mm plywood. Neglecting the mass of the adhesive used to 

assemble the three pieces, determine the mass moment of inertia 

of the subassembly with respect to each of the coordinate axes. 

(The density of the plywood is 780 kg/m3.)

 9.138 A section of sheet steel 0.03 in. thick is cut and bent into the sheet 

metal machine component shown. Determine the mass moment of 

inertia of the component with respect to each of the coordinate axes. 

(The specific weight of steel is 490 lb/ft3.)

y

z
x

6 in.

4.5 in.

4.5 in.

6 in.

Fig. P9.138

 9.139 A framing anchor is formed of 0.05-in.-thick galvanized steel. Deter-

mine the mass moment of inertia of the anchor with respect to each 

of the coordinate axes. (The specific weight of galvanized steel is 

470 lb/ft3.)

200 mm
100 mm

120 mm

y

z x

Fig. P9.135

y

x

z 300 mm

120 mm

Fig. P9.137

x

y

z

1 in.

1.25 in. 2 in.

2.25 in.

3.5 in.

Fig. P9.139
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*9.140 A farmer constructs a trough by welding a rectangular piece of 

2-mm-thick sheet steel to half of a steel drum. Knowing that the 

density of steel is 7850 kg/m3 and that the thickness of the walls of 

the drum is 1.8 mm, determine the mass moment of inertia of the 

trough with respect to each of the coordinate axes. Neglect the mass 

of the welds.

y

x

z

285 mm

840 mm

210 mm

Fig. P9.140

 9.141 The machine element shown is fabricated from steel. Determine the 

mass moment of inertia of the assembly with respect to (a) the x axis, 

(b) the y axis, (c) the z axis. (The density of steel is 7850 kg/m3.)

40 mm

40 mm

40 mm

20 mm

60 mm

20 mm

80 mm

x

y

z

Fig. P9.141

 9.142 Determine the mass moments of inertia and the radii of gyration of 

the steel machine element shown with respect to the x and y axes. 

(The density of steel is 7850 kg/m3.)

40

44

44

20

20

y

z x

120
120

70
70

Dimensions in mm

Fig. P9.142
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 9.143 Determine the mass moment of inertia of the steel machine element 

shown with respect to the x axis. (The specific weight of steel is 

490 lb/ft3.)

2.4 in.

1.8 in.

0.6 in.
0.6 in.

1.8 in.

2 in.

1.6 in.

1.8 in.

1.5 in.

y

x
z

Fig. P9.143 and P.9.144

9.144 Determine the mass moment of inertia of the steel machine element 

shown with respect to the y axis. (The specific weight of steel is 

490 lb/ft3.)

 9.145 Determine the mass moment of inertia of the steel fixture shown 

with respect to (a) the x axis, (b) the y axis, (c) the z axis. (The 

density of steel is 7850 kg/m3.)

 9.146 Aluminum wire with a weight per unit length of 0.033 lb/ft is used 

to form the circle and the straight members of the figure shown. 

Determine the mass moment of inertia of the assembly with respect 

to each of the coordinate axes.

 9.147 The figure shown is formed of 
1
8-in.-diameter steel wire. Knowing 

that the specific weight of the steel is 490 lb/ft3, determine the mass 

moment of inertia of the wire with respect to each of the coordinate 

axes.

x

y

z

18 in.
18 in.

18 in.

Fig. P9.147

 9.148 A homogeneous wire with a mass per unit length of 0.056 kg/m is 

used to form the figure shown. Determine the mass moment of 

 inertia of the wire with respect to each of the coordinate axes.

50 mm

70 mm

40 mm

16 mm

80 mm

y

x

z

50 mm

38 mm

24 mm

Fig. P9.145

xz

8 in.

8 in. 8 in.

y

16 in.
8 in.

Fig. P9.146

1.2 m

1.2 m

1.2 mz x

y

Fig. P9.148
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9.6 Additional Concepts of Mass Moments of Inertia 549

*9.6  ADDITIONAL CONCEPTS OF 
MASS MOMENTS OF 
INERTIA

In this final section of the chapter, we present several concepts involving 

mass moments of inertia that are analogous to material presented in 

Sec. 9.4 involving moments of inertia of areas. These ideas include mass 

products of inertia, principal axes of inertia, and principal moments of 

inertia for masses, which are necessary for the study of the dynamics of 

rigid bodies in three dimensions.

9.6A Mass Products of Inertia
In this section, you will see how to determine the moment of inertia of a 

body with respect to an arbitrary axis OL through the origin (Fig. 9.29) 

if its moments of inertia with respect to the three coordinate axes, as well 

as certain other quantities defined here, have already been determined.

The moment of inertia IOL of the body with respect to OL is equal 

to ep2 dm, where p denotes the perpendicular distance from the element 

of mass dm to the axis OL. If we denote the unit vector along OL by l
and the position vector of the element dm by r, the perpendicular distance 

p is equal to r sin θ, which is the magnitude of the vector product l 3 r. 

We therefore have

IOL 5 #p2
 dm 5 #Zl 3 rZ2 dm (9.43)

Expressing Zl 3 rZ2 in terms of the rectangular components of the vector 

product, we have

IOL 5#  
[(lx 

y 2 ly 
x)2 1 (ly 

z 2 lz 
y)2 1 (lz 

x 2 lx 
z)2] dm

Here, the components lx, ly, lz of the unit vector l represent the direction 

cosines of the axis OL, and the components x, y, z of r represent the 

coordinates of the element of mass dm. Expanding the squares and rear-

ranging the terms, we obtain

IOL 5 l2
x #  

(y2 1 z2) dm 1 l2
y #  

(z2 1 x2) dm 1 l2
z #  

(x2 1 y2) dm

2 2lx 
ly #  

xy dm 2 2ly 
lz #  

yz dm 2 2lzlx #  
zx dm (9.44)

Referring to Eqs. (9.30), note that the first three integrals in Eq. (9.44) 

represent, respectively, the moments of inertia Ix, Iy, and Iz of the body 

with respect to the coordinate axes. The last three integrals in Eq. (9.44), 

which involve products of coordinates, are called the products of inertia 

of the body with respect to the x and y axes, the y and z axes, and the z 

and x axes, respectively. 

Mass products of inertia

 Ixy 5#  
xy dm    Iyz 5#  

yz dm    Izx 5#  
zx dm (9.45)IxII yx 5# xyx dmdd IyII z 5# yz dmdd IzII x 5# zx dmdd

Fig. 9.29 An element of mass dm of a body 
and its perpendicular distance to an arbitrary 
axis OL through the origin.

y

dm

z

x

p

L

O

q

�

r
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550 Distributed Forces: Moments of Inertia

Rewriting Eq. (9.44) in terms of the integrals defined in Eqs. (9.30) and 

(9.45), we have

 IOL 5 Ixlx
2 1 Iyl

2
y 1 Izlz

2 2 2Ixylxly 2 2Iyzlylz 2 2Izxlzlx (9.46)

The definition of the products of inertia of a mass given in Eqs. (9.45) 

is an extension of the definition of the product of inertia of an area (Sec. 9.3). 

Mass products of inertia reduce to zero under the same conditions of sym-

metry as do products of inertia of areas, and the parallel-axis theorem for 

mass products of inertia is expressed by relations similar to the formula 

derived for the product of inertia of an area. Substituting the expressions 

for x, y, and z given in Eqs. (9.31) into Eqs. (9.45), we find that

Parallel-axis theorem for 
mass products of inertia

 Ixy 5 Ix¿y¿ 1 mx y

  Iyz 5 Iy¿z¿ 1 my z  (9.47)

 Izx 5 Iz¿x¿ 1 mz x

Here x, y, z are the coordinates of the center of gravity G of the body and 

Ix¿y¿, Iy¿z¿, Iz¿x¿ denote the products of inertia of the body with respect to the 

centroidal axes x9, y9, and z9 (see Fig. 9.22).

9.6B  Principal Axes and Principal 
Moments of Inertia

Let us assume that we have determined the moment of inertia of the body 

considered in the preceding section with respect to a large number of axes 

OL through the fixed point O. Suppose that we plot a point Q on each axis 

OL at a distance OQ 5 1/2IOL from O. The locus of the points Q forms 

a surface (Fig. 9.30). We can obtain the equation of that surface by sub-

stituting 1/(OQ)2 for IOL in Eq. (9.46) and then multiplying both sides of 

the equation by (OQ)2. Observing that

 (OQ) lx 5 x   (OQ) ly 5 y   (OQ) lz 5 z

where x, y, z denote the rectangular coordinates of Q, we have

 Ix x
2 1 Iyy

2 1 Izz
2 2 2Ix y  xy 2 2Iy z yz 2 2Iz xzx 5 1 (9.48)

This is the equation of a quadric surface. Since the moment of inertia IOL 

is different from zero for every axis OL, no point Q can be at an infinite 

distance from O. Thus, the quadric surface obtained is an ellipsoid. This 

ellipsoid, which defines the moment of inertia of the body with respect 

to any axis through O, is known as the ellipsoid of inertia of the body 

at O.

Observe that, if we rotate the axes in Fig. 9.30, the coefficients of 

the equation defining the ellipsoid change, since they are equal to the 

moments and products of inertia of the body with respect to the rotated 

coordinate axes. However, the ellipsoid itself remains unaffected, since its 

IOLII 5 IxII lxl2ll 1 IyII l2
y 1 IzII lz

2 2 2IxyII lxl ly 2 2IyzII lylz 2 2IzxII lzlxl

IxII yx 5 IxII ¿y¿ 1 mxmm y

IyII z 5 IyII ¿z¿ 1 mym z

IzII xzz 5 IzII ¿x¿ 1 mz x

Fig. 9.30 The ellipsoid of inertia defines the 
moment of inertia of a body with respect to 
any axis through O.

x

L

y

z

O
1/√IOL

Q(x, y, z)

bee87302_ch09_485-572.indd   550bee87302_ch09_485-572.indd   550 10/30/14   3:56 PM10/30/14   3:56 PM

UPLOADED BY AHMAD T JUNDI



9.6 Additional Concepts of Mass Moments of Inertia 551

shape depends only upon the distribution of mass in the given body. Sup-

pose that we choose as coordinate axes the principal axes x9, y9, and z9

of the ellipsoid of inertia (Fig. 9.31). The equation of the ellipsoid with 

respect to these coordinate axes is known to be of the form

Ix9x92 1 Iy9y92 1 Iz9z92 5 1 (9.49)

which does not contain any products of the coordinates. Comparing 

Eqs. (9.48) and (9.49), we observe that the products of inertia of the body 

with respect to the x9, y9, and z9 axes must be zero. The x9, y9, and z9 axes 

are known as the principal axes of inertia of the body at O, and the 

coefficients Ix9, Iy9, and Iz9 are referred to as the principal moments of 
inertia of the body at O. Note that, given a body of arbitrary shape and 

a point O, it is always possible to find principal axes of inertia of the body 

at O; that is, axes with respect to which the products of inertia of the body 

are zero. Indeed, whatever the shape of the body, the moments and prod-

ucts of inertia of the body with respect to the x, y, and z axes through O 

define an ellipsoid, and this ellipsoid has principal axes that, by definition, 

are the principal axes of inertia of the body at O.

If the principal axes of inertia x9, y9, and z9 are used as coordinate 

axes, the expression in Eq. (9.46) for the moment of inertia of a body with 

respect to an arbitrary axis through O reduces to

 IOL 5 Ix9l
2
x9 1 Iy9l

2
y9 1 Iz9l

2
z9 (9.50)

The determination of the principal axes of inertia of a body of arbi-

trary shape is somewhat involved and is discussed in the next section. In 

many cases, however, these axes can be spotted immediately. Consider, 

for instance, the homogeneous cone of elliptical base shown in Fig. 9.32; 

this cone possesses two mutually perpendicular planes of symmetry OAA9

and OBB9. From the definition of Eq. (9.45), we observe that if we choose 

the x9y9 and y9z9 planes to coincide with the two planes of symmetry, all 

of the products of inertia are zero. The x9, y9, and z9 axes selected in this 

way are therefore the principal axes of inertia of the cone at O. In the 

IOLII 5 IxII 9l
2
x9 1 IyII 9l

2
y9 1 IzII 9l

2
z9

Fig. 9.32 A homogeneous cone with 
elliptical base has two mutually perpendicular 
planes of symmetry.

z'

A'

B'

A

B

O

x'

y'

Fig. 9.31 Principal axes of inertia x9, y9, z9 
of the body at O.

x

z'

y'
x'y

z

O
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552 Distributed Forces: Moments of Inertia

case of the homogeneous regular tetrahedron OABC shown in Fig. 9.33, 

the line joining the corner O to the center D of the opposite face is a 

principal axis of inertia at O, and any line through O perpendicular to OD 

is also a principal axis of inertia at O. This property is apparent if we 

observe that rotating the tetrahedron through 120° about OD leaves its 

shape and mass distribution unchanged. It follows that the ellipsoid of 

inertia at O also remains unchanged under this rotation. The ellipsoid, 

therefore, is a body of revolution whose axis of revolution is OD, and the 

line OD, as well as any perpendicular line through O, must be a principal 

axis of the ellipsoid.

9.6C  Principal Axes and Moments of 
Inertia for a Body of Arbitrary 
Shape

The method of analysis described in this section extends the analysis in 

the preceding section. However, generally speaking, you should use it only 

when the body under consideration has no obvious property of 

symmetry.

Consider the ellipsoid of inertia of a body at a given point O 

(Fig. 9.34). Let r be the radius vector of a point P on the surface of the 

ellipsoid, and let n be the unit vector along the normal to that surface at P. 

We observe that the only points where r and n are collinear are points P1, 

P2, and P3, where the principal axes intersect the visible portion of the 

surface of the ellipsoid (along with the corresponding points on the other 

side of the ellipsoid).

Recall from calculus that the direction of the normal to a surface of 

equation f(x, y, z) 5 0 at a point P(x, y, z) is defined by the gradient =f 
of the function f at that point. To obtain the points where the principal 

axes intersect the surface of the ellipsoid of inertia, we must therefore 

express that r and =f are collinear,

 =f 5 (2K)r (9.51)

where K is a constant, r 5 xi 1 yj 1 zk, and

§f 5
0f
0x

 i 1
0f
0y

 j 1
0f
0z

 k

Recalling Eq. (9.48), we note that the function f(x, y, z) corresponding to 

the ellipsoid of inertia is

f (x, y, z) 5 Ixx2 1 Iyy
2 1 Izz

2 2 2Ixyxy 2 2Iyzyz 2 2Izxzx 2 1

Substituting for r and =f into Eq. (9.51) and equating the coefficients of 

the unit vectors, we obtain

 Ixx  2 Ixyy 2 Izxz 5 Kx

 2Ixyx  1 Iyy 2 Iyzz 5 Ky (9.52)

 2Izxx  2 Iyzy 1 Izz 5 Kz

Fig. 9.33 A line drawn from a corner 
to the center of the opposite face of a 
homogeneous regular tetrahedron is a 
principal axis, since each 120° rotation of the 
body about this axis leaves its shape and 
mass distribution unchanged.

B

D

A

C

O

Fig. 9.34 The principal axes intersect an 
ellipsoid of inertia at points where the radius 
vectors are collinear with the unit normal 
vectors to the surface.

x

P1

P

P3

P2
r

n

z'

y'
x'y

z

O
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9.6 Additional Concepts of Mass Moments of Inertia 553

Dividing each term by the distance r from O to P, we obtain similar equa-

tions involving the direction cosines lx, ly, and lz:

 Ixlx  2 Ixyly 2 Iz xlz 5 Klx

 2Ix ylx 1 Iyly 2 Iyzlz 5 Kly (9.53)

 2Iz xlx 2 Iyzly 1 Izlz 5 Klz

Transposing the right-hand members leads to the homogeneous linear 

equations, as

 (Ix 2 K)lx 2 Ix yly 2 Iz xlz 5 0

 2Ix ylx 1 (Iy 2 K)ly 2 Iyzlz 5 0 (9.54)

 2Iz xlx 2 Iyzly 1 (Iz 2 K)lz 5 0

For this system of equations to have a solution different from lx 5 ly 5 

lz 5 0, its discriminant must be zero. Thus, 

 †
Ix 2 K  2Ix y  2Iz x

2Ix y 
 Iy 2 K  2Iyz

2Iz x  2Iyz  
Iz 2 K

† 5 0  (9.55)

Expanding this determinant and changing signs, we have

K3 2 (Ix 1 Iy 1 Iz)K
2 1 (IxIy 1 Iy Iz 1 IzIx 2 I 

2
x y 2 I 

2
y z 2 I 

2
z x)K

 2 (Ix Iy Iz 2 Ix I 
2
yz 2 Iy I 

2
z x 2 IzI 

2
x y 2 2Ix yIyzIz x) 5 0 (9.56)

This is a cubic equation in K, which yields three real, positive roots: K1, 

K2, and K3.

To obtain the direction cosines of the principal axis corresponding 

to the root K1, we substitute K1 for K in Eqs. (9.54). Since these equations 

are now linearly dependent, only two of them may be used to determine 

lx, ly, and lz. We can obtain an additional equation, however, by recalling 

from Sec. 2.4A that the direction cosines must satisfy the relation

 lx
2 1 l2

y 1 lz
2 5 1 (9.57)

Repeating this procedure with K2 and K3, we obtain the direction cosines 

of the other two principal axes.

We now show that the roots K1, K2, and K3 of Eq. (9.56) are the 
principal moments of inertia of the given body. Let us substitute for K in 

Eqs. (9.53) the root K1, and for lx, ly, and lz the corresponding values 

(lx)1, (ly)1, and (lz)1 of the direction cosines; the three equations are satis-

fied. We now multiply by (lx)1, (ly)1, and (lz)1, respectively, each term in 

the first, second, and third equation and add the equations obtained in this 

way. The result is

I x
2(lx)

2
1 1 I 

2
y(ly)

2
1 1 Iz 

2(lz)
2
1 2 2Ix y(lx)1(ly)1

2 2Iyz(ly)1(lz)1 2 2Iz x(lz)1(lx)1 5 K1[(lx)
2
1 1 (ly)

2
1 1 (lz)

2
1]

Recalling Eq. (9.46), we observe that the left-hand side of this equation 

represents the moment of inertia of the body with respect to the principal 

axis corresponding to K1; it is thus the principal moment of inertia cor-

responding to that root. On the other hand, recalling Eq. (9.57), we note 

that the right-hand member reduces to K1. Thus, K1 itself is the principal 

moment of inertia. In the same fashion, we can show that K2 and K3 are 

the other two principal moments of inertia of the body.
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554 Distributed Forces: Moments of Inertia

Sample Problem 9.14

Consider a rectangular prism with a mass of m and sides a, b, and c. 

Determine (a) the moments and products of inertia of the prism with 

respect to the coordinate axes shown, (b) its moment of inertia with 

respect to the diagonal OB.

STRATEGY: For part (a), you can introduce centroidal axes and apply 

the parallel-axis theorem. For part (b), determine the direction cosines 

of line OB from the given geometry and use either Eq. (9.46) or (9.50).

MODELING and ANALYSIS: a. Moments and Products of 
Inertia with Respect to the Coordinate Axes.
Moments of Inertia. Introduce the centroidal axes x9, y9, and z9 with 

respect to which the moments of inertia are given in Fig. 9.28, and then 

apply the parallel-axis theorem (Fig. 1). Thus,

Ix 5 Ix¿ 1 m(y2 1 z2) 5 
1
12m(b2 1 c2) 1 m(

1
4b

2 1 
1
4c

2)

Ix 5 1
3

 m(b2 1 c2) b
Similarly,

Iy 5 1
3m(c2 1 a2)  Iz 5 1

3m(a2 1 b2) b

Products of Inertia. Because of symmetry, the products of inertia 

with respect to the centroidal axes x9, y9, and z9 are zero, and these axes 

are principal axes of inertia. Using the parallel-axis theorem, you have

 Ixy 5 I x9y9 1 mxy 5 0 1 m(
1
2a)(

1
2b)  Ixy 5 1

4mab b
Similarly,

Iyz 5 
1
4mbc  Izx 5 

1
4mca b

b. Moment of Inertia with Respect to OB. Recall Eq. (9.46):

IOB 5 Ixlx
2 1 Iyl

2
y 1 Izlz

2 2 2Ixylxly 2 2Iyzlylz 2 2Izxlzlx

where the direction cosines of OB are (Fig. 2)

lx 5 cos θx 5
OH

OB
5

a

(a2 1 b2 1 c2)1/2

ly 5
b

(a2 1 b2 1 c2)1/2
   lz 5

c

(a2 1 b2 1 c2)1/2

Substituting the values obtained in part (a) for the moments and products 

of inertia and for the direction cosines into the equation for IOB, you obtain

IOB 5
1

a2 1 b2 1 c2
 [

1
3m(b2 1 c2)a2 1 

1
3m(c2 1 a2)b2 1 

1
3m(a2 1 b2)c2

2
1
2ma2b2 2 

1
2mb2c2 2 

1
2mc2a2]

IOB 5
m

6
 
a2b2 1 b2c2 1 c2a2

a2 1 b2 1 c2
 b

REFLECT and THINK: You can also obtain the moment of inertia 

IOB directly from the principal moments of inertia Ix9, Iy9, and Iz9, since 

the line OB passes through the centroid O9. Since the x9, y9, and z9 axes 

are principal axes of inertia (Fig. 3), use Eq. (9.50) to write

 IOB 5 Ix9l
2
x 1 Iy9l

2
y 1 Iz9l

2
z

 5
1

a2 1 b2 1 c2
 c m

12
(b2 1 c2)a2 1

m

12
 (c2 1 a2)b2 1

m

12
 (a2 1 b2)c2 d

IOB 5
m

6
 
a2b2 1 b2c2 1 c2a2

a2 1 b2 1 c2
 b

O

O'

y'

z'

x'

z

x

y

E

A B

F

H

D C

a

b

c

Fig. 1 Centroidal axes for the rectangular 
prism.

O

z

x

y

E

A B

F

H

D C

a

b

c

qz

qx
qy

O

E

B

H

D

a

b

c

z

x

y

Fig. 2 Direction angles for OB.

qz

qx

qy

O

O�

B

y�

z�

x�

Fig. 3 Line OB passes through 
the centroid O9.
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9.6 Additional Concepts of Mass Moments of Inertia 555

Sample Problem 9.15

If a 5 3c and b 5 2c for the rectangular prism of Sample Prob. 9.14, 

determine (a) the principal moments of inertia at the origin O, (b) the 

principal axes of inertia at O.

STRATEGY: Substituting the data into the results from Sample 

Prob. 9.14 gives you values you can use with Eq. (9.56) to determine the 

principal moments of inertia. You can then use these values to set up a 

system of equations for finding the direction cosines of the principal axes.

MODELING and ANALYSIS:

a. Principal Moments of  Inertia at the Origin O. Substituting 

a 5 3c and b 5 2c into the solution to Sample Prob. 9.14 gives you

Ix 5 
5
3mc2  Iy  5 

10
3 mc2  Iz     5 

13
3 mc2

 Ixy 5 
3
2mc2  Iyz 5 

1
2mc2  Izx 5 

3
4mc2

Substituting the values of the moments and products of inertia into 

Eq. (9.56) and collecting terms yields

K3 2 (
28
3  mc2)K2 1 (

3479
144  m2c4)K 2 

589
54  m3c6 5 0

Now solve for the roots of this equation; from the discussion in Sec. 9.6C, 

it follows that these roots are the principal moments of inertia of the body 

at the origin.

K1 5 0.568867mc2   K2 5 4.20885mc2     K3 5 4.55562mc2

 K1 5 0.569mc2     K2 5 4.21mc2     K3 5 4.56mc2   b

b. Principal Axes of Inertia at O. To determine the direction of 

a principal axis of inertia, first substitute the corresponding value of K 

into two of the equations (9.54). The resulting equations, together with 

Eq. (9.57), constitute a system of three equations from which you can 

determine the direction cosines of the corresponding principal axis. Thus, 

for the first principal moment of inertia K1, you have

 (
5
3 2 0.568867)mc2(lx)1 2 

3
2mc2(ly)1 2 

3
4mc2(lz)1 5 0

2
3
2mc2(lx)1 1 (

10
3  2 0.568867) mc2(ly)1 2 

1
2mc2(lz)1 5 0

 (lx)
2
1 1 (ly)

2
1 1 (lz)

2
1 5 1

Solving yields

 (lx)1 5 0.836600   (ly)1 5 0.496001   (lz)1 5 0.232557

The angles that the first principal axis of inertia forms with the coordinate 

axes are then

 (θx)1 5 33.2°   (θy)1 5 60.3°   (θz)1 5 76.6°  b

Using the same set of equations successively with K2 and K3, you can find 

that the angles associated with the second and third principal moments of 

inertia at the origin are, respectively,

 (θx)2 5 57.8°   (θy)2 5 146.6°   (θz)2 5 98.0°  b

and

 (θx)3 5 82.8°   (θy)3 5 76.1°      (θz)3 5 164.3°  b
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556556

SOLVING PROBLEMS 
ON YOUR OWN

In this section, we defined the mass products of inertia Ixy, Iyz, and Izx of a body and 

showed you how to determine the moments of inertia of that body with respect to an 

arbitrary axis passing through the origin O. You also saw how to determine at the origin 

O the principal axes of inertia of a body and the corresponding principal moments of 
inertia.

1. Determining the mass products of inertia of a composite body. You can express 

the mass products of inertia of a composite body with respect to the coordinate axes as 

the sums of the products of inertia of its component parts with respect to those axes. For 

each component part, use the parallel-axis theorem to write Eqs. (9.47)

Ixy 5 Ix9y9 1 mx y    Iyz 5 Iy9z9 1 my z   Izx 5 Iz9x9 1 mz x

Here the primes denote the centroidal axes of each component part, and x, y, and z represent 

the coordinates of its center of gravity. Keep in mind that the mass products of inertia can 

be positive, negative, or zero, and be sure to take into account the signs of x, y, and z.

 a. From the properties of symmetry of a component part, you can deduce that two 

or all three of its centroidal mass products of inertia are zero. For instance, you can verify 

for a thin plate parallel to the xy plane, a wire lying in a plane parallel to the xy plane, a 

body with a plane of symmetry parallel to the xy plane, and a body with an axis of sym-

metry parallel to the z axis that the products of inertia Iy¿z¿ and Iz¿x¿ are zero.

 For rectangular, circular, or semicircular plates with axes of symmetry parallel to the 

coordinate axes, straight wires parallel to a coordinate axis, circular and semicircular wires 

with axes of symmetry parallel to the coordinate axes, and rectangular prisms with axes 

of symmetry parallel to the coordinate axes, the products of inertia I x9y9, I y9z9, and I z9x9 are 

all zero.

 b. Mass products of inertia that are different from zero can be computed from 

Eqs. (9.45). Although, in general, you need a triple integration to determine a mass product 

of inertia, you can use a single integration if you can divide the given body into a series 

of thin, parallel slabs. The computations are then similar to those discussed in the preced-

ing section for moments of inertia.

2. Computing the moment of inertia of a body with respect to an arbitrary axis 
OL. In Sec. 9.6A, we derived an expression for the moment of inertia IOL that was given 

in Eq. (9.46). Before computing IOL, you must first determine the mass moments and 

products of inertia of the body with respect to the given coordinate axes, as well as the 

direction cosines of the unit vector l along OL.
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557 557

3. Calculating the principal moments of inertia of a body and determining its 
 principal axes of inertia. You saw in Sec. 9.6B that it is always possible to find an 

orientation of the coordinate axes for which the mass products of inertia are zero. These 

axes are referred to as the principal axes of inertia, and the corresponding moments of 

inertia are known as the principal moments of inertia of the body. In many cases, you 

can determine the principal axes of inertia of a body from its properties of symmetry. The 

procedure required to determine the principal moments and principal axes of inertia of a 

body with no obvious property of symmetry was discussed in Sec. 9.6C and was illustrated 

in Sample Prob. 9.15. It consists of the following steps.

 a. Expand the determinant in Eq. (9.55) and solve the resulting cubic  equation. You 

can obtain the solution by trial and error or (preferably) with an advanced scientific cal-

culator or appropriate computer software. The roots K1, K2, and K3 of this equation are 

the principal moments of inertia of the body.

 b. To determine the direction of the principal axis corresponding to K1, substitute 

this value for K in two of the equations (9.54) and solve these equations, together with 

Eq. (9.57), for the direction cosines of the principal axis corresponding to K1.

 c. Repeat this procedure with K2 and K3 to determine the directions of the other two 

principal axes. As a check of your computations, you may wish to verify that the scalar 

product of any two of the unit vectors along the three axes you have obtained is zero and, 

thus, that these axes are perpendicular to each other.
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Problems

 9.149 Determine the mass products of inertia Ixy, Iyz, and Izx of the steel 

fixture shown. (The density of steel is 7850 kg/m3.) 

50 mm

70 mm

40 mm

16 mm

80 mm

y

x

z

50 mm

38 mm

24 mm

Fig. P9.149

 9.150 Determine the mass products of inertia Ixy, Iyz, and Izx of the steel 

machine element shown. (The density of steel is 7850 kg/m3.)

Dimensions in mm

y

x

35
35

60

60

20
10

10

22

22

z

Fig. P9.150

 9.151 and 9.152  Determine the mass products of inertia Ixy, Iyz, and Izx of 

the cast aluminum machine component shown. (The specific weight 

of aluminum is 0.100 lb/in3.)

r = 0.55 in. 0.6 in.

5.4 in.

2.4 in.

3.6 in.

0.8 in.

r = 0.8 in. y

xz

Fig. P9.152

x

y

z

1.4 in.

1.1 in.

1.1 in.

1.2 in.
0.3 in.

1.8 in.

0.7 in.

4.5 in.

Fig. P9.151
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559

9.153 through 9.156  A section of sheet steel 2 mm thick is cut and bent 

into the machine component shown. Knowing that the density of 

steel is 7850 kg/m3, determine the mass products of inertia Ixy, Iyz, 

and Izx of the component.

225 mm
z

x

y

225 mm

400 mm

180 mm

Fig. P9.153

z
x

y

350 mm 150 mm

195 mm

Fig. P9.155

 9.157 The figure shown is formed of 1.5-mm-diameter aluminum wire. 

Knowing that the density of aluminum is 2800 kg/m3, determine the 

mass products of inertia Ixy, Iyz, and Izx of the wire figure.

180 mm

250 mm

300 mm
z

x

y

Fig. P9.157

200 mm
100 mm

120 mm

y

z x

Fig. P9.154

y

z x

225 mmr = 135 mm

Fig. P9.156
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 9.158 Thin aluminum wire of uniform diameter is used to form the figure 

shown. Denoting the mass per unit length of the wire by m9,  determine 

the mass products of inertia Ixy, Iyz, and Izx of the wire figure.

 9.159 and 9.160  Brass wire with a weight per unit length w is used to 

form the figure shown. Determine the mass products of inertia Ixy, 

Iyz, and Izx of the wire figure.

x

y

z

2a

2a

a

a

a3
2

Fig. P9.159   

x

y

z

2a

a
a

a3
2

Fig. P9.160

 9.161 Complete the derivation of Eqs. (9.47) that expresses the parallel-

axis theorem for mass products of inertia.

 9.162 For the homogeneous tetrahedron of mass m shown, (a) determine 

by direct integration the mass product of inertia Izx, (b) deduce Iyz

and Ixy from the result obtained in part a.

 9.163 The homogeneous circular cone shown has a mass m. Determine the 

mass moment of inertia of the cone with respect to the line joining 

the origin O and point A.

3a

3aa

O

A

x

y

z
a3

2

Fig. P9.163

 9.164 The homogeneous circular cylinder shown has a mass m. Determine 

the mass moment of inertia of the cylinder with respect to the line 

joining the origin O and point A that is located on the perimeter of 

the top surface of the cylinder.

z

x

R1

R2

y

Fig. P9.158

a

b

c
x

y

z

Fig. P9.162

h

a

O

y

xz

A

Fig. P9.164
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 9.165 Shown is the machine element of Prob. 9.141. Determine its mass 

moment of inertia with respect to the line joining the origin O and 

point A.

40 mm

40 mm

40 mm

20 mm

60 mm

20 mm

80 mm

x

y

z

A

O

Fig. P9.165

 9.166 Determine the mass moment of inertia of the steel fixture of Probs. 

9.145 and 9.149 with respect to the axis through the origin that forms 

equal angles with the x, y, and z axes.

 9.167 The thin, bent plate shown is of uniform density and weight W. 

Determine its mass moment of inertia with respect to the line joining 

the origin O and point A.

x

y

z

O

A
a

a

a

Fig. P9.167

 9.168 A piece of sheet steel with thickness t and specific weight γ is cut 

and bent into the machine component shown. Determine the mass 

moment of inertia of the component with respect to the line joining 

the origin O and point A.

 9.169 Determine the mass moment of inertia of the machine component of 

Probs. 9.136 and 9.155 with respect to the axis through the origin 

characterized by the unit vector l 5 (24i 1 8j 1 k)/9.

 9.170 through 9.172  For the wire figure of the problem indicated, 

 determine the mass moment of inertia of the figure with respect 

to the axis through the origin characterized by the unit vector 

l 5 (23i 2 6j 1 2k)/7.

 9.170 Prob. 9.148

 9.171 Prob. 9.147

 9.172 Prob. 9.146

y

z

x

2a

a
A

O

Fig. P9.168
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 9.173 For the homogeneous circular cylinder shown with radius a and 

length L, determine the value of the ratio a/L for which the ellipsoid 

of inertia of the cylinder is a sphere when computed (a) at the cen-

troid of the cylinder, (b) at point A.

 9.174 For the rectangular prism shown, determine the values of the ratios 

b/a and c/a so that the ellipsoid of inertia of the prism is a sphere 

when computed (a) at point A, (b) at point B.

x

y

z

b
2

b
2

A
B

c
2c

2
a
2

a
2

Fig. P9.174

 9.175 For the right circular cone of Sample Prob. 9.11, determine the value 

of the ratio a/h for which the ellipsoid of inertia of the cone is a 

sphere when computed (a) at the apex of the cone, (b) at the center 

of the base of the cone.

 9.176 Given an arbitrary body and three rectangular axes x, y, and z, prove 

that the mass moment of inertia of the body with respect to any one 

of the three axes cannot be larger than the sum of the mass moments 

of inertia of the body with respect to the other two axes. That is, 

prove that the inequality Ix # Iy 1 Iz and the two similar inequalities 

are satisfied. Furthermore, prove that Iy $
1
2 
Ix if the body is a homo-

geneous solid of revolution, where x is the axis of revolution and y 

is a transverse axis.

 9.177 Consider a cube with mass m and side a. (a) Show that the ellipsoid 

of inertia at the center of the cube is a sphere, and use this prop-

erty to determine the moment of inertia of the cube with respect 

to one of its diagonals. (b) Show that the ellipsoid of inertia at 

one of the corners of the cube is an ellipsoid of revolution, and 

determine the principal moments of inertia of the cube at that 

point.

 9.178 Given a homogeneous body of mass m and of arbitrary shape and 

three rectangular axes x, y, and z with origin at O, prove that the 

sum Ix 1 Iy 1 Iz of the mass moments of inertia of the body cannot 

be smaller than the similar sum computed for a sphere of the same 

mass and the same material centered at O. Furthermore, using the 

result of Prob. 9.176, prove that, if the body is a solid of revolution 

where x is the axis of revolution, its mass moment of inertia Iy about 

a transverse axis y cannot be smaller than 3ma2/10, where a is the 

radius of the sphere of the same mass and the same material.

x

y

z
A

a

L
2

L
4 L

4

Fig. P9.173
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 *9.179 The homogeneous circular cylinder shown has a mass m, and the 

diameter OB of its top surface forms 45° angles with the x and z
axes. (a) Determine the principal mass moments of inertia of the 

cylinder at the origin O. (b) Compute the angles that the principal 

axes of inertia at O form with the coordinate axes. (c) Sketch the 

cylinder, and show the orientation of the principal axes of inertia 

relative to the x, y, and z axes.

a

O

x

z

y

a

B

Fig. P9.179

 9.180 through 9.184  For the component described in the problem indi-

cated, determine (a) the principal mass moments of inertia at the 

origin, (b) the principal axes of inertia at the origin. Sketch the body 

and show the orientation of the principal axes of inertia relative to 

the x, y, and z axes.

 *9.180 Prob. 9.165

 *9.181 Probs. 9.145 and 9.149

 *9.182 Prob. 9.167

 *9.183 Prob. 9.168

 *9.184 Probs. 9.148 and 9.170
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In the first half of this chapter, we discussed how to determine the resultant 

R of forces DF distributed over a plane area A when the magnitudes of these 

forces are proportional to both the areas DA of the elements on which they 

act and the distances y from these elements to a given x axis; we thus had 

DF 5 ky DA. We found that the magnitude of the resultant R is proportional 

to the first moment Qx 5 ey dA of area A, whereas the moment of R about 

the x axis is proportional to the second moment, or moment of inertia, 
Ix 5 ey2 dA of A with respect to the same axis [Sec. 9.1A].

Rectangular Moments of Inertia
The rectangular moments of inertia Ix and Iy of an area [Sec. 9.1B] are 

obtained by evaluating the integrals

 Ix 5 #y 
2

 d A   Iy 5 #x 
2

 dA (9.1)

We can reduce these computations to single integrations by choosing dA 

to be a thin strip parallel to one of the coordinate axes. We also recall 

that it is possible to compute Ix and Iy from the same elemental strip 

(Fig. 9.35) using the formula for the moment of inertia of a rectangular 

area [Sample Prob. 9.3].

y
x

y

xdx

dIx =    y3 dx
3
1

dIy = x2 y dx

Fig. 9.35

Polar Moment of Inertia
We defined the polar moment of inertia of an area A with respect to the 

pole O [Sec. 9.1C] as

 JO 5 #r2
 dA (9.3)

where r is the distance from O to the element of area dA (Fig. 9.36). Observ-

ing that r 2 5 x 2 1 y 2, we established the relation

 JO 5 Ix 1 Iy (9.4)

Review and Summary

y

y

x

dA

A

x
r

O

Fig. 9.36
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Radius of Gyration
We defined the radius of gyration of an area A with respect to the x axis 

[Sec. 9.1D] as the distance kx, where Ix 5 k 
2
x  
A. With similar definitions for 

the radii of gyration of A with respect to the y axis and with respect to O, we 

have

kx 5
B

Ix

A
    ky 5

B

Iy

A
   kO 5

B

JO

A
 (9.5–9.7)

Parallel-Axis Theorem
The parallel-axis theorem, presented in Sec. 9.2A, states that the moment of 

inertia I of an area with respect to any given axis AA9 (Fig. 9.37) is equal to 

the moment of inertia I  of the area with respect to the centroidal axis BB9 

that is parallel to AA9 plus the product of the area A and the square of the 

distance d between the two axes:

 I 5 I 1 Ad2 (9.9)

You can use this formula to determine the moment of inertia I  of an area with 

respect to a centroidal axis BB9 if you know its moment of inertia I with 

respect to a parallel axis AA9. In this case, however, the product Ad2 should 

be subtracted from the known moment of inertia I.
 A similar relation holds between the polar moment of inertia JO of an 

area about a point O and the polar moment of inertia JC of the same area 

about its centroid C. Letting d be the distance between O and C, we have

 JC 5 JC 1 Ad2  (9.11)

Composite Areas
The parallel-axis theorem can be used very effectively to compute the moment 
of inertia of a composite area with respect to a given axis [Sec. 9.2B]. 

Considering each component area separately, we first compute the moment of 

inertia of each area with respect to its centroidal axis, using the data provided 

in Figs. 9.12 and 9.13 whenever possible. Then apply the parallel-axis theorem 

to determine the moment of inertia of each component area with respect to 

the desired axis, and add the values [Sample Probs. 9.4 and 9.5].

Product of Inertia
Section 9.3 was devoted to the transformation of the moments of inertia of 

an area under a rotation of the coordinate axes. First, we defined the product 
of inertia of an area A as

 Ixy 5 #xy dA  (9.12)

and showed that Ixy 5 0 if the area A is symmetrical with respect to either or 

both of the coordinate axes. We also derived the parallel-axis theorem for 
products of inertia as

 Ixy 5 Ix¿y¿ 1 xÊyÊA (9.13)

where Ix¿y¿ is the product of inertia of the area with respect to the centroidal 

axes x9 and y9 that are parallel to the x and y axes and x and y are the 

 coordinates of the centroid of the area [Sec. 9.3A].

A'

B'B

A

C

d

Fig. 9.37
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Rotation of Axes
In Sec. 9.3B, we determined the moments and product of inertia Ix9, Iy9, and 

Ix9y9 of an area with respect to x9 and y9 axes obtained by rotating the original 

x and y coordinate axes counterclockwise through an angle θ (Fig. 9.38). We 

expressed Ix9, Iy9, and Ix9y9 in terms of the moments and product of inertia Ix, 

Iy, and Ixy computed with respect to the original x and y axes. 

  Ix¿ 5
Ix 1 Iy

2
1

Ix 2 Iy

2
 cos 2θ 2 Ixy sin 2θ  (9.18)

 Iy¿ 5
Ix 1 Iy

2
2

Ix 2 Iy

2
 cos 2θ 1 Ixy sin 2θ  (9.19)

 Ix¿y¿ 5
Ix 2 Iy

2
 sin 2θ 1 Ixy cos 2θ  (9.20)

Principal Axes
We defined the principal axes of the area about O as the two axes perpen-

dicular to each other with respect to which the moments of inertia of the area 

are maximum and minimum. The corresponding values of θ, denoted by θm, 

were obtained from

tan 2θm 5 2
2Ixy

Ix 2 Iy
 (9.25)

Principal Moments of Inertia
The corresponding maximum and minimum values of I are called the  principal 
moments of inertia of the area about O:

 Imax,min 5
Ix 1 Iy

2
 ; 
B
a Ix 2 Iy

2
b2

1 I2
xy  (9.27)

We also noted that the corresponding value of the product of inertia is zero.

Mohr’s Circle
The transformation of the moments and product of inertia of an area under a 

rotation of axes can be represented graphically by drawing Mohr’s circle
[Sec. 9.4]. Given the moments and product of inertia Ix, Iy, and Ixy of the area 

with respect to the x and y coordinate axes, we plot points X (Ix, Ixy) and Y
(Iy, –Ixy) and draw the line joining these two points (Fig. 9.39). This line is a 

diameter of Mohr’s circle and thus defines this circle. As the coordinate axes 

are rotated through θ, the diameter rotates through twice that angle, and the 

coordinates of X9 and Y9 yield the new values Ix9, Iy9, and Ix9y9 of the moments 

and product of inertia of the area. Also, the angle θm and the coordinates of 

points A and B define the principal axes a and b and the principal moments 

of inertia of the area [Sample Prob. 9.8].

y
y'

x'

xO

q

Fig. 9.38
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Moments of Inertia of Masses
The second half of the chapter was devoted to determining moments of 
 inertia of masses, which are encountered in dynamics problems involving the 

rotation of a rigid body about an axis. We defined the mass moment of inertia 

of a body with respect to an axis AA9 (Fig. 9.40) as

I 5#  r2 dm (9.28)

where r is the distance from AA9 to the element of mass [Sec. 9.5A]. We 

defined the radius of gyration of the body as

 k 5
B

I
m

 (9.29)

The moments of inertia of a body with respect to the coordinate axes were 

expressed as

Ix 5#
 

(y2 1 z2) dm

 Iy 5#
 

(z2 1 x2) dm  (9.30)

Iz 5#
 

(x2 1 y2) dm

Parallel-Axis Theorem
We saw that the parallel-axis theorem also applies to mass moments of 

inertia [Sec. 9.5B]. Thus, the moment of inertia I of a body with respect to 

an arbitrary axis AA9 (Fig. 9.41) can be expressed as

 I 5 I  1 md2 (9.33)

where I  is the moment of inertia of the body with respect to the centroidal 

axis BB9 that is parallel to the axis AA9, m is the mass of the body, and d is 

the distance between the two axes.

x'

x

y'

q

qm

2q

O

b

a

y

AB C

Y

2qm

O

Imin

Imax

Ixy

Ix'

Ix'y'

–Ix'y'

–Ixy

Ixy

Ix, Iy

Iy

X
X'

Ix

Iy'

Y'

Fig. 9.39

A'

A

r1

r2 r3

Δm1

Δm2

Δm3

Fig. 9.40

A'

B'

A

B

G

d

Fig. 9.41
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Moments of Inertia of Thin Plates
We can readily obtain the moments of inertia of thin plates from the moments 

of inertia of their areas [Sec. 9.5C]. We found that for a rectangular plate the 

moments of inertia with respect to the axes shown (Fig. 9.42) are

IAA9 5 
1
12ma2  IBB9 5 

1
12mb2 (9.39)

 ICC9 5 IAA9 1 IBB9 5 
1
12m(a2 1 b2) (9.40)

whereas for a circular plate (Fig. 9.43), they are

 IAA9 5 IBB9 5 
1
4mr 2 (9.41)

 ICC9 5 IAA9 1 IBB9 5 
1
2mr 2 (9.42)

t

C'

B'

A

Bb

a

A'

C

Fig. 9.42    

C'

C

B'

A

B

A'

t r

Fig. 9.43

Composite Bodies
When a body possesses two planes of symmetry, it is usually possible to use 

a single integration to determine its moment of inertia with respect to a given 

axis by selecting the element of mass dm to be a thin plate [Sample Probs. 9.10 

and 9.11]. On the other hand, when a body consists of several common geo-

metric shapes, we can obtain its moment of inertia with respect to a given 

axis by using the formulas given in Fig. 9.28 together with the parallel-axis 

theorem [Sample Probs. 9.12 and 9.13].

Moment of Inertia with Respect to an Arbitrary Axis
In the last section of the chapter, we described how to determine the moment 

of inertia of a body with respect to an arbitrary axis OL that is drawn through 

the origin O [Sec. 9.6A]. We denoted the components of the unit vector l along 

OL by lx, ly, and lz (Fig. 9.44) and introduced the products of inertia as

  Ixy 5#  
xy dm    Iyz 5#  

yz dm    Izx 5#  
zx dm (9.45)

We found that the moment of inertia of the body with respect to OL could be 

expressed as

 IOL 5 Ixl
2
x 1 Iyl

2
y 1 Izlz

2 2 2Ixylxly 2 2Iyzlylz 2 2Izxlzlx (9.46)

y

dm

z

x

p

L

O

q
�

r

Fig. 9.44

bee87302_ch09_485-572.indd   568bee87302_ch09_485-572.indd   568 10/25/14   10:59 AM10/25/14   10:59 AM

UPLOADED BY AHMAD T JUNDI



569

Ellipsoid of Inertia
By plotting a point Q along each axis OL at a distance OQ 5 1/2IOL from 

O [Sec. 9.6B], we obtained the surface of an ellipsoid, known as the ellipsoid 
of inertia of the body at point O.

x

z'

y' x'y

z

O

Fig. 9.45

Principal Axes and Principal Moments of Inertia
The principal axes x9, y9, and z9 of this ellipsoid (Fig. 9.45) are the principal 
axes of inertia of the body; that is, the products of inertia Ix9y9, Iy9z9, and Iz9x9 
of the body with respect to these axes are all zero. In many situations, you 

can deduce the principal axes of inertia of a body from its properties of 

 symmetry. Choosing these axes to be the coordinate axes, we can then express 

IOL as

 IOL 5 Ix9lx
2
9 1 Iy9l

2
y9 1 Iz9lz

2
9 (9.50)

where Ix9, Iy9, and Iz9 are the principal moments of inertia of the body at O.

 When the principal axes of inertia cannot be obtained by observation 

[Sec. 9.6B], it is necessary to solve the cubic equation

K 3 2 (Ix 1 Iy 1 Iz)K 2 1 (Ix Iy 1 Iy Iz 1 IzIx 2 I 2xy 2 I 2yz 2 I 2z x)K

 2 (Ix Iy Iz 2 Ix I 
2
yz 2 Iy I 

2
z x 2 IzI 

2
x y 2 2Ix yIyzIz x) 5 0 (9.56)

We found [Sec. 9.6C] that the roots K1, K2, and K3 of this equation are the 

principal moments of inertia of the given body. The direction cosines (lx)1, 

(ly)1, and (lz)1 of the principal axis corresponding to the principal moment of 

inertia K1 are then determined by substituting K1 into Eqs. (9.54) and by solv-

ing two of these equations and Eq. (9.57) simultaneously. The same procedure 

is then repeated using K2 and K3 to determine the direction cosines of the 

other two principal axes [Sample Prob. 9.15].
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9.185 Determine by direct integration the moments of inertia of the shaded 

area with respect to the x and y axes.

h

y

x
a

y = 4h(          )x
a

x2

a2
−

Fig. P9.185

9.186 Determine the moment of inertia and the radius of gyration of the 

shaded area shown with respect to the y axis.

 9.187 Determine the moment of inertia and the radius of gyration of the 

shaded area shown with respect to the x axis.

2b

b

a

y

x
y = kx2

y = 2b − cx2

Fig. P9.187

9.188 Determine the moments of inertia I x and I y of the area shown with 

respect to centroidal axes respectively parallel and perpendicular to 

side AB.

12 mm

18 mm

18 mm

12 mm

22 mm 72 mm 14 mm

A B

Fig. P9.188

Review Problems

x

b

y

a

= 1
y2

b2
x2

a2 +

Fig. P9.186
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9.189 Determine the polar moment of inertia of the area shown with 

respect to (a) point O, (b) the centroid of the area.

9.190 Two L4 3 4 3 
1
2-in. angles are welded to a steel plate as shown. 

Determine the moments of inertia of the combined section with 

respect to centroidal axes respectively parallel and perpendicular to 

the plate.

L4 × 4 × 1
2

in.1
2

10 in.

Fig. P9.190

 9.191 Using the parallel-axis theorem, determine the product of inertia of 

the L5 3 3 3 
1
2-in. angle cross section shown with respect to the 

centroidal x and y axes.

 9.192 For the L5 3 3 3 
1
2-in. angle cross section shown, use Mohr’s circle 

to determine (a) the moments of inertia and the product of inertia 

with respect to new centroidal axes obtained by rotating the x and y
axes 30° clockwise, (b) the orientation of the principal axes through 

the centroid and the corresponding values of the moments of 

inertia.

 9.193 A thin plate with a mass m was cut in the shape of a parallelogram 

as shown. Determine the mass moment of inertia of the plate with 

respect to (a) the x axis, (b) the axis BB9 that is perpendicular to 

the plate.

B

B'

y

A

A'
xz

a
a

a

Fig. P9.193 and P9.194

9.194 A thin plate with mass m was cut in the shape of a parallelogram as 

shown. Determine the mass moment of inertia of the plate with 

respect to (a) the y axis, (b) the axis AA9 that is perpendicular to the 

plate.

54 mm 54 mm Semiellipse

36 mm

18 mmO

Fig. P9.189

L5 × 3 ×

0.746 in.

1.74 in.

5 in.

3 in.

y

xC

1
2

 in.1
2

 in.1
2

Fig. P9.191 and P9.192

bee87302_ch09_485-572.indd   571bee87302_ch09_485-572.indd   571 11/8/14   11:12 AM11/8/14   11:12 AM

UPLOADED BY AHMAD T JUNDI



572

9.195 A 2-mm-thick piece of sheet steel is cut and bent into the machine 

component shown. Knowing that the density of steel is 7850 kg/m3, 

determine the mass moment of inertia of the component with respect 

to each of the coordinate axes.

x

y

z

0.48 m

0.76 m

Fig. P9.195

 9.196 Determine the mass moment of inertia of the steel machine element 

shown with respect to the z axis. (The specific weight of steel is 

490 lb/ft3.)

x

y

z

3.7 in.

0.9 in.

1.35 in.

1.2 in.

1.4 in.

0.6 in.

0.6 in.

0.9 in.
0.9 in.

3.1 in.

9 in.

Fig. P9.196
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The method of virtual work is particularly effective when a 

simple relation can be found among the displacements of the 

points of application of the various forces involved. This is the 

case for the scissor lift platform being used by workers to gain 

access to a highway bridge under construction.

Method of Virtual Work

10
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574 Method of Virtual Work

*Introduction
In the preceding chapters, we solved problems involving the equilibrium 

of rigid bodies by expressing the balance of external forces acting on the 

bodies. We wrote the equations of equilibrium oFx 5 0, oFy 5 0, and 

oMA 5 0 and solved them for the desired unknowns. We now consider a 

different method, which turns out to be more effective for solving certain 

types of equilibrium problems. This method, based on the principle of 
virtual work, was first  formally used by the Swiss mathematician Jean 

Bernoulli in the eighteenth century.

As you will see in Sec. 10.1B, the principle of virtual work consid-

ers a particle or rigid body (or more generally, a system of connected rigid 

bodies) that is in equilibrium under various external forces. The principle 

states that, if the body is given an arbitrary displacement from that position 

of equilibrium, the total work done by the external forces during the dis-

placement is zero. This principle is particularly effective when applied to 

the solution of problems involving the equilibrium of machines or mecha-

nisms consisting of several connected members.

In the second part of this chapter, we apply the method of virtual 

work in an alternative form based on the concept of potential energy. We 

will show in Sec. 10.2 that, if a particle, rigid body, or system of rigid 

bodies is in equilibrium, the derivative of its potential energy with respect 

to a variable defining its position must be zero.

You will also learn in this chapter to evaluate the mechanical 

 efficiency of a machine (Sec. 10.1D) and to determine whether a given 

position of equilibrium is stable, unstable, or neutral (Sec. 10.2D).

*10.1 THE BASIC METHOD
The first step in explaining the method of virtual work is to define the 

terms displacement and work as they are used in mechanics. Then we 

can state the principle of virtual work and show how to apply it in 

 practical situations. We also take the opportunity to define mechanical 

efficiency, which is a useful and important parameter for the design of 

real machines.

Objectives
• Define the work of a force, and consider the circum-

stances when a force does no work.

• Examine the principle of virtual work, and apply it to 
analyze the equilibrium of machines and mechanisms.

• Apply the concept of potential energy to determine 
the equilibrium position of a rigid body or a system of 
rigid bodies.

• Evaluate the mechanical effi ciency of machines, and 
consider the stability of equilibrium.

 *Introduction

 *10.1 THE BASIC METHOD
 10.1A Work of a Force
 10.1B Principle of Virtual Work
 10.1C Applying the Principle of 

Virtual Work
 10.1D Mechanical Efficiency of Real 

Machines

 *10.2 WORK, POTENTIAL 
ENERGY, AND STABILITY

 10.2A Work of a Force During a 
Finite Displacement

 10.2B Potential Energy
 10.2C Potential Energy and 

Equilibrium
 10.2D Stability of Equilibrium
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10.1 The Basic Method 575

10.1A Work of a Force
Consider a particle that moves from a point A to a neighboring point A9

(Fig. 10.1). If r denotes the position vector corresponding to point A, we 

denote the small vector joining A and A9 by the differential dr; we call 

the vector dr the displacement of the particle. 

Now let us assume that a force F is acting on the particle. The work 
dU of force F corresponding to the displacement dr is defined as the 

quantity

Definition of work

dU 5 F ? dr (10.1)

That is, dU is the scalar product of the force F and the displacement dr. 

Suppose we denote the magnitudes of the force by F, the displacement 

by ds, and the angle formed by F and dr by α. Then, recalling the defini-

tion of the scalar product of two vectors (Sec. 3.2A), we have

dU 5 F ds cos α (10.19)

Work is a scalar quantity, so it has a magnitude and a sign, but no direc-

tion. Note that work should be expressed in units obtained by multiplying 

units of length by units of force. Thus, if we use U.S. customary units, 

we should express work in ft?lb or in?lb. If we use SI units, we express 

work in N ? m. This unit of work is called a joule (J).†

It follows from (10.19) that work dU is positive if the angle α is 

acute and negative if α is obtuse. Three particular cases are of special 

interest. 

• If the force F has the same direction as d r, the work dU reduces to 

F ds. 

• If F has a direction opposite to that of d r, the work is dU 5 2F ds. 
• Finally, if F is perpendicular to d r, the work dU is zero.

We can also consider the work dU of a force F during a displace-

ment d r to be the product of F and the component ds cos α of the 

 displacement dr along F (Fig. 10.2a). This view is particularly useful in 

computing the work done by the weight W of a body (Fig. 10.2b). The 

work of W is equal to the product of W and the vertical displacement dy 

of the center of gravity G of the body. If the displacement is downward, 

the work is positive; if the displacement is upward, the work is 

negative.

Some forces frequently encountered in statics do no work, such as 

forces applied to fixed points (ds 5 0) or acting in a direction perpendicu-

lar to the displacement (cos α 5 0). Among these forces are the reaction 

at a frictionless pin when the body supported rotates about the pin; the 

reaction at a frictionless surface when the body in contact moves along 

the surface; the reaction at a roller moving along its track; the weight of 

a body when its center of gravity moves horizontally; and the friction force 

dU 5 F ? dr

Fig. 10.1 The work of a force acting 
on a particle is the scalar product of 
the force and the particle's 
displacement.

a

dr

A
A'

O

r

F

r + dr

†The joule is the SI unit of energy, whether in mechanical form (work, potential energy, 

kinetic energy) or in chemical, electrical, or thermal form. Note that even though 1 N ? m 5 1 J, 

we must express the moment of a force in N ? m, and not in joules, since the moment of a 

force is not a form of energy.

Fig. 10.2 (a) You can think of work 
as the product of a force and the 
component of displacement in the 
direction of the force. (b) This is 
useful for computing the work done 
by an object's weight.

ds cos a

a

a

dr

dr

A

dy G

W

F

(a) (b)

A'

G'
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576 Method of Virtual Work

acting on a wheel rolling without slipping (since at any instant the point 

of contact does not move). Examples of forces that do work are the weight 

of a body (except in the case considered previously), the friction force 

acting on a body sliding on a rough surface, and most forces applied on 

a moving body.

In certain cases, the sum of the work done by several forces is zero. 

Consider, for example, two rigid bodies AC and BC that are connected at 

C by a frictionless pin (Fig. 10.3a). Among the forces acting on AC is the 

force F exerted at C by BC. In general, the work of this force is not zero, 

but it is equal in magnitude and opposite in sign to the work of the force 

2F exerted by AC on BC, since these forces are equal and opposite and 

are applied to the same particle. Thus, when the total work done by all 

the forces acting on AB and BC is considered, the work of the two internal 

forces at C cancels out. We obtain a similar result if we consider a system 

 consisting of two blocks connected by a cord AB that is not extensible 

(Fig. 10.3b). The work of the tension force T at A is equal in magnitude 

to the work of the tension force T9 at B, since these forces have the same 

magnitude and the points A and B move through the same distance; but 

in one case, the work is positive, and in the other, it is negative. Thus, the 

work of the internal forces again cancels out.

Photo 10.1 (a) In analyzing a crane, we might consider displacements associated with vertical movement 
of a container. (b) A force does work if it has a component in the direction of a displacement. (c) A force 
does no work if there is no displacement or if the force is perpendicular to a displacement.

Force in
hydraulic
cylinder

Tension
in cable

Boom
reactions

Weight of boom
if not moving
vertically

Weight
of load

Fig. 10.3 (a) For a frictionless pin or (b) a cord that is not extensible, the total 
work done by the pairs of internal forces is zero.

A

C

B B

–F

F

(a) (b)

T'

T
A

We can show that the total work of the internal forces holding 

together the particles of a rigid body is zero. Consider two particles A and 

B of a rigid body and the two equal and opposite forces F and 2F they 

exert on each other (Fig. 10.4). Although, in general, small displacements 

dr and dr9 of the two particles are different, the components of these 

displacements along AB must be equal; otherwise, the particles would not 

Fig. 10.4 As demonstrated here for an 
arbitrary pair of particles, the total work of 
the internal forces holding a rigid body 
together is zero.

B

B'

A'

–F

F

dr
A

dr'
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10.1 The Basic Method 577

remain at the same distance from each other, so the body would not be 

rigid. Therefore, the work of F is equal in magnitude and opposite in sign 

to the work of 2F, and their sum is zero.

In computing the work of the external forces acting on a rigid body, 

it is often convenient to determine the work of a couple without consider-

ing separately the work of each of the two forces forming the couple. 

Consider the two forces F and 2F forming a couple of moment M and 

acting on a rigid body (Fig. 10.5). Any small displacement of the rigid 

body bringing A and B, respectively, into A9 and B0 can be divided into 

two parts: one in which points A and B undergo equal displacements dr1, 

the other in which A9 remains fixed while B9 moves into B0 through a 

displacement dr2 with a magnitude of ds2 5 r dθ. In the first part of the 

motion, the work of F is equal in magnitude and opposite in sign to the 

work of 2F, and their sum is zero. In the second part of the motion, only 

force F works, and its work is dU 5 F ds2 5 Fr dθ. But the product Fr 

is equal to the magnitude M of the moment of the couple. Thus, the work 

of a couple of moment M acting on a rigid body is

Work of a couple

 dU 5 M dθ (10.2)

where dθ is the small angle (expressed in radians) through which the body 

rotates. We again note that work should be expressed in units obtained by 

multiplying units of force by units of length.

10.1B Principle of Virtual Work
Consider a particle acted upon by several forces F1, F2, . . . , Fn (Fig. 10.6). 

We can imagine that the particle undergoes a small displacement from A 

to A9. This displacement is possible, but it does not necessarily take place. 

The forces may be balanced and the particle remains at rest, or the particle 

may move under the action of the given forces in a direction different 

from that of AA9. Since the considered displacement does not actually 

occur, it is called a virtual displacement, which is denoted by δ r. The 

symbol δ r represents a differential of the first order; it is used to distin-

guish the virtual displacement from the displacement d r that would take 

place under actual motion. As you will see, we can use virtual displace-

ments to determine whether the conditions of equilibrium of a particle are 

satisfied.

The work of each of the forces F1, F2, . . . , Fn during the virtual 

displacement δ r is called virtual work. The virtual work of all the forces 

acting on the particle of Fig. 10.6 is

δU 5 F1 ? δr 1 F2 ? δr 1 . . . 1 Fn ? δr

 5 (F1 1 F2 1 . . . 1 Fn) ? δr

or

 δU 5 R ? δr (10.3)

where R is the resultant of the given forces. Thus, the total virtual work 

of the forces F1, F2, . . . , Fn is equal to the virtual work of their 

resultant R.

dU 5 M dθ

Fig. 10.5 The work of a couple acting on a 
rigid body is the moment of the couple times 
the angular rotation.

B'

B''

B
A

–F
F

dr1 dr1

dr2

A'

r

dq

Fig. 10.6 Forces acting on a particle that 
goes through a virtual displacement.

F2

F1

Fn

A

A'

dr
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578 Method of Virtual Work

The principle of virtual work for a particle states: 

If a particle is in equilibrium, the total virtual work of the forces 
acting on the particle is zero for any virtual displacement of the 
particle.

This condition is necessary: if the particle is in equilibrium, the resultant 

R of the forces is zero, and it follows from Eq. (10.3) that the total virtual 

work δU is zero. The condition is also sufficient: if the total virtual work 

δU is zero for any virtual displacement, the scalar product R ? δr is zero 

for any δr, and the resultant R must be zero.

In the case of a rigid body, the principle of virtual work states: 

If a rigid body is in equilibrium, the total virtual work of the 
external forces acting on the rigid body is zero for any virtual 
displacement of the body.

The condition is necessary: if the body is in equilibrium, all the particles 

forming the body are in equilibrium and the total virtual work of the forces 

acting on all the particles must be zero. However, we have seen in the 

preceding section that the total work of the internal forces is zero; there-

fore, the total work of the external forces also must be zero. The condition 

can also be proven to be sufficient.

The principle of virtual work can be extended to the case of a 

 system of connected rigid bodies. If the system remains connected  during 

the virtual displacement, only the work of the forces external to the 
system need be considered, since the total work of the internal forces at 

the various connections is zero.

10.1C  Applying the Principle 
of Virtual Work

The principle of virtual work is particularly effective when applied to the 

solution of problems involving machines or mechanisms consisting of 

 several connected rigid bodies. Consider, for instance, the toggle vise ACB 

of Fig. 10.7a used to compress a wooden block. Suppose we wish to deter-

mine the force exerted by the vise on the block when a given force P is 

applied at C, assuming there is no friction. Denoting the reaction of the 

block on the vise by Q, we draw the free-body diagram of the vise and 

Fig. 10.7 (a) A toggle vise used to compress a wooden block, assuming no friction; (b) a virtual 
displacement of the vise.

l l
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10.1 The Basic Method 579

consider the virtual displacement obtained by giving a positive increment 

δθ to angle θ (Fig. 10.7b). Choosing a system of coordinate axes with 

origin at A, we note that xB increases as yC decreases. This is indicated in 

the figure, where we indicate a positive increment δxB and a negative 

 increment 2δyC. The reactions Ax, Ay, and N do no work during the virtual 

displacement considered, so we need only compute the work done by P 

and Q. Since Q and δxB have opposite senses, the virtual work of Q is δUQ 5 

2Q δxB. Since P and the increment shown (2δyC) have the same sense, 

the virtual work of P is δUP 5 1P(2δyC) 5 2P δyC. (We could have 

predicted the minus signs by simply noting that the forces Q and P are 

directed opposite to the positive x and y axes, respectively.) Expressing the 

coordinates xB and yC in terms of the angle θ and  differentiating, we obtain

 xB 5 2l sin θ yC 5 l cos θ

 δxB 5 2l cos θ δθ   δyC 5 2l sin θ δθ (10.4)

The total virtual work of the forces Q and P is thus

 δU 5 δUQ 1 δUP 5 2Q δxB 2 P δyC

 5 22Ql cos θ δθ 1 Pl sin θ δθ

Setting δU 5 0, we obtain

 2Ql cos θ δθ 5 Pl sin θ δθ (10.5)

and

 Q 5
1

2
 P tan θ (10.6)

The superiority of the method of virtual work over the conventional 

equilibrium equations in the problem considered here is clear: by using 

the method of virtual work, we were able to eliminate all unknown reac-

tions, whereas the equation oMA 5 0 would have eliminated only two of 

the unknown reactions. This property of the method of virtual work can 

be used in solving many problems involving machines and mechanisms. 

If the virtual displacement considered is consistent with the 
constraints imposed by the supports and connections, all reactions 
and internal forces are eliminated and only the work of the loads, 
applied forces, and friction forces need be considered.

We can also use the method of virtual work to solve problems involv-

ing completely constrained structures, although the virtual displacements 

considered never actually take place. Consider, for example, the frame ACB 

shown in Fig. 10.8a. If point A is kept fixed while point B is given a hori-

zontal virtual displacement (Fig. 10.8b), we need consider only the work 

of P and Bx. We can thus determine the reaction component Bx in the same 

way as the force Q of the preceding example (Fig. 10.7b); we have

Bx 5
1

2
 P tan θ

By keeping B fixed and giving a horizontal virtual displacement to A, we 

can similarly determine the reaction component Ax. Then we can  determine 

the components Ay and By by rotating the frame ACB as a rigid body about 

B and A, respectively.

Photo 10.2 The method of virtual work is 
useful for determining the forces exerted by 
the hydraulic cylinders positioning the bucket 
lift. The reason is that a simple relation exists 
among the displacements of the points of 
application of the forces acting on the 
members of the lift.
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580 Method of Virtual Work

We can also use the method of virtual work to determine the 

 configuration of a system in equilibrium under given forces. For example, 

we can obtain the value of the angle θ for which the linkage of Fig. 10.7 

is in equilibrium under two given forces P and Q by solving Eq. (10.6) 

for tan θ.

Note, however, that the attractiveness of the method of virtual work 

depends to a large extent upon the existence of simple geometric relations 

between the various virtual displacements involved in the solution of a given 

problem. When no such simple relations exist, it is usually advisable to 

revert to the conventional method of Chap. 6.

10.1D  Mechanical Efficiency of Real 
Machines

In analyzing the toggle vise of Fig. 10.7, we assumed that no friction 

forces were involved. Thus, the virtual work consisted only of the work 

of the applied force P and of the reaction Q. However, the work of reac-

tion Q is equal in magnitude and opposite in sign to the work of the force 

exerted by the vise on the block. Therefore, Equation (10.5) states that the 

output work 2Ql cos θ δθ is equal to the input work Pl sin θ δθ. A 

machine in which input and output work are equal is said to be an “ideal” 

machine. In a “real” machine, friction forces always do some work, and 

the output work is smaller than the input work.

Consider again the toggle vise of Fig. 10.7a. and now assume that 

a friction force F develops between the sliding block B and the horizontal 

plane (Fig. 10.9). Using the conventional methods of statics and summing 

moments about A, we find N 5 P/2. Denoting the coefficient of friction 

between block B and the horizontal plane by μ, we have F 5 μN 5 μP/2. 

Fig. 10.8 (a) A completely constrained frame ACB; (b) a virtual displacement of the frame 
in order to determine Bx, keeping A fixed.

q q
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q

C
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C

A B

P P

B'

C'

Bx
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Ay

A B

By

A x

l l
yC

dq

dxB

–dyC

(a) (b)

Photo 10.3 The clamping force of the 
toggle clamp shown can be expressed as a 
function of the force applied to the handle 
by first establishing the geometric relations 
among the members of the clamp and then 
applying the method of virtual work.
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10.1 The Basic Method 581

Recalling formulas (10.4), we find that the total virtual work of the forces 

Q, P, and F during the virtual displacement shown in Fig. 10.9 is

 δU 5 2Q δxB 2 P δyC 2 F δxB

5 22Ql cos θ δθ 1 Pl sin θ δθ 2 μPl cos θ δθ

Setting δU 5 0, we obtain

 2Ql cos θ δθ 5 Pl sin θ δθ 2 μPl cos θ δθ (10.7)

This equation states that the output work is equal to the input work minus 

the work of the friction force. Solving for Q, we have

 Q 5 
1

2
 P (tan θ 2 μ) (10.8)

Note that Q 5 0 when tan θ 5 μ, that is, when θ is equal to the angle 

of friction ϕ, and that Q , 0 when θ , ϕ. Thus, we can use the toggle 

vise only for values of θ larger than the angle of friction.

We define the mechanical efficiency η of a machine as the ratio

Mechanical efficiency

 h 5
output work

input work
 (10.9)

Clearly, the mechanical efficiency of an ideal machine is η 5 1 when 

input and output work are equal, whereas the mechanical efficiency of a 

real machine is always less than 1.

In the case of the toggle vise we have just analyzed, we have

 h 5
output work

input work
5

2Ql cos θ δθ

Pl sin θ δθ
 (10.10)

We can check that, in the absence of friction forces, we would have μ 5 0 

and η 5 1. In the general case when μ is different from zero, the efficiency 

η becomes zero for μ cot θ 5 1, that is, for tan θ 5 μ or θ 5 tan21 μ 5 ϕ. 

We note again that the toggle vise can be used only for values of θ larger 

than the angle of friction ϕ.

h 5
output work

input work

Fig. 10.9 A virtual displacement of the toggle vise 
with friction.
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582 Method of Virtual Work

Sample Problem 10.1

Using the method of virtual work, determine the magnitude of the couple 

M required to maintain the equilibrium of the mechanism shown.

STRATEGY: For a virtual displacement consistent with the constraints, the 

reactions do no work, so you can focus solely on the force P and the moment M. 

You can solve for M in terms of P and the geometric parameters.

MODELING: Choose a coordinate system with origin at E (Fig. 1). Then

xD 5 3l cos θ          δxD 5 23l sin θ δθ

ANALYSIS: Principle of Virtual Work. Since the reactions A, Ex, 

and Ey do no work during the virtual displacement, the total virtual work 

done by M and P must be zero. Notice that P acts in the positive x direc-

tion and M acts in the positive θ direction. You obtain

δU 5 0: 1M δθ 1 P δxD 5 0

1M δθ 1 P(23l sin θ δθ) 5 0

M 5 3Pl sin θ b

REFLECT and THINK: This problem illustrates that the principle of 

virtual work can help determine a moment as well as a force in a straight-

forward computation.

P

M

A
B

Dl

q

q ll

C

F
E

P

A

Ex

Ey

M

A B

D

q

C

F x

y

E

dq

– dxD

xD

Fig. 1 Free-body diagram of mechanism 
showing a virtual displacement.

Sample Problem 10.2

Determine the expressions for θ and for the tension in the spring that 

correspond to the equilibrium position of the mechanism. The unstretched 

length of the spring is h, and the spring constant is k. Neglect the weight 

of the mechanism.

STRATEGY: The tension in the spring is a force F exerted at C. Apply-

ing the principle of virtual work, you can obtain a relationship between 

F and the applied force P.

MODELING: With the coordinate system shown in Fig. 1,

 yB 5 l sin θ yC 5 2l sin θ

δyB 5 l cos θ δθ   δyC 5 2l cos θ δθ

The elongation of the spring is s 5 yC 2 h 5 2l sin θ 2 h. The magnitude 

of the force exerted at C by the spring is

 F 5 ks 5 k(2l sin θ 2 h) (1)
ANALYSIS: Principle of Virtual Work. Since the reactions Ax, Ay, 

and C do no work, the total virtual work done by P and F must be zero.

δU 5 0:   P δyB 2 F δyC 5 0

 P(l cos θ δθ) 2 k(2l sin θ 2 h)(2l cos θ δθ) 5 0

 sin θ 5
P 1 2kh

4kl
 b

Substituting this expression into Eq. (1), you obtain F 5
1
2P b

REFLECT and THINK: You can verify these results by applying the 

appropriate equations of equilibrium.
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q P
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A y
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dyB
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C
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F

C

h

x

y

s

Fig. 1 Free-body diagram of 
mechanism showing a virtual 
displacement.
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10.1 The Basic Method 583

Sample Problem 10.3

A hydraulic-lift table is used to raise a 1000-kg crate. The 

table consists of a platform and two identical linkages on 

which hydraulic cylinders exert equal forces. (Only one link-

age and one cylinder are shown.)  Members EDB and CG are 

each of length 2a, and member AD is pinned to the midpoint 

of EDB. If the crate is placed on the table so that half of its 

weight is supported by the system shown, determine the force 

exerted by each  cylinder in raising the crate for θ 5 60°, 

a 5 0.70 m, and L 5 3.20 m. (This mechanism was  previously 

considered in Sample Prob. 6.7.)

STRATEGY: The principle of virtual work allows you to 

find a relationship between the force applied by the cylinder 

and the weight without involving the reactions. However, you 

need a relationship between the virtual displacement and the 

change in angle θ, which is found from the law of cosines 

applied to the given geometry.

MODELING: The free body consists of the platform and 

the linkage (Fig. 1), with an input force FDH exerted by the 

 cylinder and an output force equal and opposite to 
1
2 W.

FDH

FCGEy

Ex
E G

A B C

D

W1
2

Fig. 1 Free-body diagram of the platform and linkage.

ANALYSIS: Principle of Virtual Work. First observe 

that the reactions at E and G do no work. Denoting the eleva-

tion of the platform above the base by y and the length DH 

of the cylinder-and-piston assembly by s (Fig. 2), you have

δU 5 0: 2
1
2W δy 1 FDH δs 5 0 (1)

You can express the vertical displacement δy of the platform 

in terms of the angular displacement δθ of EDB as 

 y 5 (EB) sin θ 5 2a sin θ

 δy 5 2a cos θ δθ

To express δs similarly in terms of δθ, first note that by the 

law of cosines (Fig. 3),

s2 5 a2 1 L2 2 2aL cos θ

A B C

D

E G

H

2a

W1
2

θ

L
2

L
2

d

H

s
y

FDH

E

B

D

W1
2

q

B'

dy

ds

dq

D'

Fig. 2 Virtual displacement of the machine.

HE

D

a

q

L

s

Fig. 3 Geometry associated with the 
cylinder-and-piston assembly.
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584 Method of Virtual Work

Differentiating,

2s δs 5 22aL(2sin θ) δθ

  ds 5
aL sin u

s
 du

Substituting for δy and δs into Eq. (1), you have

(2
1
2 W )2a cos u du 1 FDH 

aL sin u

s
 du 5 0

FDH 5 W  

s

L
  cot u

With the given numerical data, you obtain

 W 5 mg 5 (1000 kg)(9.81 m/s2) 5 9810 N 5 9.81 kN

 s2 5 a2 1 L2 2 2aL cos θ

 5 (0.70)2 1 (3.20)2 2 2(0.70)(3.20) cos 608 5 8.49

 s 5 2.91 m

 FDH 5 W
s

L
 cot u 5 (9.81 kN)

2.91 m

3.20 m
 cot 60°

FDH 5 5.15 kN b

REFLECT and THINK: The principle of virtual work gives you a rela-

tionship between forces, but sometimes you need to review the geometry 

carefully to find a relationship between the displacements.
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585 585

SOLVING PROBLEMS 
ON YOUR OWN

In this section, we described how to use the method of virtual work, which is a 

different way of solving problems involving the equilibrium of rigid bodies.

The work done by a force during a displacement of its point of application or by a 

couple during a rotation is found, respectively, by using:

 dU 5 F ds cos α (10.1)
 dU 5 M dθ (10.2)

Principle of virtual work. In its more general and more useful form, this principle 

can be stated as: 

If a system of connected rigid bodies is in equilibrium, the total virtual work 
of the external forces applied to the system is zero for any virtual displacement 
of the system.

As you apply the principle of virtual work, keep in mind the following points.

1. Virtual displacement. A machine or mechanism in equilibrium has no tendency 

to move. However, we can cause—or imagine—a small displacement. Since it does 

not actually occur, such a displacement is called a virtual displacement.

2. Virtual work. The work done by a force or couple during a virtual displacement 

is called virtual work.

3. You need consider only the forces that do work during the virtual displacement.

4. Forces that do no work during a virtual displacement that are consistent with the 

constraints imposed on the system are

 a. Reactions at supports

 b. Internal forces at connections

 c. Forces exerted by inextensible cords and cables

None of these forces need be considered when you use the method of virtual work.

5. Be sure to express the various virtual displacements involved in your computa-

tions in terms of a single virtual displacement. This is done in each of the three 

preceding sample problems, where the virtual displacements are all expressed in terms 

of δθ.

6. Remember that the method of virtual work is effective only in those cases 

where the geometry of the system makes it relatively easy to relate the displacements 

involved.
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586

Problems

 10.1 Determine the vertical force P that must be applied at C to maintain 

the equilibrium of the linkage.

 10.2 Determine the horizontal force P that must be applied at A to main-

tain the equilibrium of the linkage.

10 in.

5 in.

4 in. 6 in.

9 in.

6 in.

A

B
C

D E

F

G

30 lb

80 lb

240 lb·in.

60 lb

Fig. P10.2 and P10.4

 10.3 and 10.4  Determine the couple M that must be applied to member 

ABC to maintain the equilibrium of the linkage.

 10.5 A spring of constant 15 kN/m connects points C and F of the linkage 

shown. Neglecting the weight of the spring and linkage, determine 

the force in the spring and the vertical motion of point G when a 

vertical downward 120-N force is applied (a) at point C, (b) at 

points C and H.

H

C

F

G

D E

BA

Fig. P10.5 and P10.6

 10.6 A spring of constant 15 kN/m connects points C and F of the linkage 

shown. Neglecting the weight of the spring and linkage, determine 

the force in the spring and the vertical motion of point G when a 

vertical downward 120-N force is applied (a) at point E, (b) at 

points E and F.

60 N

80 N

20 N 40 N

0.3 m 0.3 m 0.3 m

A

D

B
C

G
E F

Fig. P10.1 and P10.3
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587

10.7 The two-bar linkage shown is supported by a pin and bracket at B
and a collar at D that slides freely on a vertical rod. Determine the 

force P required to maintain the equilibrium of the linkage.

100 lb

A B C

D

E

F

P

8 in. 8 in. 8 in.

9 in.

150 lb

Fig. P10.7

 10.8 Knowing that the maximum friction force exerted by the bottle on 

the cork is 60 lb, determine (a) the force P that must be applied 

to the corkscrew to open the bottle, (b) the maximum force exerted 

by the base of the corkscrew on the top of the bottle.

 10.9 Rod AD is acted upon by a vertical force P at end A and by two 

equal and opposite horizontal forces of magnitude Q at points B
and C. Derive an expression for the magnitude Q of the horizontal 

forces required for equilibrium.

 10.10 and 10.11  The slender rod AB is attached to a collar A and rests 

on a small wheel at C. Neglecting the radius of the wheel and the 

effect of friction, derive an expression for the magnitude of the force 

Q required to maintain the equilibrium of the rod.

Q

A

B

C

q

a

P

l

Fig. P10.10   

Q

A

B

C

P

q

a

l

Fig. P10.11

 10.12 Knowing that the line of action of the force Q passes through 

point C, derive an expression for the magnitude of Q required to 

maintain equilibrium.

10.13 Solve Prob. 10.12 assuming that the force P applied at point A acts 

horizontally to the left.

P

Fig. P10.8

P

D

C

A

B
a

Q

−Q

q

a

a

Fig. P10.9

P

D

E

C

A

B

l

l

lQ

q

q

Fig. P10.12
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 10.14 The mechanism shown is acted upon by the force P; derive an 

expression for the magnitude of the force Q required to maintain 

equilibrium.

 10.15 and 10.16  Derive an expression for the magnitude of the couple M
required to maintain the equilibrium of the linkage shown.

P

q

A

B

C

ll
1
2

M

Fig. P10.15   

P

P

A

B

C

l

l

q

M

Fig. P10.16

 10.17 A uniform rod AB with length l and weight W is suspended from 

two cords AC and BC of equal length. Derive an expression for the 

magnitude of the couple M required to maintain equilibrium of the 

rod in the position shown.

 10.18 The pin at C is attached to member BCD and can slide along a slot 

cut in the fixed plate shown. Neglecting the effect of friction, derive 

an expression for the magnitude of the couple M required to  maintain 

equilibrium when the force P that acts at D is directed (a) as shown, 

(b) vertically downward, (c) horizontally to the right.

P

A

B

C

D

q

q

q

M

l

l

l

Fig. P10.18

 10.19 For the linkage shown, determine the couple M required for 

 equilibrium when l 5 1.8 ft, Q 5 40 lb, and θ 5 65°.

 10.20 For the linkage shown, determine the force Q required for equilib-

rium when l 5 18 in., M 5 600 lb?in., and θ 5 70°.

E

F

l

l

l

Q

P

D

C

BA

qq

Fig. P10.14

W
A

B

q

a

a
M

C

Fig. P10.17

Q

q

A

B

C

l

l

1
2

M

Fig. P10.19 and P10.20
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10.21 A 4-kN force P is applied as shown to the piston of the engine 

system. Knowing that AB 5 50 mm and BC 5 200 mm, determine 

the couple M required to maintain the equilibrium of the system 

when (a) θ 5 30°, (b) θ 5 150°.

 10.22 A couple M with a magnitude of 100 N?m is applied as shown to 

the crank of the engine system. Knowing that AB 5 50 mm and 

BC 5 200 mm, determine the force P required to maintain the 

 equilibrium of the system when (a) θ 5 60°, (b) θ 5 120°.

 10.23 Rod AB is attached to a block at A that can slide freely in the vertical 

slot shown. Neglecting the effect of friction and the weights of the 

rods, determine the value of θ corresponding to equilibrium.

800 N

160 N

q

D

B

C

A

200 mm

200 mm

100 mm

Fig. P10.23

 10.24 Solve Prob. 10.23 assuming that the 800-N force is replaced by a 

24-N?m clockwise couple applied at D.

 10.25 Determine the value of θ corresponding to the equilibrium position 

of the rod of Prob. 10.10 when l 5 30 in., a 5 5 in., P 5 25 lb, 

and Q 5 40 lb.

 10.26 Determine the values of θ corresponding to the equilibrium position 

of the rod of Prob. 10.11 when l 5 24 in., a 5 4 in., P 5 10 lb, 

and Q 5 18 lb.

 10.27 Determine the value of θ corresponding to the equilibrium position 

of the mechanism of Prob. 10.12 when P 5 80 N and Q 5 100 N.

 10.28 Determine the value of θ corresponding to the equilibrium position 

of the mechanism of Prob. 10.14 when P 5 270 N and Q 5 960 N.

 10.29 Two rods AC and CE are connected by a pin at C and by a spring AE. 

The constant of the spring is k, and the spring is unstretched when 

θ 5 30°. For the loading shown, derive an equation in P, θ, l, and 

k that must be satisfied when the system is in equilibrium.

 10.30 Two rods AC and CE are connected by a pin at C and by a spring AE. 

The constant of the spring is 1.5 lb/in., and the spring is unstretched when 

θ 5 30°. Knowing that l 5 10 in. and neglecting the weight of the rods, 

determine the value of θ corresponding to equilibrium when P 5 40 lb.

 10.31 Solve Prob. 10.30 assuming that force P is moved to C and acts 

vertically downward.

qP
M

A

B

C

Fig. P10.21 and P10.22

A

B

C

D

E

qq

P

l

l

Fig. P10.29 and P10.30
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 10.32 Two bars AD and DG are connected by a pin at D and by a spring 

AG. Knowing that the spring is 300 mm long when unstretched and 

that the constant of the spring is 5 kN/m, determine the value of x
corresponding to equilibrium when a 900-N load is applied at E
as shown.

 10.33 Solve Prob. 10.32 assuming that the 900-N vertical force is applied 

at C instead of E.

10.34 Two 5-kg bars AB and BC are connected by a pin at B and by a 

spring DE. Knowing that the spring is 150 mm long when unstretched 

and that the constant of the spring is 1 kN/m, determine the value 

of x corresponding to equilibrium.

A 200 mm

200 mm

400 mm

400 mm

B

E

C

D

x

Fig. P10.34

 10.35 A vertical force P with a magnitude of 150 N is applied to end E 

of cable CDE that passes over a small pulley D and is attached to 

the mechanism at C. The constant of the spring is k 5 4 kN/m, and 

the spring is unstretched when θ 5 0. Neglecting the weight of the 

mechanism and the radius of the pulley, determine the value of θ 

corresponding to equilibrium.

200 mm

100 mm

200 mm

P

q

B

A

C

D

E

Fig. P10.35

A

200 mm
G

B

F
E

C

Dx 900 N

200 mm
200 mm

200 mm
200 mm

200 mm

Fig. P10.32

bee87302_ch10_573-613.indd   590bee87302_ch10_573-613.indd   590 10/27/14   9:58 AM10/27/14   9:58 AM

UPLOADED BY AHMAD T JUNDI



591

 10.36 A load W with a magnitude of 72 lb is applied to the mechanism 

at C. Neglecting the weight of the mechanism, determine the value 

of θ corresponding to equilibrium. The constant of the spring is 

k 5 20 lb/in., and the spring is unstretched when θ 5 0.

 10.37 and P10.38  Knowing that the constant of spring CD is k and that 

the spring is unstretched when rod ABC is horizontal, determine the 

value of θ corresponding to equilibrium for the data indicated.

 10.37 P 5 300 N, l 5 400 mm, and k 5 5 kN/m

 10.38 P 5 75 lb, l 5 15 in., and k 5 20 lb/in.

 10.39 The lever AB is attached to the horizontal shaft BC that passes 

through a bearing and is welded to a fixed support at C. The  torsional 

spring constant of the shaft BC is K; that is, a couple of magnitude 

K is required to rotate end B through 1 rad. Knowing that the shaft 

is untwisted when AB is horizontal, determine the value of θ 

 corresponding to the position of equilibrium when P 5 100 N, 

l 5 250 mm, and K 5 12.5 N?m/rad.

P

A B

C

l

q

Fig. P10.39

 10.40 Solve Prob. 10.39 assuming that P 5 350 N, l 5 250 mm, and 

K 5 12.5 N?m/rad. Obtain answers in each of the following quad-

rants: 0 , θ , 90°, 270° , θ , 360°, and 360° , θ , 450°.

 10.41 The position of boom ABC is controlled by the hydraulic cylinder BD. 

For the loading shown, determine the force exerted by the hydraulic 

cylinder on pin B when θ 5 70°.

C

D

2 ft
q

8 kips

1.5 ft

3 ft

B

A

Fig. P10.41 and P10.42

10.42 The position of boom ABC is controlled by the hydraulic cylinder BD. 

For the loading shown, determine the largest allowable value of the 

angle θ if the maximum force that the cylinder can exert on pin B
is 25 kips.

Wq

A

B

C

6 in.

15 in.

Fig. P10.36

P

A

B

C

D

l

l

l

q

Fig. P10.37 and P10.38
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 10.43 The position of member ABC is controlled by the hydraulic 

cylinder CD. For the loading shown, determine the force exerted by 

the hydraulic cylinder on pin C when θ 5 55°.

B

C

D

A

0.5 m 0.8 m

90°

10 kN

1.5 m

θ

Fig. P10.43 and P10.44

 10.44 The position of member ABC is controlled by the hydraulic 

cylinder CD. Determine angle θ, knowing that the hydraulic cylinder 

exerts a 15-kN force on pin C.

 10.45 The telescoping arm ABC is used to provide an elevated platform 

for construction workers. The workers and the platform together 

weigh 500 lb, and their combined center of gravity is located directly 

above C. For the position when θ 5 20°, determine the force exerted 

on pin B by the single hydraulic cylinder BD.

 10.46 Solve Prob. 10.45 assuming that the workers are lowered to a point 

near the ground so that θ 5 220°.

10.47 Denoting the coefficient of static friction between collar C and the 

vertical rod by μs, derive an expression for the magnitude of the 

largest couple M for which equilibrium is maintained in the position 

shown. Explain what happens if μs $ tan θ.

P

q

A

B

C

ll
1
2

M

Fig. P10.47 and P10.48

 10.48 Knowing that the coefficient of static friction between collar C and 

the vertical rod is 0.40, determine the magnitude of the largest and 

smallest couple M for which equilibrium is maintained in the 

 position shown, when θ 5 35°, l 5 600 mm, and P 5 300 N.

AB

C

D

15 ft

7.2 ft

2.7 ft

1.5 ft

q

Fig. P10.45
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 10.49 A block with weight W is pulled up a plane forming an angle α with 

the horizontal by a force P directed along the plane. If μ is the 

 coefficient of friction between the block and the plane, derive an 

expression for the mechanical efficiency of the system. Show that 

the mechanical efficiency cannot exceed 
1
2 if the block is to remain 

in place when the force P is removed.

 10.50 Derive an expression for the mechanical efficiency of the jack 

 discussed in Sec. 8.2B. Show that if the jack is to be self-locking, 

the mechanical efficiency cannot exceed 
1
2.

10.51 Denoting the coefficient of static friction between the block attached 

to rod ACE and the horizontal surface by μs, derive expressions in 

terms of P, μs, and θ for the largest and smallest magnitude of the 

force Q for which equilibrium is maintained.

Q

E

F

l

l

l

P

D

C

B

q q

A

Fig. P10.51 and P10.52

 10.52 Knowing that the coefficient of static friction between the block 

attached to rod ACE and the horizontal surface is 0.15, determine 

the magnitude of the largest and smallest force Q for which equilib-

rium is maintained when θ 5 30°, l 5 0.2 m, and P 5 40 N.

 10.53 Using the method of virtual work, determine separately the force and 

couple representing the reaction at A.

800 N

G
FC

EDB

1.5 m

2.4 m 1.2 m1.8 m

600 N

1.5 m

1.8 m

A

Fig. P10.53 and P10.54

 10.54 Using the method of virtual work, determine the reaction at D.
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10.55 Referring to Prob. 10.43 and using the value found for the force 

exerted by the hydraulic cylinder CD, determine the change in the 

length of CD required to raise the 10-kN load by 15 mm.

10.56 Referring to Prob. 10.45 and using the value found for the force 

exerted by the hydraulic cylinder BD, determine the change in the 

length of BD required to raise the platform attached at C by 2.5 in.

 10.57 Determine the vertical movement of joint D if the length of member 

BF is increased by 1.5 in. (Hint: Apply a vertical load at joint D, and 

using the methods of Chap. 6, compute the force exerted by member 

BF on joints B and F. Then apply the method of virtual work for a 

virtual displacement resulting in the specified increase in length of 

member BF. This method should be used only for small changes in 

the lengths of members.)

A B C D

E
F G H

30 ft

40 ft 40 ft 40 ft 40 ft

Fig. P10.57 and P10.58

 10.58 Determine the horizontal movement of joint D if the length of 

 member BF is increased by 1.5 in. (See the hint for Prob. 10.57.)
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10.2 Work, Potential Energy, and Stability 595

*10.2  WORK, POTENTIAL 
ENERGY, AND STABILITY

The concept of virtual work has another important connection with 

 equilibrium, leading to criteria for conditions of stable, unstable, and 

 neutral equilibrium. However, to explain this connection, we first need to 

introduce expressions for the work of a force during a finite displacement 

and then to define the concept of potential energy.

10.2A  Work of a Force During a Finite 
Displacement

Consider a force F acting on a particle. In Sec. 10.1A, we defined the work 

of F corresponding to an infinitesimal displacement dr of the particle as

 dU 5 F ? dr (10.1)

We obtain the work of F corresponding to a finite displacement of the 

particle from A1 to A2 (Fig. 10.10a) that is denoted by U1y2 by integrating 

Eq. (10.1) along the curve described by the particle. Thus,

Work during a finite 
displacement

 U1y2 5#
A2

A1

 

F ? dr (10.11)

Using the alternative expression

 dU 5 F ds cos α (10.19)

given in Sec. 10.1 for the elementary work dU, we can also express the 

work U1y2 as

 U1y2 5#
s2

s1

 
(F cos α) ds (10.119)

Here, the variable of integration s measures the distance along the path 

traveled by the particle. We can represent the work U1y2 by the area under 

the curve obtained by plotting F cos α against s (Fig. 10.10b). In the case 

of a force F of constant magnitude acting in the direction of motion, 

formula (10.119) yields U1y2 5 F(s2 2 s1).

U1y2 5#
A2

A
##

1

F ? dr

Fig. 10.10 (a) A force acting on a particle moving along a path from A1 
to A2; (b) the work done by the force in (a) equals the area under the graph 
of F cos α versus s.

s

(b)

O s1 s2

F cos a

(a)O

ds

A

A1

s1

s2

A2

a

Fs
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596 Method of Virtual Work

Recall from Sec. 10.1 that the work of a couple of moment M  during 

an infinitesimal rotation dθ of a rigid body is

dU 5 M dθ (10.2)

Therefore, we can express the work of the couple during a finite rotation 

of the body as

Work during a 
finite rotation

U1y2 5#
θ2

θ1

 

M dθ (10.12)

In the case of a constant couple, formula (10.12) yields

U1y2 5 M(θ2 2 θ1)

Work of a Weight. We stated in Sec. 10.1 that the work of a body’s 

weight W during an infinitesimal displacement of the body is equal to the 

product of W and the vertical displacement of the body’s center of gravity. 

With the y axis pointing upward, we obtain the work of W during a finite 

displacement of the body (Fig. 10.11) from

dU 5 2W dy

Integrating from A1 to A2, we have

 U1y2 5 2#
y2

y1

 

W dy 5 Wy1 2 Wy2 (10.13)

or

 U1y2 5 2W(y2 2 y1) 5 2W Dy (10.139)

where Dy is the vertical displacement from A1 to A2. The work of the 

weight W is thus equal to the product of W and the vertical displace-
ment of the center of gravity of the body. The work is positive when 

Dy , 0, that is, when the body moves down.

Work of the Force Exerted by a Spring. Consider a body A attached 

to a fixed point B by a spring. We assume that the spring is undeformed when 

the body is at A0 (Fig. 10.12a). Experimental evidence shows that the mag-

nitude of the force F exerted by the spring on a body A is proportional to the 

deflection x of the spring measured from position A0. We have

 F 5 kx (10.14)

where k is the spring constant expressed in SI units of N/m or U.S. 

customary units of lb/ft or lb/in. The work of force F exerted by the spring 

during a finite displacement of the body from A1 (x 5 x1) to A2 (x 5 x2) 

is obtained from

dU 5 2F dx 5 2kx dx

 U1y2 5 2#
x2

x1

 
kx dx 5

1

2
kx2

1 2
1

2
kx2

2 (10.15)

You should take care to express k and x in consistent units. For  example, if 

you use U.S. customary units, k should be expressed in lb/ft and x expressed 

in feet, or k is given in lb/in. and x in inches. In the first case, the work is 

obtained in ft?lb; in the second case, it is in in?lb. We note that the work of 

U1y2 5#
θ2θθ

θ

##
1

Mdθ

Fig. 10.11 The work done by the weight of 
a body equals the magnitude of the weight 
times the vertical displacement of its center 
of gravity.

A

A1

A2

y1

y2

dy

y

W

Fig. 10.12 (a) When a body is attached to a 
fixed point by a spring, the force on it is the 
product of the spring constant and the 
displacement from the undeformed position; 
(b) the work of the force equals the area 
under the graph of F versus x between x1 
and x2.

Spring undeformed

A0

A

B

B

x1

x1 x2

x2

x

F

(a)

(b)

F = kx

Δ x

F

F1

F2

A2

B

A1

x
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10.2 Work, Potential Energy, and Stability 597

the force F exerted by the spring on the body is positive when x2 , x1, that 

is, when the spring is returning to its undeformed position.
Since Eq. (10.14) is the equation of a straight line of slope k passing 

through the origin, we can obtain the work U1y2 of F during the displace-

ment from A1 to A2 by evaluating the area of the trapezoid shown in 

Fig. 10.12b. This is done by computing the values F1 and F2 and multiply-

ing the base Dx of the trapezoid by its mean height as 
1
2(F1 1 F2). Since 

the work of the force F exerted by the spring is positive for a negative 

value of Dx, we have

 U1y2 5 2
1

2
(F1 1 F2) Dx (10.16)

Equation (10.16) is usually more convenient to use than Eq. (10.15) and 

affords fewer chances of confusing the units involved.

10.2B Potential Energy
Let’s consider again the body of Fig. 10.11. Using Eq. (10.13), we obtain 

the work of weight W during a finite displacement by subtracting the 

value of the function Wy corresponding to the second position of the body 

from its value corresponding to the first position. Thus, the work of W is 

independent of the actual path followed; it depends only upon the initial 

and final values of the function Wy. This function is called the potential 
energy of the body with respect to the force due to gravity W and is 

denoted by Vg. Thus, 

 U1y2 5 (Vg)1 2 (Vg)2   with Vg 5 Wy (10.17)

Note that if (Vg)2 . (Vg)1, that is, if the potential energy increases during 

the displacement (as in the case considered here), the work U1y2 is 
 negative. If, on the other hand, the work of W is positive, the potential 

energy decreases. Therefore, the potential energy Vg of the body provides 

a measure of the work that can be done by its weight W. Since only the 

change in potential energy—not the actual value of Vg—is involved in 

formula (10.17), we can add an arbitrary constant to the expression 

obtained for Vg. In other words, the level from which the elevation y is 

measured can be chosen arbitrarily. Note that  potential energy is expressed 

in the same units as work, i.e., in joules (J) if  SI units are used† and in 

ft?lb or in?lb if U.S. customary units are used.

Now consider the body of Fig. 10.12a. Using Eq. (10.15), we obtain 

the work of the elastic force F by subtracting the value of the function 
1
2 
kx2 

corresponding to the second position of the body from its value  corresponding 

to the first position. This function, denoted by Ve, is called the potential 
energy of the body with respect to the elastic force F. We have

 U1y2 5 (Ve)1 2 (Ve)2  with Ve 5 
1

2
 kx2 (10.18)

Note that during the displacement considered, the work of force F exerted 

by the spring on the body is negative and the potential energy Ve increases. 

Also note that the expression obtained for Ve is valid only if the deflection 

of the spring is measured from its undeformed position.

We can use the concept of potential energy when forces other than 

gravity forces and elastic forces are involved. It remains valid as long as 

†See footnote, p. 575.
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598 Method of Virtual Work

the elementary work dU of the force considered is an exact differential.
It is then possible to find a function V, called potential energy, such that

dU 5 2dV (10.19)

Integrating Eq. (10.19) over a finite displacement, we obtain 

Potential energy, 
general formulation

 U1y2 5 V1 2 V2 (10.20)

This equation says that the work of the force is independent of the path 
followed and is equal to minus the change in potential energy. A force 

that satisfies Eq. (10.20) is called a conservative force.†

10.2C  Potential Energy and 
Equilibrium

Applying the principle of virtual work is considerably simplified if we 

know the potential energy of a system. In the case of a virtual displace-

ment, formula (10.19) becomes δU 5 2δV. Moreover, if the position of 

the system is defined by a single independent variable θ, we can write 

δV 5 (dV/dθ) δθ. Since δθ must be different from zero, the condition 

δU 5 0 for the equilibrium of the system becomes

Equilibrium condition 
dV

dθ
5 0 (10.21)

In terms of potential energy, therefore, the principle of virtual work states:

If a system is in equilibrium, the derivative of its total potential 
energy is zero. 

If the position of the system depends upon several independent variables (the 

system is then said to possess several degrees of freedom), the partial deriva-

tives of V with respect to each of the independent variables must be zero.

Consider, for example, a structure made of two members AC and CB 

and carrying a load W at C. The structure is supported by a pin at A and a 

roller at B, and a spring BD connects B to a fixed point D (Fig. 10.13a). 

The constant of the spring is k, and we assume that the natural length of 

the spring is equal to AD, so that the spring is undeformed when B coincides 

with A. Neglecting  friction forces and the weights of the members, we find 

that the only forces that do work during a virtual displacement of the 

 structure are the weight W and the force F exerted by the spring at point B 

(Fig. 10.13b). Therefore, we can obtain the total potential energy of the 

system by adding the potential energy Vg corresponding to the gravity force 

W and the potential energy Ve corresponding to the elastic force F.

Choosing a coordinate system with the origin at A and noting that 

the deflection of the spring measured from its undeformed position is 

AB 5 xB, we have

Ve 5 
1

2
 kx2

B and Vg 5 WyC

dU 5 2dV

U1y2 5 V1VV 2 V2VV

dV

dθ
5 0

†A detailed discussion of conservative forces is given in Sec. 13.2B of Dynamics.

Fig. 10.13 (a) Structure carrying a load at C 
with a spring from B to D; (b) free-body 
diagram of the structure, and a virtual 
displacement.

q

q

C

A B

C

W

AD B

xBAy B

A x

l l

yC
W

(a)

(b)

F = kxB
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10.2 Work, Potential Energy, and Stability 599

Expressing the coordinates xB and yC in terms of the angle θ, we have

 xB 5 2l sin θ     yC 5 l cos θ

 Ve 5 
1
2k(2l sin θ)2  Vg 5 W(l cos θ) 

 V 5 Ve 1 Vg 5 2kl2 sin2 θ 1 Wl cos θ (10.22)

We obtain the positions of equilibrium of the system by setting the 

 derivative of the potential energy V to zero, as

dV

dθ
5 4kl2 sin θ cos θ 2 Wl sin θ 5 0

or, factoring out l sin θ, as

dV

dθ
5 l sin θ(4kl cos θ 2 W) 5 0

There are therefore two positions of equilibrium corresponding to the 

 values θ 5 0 and θ 5 cos21 (W/4kl), respectively.†

10.2D Stability of Equilibrium
Consider the three uniform rods with a length of 2a and weight W shown 

in Fig. 10.14. Although each rod is in equilibrium, there is an important 

difference between the three cases considered. Suppose that each rod is 

slightly disturbed from its position of equilibrium and then released. Rod 

a moves back toward its original position; rod b keeps moving away from 

its original position; and rod c remains in its new position. In case a, the 

equilibrium of the rod is said to be stable; in case b, it is unstable; and 

in case c, it is neutral.
Recall from Sec. 10.2B that the potential energy Vg with respect to 

gravity is equal to Wy, where y is the elevation of the point of application of 

W measured from an arbitrary level. We observe that the potential energy of 

rod a is minimum in the position of equilibrium considered, that the potential 

energy of rod b is maximum, and that the potential energy of rod c is constant. 

Equilibrium is thus stable, unstable, or neutral according to whether the 

potential energy is minimum, maximum, or  constant (Fig. 10.15).

Fig. 10.14 (a) Rod supported from above, stable equilibrium; (b) rod supported 
from below, unstable equilibrium; (c) rod supported at its midpoint, neutral 
equilibrium.

q

(a) Stable equilibrium

A

B

W

2a

y

q

q

(b) Unstable equilibrium

A
W

2a

a

y

(c) Neutral equilibrium

AB

B

C

y = a

†The second position does not exist if W . 4kl.
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600 Method of Virtual Work

This result is quite general, as we now show. We first observe that a 

force always tends to do positive work and thus to decrease the potential 

energy of the system on which it is applied. Therefore, when a system is 

disturbed from its position of equilibrium, the forces acting on the system 

tend to bring it back to its original position if V is minimum (Fig. 10.15a) 

and to move it farther away if V is maximum (Fig. 10.15b). If V is constant 

(Fig. 10.15c), the forces do not tend to move the system either way.

Recall from calculus that a function is minimum or maximum 

according to whether its second derivative is positive or negative. There-

fore, we can summarize the conditions for the equilibrium of a system 

with one degree of freedom (i.e., a system for which the position is defined 

by a single independent variable θ) as

 
dV

dθ
5 0   d2V

dθ 
2

. 0: stable equilibrium

  
dV

dθ
5 0   d2V

dθ 
2

, 0: unstable equilibrium 

(10.23)

dV

dθ
5 0

d2dd V

dθ
2

. 0:stable equilibrium

dV

dθ
5 0

d2dd V

dθ
2

, 0:unstable equilibrium

Fig. 10.15 Stable, unstable, and neutral equilibria correspond to potential energy 
values that are minimum, maximum, or constant, respectively.

(a) Stable equilibrium
q

(b) Unstable equilibrium

V

(c) Neutral equilibrium
q

V

q

V

If both the first and the second derivatives of V are zero, it is necessary to 

examine derivatives of a higher order to determine whether the equilibrium 

is stable, unstable, or neutral. The equilibrium is neutral if all derivatives 

are zero, since the potential energy V is then a constant. The equilibrium 

is stable if the first derivative found to be different from zero is of even 

order and positive. In all other cases, the equilibrium is unstable.

If the system of interest possesses several degrees of freedom, the 

potential energy V depends upon several variables. Thus, it becomes 

 necessary to apply the theory of functions of several variables to determine 

whether V is minimum. It can be verified that a system with two degrees 

of freedom is stable, and the corresponding potential energy V(θ1, θ2) is 

minimum, if the following relations are satisfied simultaneously:

0V
0θ1

5
0V
0θ2

5 0

a 02V
0θ1 0θ2

b2

2
02V
0θ 2

1

 

02V
0θ 2

2

, 0 (10.24)

02V
0θ 

2
1

. 0   or   0
2V

0θ 
2
2

. 0
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10.2 Work, Potential Energy, and Stability 601

Sample Problem 10.4

A 10-kg block is attached to the rim of a 300-mm-radius disk as shown. 

Knowing that spring BC is unstretched when θ 5 0, determine the position 

or positions of equilibrium, and state in each case whether the equilibrium 

is stable, unstable, or neutral.

STRATEGY: The first step is to determine a potential energy function 

V for the system. You can find the positions of equilibrium by determining 

where the derivative of V is zero. You can find the types of stability by 

finding where V is maximum or minimum.

MODELING and ANALYSIS:
Potential Energy. Denote the deflection of the spring from its undeformed 

position by s, and place the origin of coordinates at O (Fig. 1). You obtain

Ve 5
1
2 ks2  Vg 5 Wy 5 mgy

Measuring θ in radians, you have

s 5 aθ   y 5 b cos θ

Substituting for s and y in the expressions for Ve and Vg gives you

Ve 5
1
2 ka2

θ
2   Vg 5 mgb cos θ

V 5 Ve 1 Vg 5
1
2 ka2

θ
 2 1 mgb cos θ

Positions of Equilibrium. Setting dV/dθ 5 0, you obtain
dV

dθ
5 ka2

θ 2 mgb sin θ 5 0

 sin θ 5
ka2

mgb
 θ

Now substitute a 5 0.08 m, b 5 0.3 m, k 5 4 kN/m, and m 5 10 kg. 

The result is

  sin θ 5
(4 kN/m)(0.08 m)2

(10 kg)(9.81 m/s2)(0.3 m)
 θ

 sin θ 5 0.8699 θ

where θ is expressed in radians. Solving by trial and error for θ, you find

θ 5 0  and  θ 5 0.902 rad

 θ 5 0  and  θ 5 51.7° b

Stability of Equilibrium. The second derivative of the potential 

energy V with respect to θ is

 
d2V

dθ
2

5 ka2 2 mgb cos θ

 5 (4 kN/m)(0.08 m)2 2 (10 kg)(9.81 m/s2)(0.3 m) cos θ

 5 25.6 2 29.43 cos θ

For θ 5 0,  
d2V

dθ
2

5 25.6 2 29.43 cos 08 5 23.83 , 0

The equilibrium is unstable for θ 5 0 b

For θ 5 51.7°,  
d2V

dθ
2

5 25.6 2 29.43 cos 51.78 5 17.36 . 0

The equilibrium is stable for θ 5 51.7° b

REFLECT and THINK: If you just let the block-and-disk system fall 

on its own, it will come to rest at θ 5 51.7°. If you balance the system 

at θ 5 0, the slightest touch will put it in motion.

q

10 kg
A

B O

C

a = 80 mm

b = 300 mm

k = 4 kN/m

s

q

A

O

y

y

x

b

a

Undeformed
position

W = mg

F = ks

Fig. 1 Free-body diagram of rotated 
disk, showing only those forces that 
do work.

bee87302_ch10_573-613.indd   601bee87302_ch10_573-613.indd   601 10/27/14   9:59 AM10/27/14   9:59 AM

UPLOADED BY AHMAD T JUNDI



602602

SOLVING PROBLEMS 
ON YOUR OWN

In this section, we defined the work of a force during a finite displacement and 

the potential energy of a rigid body or a system of rigid bodies. You saw how to 

use the concept of potential energy to determine the equilibrium position of a rigid 

body or a system of rigid bodies.

1. The potential energy V of a system is the sum of the potential energies associated 

with the various forces acting on the system that do work as the system moves. In 

the problems of this section, you will determine the following energies.

 a. Potential energy of a weight. This is the potential energy due to gravity, 

Vg 5 Wy, where y is the elevation of the weight W measured from some arbitrary 

reference level. You can use the potential energy Vg with any vertical force P of 

 constant  magnitude directed downward; we write Vg 5 Py.

 b. Potential energy of a spring. This is the potential energy due to the elastic 

force exerted by a spring, Ve 5
1
2k x2, where k is the constant of the spring and x is 

the deformation of the spring measured from its unstretched position.

Reactions at fixed supports, internal forces at connections, forces exerted by inexten-

sible cords and cables, and other forces that do no work do not contribute to the 

potential energy of the system.

2. Express all distances and angles in terms of a single variable, such as an angle θ, 

when computing the potential energy V of a system. This is necessary because 

 determining the equilibrium position of the system requires computing the derivative 

dV/dθ.

3. When a system is in equilibrium, the first derivative of its potential energy is 
zero. Therefore,

 a. To determine a position of equilibrium of a system, first express its  potential 

energy V in terms of the single variable θ, and then compute its derivative and solve 

the equation dV/dθ 5 0 for θ.

 b. To determine the force or couple required to maintain a system in a given 
position of equilibrium, substitute the known value of θ in the equation dV/dθ 5 0, 

and solve this equation for the desired force or couple.

4. Stability of equilibrium. The following rules generally apply:

 a. Stable equilibrium occurs when the potential energy of the system is minimum, 
that is, when dV/dθ 5 0 and d2V/dθ

2 . 0 (Figs. 10.14a and 10.15a).

 b. Unstable equilibrium occurs when the potential energy of the system is 

 maximum, that is, when dV/dθ 5 0 and d2V/dθ
2 , 0 (Figs. 10.14b and 10.15b).

 c. Neutral equilibrium occurs when the potential energy of the system is  constant; 
dV/dθ, d2V/dθ

2, and all the successive derivatives of V are then equal to zero 

(Figs. 10.14c and 10.15c).

See page 600 for a discussion of the case when dV/dθ, d2V/dθ
2, but not all of the 

successive derivatives of V are equal to zero.
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603

Problems

 10.59 Using the method of Sec. 10.2C, solve Prob. 10.29.

 10.60 Using the method of Sec. 10.2C, solve Prob. 10.30.

 10.61 Using the method of Sec. 10.2C, solve Prob. 10.31.

 10.62 Using the method of Sec. 10.2C, solve Prob. 10.32.

 10.63 Using the method of Sec. 10.2C, solve Prob. 10.34.

 10.64 Using the method of Sec. 10.2C, solve Prob. 10.35.

 10.65 Using the method of Sec. 10.2C, solve Prob. 10.37.

 10.66 Using the method of Sec. 10.2C, solve Prob. 10.38.

 10.67 Show that equilibrium is neutral in Prob. 10.1.

 10.68 Show that equilibrium is neutral in Prob. 10.7.

 10.69 Two uniform rods, each with a mass m, are attached to gears of equal 

radii as shown. Determine the positions of equilibrium of the system 

and state in each case whether the equilibrium is stable, unstable, or 

neutral.

 10.70 Two uniform rods, AB and CD, are attached to gears of equal radii 

as shown. Knowing that WAB 5 8 lb and WCD 5 4 lb, determine the 

positions of equilibrium of the system and state in each case whether 

the  equilibrium is stable, unstable, or neutral.

 10.71 Two uniform rods AB and CD, of the same length l, are attached to 

gears as shown. Knowing that rod AB weighs 3 lb and that rod CD 

weighs 2 lb, determine the positions of equilibrium of the system 

and state in each case whether the equilibrium is stable, unstable, or 

neutral.

A C

D

B

2a
a

q

2q

Fig. P10.71

q

q

A

B

D

C

l

l

Fig. P10.69 and P10.70
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604

 10.72 Two uniform rods, each of mass m and length l, are attached to 

drums that are connected by a belt as shown. Assuming that no slip-

ping occurs between the belt and the drums, determine the positions 

of equilibrium of the system and state in each case whether the 

equilibrium is stable, unstable, or neutral.

 10.73 Using the method of Sec. 10.2C, solve Prob. 10.39. Determine 

whether the equilibrium is stable, unstable, or neutral. (Hint: The 

potential energy corresponding to the couple exerted by a torsion 

spring is 
1
2 
Kθ 

2, where K is the torsional spring constant and θ is 

the angle of twist.)

 10.74 In Prob. 10.40, determine whether each of the positions of  equilibrium 

is stable, unstable, or neutral. (See hint for Prob. 10.73.)

10.75 A load W with a magnitude of 100 lb is applied to the mechanism 

at C. Knowing that the spring is unstretched when θ 5 15°,  determine 

that value of θ corresponding to equilibrium and check that the 

 equilibrium is stable.

W

q

A
B

C

l = 20 in.

r = 5 in.

k = 50 lb/in.

Fig. P10.75 and P10.76

 10.76 A load W with a magnitude of 100 lb is applied to the mechanism 

at C. Knowing that the spring is unstretched when θ 5 30°,  determine 

that value of θ corresponding to equilibrium and check that the 

 equilibrium is stable.

 10.77 A slender rod AB with a weight W is attached to two blocks A and B
that can move freely in the guides shown. Knowing that the spring 

is unstretched when y 5 0, determine the value of y corresponding 

to equilibrium when W 5 80 N, l 5 500 mm, and k 5 600 N/m.

y

l

C

B
W

l

A

Fig. P10.77

D

A

B

C

a

2a

2q

q

Fig. P10.72
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605

 10.78 A slender rod AB with a weight W is attached to two blocks A and B
that can move freely in the guides shown. Knowing that both springs 

are unstretched when y 5 0, determine the value of y  corresponding 

to equilibrium when W 5 80 N, l 5 500 mm, and k 5 600 N/m.

C

B

A

l

l

W

y

Fig. P10.78

 10.79 A slender rod AB with a weight W is attached to two blocks A and 

B that can move freely in the guides shown. The constant of the 

spring is k, and the spring is unstretched when AB is horizontal. 

Neglecting the weight of the blocks, derive an equation in θ, W, l, 
and k that must be satisfied when the rod is in equilibrium.

C

A

B

q

l
W

Fig. P10.79 and P10.80

 10.80 A slender rod AB with a weight W is attached to two blocks A and B 

that can move freely in the guides shown. Knowing that the spring 

is unstretched when AB is horizontal, determine three values of θ 

corresponding to equilibrium when W 5 300 lb, l 5 16 in., and 

k 5 75 lb/in. State in each case whether the equilibrium is stable, 

unstable, or neutral.

 10.81 A spring AB of constant k is attached to two identical gears as 

shown. Knowing that the spring is undeformed when θ 5 0, deter-

mine two values of the angle θ corresponding to equilibrium when 

P 5 30 lb, a 5 4 in., b 5 3 in., r 5 6 in., and k 5 5 lb/in. State 

in each case whether the equilibrium is stable, unstable, or neutral.

 10.82 A spring AB of constant k is attached to two identical gears as 

shown. Knowing that the spring is undeformed when θ 5 0, and 

given that a 5 60 mm, b 5 45 mm, r 5 90 mm, and k 5 6 kN/m, 

determine (a) the range of values of P for which a position of equi-

librium exists, (b) two values of θ corresponding to equilibrium if 

the value of P is equal to half the upper limit of the range found in 

part a.

A

qq

B
aa

brrb

P

Fig. P10.81 and P10.82

bee87302_ch10_573-613.indd   605bee87302_ch10_573-613.indd   605 10/27/14   9:59 AM10/27/14   9:59 AM

UPLOADED BY AHMAD T JUNDI



606

 10.83 A slender rod AB is attached to two collars A and B that can move 

freely along the guide rods shown. Knowing that β 5 30° and 

P 5 Q 5 400 N, determine the value of the angle θ corresponding 

to equilibrium.

10.84 A slender rod AB is attached to two collars A and B that can move 

freely along the guide rods shown. Knowing that β 5 30°, P 5 100 N, 

and Q 5 25 N, determine the value of the angle θ corresponding to 

equilibrium.

10.85 and 10.86  Cart B, which weighs 75 kN, rolls along a sloping track 

that forms an angle β with the horizontal. The spring constant is 

5 kN/m, and the spring is unstretched when x 5 0. Determine the 

distance x corresponding to equilibrium for the angle β indicated.

   10.85 Angle β 5 30°

   10.86 Angle β 5 60°

4 m

x

A

B

b

Fig. P10.85 and P10.86

 10.87 and 10.88  Collar A can slide freely on the semicircular rod shown. 

Knowing that the constant of the spring is k and that the unstretched 

length of the spring is equal to the radius r, determine the value of 

θ corresponding to equilibrium when W 5 50 lb, r 5 9 in., and 

k 5 15 lb/in.

A

B
C

qr

W

Fig. P10.87   

B

A

C

q

r

W

Fig. P10.88

P

A

B

L
q

b

Q

Fig. P10.83 and P10.84
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 10.89 Two bars AB and BC of negligible weight are attached to a single 

spring of constant k that is unstretched when the bars are horizontal. 

Determine the range of values of the magnitude P of two equal and 

opposite forces P and 2P for which the equilibrium of the system 

is stable in the position shown.

l l

−PP

A

B

C

Fig. P10.89

10.90 A vertical bar AD is attached to two springs of constant k and is in 

equilibrium in the position shown. Determine the range of values of 

the magnitude P of two equal and opposite vertical forces P and 

2P for which the equilibrium position is stable if (a) AB 5 CD, 

(b) AB 5 2CD.

 10.91 Rod AB is attached to a hinge at A and to two springs, each of 

 constant k. If h 5 25 in., d 5 12 in., and W 5 80 lb, determine the 

range of values of k for which the equilibrium of the rod is stable 

in the position shown. Each spring can act in either tension or 

compression.

 10.92 Rod AB is attached to a hinge at A and to two springs, each of 

constant k. If h 5 45 in., k 5 6 lb/in., and W 5 60 lb, determine 

the smallest distance d for which the equilibrium of the rod is stable 

in the position shown. Each spring can act in either tension or 

compression.

 10.93 and 10.94  Two bars are attached to a single spring of constant k
that is unstretched when the bars are vertical. Determine the range 

of values of P for which the equilibrium of the system is stable in 

the position shown.

P

A

B

D

P

A

B

C

D

L
3

L
3

L
3

Fig. P10.93  Fig. P10.94

A

D

C

B

la

P

–P

Fig. P10.90

A

B

W

d

h

Fig. P10.91 and P10.92
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10.95 The horizontal bar BEH is connected to three vertical bars. The 

 collar at E can slide freely on bar DF. Determine the range of values 

of Q for which the equilibrium of the system is stable in the position 

shown when a 5 24 in., b 5 20 in., and P 5 150 lb.

 10.96 The horizontal bar BEH is connected to three vertical bars. The 

 collar at E can slide freely on bar DF. Determine the range of values 

of P for which the equilibrium of the system is stable in the position 

shown when a 5 150 mm, b 5 200 mm, and Q 5 45 N.

 *10.97 Bars AB and BC, each with a length l and of negligible weight, are 

attached to two springs, each of constant k. The springs are 

 undeformed, and the system is in equilibrium when θ1 5 θ2 5 0. 

Determine the range of values of P for which the equilibrium  position 

is stable.

P

A

B

C

q1

q2

Fig. P10.97

 *10.98 Solve Prob. 10.97 knowing that l 5 800 mm and k 5 2.5 kN/m.

 *10.99 Two rods of negligible weight are attached to drums of radius r that 

are connected by a belt and spring of constant k. Knowing that the 

spring is undeformed when the rods are vertical, determine the range 

of values of P for which the equilibrium position θ1 5 θ2 5 0 

is stable.

 *10.100   Solve Prob. 10.99 knowing that k 5 20 lb/in., r 5 3 in., l 5 6 in., 

and (a) W 5 15 lb, (b) W 5 60 lb.

P

QQ

D
A

B

C F I

H

G

E

a

b

Fig. P10.95 and P10.96

W

2q

1q

A

B

D

C
r r

l

l

P

Fig. P10.99
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Review and Summary
Work of a Force
The first section of this chapter was devoted to the principle of virtual work 

and to its direct application to the solution of equilibrium problems. We first 

defined the work of a force F corresponding to the small displacement dr 

[Sec. 10.1A] as the quantity

 dU 5 F?dr (10.1)

obtained by forming the scalar product of the force F and the displacement 

dr (Fig. 10.16). Denoting the magnitudes of the force and of the displace-

ment by F and ds, respectively, and the angle formed by F and dr by α, 

we have

 dU 5 F ds cos α (10.19)

The work dU is positive if α , 90°, zero if α 5 90°, and negative if α . 90°. 

We also found that the work of a couple of moment M acting on a rigid 

body is

 dU 5 M dθ (10.2)

where dθ is the small angle expressed in radians through which the body 

rotates.

Virtual Displacement
Considering a particle located at A and acted upon by several forces F1, 

F2, . . . , Fn [Sec. 10.1B], we imagined that the particle moved to a new 

position A9 (Fig. 10.17). Since this displacement does not actually take 

place, we refer to it to as a virtual displacement denoted by δr. The 

corresponding work of the forces is called virtual work and is denoted 

by δU. We have

δU 5 F1?δr 1 F2?δr 1 . . . 1 Fn?δr

Principle of Virtual Work
The principle of virtual work states that if a particle is in equilibrium, the 
total virtual work δU of the forces acting on the particle is zero for any 
virtual displacement of the particle.
 The principle of virtual work can be extended to the case of rigid bodies 

and systems of rigid bodies. Since it involves only forces that do work, its 

application provides a useful alternative to the use of the equilibrium  equations 

in the solution of many engineering problems. It is particularly effective in 

the case of machines and mechanisms consisting of connected rigid bodies, 

since the work of the reactions at the supports is zero and the work of the 

internal forces at the pin connections cancels out [Sec. 10.1C; Sample 

Probs. 10.1, 10.2, and 10.3].

a

dr

A

A'

F

Fig. 10.16

F2

F1

Fn

A

A'

dr

Fig. 10.17
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610

Mechanical Efficiency
In the case of real machines, however [Sec. 10.1D], the work of the friction 

forces should be taken into account with the result that the output work is 
less than the input work. We defined the mechanical efficiency of a machine 

as the ratio

 h 5
output work

input work
 (10.9)

We noted that, for an ideal machine (no friction), η 5 1, whereas for a real 

machine, η , 1.

Work of a Force over a Finite Displacement
In the second section of this chapter, we considered the work of forces 

 corresponding to finite displacements of their points of application. We 

obtained the work U1y2 of the force F corresponding to a displacement of 

the particle A from A1 to A2 (Fig. 10.18) by integrating the right-hand side of 

Eqs. (10.1) or (10.19) along the curve described by the particle [Sec. 10.2A]. 

Thus,

U1y2 5#
A2

A1

 

F?dr  (10.11)

or

U1y2 5#
s2

s1

 
(F  cos α) ds (10.119)

Similarly, we expressed the work of a couple of moment M corresponding to 

a finite rotation from θ1 to θ2 of a rigid body as

 U1y2 5#
θ2

θ1

 

M dθ  (10.12)

Work of a Weight
We obtained the work of the weight W of a body as its center of gravity 

moves from the elevation y1 to y2 (Fig. 10.19) by setting F 5 W and α 5 180° 

in Eq. (10.119) as

U1y2 5 2#
y

2

y
1

W dy 5 Wy1 2 Wy2 (10.13)

The work of W is therefore positive when the elevation y decreases.

A

A1

A2

y1

y2

dy

y

W

Fig. 10.19

O

ds

A

A1

s1

s2

A2

a

Fs

Fig. 10.18
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Work of the Force Exerted by a Spring
The work of the force F exerted by a spring on a body A as the spring is 

stretched from x1 to x2 (Fig. 10.20) can be obtained by setting F 5 kx, where 

k is the constant of the spring, and α 5 180° in Eq. (10.119). Hence, 

 U1y2 5 2#
x2

x1

 
k x dx 5

1

2
 k x2

1 2
1

2
 k x2

2 (10.15)

The work of F is therefore positive when the spring is returning to its unde-

formed position.

Potential Energy
When the work of a force F is independent of the path actually followed 

between A1 and A2, the force is said to be a conservative force, and we can 

express its work as

U1y2 5 V1 2 V2 (10.20)

Here V is the potential energy associated with F, and V1 and V2 represent 

the values of V at A1 and A2, respectively [Sec. 10.2B]. We found the potential 

energies associated, respectively, with the force of gravity W and the elastic 

force F exerted by a spring to be

 Vg 5 Wy  and  Ve 5
1

2
 kx2 (10.17, 10.18)

Alternative Expression for the Principle 
of Virtual Work
When the position of a mechanical system depends upon a single independent 

variable θ, the potential energy of the system is a function V(θ) of that 

 variable, and it follows from Eq. (10.20) that δU 5 2δV 5 2(dV/dδ ) δθ. 

The condition δU 5 0 required by the principle of virtual work for the 

 equilibrium of the system thus can be replaced by the condition

 
dV

dθ
5 0  (10.21)

When all the forces involved are conservative, it may be preferable to use 

Eq. (10.21) rather than apply the principle of virtual work directly [Sec. 10.2C; 

Sample Prob. 10.4].

Stability of Equilibrium
This alternative approach presents another advantage, since it is possible to 

determine from the sign of the second derivative of V whether the equilibrium 

of the system is stable, unstable, or neutral [Sec. 10.2D]. If d2V/dθ 
2 . 0, V 

is minimum and the equilibrium is stable; if d2V/dθ 
2 , 0, V is maximum and 

the equilibrium is unstable; if d2V/dθ 
2 5 0, it is necessary to examine 

 derivatives of a higher order.

Spring undeformed

A0

A

B

B

x1

x2

x

F

A2

B

A1

Fig. 10.20

bee87302_ch10_573-613.indd   611bee87302_ch10_573-613.indd   611 10/27/14   9:59 AM10/27/14   9:59 AM

UPLOADED BY AHMAD T JUNDI



612

Review Problems
 10.101 Determine the vertical force P that must be applied at G to maintain 

the equilibrium of the linkage.

300 lb

100 lb

6 in.

A
B

C

D
E F

G

10 in.12 in.8 in.

Fig. P10.101 and P10.102

 10.102 Determine the couple M that must be applied to member DEFG to 

maintain the equilibrium of the linkage.

 10.103 Determine the force P required to maintain the equilibrium of the 

linkage shown. All members are of the same length, and the wheels 

at A and B roll freely on the horizontal rod.

 10.104 Derive an expression for the magnitude of the force Q required to 

maintain the equilibrium of the mechanism shown.

 10.105 Derive an expression for the magnitude of the couple M required to 

maintain the equilibrium of the linkage shown.

q

D
C

A

B

E

a

a

a

a
F

M

P

P

a

Fig. P10.105

 10.106 A vertical load W is applied to the linkage at B. The constant of 

the spring is k, and the spring is unstretched when AB and BC are 

 horizontal. Neglecting the weight of the linkage, derive an equa-

tion in θ, W, l, and k that must be satisfied when the linkage is in 

equilibrium.

400 N

100 N

C

F

D E

G H

BA

P

150 N75 N

Fig. P10.103

90°
A

B
C

P

P

q qQ D

90°

l

l

l

Fig. P10.104

A

B

C D

ll

W

q

Fig. P10.106
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613

10.107 A force P with a magnitude of 240 N is applied to end E of cable 

CDE, which passes under pulley D and is attached to the mechanism 

at C. Neglecting the weight of the mechanism and the radius of the 

pulley, determine the value of θ corresponding to equilibrium. The 

constant of the spring is k 5 4 kN/m, and the spring is unstretched 

when θ 5 90°.

A

B

C
120 mm

300 mm

300 mm

q D
E

P

Fig. P10.107

10.108 Two identical rods ABC and DBE are connected by a pin at B and by 

a spring CE. Knowing that the spring is 4 in. long when unstretched 

and that the constant of the spring is 8 lb/in., determine the distance 

x corresponding to equilibrium when a 24-lb load is applied at E as 

shown.

10.109 Solve Prob. 10.108 assuming that the 24-lb load is applied at C
instead of E.

 10.110 Two uniform rods each with a mass m and length l are attached to 

gears as shown. For the range 0 # θ # 180°, determine the positions 

of equilibrium of the system, and state in each case whether the 

equilibrium is stable, unstable, or neutral.

10.111 A homogeneous hemisphere with a radius r is placed on an incline 

as shown. Assuming that friction is sufficient to prevent slipping 

between the hemisphere and the incline, determine the angle θ

 corresponding to equilibrium when β 5 10°.

q

b

G

C

Fig. P10.111 and P10.112

10.112 A homogeneous hemisphere with a radius r is placed on an incline 

as shown. Assuming that friction is sufficient to prevent slipping 

between the hemisphere and the incline, determine (a) the largest 

angle β for which a position of equilibrium exists, (b) the angle θ 

corresponding to equilibrium when the angle β is equal to half the 

value found in part a.

9 in.

6 in.

A

x

D

B
E

C

24 lb

Fig. P10.108

q

1.5q

A

B

3a

D

2a

C

Fig. P10.110
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The motion of the paraglider can be described in terms of its 

position, velocity, and acceleration. When landing, the pilot of the 

paraglider needs to consider the wind velocity and the relative 

motion of the glider with respect to the wind. The study of 

motion is known as kinematics and is the subject of this chapter.

Kinematics of Particles

11
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616 Kinematics of Particles

Introduction

 11.1 RECTILINEAR MOTION OF 
PARTICLES

11.1A Position, Velocity, and 
Acceleration

11.1B Determining the Motion of a 
Particle

 11.2 SPECIAL CASES AND 
RELATIVE MOTION

 11.2A Uniform Rectilinear Motion
 11.2B Uniformly Accelerated 

Rectilinear Motion
 11.2C Motion of Several Particles

 *11.3 GRAPHICAL SOLUTIONS

 11.4 CURVILINEAR MOTION OF 
PARTICLES

 11.4A Position, Velocity, and 
Acceleration Vectors

 11.4B Derivatives of Vector Functions
 11.4C Rectangular Components of 

Velocity and Acceleration
 11.4D Motion Relative to a Frame in 

Translation

 11.5 NON-RECTANGULAR 
COMPONENTS

 11.5A Tangential and Normal 
Components

 11.5B Radial and Transverse 
Components

Objectives
• Describe the basic kinematic relationships between 

position, velocity, acceleration, and time.

• Solve problems using these basic kinematic 
 relationships and calculus or graphical methods.

• Define position, velocity, and acceleration in terms of 
Cartesian, tangential and normal, and radial and 
 transverse coordinates.

• Analyze the relative motion of multiple particles by 
using a translating coordinate system.

• Determine the motion of a particle that depends on 
the motion of another particle.

• Determine which coordinate system is most appropri-
ate for solving a curvilinear kinematics problem.

• Calculate the position, velocity, and acceleration of a 
particle undergoing curvilinear motion using  Cartesian, 
tangential and normal, and radial and  transverse 
coordinates.

Introduction
Chapters 1 to 10 were devoted to statics, i.e., to the analysis of bodies at 

rest. We now begin the study of dynamics, which is the part of mechanics 

that deals with the analysis of bodies in motion.

Although the study of statics goes back to the time of the Greek 

philosophers, the first significant contribution to dynamics was made by 

Galileo (1564–1642). Galileo’s experiments on uniformly accelerated bod-

ies led Newton (1642–1727) to formulate his fundamental laws of motion.

Dynamics includes two broad areas of study:

 1. Kinematics, which is the study of the geometry of motion. The  principles 

of kinematics relate the displacement, velocity, acceleration, and time 

of a body’s motion, without reference to the cause of the motion.

 2. Kinetics, which is the study of the relation between the forces acting 

on a body, the mass of the body, and the motion of the body. We use 

kinetics to predict the motion caused by given forces or to determine 

the forces required to produce a given motion.

Chapters 11 through 14 describe the dynamics of particles; in 

Chap. 11, we consider the kinematics of particles. The use of the word 

particles does not mean that our study is restricted to small objects; rather, 

it indicates that in these first chapters we study the motion of bodies— 

possibly as large as cars, rockets, or airplanes—without regard to their size 

or shape. By saying that we analyze the bodies as particles, we mean that 

we consider only their motion as an entire unit; we neglect any rotation 

about their own centers of mass. In some cases, however, such a rotation is 

not negligible, and we cannot treat the bodies as particles. Such motions are 

analyzed in later chapters dealing with the dynamics of rigid bodies.
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11.1 Rectilinear Motion of Particles 617

In the first part of Chap. 11, we describe the rectilinear motion of 

a particle; that is, we determine the position, velocity, and acceleration of 

a particle at every instant as it moves along a straight line. We first use 

general methods of analysis to study the motion of a particle; we then 

consider two important particular cases, namely, the uniform motion and 

the uniformly accelerated motion of a particle (Sec. 11.2). We then discuss 

the simultaneous motion of several particles and introduce the concept 

of the relative motion of one particle with respect to another. The first part 

of this chapter concludes with a study of graphical methods of analysis 

and their application to the solution of problems involving the rectilinear 

motion of particles.

In the second part of this chapter, we analyze the motion of a par-

ticle as it moves along a curved path. We define the position, velocity, and 

acceleration of a particle as vector quantities and introduce the derivative 

of a vector function to add to our mathematical tools. We consider applica-

tions in which we define the motion of a particle by the rectangular com-

ponents of its velocity and acceleration; at this point, we analyze the 

motion of a projectile (Sec. 11.4C). Then we examine the motion of a 

particle relative to a reference frame in translation. Finally, we analyze 

the curvilinear motion of a particle in terms of components other than 

rectangular. In Sec. 11.5, we introduce the tangential and normal compo-

nents of an object’s velocity and acceleration and then examine the radial 

and transverse components.

11.1  RECTILINEAR MOTION 
OF PARTICLES

A particle moving along a straight line is said to be in rectilinear motion. 

The only variables we need to describe this motion are the time, t, and 

the distance along the line, x, as a function of time. With these variables, 

we can define the particle’s position, velocity, and acceleration, which 

completely describe the particle’s motion. When we study the motion of 

a particle moving in a plane (two dimensions) or in space (three  dimensions), 

we will use a more general position vector rather than simply the distance 

along a line.

11.1A  Position, Velocity, and 
Acceleration

At any given instant t, a particle in rectilinear motion occupies some 

 position on the straight line. To define the particle’s position P, we choose 

a fixed origin O on the straight line and a positive direction along the line. 

We measure the distance x from O to P and record it with a plus or minus 

sign, according to whether we reach P from O by moving along the line 

in the positive or negative direction. The distance x, with the appropriate 

sign, completely defines the position of the particle; it is called the  position 
coordinate of the particle. For example, the position coordinate 

 corresponding to P in Fig. 11.1a is x 5 15 m; the coordinate corresponding 

to P9 in Fig. 11.1b is x9 5 22 m.

Fig. 11.1 Position is measured from a fixed 
origin. (a) A positive position coordinate; 
(b) a negative position coordinate.

O

O

P

x

x

(a)

(b)
1 m

P'

x'

x

1 m
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618 Kinematics of Particles

When we know the position coordinate x of a particle for every value 

of time t, we say that the motion of the particle is known. We can provide 

a “timetable” of the motion in the form of an equation in x and t, such as 

x 5 6t2 2 t3, or in the form of a graph of x versus t, as shown in Fig. 11.6. 

The units most often used to measure the position coordinate x are the 

meter (m) in the SI system of units† and the foot (ft) in the U.S. customary 

system of units. Time t is usually measured in seconds (s).

Now consider the position P occupied by the particle at time t and 

the corresponding coordinate x (Fig. 11.2). Consider also the position P9

occupied by the particle at a later time t 1 Dt. We can obtain the position 

coordinate of P9 by adding the small displacement Dx to the coordinate x 

of P. This displacement is positive or negative according to whether P9 is 

to the right or to the left of P. We define the average velocity of the 

 particle over the time interval Dt as the quotient of the displacement Dx 

and the time interval Dt as

Average velocity 5
Dx

Dt

If we use SI units, Dx is expressed in meters and Dt in seconds; the 

 average velocity is then expressed in meters per second (m/s). If we use 

U.S. customary units, Dx is expressed in feet and Dt in seconds; the 

 average velocity is then expressed in feet per second (ft/s).

We can determine the instantaneous velocity v of a particle at the 

instant t by allowing the time interval Dt to become infinitesimally small. Thus, 

Instantaneous velocity 5 v 5 lim
Dty0

 
Dx

Dt

The instantaneous velocity is also expressed in m/s or ft/s. Observing that 

the limit of the quotient is equal, by definition, to the derivative of x with 

respect to t, we have

Velocity of a particle 
along a line

 
v 5

dx

dt  
(11.1)

We represent the velocity v by an algebraic number that can be positive or 

negative.‡ A positive value of v indicates that x increases, i.e., that the  particle 

moves in the positive direction (Fig. 11.3a). A negative value of v indicates 

that x decreases, i.e., that the particle moves in the negative direction 

(Fig. 11.3b). The magnitude of v is known as the speed of the particle.

Consider the velocity v of the particle at time t and also its velocity 

v 1 Dv at a later time t 1 Dt (Fig. 11.4). We define the average  acceleration 

of the particle over the time interval Dt as the quotient of Dv and Dt as

Average acceleration 5
Dv

Dt

v 5
dxdd

dt

†See Sec. 1.3. 
‡As you will see in Sec. 11.4A, velocity is actually a vector quantity. However, since we are 

considering here the rectilinear motion of a particle where the velocity has a known and fixed 

direction, we need only specify its sense and magnitude. We can do this conveniently by using 

a scalar quantity with a plus or minus sign. This is also true of the acceleration of a particle 

in rectilinear motion. 

Fig. 11.2 A small displacement Dx from 
time t to time t 1 Dt.

O

P
x

x(t) (t + Δt)

P'
Δx

Photo 11.1 The motion of this solar car can 
be described by its position, velocity, and 
acceleration.

Fig. 11.3 In rectilinear motion, velocity can 
be only (a) positive or (b) negative along the 
line.

(a)

(b)

P

P

x

x

v > 0

v < 0

Fig. 11.4 A change in velocity from v to 
v 1 Dv corresponding to a change in time 
from t to t 1 Dt.

(t) (t + Δt)

v + ΔvP'P

x

v
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11.1 Rectilinear Motion of Particles  619

If we use SI units, Dv is expressed in m/s and Dt in seconds; the average 

acceleration is then expressed in m/s2. If we use U.S. customary units, Dv
is expressed in ft/s and Dt in seconds; the average acceleration is then 

expressed in ft/s2.

We obtain the instantaneous acceleration a of the particle at the 

instant t by again allowing the time interval Dt to approach zero. Thus,

Instantaneous acceleration 5 a 5 lim
Dty0

 
Dv

Dt

The instantaneous acceleration is also expressed in m/s2 or ft/s2. The limit 

of the quotient, which is by definition the derivative of v with respect to t, 
measures the rate of change of the velocity. We have

Acceleration of a 
particle along a line

 
a 5

dv

dt  
(11.2)

or substituting for v from Eq. (11.1),

 a 5
d2x

dt2
 (11.3)

We represent the acceleration a by an algebraic number that can be posi-

tive or negative (see the footnote on the preceding page). A positive value 

of a indicates that the velocity (i.e., the algebraic number v) increases. 

This may mean that the particle is moving faster in the positive direction 

(Fig. 11.5a) or that it is moving more slowly in the negative direction 

(Fig. 11.5b); in both cases, Dv is positive. A negative value of a indicates 

that the velocity decreases; either the particle is moving more slowly in 

the positive direction (Fig. 11.5c), or it is moving faster in the negative 

direction (Fig. 11.5d).

Sometimes we use the term deceleration to refer to a when the speed 

of the particle (i.e., the magnitude of v) decreases; the particle is then  moving 

more slowly. For example, the particle of Fig. 11.5 is decelerating in parts 

b and c; it is truly accelerating (i.e., moving faster) in parts a and d.

a 5
dvdd

dt

a 5
d2x2

dt2

Fig. 11.5 Velocity and acceleration can be in the same or different directions. 
(a, d) When a and v are in the same direction, the particle speeds up; 
(b, c) when a and v are in opposite directions, the particle slows down.

v

P
x

P'

v'

a > 0
(a)

x

v

PP'

v'

a > 0
(b)

x

v

P P'

v'

a < 0
(c)

x

v

PP'

v'

a < 0

(d)
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620 Kinematics of Particles

We can obtain another expression for the acceleration by eliminating 

the differential dt in Eqs. (11.1) and (11.2). Solving Eq. (11.1) for dt, we 

have dt 5 dx/v; substituting into Eq. (11.2) gives us

a 5 v
 

dv

dx 
(11.4)a 5 v

dvdd

dxdd

Concept Application 11.1

Consider a particle moving in a straight line, and assume that its position 

is defined by 

x 5 6t2 2 t3

where t is in seconds and x in meters. We can obtain the velocity v at any 

time t by differentiating x with respect to t as

v 5
dx

dt
5 12t 2 3t2

We can obtain the acceleration a by differentiating again with respect to t. 
Hence,

a 5
dv

dt
5 12 2 6t

In Fig. 11.6, we have plotted the position coordinate, the velocity, and the 

acceleration. These curves are known as motion curves. Keep in mind, 

however, that the particle does not move along any of these curves; the 

particle moves in a straight line. 

 Since the derivative of a function measures the slope of the corre-

sponding curve, the slope of the x–t curve at any given time is equal to 

the value of v at that time. Similarly, the slope of the v–t curve is equal 

to the value of a. Since a 5 0 at t 5 2 s, the slope of the v–t curve must 

be zero at t 5 2 s; the velocity reaches a maximum at this instant. Also, 

since v 5 0 at t 5 0 and at t 5 4 s, the tangent to the x–t curve must be 

horizontal for both of these values of t.
 A study of the three motion curves of Fig. 11.6 shows that the motion 

of the particle from t 5 0 to t 5 ∞ can be divided into four phases:

 1. The particle starts from the origin, x 5 0, with no velocity but with 

a positive acceleration. Under this acceleration, the particle gains a 

positive velocity and moves in the positive direction. From t 5 0 to 

t 5 2 s, x, v, and a are all positive.

 2. At t 5 2 s, the acceleration is zero; the velocity has reached its 

maximum value. From t 5 2 s to t 5 4 s, v is positive, but a is 

negative. The particle still moves in the positive direction but more 

slowly; the particle is decelerating.

3. At t 5 4 s, the velocity is zero; the position coordinate x has reached 

its maximum value (32 m). From then on, both v and a are negative; 

the particle is accelerating and moves in the negative direction with 

increasing speed.

 4. At t 5 6 s, the particle passes through the origin; its coordinate x is 

then zero, while the total distance traveled since the beginning of the 

motion is 64 m (i.e., twice its maximum value). For values of t larger 

than 6 s, x, v, and a are all negative. The particle keeps moving in 

the negative direction—away from O—faster and faster. �

Fig. 11.6 Graphs of position, 
velocity, and acceleration as 
functions of time for Concept 
Application 11.1.

x (m)

v (m/s)

t (s)

t (s)

t (s)

32

24

16

8

0

12

2

2

4

4

6

6

0

–12

a (m/s2)

12

0

–24

–12

–24

–36

2 4 6
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11.1 Rectilinear Motion of Particles  621

11.1B  Determining the Motion of a 
Particle

We have just seen that the motion of a particle is said to be known if we 

know its position for every value of the time t. In practice, however, a 

motion is seldom defined by a relation between x and t. More often, the 

conditions of the motion are specified by the type of acceleration that the 

particle possesses. For example, a freely falling body has a constant 

acceleration that is directed downward and equal to 9.81 m/s2 or 32.2 ft/

s2, a mass attached to a stretched spring has an acceleration proportional 

to the instantaneous elongation of the spring measured from its equilibrium 

position, etc. In general, we can express the acceleration of the particle 

as a function of one or more of the variables x, v, and t. Thus, in order 

to determine the position coordinate x in terms of t, we need to perform 

two successive integrations.

Let us consider three common classes of motion.

 1. a 5 f(t). The Acceleration Is a Given Function of t. Solving Eq. (11.2) 

for dv and substituting f(t) for a, we have

 dv 5 a dt
dv 5 f(t) dt

  Integrating both sides of the equation, we obtain

e dv 5 e f(t) dt

  This equation defines v in terms of t. Note, however, that an arbitrary 

constant is introduced after the integration is performed. This is due to 

the fact that many motions correspond to the given acceleration a 5 f(t). 
In order to define the motion of the particle uniquely, it is necessary to 

specify the initial conditions of the motion, i.e., the value v0 of the 

 velocity and the value x0 of the position coordinate at t 5 0. Rather 

than use an arbitrary constant that is determined by the initial conditions, 

it is often more convenient to replace the indefinite integrals with 

definite  integrals. Definite integrals have lower limits corresponding to 

the initial conditions t 5 0 and v 5 v0 and upper limits corresponding 

to t 5 t and v 5 v. This gives us

 #
v

v0

 

dv 5#
t

0
 

f(t) dt

  v 2 v0 5#
t

0
 

f(t) dt

  which yields v in terms of t.
   We can now solve Eq. (11.1) for dx as

dx 5 v dt

  and substitute for v the expression obtained from the first integration. 

Then we integrate both sides of this equation via the left-hand side with 

respect to x from x 5 x0 to x 5 x and the right-hand side with respect 

to t from t 5 0 to t 5 t. In this way, we obtain the position coordinate 

x in terms of t; the motion is completely determined.
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622 Kinematics of Particles

   We will study two important cases in greater detail in Sec. 11.2: the 

case when a 5 0, corresponding to a uniform motion, and the case when 

a 5 constant, corresponding to a uniformly accelerated motion.

 2. a 5 f(x). The Acceleration Is a Given Function of x. Rearranging 

Eq. (11.4) and substituting f(x) for a, we have

 v dv 5 a dx
 v dv 5 f(x) dx

  Since each side contains only one variable, we can integrate the  equation. 

Denoting again the initial values of the velocity and of the position 

coordinate by v0 and x0, respectively, we obtain

 #
v

v0

 

v dv 5#
x

x0

 

f(x) dx

 
1
2v2 2

1
2 v2

0 5#
x

x0

 

f(x) dx

  which yields v in terms of x. We now solve Eq. (11.1) for dt, giving

dt 5
dx
v

  and substitute for v the expression just obtained. We can then integrate 

both sides to obtain the desired relation between x and t. However, in 

most cases, this last integration cannot be performed analytically, and 

we must resort to a numerical method of integration.

 3. a 5 f(v). The Acceleration Is a Given Function of v. We can now 

 substitute f(v) for a in either Eqs. (11.2) or (11.4) to obtain either 

  f(v) 5
dv

dt
    f(v) 5 v 

dv

dx

 dt 5
dv

f(v)
    dx 5

v dv

f(v)

  Integration of the first equation yields a relation between v and t; 
 integration of the second equation yields a relation between v and x. 

Either of these relations can be used in conjunction with Eq. (11.1) to 

obtain the relation between x and t that characterizes the motion of the 

particle.
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11.1 Rectilinear Motion of Particles  623

Sample Problem 11.1

The position of a particle moving along a straight line is defined by the 

relation x 5 t3 2 6t2 2 15t 1 40, where x is expressed in feet and t in 

seconds. Determine (a) the time at which the velocity is zero, (b) the 

position and distance traveled by the particle at that time, (c) the accelera-

tion of the particle at that time, (d) the distance traveled by the particle 

from t 5 4 s to t 5 6 s.

STRATEGY: You need to use the basic kinematic relationships between 

position, velocity, and acceleration. Because the position is given as a 

function of time, you can differentiate it to find equations for the velocity 

and acceleration. Once you have these equations, you can solve the problem.

MODELING and ANALYSIS: Taking the derivative of position, you obtain

 x 5 t3 2 6t2 2 15t 1 40 (1)

 v 5
dx

dt
5 3t2 2 12t 2 15 (2)

 a 5
dv

dt
5 6 t 2 12  (3)

These equations are graphed in Fig. 1.

a. Time at Which v 5 0. Set v 5 0 in Eq. (2) for

 3t2 2 12t 2 15 5 0  t 5 21 s  and t 5 15 s b

Only the root t 5 15 s corresponds to a time after the motion has begun: 

for t , 5 s, v , 0 and the particle moves in the negative direction; for 

t . 5 s, v . 0 and the particle moves in the positive direction.

b. Position and Distance Traveled When v 5 0. Substitute 

t 5 15 s into Eq. (1), yielding

 x5 5 (5)3 2 6(5)2 2 15(5) 1 40 x5 5 260 ft b

The initial position at t 5 0 was x0 5 140 ft. Since v Þ 0 during the 

interval t 5 0 to t 5 5 s, you have

Distance traveled 5 x5 2 x0 5 260 ft 2 40 ft 5 2100 ft

Distance traveled 5 100 ft in the negative direction b

c. Acceleration When v 5 0.  Substitute t 5 15 s into Eq. (3) for

 a5 5 6(5) 2 12 a5 5 118 ft/s2
 b

d. Distance Traveled from t 5 4 s to t 5 6 s. The particle 

moves in the negative direction from t 5 4 s to t 5 5 s and in the positive 

direction from t 5 5 s to t 5 6 s; therefore, the distance traveled during 

each of these time intervals must be computed separately.

From t 5 4 s to t 5 5 s:    x5 5 260 ft

 x4 5 (4)3 2 6(4)2 2 15(4) 1 40 5 252 ft

x (ft)

v (ft/s)

t (s)

t (s)

t (s)

18

0

0

0

a (ft/s2)

40

60–

+5

+5

+2 +5

Fig. 1 Motion curves for the particle.

(continued)
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624 Kinematics of Particles

Sample Problem 11.2

You throw a ball vertically upward with a velocity of 10 m/s from a 

 window located 20 m above the ground. Knowing that the acceleration of 

the ball is constant and equal to 9.81 m/s2 downward, determine (a) the 

velocity v and elevation y of the ball above the ground at any time t, 
(b) the highest elevation reached by the ball and the corresponding value 

of t, (c) the time when the ball hits the ground and the corresponding 

velocity. Draw the v−t and y−t curves.

STRATEGY: The acceleration is constant, so you can integrate the 

defining kinematic equation for acceleration once to find the velocity 

equation and a second time to find the position relationship. Once you 

have these equations, you can solve the problem.

MODELING and ANALYSIS: Model the ball as a particle with 

 negligible drag.

 a. Velocity and Elevation. Choose the y axis measuring the  position 

coordinate (or elevation) with its origin O on the ground and its positive 

sense upward. The value of the acceleration and the initial values of v 

and y are as indicated in Fig. 1. Substituting for a in a 5 dv/dt and noting 

that, when t 5 0, v0 5 110 m/s, you have

 
dv

dt
5 a 5 29.81 m/s2

 #
v

v0510
 dv 5 2#

t

0
 9.81 dt

 [v]v
10 5 2[9.81t]t

0

 v 2 10 5 29.81t
v 5 10 2 9.81t  (1) b

 Distance traveled 5 x5 2 x4 5 260 ft 2 (252 ft) 5 28 ft 

 5 8 ft in the negative direction

From t 5 5 s to t 5 6 s:    x5 5 260 ft

 x6 5 (6)3 2 6(6)2 2 15(6) 1 40 5 250 ft

 Distance traveled 5 x6 2 x5 5 250 ft 2 (260 ft) 5 110 ft 

 5 10 ft in the positive direction

Total distance traveled from t 5 4 s to t 5 6 s is 8 ft 1 10 ft   5 18 ft

REFLECT and THINK: The total distance traveled by the particle in 

the 2-second interval is 18 ft, but because one distance is positive and one 

is negative, the net change in position is only 2 ft (in the positive direc-

tion). This illustrates the difference between total distance traveled and net 

change in position. Note that the maximum displacement occurs at t 5 5 s, 

when the velocity is zero.

Fig. 1 Acceleration, initial 
velocity, and initial position of 
the ball.

y

O

a = – 9.81 m/s2

v0 = +10 m/s

y0 = +20 m
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11.1 Rectilinear Motion of Particles  625

Substituting for v in v 5 dy/dt and noting that when t 5 0, y0 5 20 m, 

you have

 
dy

dt
5 v 5 10 2 9.81t

 #
y

y0520

dy 5#
t

0

 (10 2 9.81t) dt

 [y ]
y
20 5 [10t 2 4.905t2]t

0

 y 2 20 5 10t 2 4.905t2

y 5 20 1 10t 2 4.905t2  (2) b

Graphs of these equations are shown in Figs. 2 and 3.

b. Highest Elevation. The ball reaches its highest elevation when 

v 5 0. Substituting into Eq. (1), you obtain

 10 2 9.81t 5 0 t 5 1.019 s b

Substituting t 5 1.019 s into Eq. (2), you find

 y 5 20 1 10(1.019) 2 4.905(1.019)2 y 5 25.1 m b

c. Ball Hits the Ground. The ball hits the ground when y 5 0. 

Substituting into Eq. (2), you obtain

20 1 10t 2 4.905t2 5 0    t 5 21.243 s    and    t 5 13.28 s b

Only the root t 5 13.28 s corresponds to a time after the motion has 

begun. Carrying this value of t into Eq. (1), you find

 v 5 10 2 9.81(3.28) 5 222.2 m/s  v 5 22.2 m/s w b

REFLECT and THINK: When the acceleration is constant, the  velocity 

changes linearly, and the position is a quadratic function of time. You will 

see in Sec. 11.2 that the motion in this problem is an example of free fall, 

where the acceleration in the vertical direction is constant and equal to 2g.

Sample Problem 11.3

Many mountain bike shocks utilize a piston that travels in an oil-filled 

cylinder to provide shock absorption; this system is shown schematically. 

When the front tire goes over a bump, the cylinder is given an initial 

velocity v0. The piston, which is attached to the fork, then moves with 

respect to the cylinder, and oil is forced through orifices in the piston. 

This causes the piston to decelerate at a rate proportional to the velocity 

at a 5 2kv. At time t 5 0, the position of the piston is x 5 0. Express 

(a) the velocity v in terms of t, (b) the position x in terms of t, (c) the 

velocity v in terms of x. Draw the corresponding motion curves.

(continued)

Piston

Oil

x

Fig. 2 Velocity of the ball as a 
function of time.

v (m /s)

3.28

–22.2

1.019

Velocity-time curve10

0
t (s)

Slope = a = –9.81 m/s 2

Fig. 3 Height of the ball as a 
function of time.

t (s)

y (m)

3.28

25.1

1.019

Position-time
curve

20

0

Sl
op

e =
 v 0 

= 
10

 m
 /s

Slope = v = –22.2 m
 /s
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626 Kinematics of Particles

STRATEGY: Because the acceleration is given as a function of velocity, 

you need to use either a 5 dv/dt or a 5 v dv/dx and then separate variables 

and integrate. Which one you use depends on what you are asked to find. 

Since part a asks for v in terms of t, use a 5 dv/dt. You can integrate this 

again using v 5 dx/dt for part b. Since part c asked for v(x), you should 

use a 5 v dv/dx and then separate the variables and integrate.

MODELING and ANALYSIS: Rotation of the piston is not relevant, 

so you can model it as a particle undergoing rectilinear motion.

a. v in Terms of t. Substitute 2kv for a in the fundamental formula 

defining acceleration, a 5 dv/dt. You obtain

2kv 5
dv

dt
    dv

v
5 2k dt    #

v

v0

 
dv
v

5 2k#
t

0
 dt

 ln 

v
v0

5 2kt  v 5 v0e2kt
 b

b. x in Terms of t. Substitute the expression just obtained for v into 

v 5 dx/dt. You get

 v0e2kt 5
dx

dt

 #
x

0
 

dx 5 v0#
t

0
 

e2kt dt

 x 5 2
v0

k
 [e2kt]t

0 5 2
v0

k
 (e2kt 2 1)

x 5
v0

k
 (1 2 e2kt) b

c. v in Terms of x. Substitute 2kv for a in a 5 v dv/dx. You have

 2kv 5 v
dv

dx

 dv 5 2k dx

 #
v

v0

 

dv 5 2k#
x

0
 

dx

  v 2 v0 5 2kx  v 5 v0 2 kx b

The motion curves are shown in Fig. 1.

REFLECT and THINK: You could have solved part c by eliminating t 
from the answers obtained for parts a and b. You could use this alternative 

method as a check. From part a, you obtain e2kt 5 v/v0; substituting into 

the answer of part b, you have

x 5
v0

k
 (1 2 e2kt) 5

v0

k
 a1 2

v
v0

b    v 5 v0 2 kx    (checks)

v

O t

x

O t

v0

v0

k

v

O x

v0

v0

k

Fig. 1 Motion curves for the 
piston
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11.1 Rectilinear Motion of Particles  627

Sample Problem 11.4 

An uncontrolled automobile traveling at 45 mph strikes a highway crash 

barrier square on. After initially hitting the barrier, the automobile deceler-

ates at a rate proportional to the distance x the automobile has moved into 

the barrier; specifically, a 5 2602x, where a and x are expressed in ft/s2 

and ft, respectively. Determine the distance the automobile will move into 

the barrier before it comes to rest.

v0

y

x

z

–a (ft/s2)

x (ft)

STRATEGY: Since you are given the deceleration as a function of 

 displacement, you should start with the basic kinematic relationship 

a 5 v dv/dx.

MODELING and ANALYSIS: Model the car as a particle. First find 

the initial speed in ft/s,

v0 5 a45  

mi

hr
b a 1 hr

3600 s
b a5280 ft

mi
b 5 66  

ft

s

Substituting a 5 2602x into a 5 v dv/dx gives

a 5 2602x 5
v dv

dx

Separating variables and integrating gives 

v dv 5 2602x dx y #
0

v0

v dv 5 2#
x

0

602x dx

 
1

2
 v2 2

1

2
 v2

0 5 240x3/2 
y x 5 a 1

80
(v2

0 2 v2)b2/3

 (1)

Substituting v 5 0, v0 5 45 ft/s gives 

d 5 14.37 ft b

REFLECT and THINK: A distance of 14 ft seems reasonable for a 

barrier of this type. If you substitute d into the equation for a, you find a 

maximum deceleration of about 7 g’s. Note that this problem would have 

been much harder to solve if you had been asked to find the time for the 

automobile to stop. In this case, you would need to determine v(t) from 

Eq. (1). This gives v 5 2v2
0 2 80x3/2. Using the basic kinematic relation-

ship v 5 dx/dt, you can easily show that

#
t

0

dt 5 #
x

0

dx

2v2
0 2 80x3/2

Unfortunately, there is no closed-form solution to this integral, so you 

would need to solve it numerically. 
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628628

In the problems for this section, you will be asked to determine the position, 
velocity, and/or acceleration of a particle in rectilinear motion. As you read each 

problem, it is important to identify both the independent variable (typically t or x) 

and what is required (for example, the need to express v as a function of x). You may 

find it helpful to start each problem by writing down both the given information and 

a simple statement of what is to be determined.

1. Determining v(t) and a(t) for a given x(t). As explained in Sec. 11.1A, the first 

and second derivatives of x with respect to t are equal to the velocity and the accel-

eration, respectively, of the particle [Eqs. (11.1) and (11.2)]. If the velocity and accel-

eration have opposite signs, the particle can come to rest and then move in the opposite 

direction [Sample Prob. 11.1]. Thus, when computing the total distance traveled by a 

particle, you should first determine if the particle comes to rest during the specified 

interval of time. Constructing a diagram similar to that of Sample Prob. 11.1, which 

shows the position and the velocity of the particle at each critical instant (v 5 vmax, 

v 5 0, etc.), will help you to visualize the motion.

2. Determining v(t) and x(t) for a given a(t). We discussed the solution of problems 

of this type in the first part of Sec. 11.1B. We used the initial conditions, t 5 0 and 

v 5 v0, for the lower limits of the integrals in t and v, but any other known state (for 

example, t 5 t1 and v 5 v1) could be used instead. Also, if the given function a(t) 
contains an unknown constant (for example, the constant k if a 5 kt), you will first 

have to determine that constant by substituting a set of known values of t and a in 

the equation defining a(t).

3. Determining v(x) and x(t) for a given a(x). This is the second case considered 

in Sec. 11.1B. We again note that the lower limits of integration can be any known 

state (for example, x 5 x1 and v 5 v1). In addition, since v 5 vmax when a 5 0, you 

can determine the positions where the maximum or minimum values of the velocity 

occur by  setting a(x) 5 0 and solving for x.

4. Determining v(x), v(t), and x(t) for a given a(v). This is the last case treated in 

Sec. 11.1B; the appropriate solution techniques for problems of this type are illustrated 

in Sample Probs. 11.3 and 11.4. All of the general comments for the preceding cases 

once again apply. Note that Sample Prob. 11.3 provides a summary of how and when 

to use the equations v 5 dx/dt, a 5 dv/dt, and a 5 v dv/dx.

SOLVING PROBLEMS
ON YOUR OWN
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629 629

We can summarize these relationships in Table 11.1.

Table 11.1

  If.... Kinematic relationship Integrate

 a 5 a(t) 
dv

dt
5 a(t) #

v

v0

dv 5 #
t

0

a(t)dt

 a 5 a(x) v 
dv

dx
5 a(x) #

v

v0

v dv 5 #
x

x0

a(x)dx

 
dv

dt
5 a(v) #

v

v0

dv

a(v)
5 #

t

0

dt

 a 5 a(v)

 v 

dv

dx
5 a(v) #

x

x0

dx 5 #
v

v0

v dv

a(v)
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Problems†

CONCEPT QUESTIONS

11.CQ1 A bus travels the 100 miles between A and B at 50 mi/h and then 

another 100 miles between B and C at 70 mi/h. The average speed 

of the bus for the entire 200-mile trip is:

a. More than 60 mi/h.

b. Equal to 60 mi/h.

   c. Less than 60 mi/h.

 11.CQ2 Two cars A and B race each other down a straight road. The posi-

tion of each car as a function of time is shown. Which of the fol-

lowing statements are true (more than one answer can be correct)?

a. At time t2 both cars have traveled the same distance.

b. At time t1 both cars have the same speed.

c. Both cars have the same speed at some time t , t1.

   d. Both cars have the same acceleration at some time t , t1.

   e. Both cars have the same acceleration at some time t1 , t , t2.

t2t1

A

BPosition

time

Fig. P11.CQ2

END-OF-SECTION PROBLEMS

 11.1 A snowboarder starts from rest at the top of a double black diamond 

hill. As she rides down the slope, GPS coordinates are used to deter-

mine her displacement as a function of time: x 5 0.5t3 1 t2 1 2t, 
where x and t are expressed in feet and seconds, respectively. 

 Determine the position, velocity, and acceleration of the boarder 

when t 5 5 seconds. 

 11.2 The motion of a particle is defined by the relation x 5 2t3 2 9t2 1

12t 1 10, where x and t are expressed in feet and seconds, respec-

tively. Determine the time, the position, and the acceleration of the 

particle when v 5 0.

 11.3 The vertical motion of mass A is defined by the relation x 5

10 sin 2t 1 15 cos 2t 1 100, where x and t are expressed in 

 millimeters and seconds, respectively. Determine (a) the position, 

velocity, and acceleration of A when t 5 1 s, (b) the maximum 

velocity and acceleration of A.

†Answers to all problems set in straight type (such as 11.1) are given at the end of the book. 

Answers to problems with a number set in italic type (such as 11.6) are not given.

A
C

B

Fig. P11.CQ1

A

Fig. P11.3
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 11.4 A loaded railroad car is rolling at a constant velocity when it couples 

with a spring and dashpot bumper system. After the coupling, the 

motion of the car is defined by the relation x 5 60e24.8t sin 16t, where 

x and t are expressed in millimeters and seconds, respectively. Deter-

mine the position, the velocity, and the acceleration of the railroad 

car when (a) t 5 0, (b) t 5 0.3 s.

 Fig. P11.4

v0

k

c

 11.5 The motion of a particle is defined by the relation x 5 6t4 2 2t3 2 12t2 1 

3t 1 3, where x and t are expressed in meters and seconds, 

 respectively. Determine the time, the position, and the velocity when 

a 5 0.

 11.6 The motion of a particle is defined by the relation x 5 t3 2 9t2 1 

24t 2 8, where x and t are expressed in inches and seconds, respec-

tively. Determine (a) when the velocity is zero, (b) the position and 

the total distance traveled when the acceleration is zero.

 11.7 A girl operates a radio-controlled model car in a vacant parking lot. 

The girl’s position is at the origin of the xy coordinate axes, and the 

surface of the parking lot lies in the x-y plane. She drives the car in a 

straight line so that the x coordinate is defined by the relation 

x(t) 5 0.5t3 2 3t2 1 3t 1 2, where x and t are expressed in meters 

and seconds, respectively. Determine (a) when the velocity is zero, 

(b) the position and total distance travelled when the acceleration is zero.

 Fig. P11.7

0

6

2

y (m)

x (m)

 11.8 The motion of a particle is defined by the relation x 5 t2 2 (t 2 2)3,

where x and t are expressed in feet and seconds, respectively. 

 Determine (a) the two positions at which the velocity is zero (b) the 

total distance traveled by the particle from t 5 0 to t 5 4 s.
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 11.9 The brakes of a car are applied, causing it to slow down at a rate of 

10 ft/s2. Knowing that the car stops in 300 ft, determine (a) how fast 

the car was traveling immediately before the brakes were applied, 

(b) the time required for the car to stop.

 11.10 The acceleration of a particle is defined by the relation a 5 3e20.2t,

where a and t are expressed in ft/s2
 and seconds, respectively. 

 Knowing that x 5 0 and v 5 0 at t 5 0, determine the velocity and 

position of the particle when t 5 0.5 s.

 11.11 The acceleration of a particle is directly proportional to the square of 

the time t. When t 5 0, the particle is at x 5 24 m. Knowing that at 

t 5 6 s, x 5 96 m and v 5 18 m/s, express x and v in terms of t.

 11.12 The acceleration of a particle is defined by the relation a 5 kt2. 

(a) Knowing that v 5 28 m/s when t 5 0 and that v 5 18 m/s when 

t 5 2 s, determine the constant k. (b) Write the equations of motion, 

knowing also that x 5 0 when t 5 2 s.

 11.13 A Scotch yoke is a mechanism that transforms the circular motion 

of a crank into the reciprocating motion of a shaft (or vice versa). 

It has been used in a number of different internal combustion engines 

and in control valves. In the Scotch yoke shown, the acceleration of 

point A is defined by the relation a 5 21.8 sin kt, where a and t 
are expressed in m/s2 and seconds, respectively, and k 5 3 rad/s. 

 Knowing that x 5 0 and v 5 0.6 m/s when t 5 0, determine the 

velocity and position of point A when t 5 0.5 s.

 11.14 For the Scotch yoke mechanism shown, the acceleration of point A
is defined by the relation a 521.08 sin kt 2 1.44 cos kt, where a
and t are expressed in m/s2 and seconds, respectively, and 

k 5 3 rad/s. Knowing that x 5 0.16 m and v 5 0.36 m/s when 

t 5 0, determine the velocity and position of point A when t 5 0.5 s. 

 11.15 A piece of electronic equipment that is surrounded by packing material 

is dropped so that it hits the ground with a speed of 4 m/s. After 

contact the equipment experiences an acceleration of a 5 2kx, where 

k is a constant and x is the compression of the packing material. If the 

packing material experiences a maximum compression of 20 mm, 

determine the maximum acceleration of the equipment.

v

 Fig. P11.15  

 11.16 A projectile enters a resisting medium at x 5 0 with an initial velocity 

v0 5 900 ft/s and travels 4 in. before coming to rest. Assuming that 

the velocity of the projectile is defined by the relation v 5 v0 2 kx, 

where v is expressed in ft/s and x is in feet, determine (a) the initial 

acceleration of the projectile, (b) the time required for the projectile 

to penetrate 3.9 in. into the resisting medium.

A

x

v = 0

300 ft

v0

Fig. P11.9

A

C

B

D

x

 Fig. P11.13 and P11.14

x

v

Fig. P11.16 
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 11.17 The acceleration of a particle is defined by the relation a 5 2k/x. 

It has been experimentally determined that v 5 15 ft/s when 

x 5 0.6 ft and that v 5 9 ft/s when x 5 1.2 ft. Determine 

(a) the velocity of the particle when x 5 1.5 ft, (b) the position of 

the particle at which its velocity is zero.

 11.18 A brass (nonmagnetic) block A and a steel magnet B are in equilib-

rium in a brass tube under the magnetic repelling force of another 

steel magnet C located at a distance x 5 0.004 m from B. The force 

is inversely proportional to the square of the distance between B and 

C. If block A is suddenly removed, the acceleration of block B is 

a 5 29.81 1 k/x2, where a and x are expressed in m/s2 and meters, 

respectively, and k 5 4 3 1024 m3/s2. Determine the maximum 

velocity and acceleration of B.

 11.19 Based on experimental observations, the acceleration of a particle is 

defined by the relation a 5 2(0.1 1 sin x/b), where a and x are 

expressed in m/s2 and meters, respectively. Knowing that b 5 0.8 m 

and that v 5 1 m/s when x 5 0, determine (a) the velocity of the 

particle when x 5 21 m, (b) the position where the velocity is 

maximum, (c) the maximum velocity.

 11.20 A spring AB is attached to a support at A and to a collar. The 

unstretched length of the spring is l. Knowing that the collar is 

released from rest at x 5 x0 and has an acceleration defined by the 

relation a 5 2100(x 2 lx/2l2 1 x2), determine the velocity of the 

collar as it passes through point C.

 11.21 The acceleration of a particle is defined by the relation a 5 k(1 2 e2x), 

where k is a constant. Knowing that the velocity of the particle is 

v 5 19 m/s when x 5 23 m and that the particle comes to rest at 

the origin, determine (a) the value of k, (b) the velocity of the 

particle when x 5 22 m.

 11.22 Starting from x 5 0 with no initial velocity, a particle is given an 

acceleration a 5 0.12v2 1 16, where a and v are expressed in ft/s2 

and ft/s, respectively. Determine (a) the position of the particle when 

v 5 3 ft/s, (b) the speed and acceleration of the particle when 

x 5 4 ft.

 11.23 A ball is dropped from a boat so that it strikes the surface of a lake 

with a speed of 16.5 ft/s. While in the water the ball experiences an 

acceleration of a 5 10 2 0.8v, where a and v are expressed in ft/s2 

and ft/s, respectively. Knowing the ball takes 3 s to reach the bottom 

of the lake, determine (a) the depth of the lake, (b) the speed of the 

ball when it hits the bottom of the lake.

 11.24 The acceleration of a particle is defined by the relation a 5 2k1v, 
where k is a constant. Knowing that x 5 0 and v 5 81 m/s at 

t 5 0 and that v 5 36 m/s when x 5 18 m, determine (a) the  velocity 

of the particle when x 5 20 m, (b) the time required for the particle 

to come to rest.

 11.25 The acceleration of a particle is defined by the relation a 5 2kv2.5, 

where k is a constant. The particle starts at x 5 0 with a velocity of 

16 mm/s, and when x 5 6 mm, the velocity is observed to be 4 mm/s. 

Determine (a) the velocity of the particle when x 5 5 mm, (b) the 

time at which the velocity of the particle is 9 mm/s.

A

B

C

x

Fig. P11.18

A

BC
l

x0

Fig. P11.20

d

Fig. P11.23
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 11.26 A human-powered vehicle (HPV) team wants to model the accelera-

tion during the 260-m sprint race (the first 60 m is called a flying 

start) using a 5 A 2 Cv2, where a is acceleration in m/s2 and v is 

the velocity in m/s. From wind tunnel testing, they found that 

C 5 0.0012 m21. Knowing that the cyclist is going 100 km/h at the 

260-meter mark, what is the value of A?

 11.27 Experimental data indicate that in a region downstream of a given 

louvered supply vent the velocity of the emitted air is defined by 

v 5 0.18v0/x, where v and x are expressed in m/s and meters, 

 respectively, and v0 is the initial discharge velocity of the air. For 

v0 5 3.6 m/s, determine (a) the acceleration of the air at x 5 2 m, 

(b) the time required for the air to flow from x 5 1 to x 5 3 m.

 11.28 Based on observations, the speed of a jogger can be approximated by 

the relation v 5 7.5(1 2 0.04x)0.3, where v and x are expressed in mi/h 

and miles, respectively. Knowing that x 5 0 at t 5 0, determine (a) the 

distance the jogger has run when t 5 1 h, (b) the jogger’s acceleration 

in ft/s2 at t 5 0, (c) the time required for the jogger to run 6 mi.

 11.29 The acceleration due to gravity at an altitude y above the surface of 

the earth can be expressed as

a 5
232.2

[1 1 (y/20.9 3 106) ]2

  where a and y are expressed in ft/s2 and feet, respectively. Using 

this expression, compute the height reached by a projectile fired 

 vertically upward from the surface of the earth if its initial velocity 

is (a) 1800 ft/s, (b) 3000 ft/s, (c) 36,700 ft/s.

 11.30 The acceleration due to gravity of a particle falling toward the earth 

is a 5 2gR2/r2, where r is the distance from the center of the earth 

to the particle, R is the radius of the earth, and g is the acceleration 

due to gravity at the surface of the earth. If R 5 3960 mi,  calculate 

the escape velocity, that is, the minimum velocity with which a 

particle must be projected vertically upward from the surface of the 

earth if it is not to return to the earth. (Hint: v 5 0 for r 5 `.)

 11.31 The velocity of a particle is v 5 v0[1 2 sin(πt/T)]. Knowing that 

the particle starts from the origin with an initial velocity v0, deter-

mine (a) its position and its acceleration at t 5 3T, (b) its average 

velocity during the interval t 5 0 to t 5 T.

 11.32 An eccentric circular cam, which serves a similar function as the 

Scotch yoke mechanism in Problem 11.13, is used in conjunction 

with a flat face follower to control motion in pumps and in steam 

engine valves. Knowing that the eccentricity is denoted by e, the 

maximum range of the displacement of the follower is dmax and the 

maximum velocity of the follower is vmax, determine the displace-

ment, velocity, and acceleration of the follower.

y

O
r

e

Aθ

 Fig. P11.32

P

y

 Fig. P11.29

R

P

r

 Fig. P11.30

Fig. P11.26 

v

x

Fig. P11.27 

v

 Fig. P11.28  
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11.2 Special Cases and Relative Motion 635

11.2  SPECIAL CASES AND 
RELATIVE MOTION

In this section, we derive the equations that describe uniform rectilinear 

motion and uniformly accelerated rectilinear motion. We also introduce 

the concept of relative motion, which is of fundamental importance when-

ever we consider the motion of more than one particle at the same time.

11.2A Uniform Rectilinear Motion
Uniform rectilinear motion is a type of straight-line motion that is fre-

quently encountered in practical applications. In this motion, the accelera-

tion a of the particle is zero for every value of t. The velocity v is therefore 

constant, and Eq. (11.1) becomes

dx

dt
5 v 5 constant

We can obtain the position coordinate x by integrating this equation. 

Denoting the initial value of x by x0, we have

Distance in uniform 
rectilinear motion

#
x

x0

dx 5 v#
t

0

dt

x 2 x0 5 vt

 x 5 x0 1 vt (11.5)

This equation can be used only if the velocity of the particle is known to 
be constant. For example, this would be true for an airplane in steady 

flight or a car cruising along a highway at a constant speed.

11.2B  Uniformly Accelerated 
Rectilinear Motion

Uniformly accelerated rectilinear motion is another common type of 

motion. In this case, the acceleration a of the particle is constant, and 

Eq. (11.2) becomes

dv

dt
5 a 5 constant

We obtain the velocity v of the particle by integrating this equation as

#
v

v0

dv 5 a#
t

0

dt

v 2 v0 5 at

 v 5 v0 1 at (11.6)

where v0 is the initial velocity. Substituting for v in Eq, (11.1), we have

dx

dt
5 v0 1 at

x 5 x0 1 vt

v 5 v0 1 at

bee87342_ch11_615-717.indd   635bee87342_ch11_615-717.indd   635 11/24/14   1:38 PM11/24/14   1:38 PM

UPLOADED BY AHMAD T JUNDI



636 Kinematics of Particles

Denoting by x0 the initial value of x and integrating, we have

#
x

x0

dx  5 #
t

0

(v
0

1 at)dt

x 2 x0 5 v0 t 1
1
2 at2

  x 5 x0 1 v0 t 1
1
2 at2 (11.7)

We can also use Eq. (11.4) and write

v 

dv

dx
5 a 5 constant

 v dv 5 a dx

Integrating both sides, we obtain

#
v

v0

v dv 5 a#
x

x0

dx

1
2 (v2 2 v2

0) 5 a(x 2 x0)

  v2 5 v2
0 1 2a(x 2 x0) (11.8)

The three equations we have derived provide useful relations among 

position, velocity, and time in the case of constant acceleration, once you have 

provided appropriate values for a, v0, and x0. You first need to define the origin 

O of the x axis and choose a positive direction along the axis; this direction 

determines the signs of a, v0, and x0. Equation (11.6) relates v and t and should 

be used when the value of v corresponding to a given value of t is desired, 

or inversely. Equation (11.7) relates x and t; Eq. (11.8) relates v and x. An 

important application of uniformly accelerated motion is the motion of a body 

in free fall. The acceleration of a body in free fall (usually denoted by g) is 

equal to 9.81 m/s2 or 32.2 ft/s2 (we ignore air resistance in this case).

It is important to keep in mind that the three equations can be used 

only when the acceleration of the particle is known to be constant. If the 

acceleration of the particle is variable, you need to determine its motion 

from the fundamental Eqs. (11.1) through (11.4) according to the methods 

outlined in Sec. 11.1B.

11.2C Motion of Several Particles
When several particles move independently along the same line, you can 

write independent equations of motion for each particle. Whenever 

 possible, you should record time from the same initial instant for all 

 particles and measure displacements from the same origin and in the same 

direction. In other words, use a single clock and a single measuring tape.

Relative Motion of Two Particles. Consider two particles A and 

B moving along the same straight line (Fig. 11.7). If we measure the 

 position coordinates xA and xB from the same origin, the difference xB 2 xA

defines the relative position coordinate of B with respect to A, which 

is denoted by xB/A. We have

Relative position 
of two particles

 xB/A 5 xB 2 xA  or   xB 5 xA 1 xB/A (11.9)

Regardless of the positions of A and B with respect to the origin, a  positive 

sign for xB/A means that B is to the right of A, and a negative sign means 

that B is to the left of A.

x 5 x0 1 v0 t 1
1
2 at2

v2 5 v2
0 1 2a(x 2 x0)

xBx 5 xAx 1 xB/Ax

Fig. 11.7 Two particles A and B in motion 
along the same straight line.

x
 xA

AO B

 xB/A

 xB
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11.2 Special Cases and Relative Motion 637

The rate of change of xB/A is known as the relative velocity of B with 
respect to A and is denoted by vB/A. Differentiating Eq. (11.9), we obtain

Relative velocity 
of two particles vB/A 5 vB 2 vA  or   vB 5 vA 1 vB/A (11.10)

A positive sign for vB/A means that B is observed from A to move in the 

positive direction; a negative sign means that it is observed to move in 

the negative direction.

The rate of change of vB/A is known as the relative acceleration of B 
with respect to A and is denoted by aB/A. Differentiating Eq. (11.10), we obtain†

Relative acceleration 
of two particles aB/A 5 aB 2 aA  or   aB 5 aA 1 aB/A (11.11)

Dependent Motion of Particles. Sometimes, the position of a 

particle depends upon the position of another particle or of several other 

particles. These motions are called dependent. For example, the position 

of block B in Fig. 11.8 depends upon the position of block A. Since the 

rope ACDEFG is of constant length, and since the lengths of the portions 

of rope CD and EF wrapped around the pulleys remain constant, it follows 

that the sum of the lengths of the segments AC, DE, and FG is constant. 

Observing that the length of the segment AC differs from xA only by a 

constant and that, similarly, the lengths of the segments DE and FG differ 

from xB only by a constant, we have

xA 1 2xB 5 constant

Since only one of the two coordinates xA and xB can be chosen arbitrarily, we 

say that the system shown in Fig. 11.8 has one degree of freedom. From the 

relation between the position coordinates xA and xB, it follows that if xA is 

given an increment DxA––that is, if block A is lowered by an amount DxA––the 

coordinate xB receives an increment DxB 5 2
1
2DxA. In other words, block B 

rises by half the same amount. You can check this directly from Fig. 11.8.

In the case of the three blocks of Fig. 11.9, we can again observe 

that the length of the rope that passes over the pulleys is constant. 

Thus, the following relation must be satisfied by the position coordinates 

of the three blocks:

2xA 1 2xB 1 xC 5 constant

Since two of the coordinates can be chosen arbitrarily, we say that the 

system shown in Fig. 11.9 has two degrees of freedom.

When the relation existing between the position coordinates of several 

particles is linear, a similar relation holds between the velocities and between 

the accelerations of the particles. In the case of the blocks of Fig. 11.9, for 

instance, we can differentiate the position equation twice and obtain

2 

dxA

dt
1 2 

dxB

dt
1

dxC

dt
5 0   or   2vA 1 2vB 1 vC 5 0

2 

dvA

dt
1 2 

dvB

dt
1

dvC

dt
5 0    or    2aA 1 2aB 1 aC 5 0

vB 5 vAv 1 vB/A

aB 5 aAa 1 aB/BB A//

†Note that the product of the subscripts A and B/A used in the right-hand sides of Eqs. (11.9), 

(11.10), and (11.11) is equal to the subscript B that appears in the left-hand sides. This may 

help you remember the correct order of subscripts in various situations.

Fig. 11.8 A system of blocks and pulleys 
with one degree of freedom.

 xA

 xB

A

B

C D

E F

G

Fig. 11.9 A system of blocks and pulleys 
with two degrees of freedom.

A

B

C  xB

 xC xA

Photo 11.2 Multiple cables and pulleys are 
used by this shipyard crane.
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638 Kinematics of Particles

Sample Problem 11.5

In an elevator shaft, a ball is thrown vertically upward with an initial 

velocity of 18 m/s from a height of 12 m above ground. At the same 

instant, an open-platform elevator passes the 5-m level, moving upward 

with a constant velocity of 2 m/s. Determine (a) when and where the ball 

hits the elevator (b) the relative velocity of the ball with respect to the 

elevator when the ball hits the elevator.

STRATEGY: The ball has a constant acceleration, so its motion is uni-
formly accelerated. The elevator has a constant velocity, so its motion is 

uniform. You can write equations to describe each motion and then set the 

position coordinates equal to each other to find when the particles meet. The 

relative velocity is determined from the calculated motion of each particle.

MODELING and ANALYSIS:

Motion of Ball. Place the origin O of the y axis at ground level and 

choose its positive direction upward (Fig. 1). Then the initial position of 

the ball is y0 5 112 m, its initial velocity is v0 5 118 m/s, and its accel-

eration is a 5 29.81 m/s2. Substituting these values in the equations for 

uniformly accelerated motion, you get

 vB 5 v0 1 at vB 5 18 2 9.81t (1)

 yB 5 y0 1 v0 t 1
1

2
 at2   yB 5 12 1 18t 2 4.905t2

 (2)

Motion of Elevator.  Again place the origin O at ground level and 

choose the positive direction upward (Fig. 2). Noting that y0 5 15 m, 

you have

 vE 5 12 m/s (3)
 yE 5 y0 1 vE t  yE 5 5 1 2t (4)

Ball Hits Elevator. First note that you used the same time t and the 

same origin O in writing the equations of motion for both the ball and 

the elevator. From Fig. 3, when the ball hits the elevator,

 yE 5 yB (5)

Substituting for yE and yB from Eqs. (2) and (4) into Eq. (5), you have

5 1 2t 5 12 1 18t 2 4.905t2

 t 5 20.39 s  and t 5 3.65 s b

Only the root t 5 3.65 s corresponds to a time after the motion has begun. 

Substituting this value into Eq. (4), you obtain

yE 5 5 1 2(3.65) 5 12.30 m

Elevation from ground 5 12.30 m b

t = t

yB
a = –9.81 m/s2

v0 = 18 m/s

y0 = 12 m

O

t = 0

Fig. 1 Acceleration, initial 
velocity, and initial position of 
the ball.

t = 0

vE = 2 m/s

t = t

yE

y0 = 5 m
O

Fig. 2 Initial velocity and initial 
position of the elevator.

Fig. 3 Position of ball and 
elevator at time t.

yB yE

O
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11.2 Special Cases and Relative Motion 639

Relative Velocity. The relative velocity of the ball with respect to the 

elevator is

vB/E 5 vB 2 vE 5 (18 2 9.81t) 2 2 5 16 2 9.81t

When the ball hits the elevator at time t 5 3.65 s, you have

vB/E 5 16 2 9.81(3.65)  vB/E 5 219.81 m/s b

The negative sign means that if you are riding on the elevator, it will 

appear as if the ball is moving downward.

REFLECT and THINK: The key insight is that, when two particles 

collide, their position coordinates must be equal. Also, although you can 

use the basic kinematic relationships in this problem, you may find it 

easier to use the equations relating a, v, x, and t when the acceleration is 

constant or zero.

Sample Problem 11.6 

Car A is travelling at a constant 90 mi/h when she passes a parked police 

officer B, who gives chase when the car passes her. The officer accelerates 

at a constant rate until she reaches the speed of 105 mi/h. Thereafter, her 

speed remains constant. The police officer catches the car 3 mi from her 

starting point. Determine the initial acceleration of the police officer.

STRATEGY: One car is traveling at a constant speed and the other has 

a constant acceleration, so you can start with the algebraic relationships 

found in Sec. 11.2 rather than separating and integrating the basic kine-

matic relationships.

MODELING and ANALYSIS: A clearly labeled picture will help you 

understand the  problem better (Fig. 1). The position, x, is defined from 

the point the car passes the officer.

Fig. 1 Velocities and accelerations of the cars at various times.

Time when police
officer reaches max
 speed (vB)f = 105 mi/h

t1

3 mi
x1

x

(vA)0  = 90 mi/h
aA  = 0

(vA)f  = 90 mi/h

(vB)0 = 0
aB = constant

(continued)
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640 Kinematics of Particles

Unit Conversions. First you should convert everything to units of feet 

and seconds. Use the subscript A for the car and B for the officer

vA 5 a90  

mi

hr
ba 1 hr

3600 s
ba5280 ft

mi
b 5 132  

ft

s

vB 5 a105  

mi

hr
ba 1 hr

3600 s
ba5280 ft

mi
b 5 154  

ft

s

Motion of the Speeding Car A. Since the car has a constant speed, 

 xA 5 vAt 5 132 t (1)

Motion of the Officer B. The officer has a constant acceleration 

until she reaches a final speed of 105 mph. This time is labeled t1 in Fig. 1. 

Therefore, from time 0 , t , t1, the officer has a velocity of

vB 5 aB t for 0 , t , t1

or at time t 5 t1, it is

 154 5 aBt1 (2)

The distance the officer travels is going to be the distance from 0 to t1 

and then from t1 to tf. Hence,

 xB 5
1

2
 aBt2

1 1 vB(t 2 t1)  for t . t1 (3)

The officer catches the speeder when xA 5 xB 5 3 mi 5 15,840 ft. From 

Eq. (1), you can solve for the time tf 5 (15,840 ft)/(132 ft/s) 5 120 s. 

Therefore, you have two equations: Eq. (2) and 

 15,840 5
1

2
 aBt2

1 1 154(120 2 t1) (4)

Substituting Eq. (2) into Eq. (4) allows you to solve for t1: 

t1 5 34.39 s

Substituting this into Eq. (2) gives 

aB 5 4.49 ft/s b

REFLECT and THINK: It is important to use the same origin for the 

position of both vehicles. The time to accelerate from 0 to 105 mph seems 

reasonable, although it is perhaps longer than you would expect. A high-

performance sports car can go from 0 to 60 mph in less than 5 seconds. 

It is very likely that the officer could have accelerated to 105 mph in less 

time if she had wanted to, but perhaps she had to consider the safety of 

other motorists.
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11.2 Special Cases and Relative Motion 641

Sample Problem 11.7

Collar A and block B are connected by a cable passing over three pulleys 

C, D, and E as shown. Pulleys C and E are fixed, but D is attached to a 

collar that is pulled downward with a constant velocity of 3 in./s. At t 5 0, 

collar A starts moving downward from position K with a constant accelera-

tion and no initial velocity. Knowing that the velocity of collar A is 12 in./s 

as it passes through point L, determine the change in elevation, the  velocity, 

and the acceleration of block B when collar A passes through L.

STRATEGY: You have multiple objects connected by cables, so this is 

a problem in dependent motion. Use the given data to write a single equa-

tion relating the changes in position coordinates of collar A, pulley D, and 

block B. Based on the given information, you will also need to use the 

algebraic relationships we found for uniformly accelerated motion.

MODELING and ANALYSIS: 
Motion of Collar A. Place the origin O at the upper horizontal 

 surface and choose the positive direction downward. Then when t 5 0, 

collar A is at position K and (vA)0 5 0 (Fig. 1). Since vA 5 12 in./s and 

xA 2 (xA)0 5 8 in. when the collar passes through L, you have

v2
A 5 (vA)2

0 1 2aA[xA 2 (xA)0]    (12)2 5 0 1 2aA(8)

aA 5 9 in./s2

To find the time at which collar A reaches point L, use the equation for 

velocity as a function of time with uniform acceleration. Thus,

vA 5 (vA)0 1 aAt  12 5 0 1 9t  t 5 1.333 s

Motion of Pulley D. Since the positive direction is downward, you 

have (Fig. 2)

aD 5 0  vD 5 3 in./s  xD 5 (xD)0 1 vD t 5 (xD)0 1 3t

When collar A reaches L at t 5 1.333 s, the position of pulley D is

xD 5 (xD)0 1 3(1.333) 5 (xD)0 1 4

Thus, xD 2 (xD)0 5 4 in.

Motion of Block B. Note that the total length of cable ACDEB differs 

from the quantity (xA 1 2xD 1 xB) only by a constant. Since the cable 

length is constant during the motion, this quantity must also remain con-

stant. Thus, considering the times t 5 0 and t 5 1.333 s, you can write

 xA 1 2xD 1 xB 5 (xA)0 1 2(xD)0 1 (xB)0 (1)

 [xA 2 (xA)0] 1 2[xD 2 (xD)0] 1 [xB 2 (xB)0] 5 0 (2)

But you know that xA 2 (xA)0 5 8 in. and xD 2 (xD)0 5 4 in. Substituting 

these values in Eq. (2), you find

8 1 2(4) 1 [xB 2 (xB)0] 5 0  xB 2 (xB)0 5 216 in.

Thus, Change in elevation of B 5 16 in.x  b

D

O

(xD)0

xD

vD = 3 in./s

Fig. 2 Position and velocity of pulley D.

C E

A
B

D

xA xB

xD

O

Fig. 3 Position of A, B, and D.

(continued)

C E

K

L

A

B

D
8 in.

A

O

L

K

8 in.

xA
aA

(xA)0

vA = 12 in./s

Fig. 1 Position, velocity, and 
acceleration of collar A.
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642 Kinematics of Particles

Differentiating Eq. (1) twice, you obtain equations relating the velocities 

and the accelerations of A, B, and D. Substituting for the velocities and 

accelerations of A and D at t 5 1.333 s, you have

vA 1 2vD 1 vB 5 0:  12 1 2(3) 1 vB 5 0 

 vB 5 218 in./s  vB 5 18 in./sx b

aA 1 2aD 1 aB 5 0:  9 1 2(0) 1 aB 5 0 

 aB 5 29 in./s2  aB 5 9 in./s2
x b

REFLECT and THINK: In this case, the relationship we needed was 

not between position coordinates, but between changes in position 

 coordinates at two different times. The key step is to clearly define your 

position  vectors. This is a two-degree-of-freedom system, because two 

coordinates are required to completely describe it.

Sample Problem 11.8

Block C starts from rest and moves down with a constant acceleration. 

Knowing that after block A has moved 1.5 ft its velocity is 0.6 ft/s, deter-

mine (a) the acceleration of A and C, (b) the change in velocity and the 

change in position of block B after 2.5 seconds.

STRATEGY: Since you have blocks connected by cables, this is a 

dependent-motion problem. You should define coordinates for each mass 

and write constraint equations for both cables. 

MODELING and ANALYSIS: Define position vectors as shown in 

Fig. 1, where positive is defined to be down. 

A

C
B

Cable 1

Cable 2

xA

 xB  xC

Fig. 1 Position of A, B, and C.

A

C
B
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11.2 Special Cases and Relative Motion 643

Constraint Equations. Assuming the cables are inextensible, you can 

write the lengths in terms of the defined coordinates and then 

differentiate.

Cable 1: xA 1 (xA 2 xB) 5 constant

Differentiating this, you find 

 2vA 5 vB and 2aA 5 aB (1)

Cable 2: 2xB 1 xC 5 constant

Differentiating this, you find 

 vC 5 22vB and aC 5 22aB (2)

Substituting Eq. (1) into Eq. (2) gives 

 vC 5 24vA and aC 5 24aA (3)

Motion of A. You can use the constant-acceleration equations for 

block A:, as

 v2
A 2 v2

A0
5 2aA [xA 2 (xA)

0
]  or  aA 5

v2
A 2 (vA)2

0

2[xA 2 (xA)
0
]
 (4)

a. Acceleration of A and C. You know vC and aC are down, so from 

Eq. (3), you also know vA and aA are up. Substituting the given values 

into Eq. (4), you find

 aA 5
(0.6 ft/s)2 2 0

2(21.5 ft)
5 20.12 ft/s2  aA 5 0.120 ft/s2

x b

Substituting this value into aC 5 24aA, you obtain

aC 5 0.480 ft/s2
w b

b. Velocity and change in position of B after 2.5 s. Substituting 

aA in aB 5 2aA gives

aB 5 2(20.2 ft/s2) 5 20.24 ft/s2

You can use the equations of constant acceleration to find

DvB 5 aBt 5 (20.24 ft/s2)(2.5 s) 5 20.600 ft/s DvB 5 0.600 ft/sx b

 DxB 5
1
2 aBt 5

1
2 (20.24 ft/s2)(2.5 s)2 5 20.750 ft DxB 5 0.750 ftx b

REFLECT and THINK: One of the keys to solving this problem is 

recognizing that since there are two cables, you need to write two 

 constraint equations. The directions of the answers also make sense. If 

block C is accelerating downward, you would expect A and B to accelerate 

upward.
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644644

SOLVING PROBLEMS
ON YOUR OWN

In this section, we derived the equations that describe uniform rectilinear motion
(constant velocity) and uniformly accelerated rectilinear motion (constant 

 acceleration). We also introduced the concept of relative motion. We can apply the 

equations for relative motion [Eqs. (11.9) through (11.11)] to the independent or 

dependent motions of any two particles moving along the same straight line.

A. Independent motion of one or more particles. Organize the solution of  problems 

of this type as follows.

1. Begin your solution by listing the given information, sketching the system, and 

selecting the origin and the positive direction of the coordinate axis [Sample Prob. 11.5]. 

It is always advantageous to have a visual representation of problems of this type.

2. Write the equations that describe the motions of the various particles as well as 

those that describe how these motions are related [Eq. (5) of Sample Prob. 11.5].

3. Define the initial conditions, i.e., specify the state of the system  corresponding 

to t 5 0. This is especially important if the motions of the particles begin at different 

times. In such cases, either of two approaches can be used.

 a. Let t 5 0 be the time when the last particle begins to move. You must then 

determine the initial position x0 and the initial velocity v0 of each of the other 

particles.

b. Let t 5 0 be the time when the first particle begins to move. You must then, 

in each of the equations describing the motion of another  particle, replace t with 

t 2 t0, where t0 is the time at which that specific particle begins to move. It is 

 important to recognize that the equations obtained in this way are valid only for t $ t0.
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645 645

B. Dependent motion of two or more particles. In problems of this type, the 

 particles of the system are connected to each other, typically by ropes or cables. The 

method of solution of these problems is similar to that of the preceding group of 

problems, except that it is now necessary to describe the physical connections between 

the particles. In the following problems, the connection is provided by one or more 

cables. For each cable, you will have to write equations similar to the last three 

 equations of Sec. 11.2C. We suggest that you use the following procedure.

1. Draw a sketch of the system and select a coordinate system, indicating clearly a 

positive sense for each of the coordinate axes. For example, in Sample Probs. 11.7 

and 11.8, we measured lengths downward from the upper horizontal support. It thus 

follows that those displacements, velocities, and accelerations that have positive values 

are directed downward.

2. Write the equation describing the constraint imposed by each cable on the 

motion of the particles involved. Differentiating this equation twice, you obtain the 

corresponding relations among velocities and accelerations.

3. If several directions of motion are involved, you must select a coordinate axis 

and a positive sense for each of these directions. You should also try to locate the 

origins of your coordinate axes so that the equations of constraints are as simple as 

possible. For example, in Sample Prob. 11.7, it is easier to define the various coordi-

nates by measuring them downward from the upper support than by measuring them 

upward from the bottom support.

Finally, keep in mind that the method of analysis described in this section and the 

corresponding equations can be used only for particles moving with uniform or 
uniformly accelerated rectilinear motion.
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Problems
 11.33 An airplane begins its take-off run at A with zero velocity and a 

constant acceleration a. Knowing that it becomes airborne 30 s later 

at B and that the distance AB is 900 m, determine (a) the acceleration a
(b) the take-off velocity vB.

BA

Fig. P11.33

 11.34 A motorist is traveling at 54 km/h when she observes that a traffic 

light 240 m ahead of her turns red. The traffic light is timed to stay 

red for 24 s. If the motorist wishes to pass the light without stopping 

just as it turns green again, determine (a) the required uniform decel-

eration of the car, (b) the speed of the car as it passes the light.

54 km/h

240 m

Fig. P11.34

 11.35 Steep safety ramps are built beside mountain highways to enable 

vehicles with defective brakes to stop safely. A truck enters a 750-ft 

ramp at a high speed v0 and travels 540 ft in 6 s at constant decelera-

tion before its speed is reduced to v0 /2. Assuming the same constant 

deceleration, determine (a) the additional time required for the truck 

to stop (b) the additional distance traveled by the truck.

v0

CROSS COUNTRY MOVERS

Fig. P11.35

 11.36 A group of students launches a model rocket in the vertical 

 direction. Based on tracking data, they determine that the altitude 

of the rocket was 89.6 ft at the end of the powered portion of the 

flight and that the rocket landed 16 s later. Knowing that the 

descent parachute failed to deploy so that the rocket fell freely to 

the ground after reaching its maximum altitude and assuming that 

g 5 32.2 ft/s2, determine (a) the speed v1 of the rocket at the end 

of powered flight, (b) the maximum altitude reached by the rocket.

v1

89.6 ft

Fig. P11.36
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 11.37 A small package is released from rest at A and moves along the skate 

wheel conveyor ABCD. The package has a uniform acceleration of 

4.8 m/s2 as it moves down sections AB and CD, and its velocity is 

constant between B and C. If the velocity of the package at D is 

7.2 m/s, determine (a) the distance d between C and D, (b) the time 

required for the package to reach D.

B

A

C

D

3 m

3 m
d

Fig. P11.37

11.38 A sprinter in a 100-m race accelerates uniformly for the first 35 m 

and then runs with constant velocity. If the sprinter’s time for the 

first 35 m is 5.4 s, determine (a) his acceleration, (b) his final 

 velocity, (c) his time for the race.

 11.39 Automobile A starts from O and accelerates at the constant rate of 

0.75 m/s2. A short time later it is passed by bus B which is traveling 

in the opposite direction at a constant speed of 6 m/s. Knowing that 

bus B passes point O 20 s after automobile A started from there, 

determine when and where the vehicles passed each other.

A

x
O

BB A

Fig. P11.39

 11.40 In a boat race, boat A is leading boat B by 50 m and both boats are 

traveling at a constant speed of 180 km/h. At t 5 0, the boats 

 accelerate at constant rates. Knowing that when B passes A, t 5 8 s 

and vA 5 225 km/h, determine (a) the acceleration of A, (b) the 

acceleration of B.

A

B

50 m

vB

vA

Fig. P11.40

v

Fig. P11.38
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 11.41 As relay runner A enters the 65-ft-long exchange zone with a speed 

of 30 ft/s, he begins to slow down. He hands the baton to runner B
2.5 s later as they leave the exchange zone with the same velocity. 

Determine (a) the uniform acceleration of each of the runners, 

(b) when runner B should begin to run.

 11.42 Automobiles A and B are traveling in adjacent highway lanes and 

at t 5 0 have the positions and speeds shown. Knowing that auto-

mobile A has a constant acceleration of 1.8 ft/s2 and that B has a 

constant deceleration of 1.2 ft/s2, determine (a) when and where 

A will overtake B, (b) the speed of each automobile at that time.

 11.43 Two automobiles A and B are approaching each other in adjacent 

highway lanes. At t 5 0, A and B are 3200 ft apart, their speeds are 

vA 5 65 mi/h and vB 5 40 mi/h, and they are at points P and Q,

respectively. Knowing that A passes point Q 40 s after B was there 

and that B passes point P 42 s after A was there, determine (a) the 

uniform accelerations of A and B, (b) when the vehicles pass each 

other, (c) the speed of B at that time.

A B

P Q

vB = 40 mi/hvA = 65 mi/h

3200 ft

Fig. P11.43

 11.44 An elevator is moving upward at a constant speed of 4 m/s. A man 

standing 10 m above the top of the elevator throws a ball upward 

with a speed of 3 m/s. Determine (a) when the ball will hit the 

 elevator, (b) where the ball will hit the elevator with respect to the 

location of the man.

 11.45 Two rockets are launched at a fireworks display. Rocket A is launched 

with an initial velocity v0 5 100 m/s and rocket B is launched 

t1 seconds later with the same initial velocity. The two rockets are 

timed to explode simultaneously at a height of 300 m as A is falling 

and B is rising. Assuming a constant acceleration g 5 9.81 m/s2, 

determine (a) the time t1, (b) the velocity of B relative to A at the time 

of the explosion.

 11.46 Car A is parked along the northbound lane of a highway, and car B is 

traveling in the southbound lane at a constant speed of 60 mi/h. At 

t 5 0, A starts and accelerates at a constant rate aA, while at t 5 5 s, 

B begins to slow down with a constant deceleration of magnitude 

aA/6. Knowing that when the cars pass each other x 5 294 ft and 

vA 5 vB, determine (a) the acceleration aA, (b) when the vehicles pass 

each other, (c) the distance d between the vehicles at t 5 0.

A B

(vB)0 = 60 mi /h(vA)0 = 0

x

d

Fig. P11.46

A B

x

(vA)0 = 24 mi/h (vB)0 = 36 mi/h

75 ft

Fig. P11.42

10 m

Fig. P11.44

A B 300 m

v0 v0

Fig. P11.45

A B

(vA)0 = 30 ft/s

(vB)0 = 0

65 ft

Fig. P11.41
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 11.47 The elevator E shown in the figure moves downward with a constant 

velocity of 4 m/s. Determine (a) the velocity of the cable C, (b) the 

velocity of the counterweight W, (c) the relative velocity of the cable 

C with respect to the elevator, (d) the relative velocity of the 

 counterweight W with respect to the elevator.

 11.48 The elevator E shown starts from rest and moves upward with a 

 constant acceleration. If the counterweight W moves through 30 ft 

in 5 s, determine (a) the acceleration of the elevator and the cable C, 

(b) the velocity of the elevator after 5 s.

 11.49 An athlete pulls handle A to the left with a constant velocity of 

0.5 m/s. Determine (a) the velocity of the weight B, (b) the relative 

velocity of weight B with respect to the handle A.

A

B

Fig. P11.49

 11.50 An athlete pulls handle A to the left with a constant acceleration. 

Knowing that after the weight B has been lifted 4 in. its velocity is 

2 ft/s, determine (a) the accelerations of handle A and weight B, 
(b) the velocity and change in position of handle A after 0.5 sec.

A

B

Fig. P11.50

W

EC

M

Fig. P11.47 and P11.48
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 11.51 Slider block B moves to the right with a constant velocity of 

300 mm/s. Determine (a) the velocity of slider block A, (b) the 

velocity of portion C of the cable, (c) the velocity of portion D 
of the cable, (d) the relative velocity of portion C of the cable with 

respect to slider block A.

BC

DA

Fig. P11.51 and P11.52

 11.52 At the instant shown, slider block B is moving with a constant accel-

eration, and its speed is 150 mm/s. Knowing that after slider block 

A has moved 240 mm to the right its velocity is 60 mm/s, determine 

(a) the accelerations of A and B, (b) the acceleration of portion D 
of the cable, (c) the velocity and the change in position of slider 

block B after 4 s.

 11.53 A farmer lifts his hay bales into the top loft of his barn by walking 

his horse forward with a constant velocity of 1 ft/s. Determine the 

velocity and acceleration of the hay bale when the horse is 10 ft 

away from the barn.

20 ft

Fig. P11.53

 11.54 The motor M reels in the cable at a constant rate of 100 mm/s. 

Determine (a) the velocity of load L, (b) the velocity of pulley B 

with respect to load L.

L

100 mm/s

M

B

Fig. P11.54

bee87342_ch11_615-717.indd   650bee87342_ch11_615-717.indd   650 11/24/14   1:39 PM11/24/14   1:39 PM

UPLOADED BY AHMAD T JUNDI



651

11.55 Collar A starts from rest at t 5 0 and moves upward with a constant 

acceleration of 3.6 in./s2. Knowing that collar B moves downward 

with a constant velocity of 18 in./s, determine (a) the time at which 

the velocity of block C is zero, (b) the corresponding position of 

block C.

 11.56 Block A starts from rest at t 5 0 and moves downward with a 

 constant acceleration of 6 in./s2. Knowing that block B moves up with 

a constant velocity of 3 in./s, determine (a) the time when the  velocity 

of block C is zero, (b) the corresponding position of block C.

C

A

B

Fig. P11.56

 11.57 Block B starts from rest, block A moves with a constant acceleration, 

and slider block C moves to the right with a constant acceleration 

of 75 mm/s2. Knowing that at t 5 2 s the velocities of B and C are 

480 mm/s downward and 280 mm/s to the right, respectively, deter-

mine (a) the accelerations of A and B, (b) the initial velocities of 

A and C, (c) the change in position of slider block C after 3 s.

 11.58 Block B moves downward with a constant velocity of 20 mm/s. At 

t 5 0, block A is moving upward with a constant acceleration, and 

its velocity is 30 mm/s. Knowing that at t 5 3 s slider block C has 

moved 57 mm to the right, determine (a) the velocity of slider block 

C at t 5 0, (b) the accelerations of A and C, (c) the change in posi-

tion of block A after 5 s.

 11.59 The system shown starts from rest, and each component moves with 

a constant acceleration. If the relative acceleration of block C with 

respect to collar B is 60 mm/s2 upward and the relative acceleration 

of block D with respect to block A is 110 mm/s2 downward, deter-

mine (a) the velocity of block C after 3 s, (b) the change in position 

of block D after 5 s.

 *11.60 The system shown starts from rest, and the length of the upper cord 

is adjusted so that A, B, and C are initially at the same level. Each 

component moves with a constant acceleration, and after 2 s the 

 relative change in position of block C with respect to block A is 

280 mm upward. Knowing that when the relative velocity 

of collar B with respect to block A is 80 mm/s downward, the 

 displacements of A and B are 160 mm downward and 320 mm 

downward, respectively, determine (a) the accelerations of A and B 
if aB . 10 mm/s2, (b) the change in position of block D when the 

velocity of block C is 600 mm/s upward.

C

A

B

Fig. P11.55

BA  

C

Fig. P11.57 and P11.58

C

A

D

B

 Fig. P11.59 and P11.60
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652 Kinematics of Particles

*11.3 GRAPHICAL SOLUTIONS 
In analyzing problems in rectilinear motion, it is often useful to draw 

graphs of position, velocity, or acceleration versus time. Sometimes these 

graphs can provide insight into the situation by indicating when quantities 

increase, decrease, or stay the same. In other cases, the graphs can provide 

numerical solutions when analytical methods are not available. In many 

experimental situations, data are collected as a function of time, and the 

methods of this section are very useful for the analysis.

Fig. 11.10 The slope of an x–t curve at time t1 equals the velocity v at that time; the slope 
of the v–t curve at time t1 equals the acceleration a at that time.

Slop
e

Slop
e

dx
dt

 = v

v a

dv
dt

 = a

x v a

ttt t1t1t1

x

We observed in Sec. 11.1 that the fundamental formulas

v 5
dx

dt
   and   a 5

dv

dt

have a geometrical significance. The first formula says that the velocity 

at any instant is equal to the slope of the x–t curve at that instant 

(Fig. 11.10). The second formula states that the acceleration is equal to 

the slope of the v–t curve. We can use these two properties to determine 

graphically the v–t and a–t curves of a motion when the x–t curve is 

known.

Integrating the two fundamental formulas from a time t1 to a time 

t2, we have

 x2 2 x1 5 #
t2

t1

v dt   and   v2 2 v1 5 #
t2

t1

a Êdt (11.12)

The first formula says that the area measured under the v−t curve from t1

to t2 is equal to the change in x during that time interval (Fig. 11.11). 

Similarly, the second formula states that the area measured under the a–t
curve from t1 to t2 is equal to the change in v during that time interval. 

We can use these two properties to determine graphically the x–t curve of 

a motion when its v−t curve or its a–t curve is known (see Sample 

Prob. 11.9).

Fig. 11.11 The area under an a–t curve 
equals the change in velocity during that 
time interval; the area under the v–t curve 
equals the change in position during that 
time interval.

t2t1

x1

x2

t

t2t1 t

t2t1 t

x

v2

v1

v

a

Area

Area

v2 − v1 =       �
t1

t2

x2 − x1 =        �
t1

t2

      a dt 

       v dt 
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*11.3 Graphical Solutions  653

Graphical solutions are particularly useful when the motion consid-

ered is defined from experimental data and when x, v, and a are not 

analytical functions of t. They also can be used to advantage when the 

motion consists of distinct parts and when its analysis requires writing a 

different equation for each of its parts. When using a graphical solution, 

however, be careful to note that (1) the area under the v–t curve measures 

the change in x—not x itself—and similarly, that the area under the a–t 
curve measures the change in v; (2) an area above the t axis corresponds 

to an increase in x or v, whereas an area located below the t axis measures 

a decrease in x or v.

In drawing motion curves, it is useful to remember that, if the 

 velocity is constant, it is represented by a horizontal straight line; the 

position coordinate x is then a linear function of t and is represented by 

an oblique straight line. If the acceleration is constant and different from 

zero, it is represented by a horizontal straight line; v is then a linear 

 function of t and is represented by an oblique straight line, and x is a 

second-degree polynomial in t and is represented by a parabola. If the 

acceleration is a linear function of t, the velocity and the position  coordinate 

are equal, respectively, to second-degree and third-degree polynomials; 

a is then represented by an oblique straight line, v by a parabola, and x 

by a cubic. In general, if the acceleration is a polynomial of degree n in t, 
the velocity is a polynomial of degree n 1 1, and the position coordinate 

is a polynomial of degree n 1 2. These polynomials are represented by 

motion curves of a corresponding degree.
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654 Kinematics of Particles

Sample Problem 11.9

A subway car leaves station A; it gains speed at the rate of 4 ft/s2 for 6 s 

and then at the rate of 6 ft/s2 until it has reached the speed of 48 ft/s. The 

car maintains the same speed until it approaches station B; then the driver 

applies the brakes, giving the car a constant deceleration and bringing it 

to a stop in 6 s. The total running time from A to B is 40 s. Draw the a−t, 
v−t, and x−t curves, and determine the distance between stations A and B.

STRATEGY: You are given acceleration data, so first draw the graph of 

a versus t. You can calculate areas under the curve to determine the v–t 
curve and calculate areas under the v–t curve to determine the x–t curve.

MODELING and ANALYSIS: You can model the subway car as a 

particle without drag.

Acceleration–Time Curve.  Since the acceleration is either constant 

or zero, the a−t curve consists of horizontal straight-line segments. Deter-

mine the values of t2 and a4 as 

0 , t , 6: Change in v 5 area under a – t curve

     v6 2 0 5 (6 s)(4 ft/s2) 5 24 ft/s

6 , t , t2: Since the velocity increases from 24 to 48 ft/s,

 Change in v 5 area under a – t curve

48 ft/s 2 24 ft/s 5 (t2 2 6)(6 ft/s2)  t2 5 10 s

t2 , t , 34: Since the velocity is constant, the acceleration is zero.

34 , t , 40: Change in v 5 area under a – t curve

 0 2 48 ft/s 5 (6 s) a4  a4 5 28 ft/s2

The acceleration is negative, so the corresponding area is below the t axis; 

this area represents a decrease in velocity (Fig. 1).

Velocity−Time Curve. Since the acceleration is either constant or 

zero, the v−t curve consists of straight-line segments connecting the points 

determined previously (Fig. 2).

Change in x area under v−t curve

 0 , t , 6: x6 2 0 5 
1
2(6)(24) 5 72 ft

 6 , t , 10: x10 2 x6 5 
1
2(4)(24 1 48) 5 144 ft

10 , t , 34: x34 2 x10 5 (24)(48) 5 1152 ft

34 , t , 40: x40 2 x34 5 
1
2(6)(48) 5 144 ft

Adding the changes in x gives you the distance from A to B:

d 5 x40 2 0 5 1512 ft

 d 5 1512 ft b

Position−Time Curve. The points determined previously should be 

joined by three parabolic arcs and one straight-line segment (Fig. 3). In 

constructing the x−t curve, keep in mind that for any value of t, the slope 

of the tangent to the x−t curve is equal to the value of v at that instant.

REFLECT and THINK: This problem also could have been solved 

using the uniform motion equations for each interval of time that has a 

different acceleration, but it would have been much more difficult and 

time consuming. For a real subway car, the acceleration does not instan-

taneously change from one value to another.

60 10 34 40

48

24

v (ft /s)

t (s)

Fig. 2 Velocity of the subway car as a 
function of time.

0 6 10 4034

x (ft)

1512 ft

t (s)

Fig. 3 Position of the subway car as 
a function of time.

A B

x
d

8

a (ft/s2)

t2

a4

6

6
34 40

4

2

0

–8

–6

–4

–2
t (s)

Fig. 1 Acceleration of the subway car 
as a function of time.
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655 655

SOLVING PROBLEMS
ON YOUR OWN

In this section, we reviewed and developed several graphical techniques for the 

solution of problems involving rectilinear motion. These techniques can be used to 

solve problems directly or to complement analytical methods of solution by providing 

a visual description, and thus a better understanding, of the motion of a given body. 

We suggest that you sketch one or more motion curves for several of the problems 

in this section, even if these problems are not part of your homework assignment.

1. Drawing x−t, v−t, and a−t curves and applying graphical methods. We described 

the following properties in Sec. 11.3, and they should be kept in mind as you use a 

graphical method of solution.

 a. The slopes of the x−t and v−t curves at a time t1 are equal to the velocity 

and the acceleration at time t1, respectively.

 b. The areas under the a−t and v−t curves between the times t1 and t2 are 

equal to the change Dv in the velocity and to the change Dx in the position coordinate, 

respectively, during that time interval.

 c. If you know one of the motion curves, the fundamental properties we have 

summarized in paragraphs a and b will enable you to construct the other two curves. 

However, when using the properties of paragraph b, you must know the velocity and 

the position coordinate at time t1 in order to determine the velocity and the position 

coordinate at time t2. Thus, in Sample Prob. 11.9, knowing that the initial value of 

the velocity was zero allowed us to find the velocity at t 5 6 s: v6 5 v0 1 Dv 5 

0 1 24 ft/s 5 24 ft/s.

If you have studied the shear and bending-moment diagrams for a beam previously, 

you should recognize the analogy between the three motion curves and the three 

diagrams representing, respectively, the distributed load, the shear, and the bending 

moment in the beam. Thus, any techniques that you have learned regarding the 

construction of these diagrams can be applied when drawing the motion curves.

2. Using approximate methods. When the a–t and v–t curves are not represented 

by analytical functions or when they are based on experimental data, it is often 

 necessary to use approximate methods to calculate the areas under these curves. In 

those cases, the given area is approximated by a series of rectangles of width Dt. The 

smaller the value of Dt, the smaller is the error introduced by the approximation. You 

can obtain the velocity and the position coordinate from

v 5 v0 1 oaave Dt  x 5 x0 1 ovave Dt

where aave and vave are the heights of an acceleration rectangle and a velocity rectangle, 

respectively.
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656

Problems

 11.61 A particle moves in a straight line with a constant acceleration of 

24 ft/s2 for 6 s, zero acceleration for the next 4 s, and a constant 

acceleration of 14 ft/s2 for the next 4 s. Knowing that the particle 

starts from the origin and that its velocity is 28 ft/s during the zero 

acceleration time interval, (a) construct the v–t and x–t curves for 

0 # t # 14 s, (b) determine the position and the velocity of the 

particle and the total distance traveled when t 5 14 s.

4

0
6

10 14 t(s)
–4

a (ft/s2)

Fig. P11.61 and P11.62

 11.62 A particle moves in a straight line with a constant acceleration of 

24 ft/s2 for 6 s, zero acceleration for the next 4 s, and a constant 

acceleration of 14 ft/s2 for the next 4 s. Knowing that the particle 

starts from the origin with v0 5 16 ft/s, (a) construct the v–t and x–t 
curves for 0 # t # 14 s, (b) determine the amount of time during 

which the particle is further than 16 ft from the origin.

 11.63 A particle moves in a straight line with the velocity shown in the 

figure. Knowing that x 5 2540 m at t 5 0, (a) construct the a–t 
and x–t curves for 0 , t , 50 s, and determine (b) the total distance 

traveled by the particle when t 5 50 s, (c) the two times at which 

x 5 0.

60

–20
–5

t (s)

v (m/s)

26 41 46
10

Fig. P11.63 and P11.64

 11.64 A particle moves in a straight line with the velocity shown in the 

figure. Knowing that x 5 2540 m at t 5 0, (a) construct the a–t 
and x–t curves for 0 , t , 50 s, and determine (b) the maximum 

value of the position coordinate of the particle, (c) the values of t for 

which the particle is at x 5 100 m.

 11.65 A particle moves in a straight line with the velocity shown in the 

figure. Knowing that x  5  248 ft at t 5 0, draw the a–t and x–t 
curves for 0 ,  t  , 40 s and determine (a) the maximum value of 

the position coordinate of the particle, (b) the values of t for which 

the particle is at a distance of 108 ft from the origin.

18

10 18
24 306

0

–18

t (s)

v (ft/s)

Fig. P11.65
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 11.66 A parachutist is in free fall at a rate of 200 km/h when he opens his 

parachute at an altitude of 600 m. Following a rapid and constant 

deceleration, he then descends at a constant rate of 50 km/h from 

586 m to 30 m, where he maneuvers the parachute into the wind to 

further slow his descent. Knowing that the parachutist lands with a 

negligible downward velocity, determine (a) the time required for 

the parachutist to land after opening his parachute, (b) the initial 

deceleration.

 11.67 A commuter train traveling at 40 mi/h is 3 mi from a station. The train 

then decelerates so that its speed is 20 mi/h when it is 0.5 mi from 

the station. Knowing that the train arrives at the station 7.5 min 

after beginning to decelerate and assuming constant decelerations, 

determine (a) the time required for the train to travel the first 2.5 mi, 

(b) the speed of the train as it arrives at the station, (c) the final 

constant deceleration of the train.

40 mi/h
3 mi

Fig. P11.67

 11.68 A temperature sensor is attached to slider AB which moves back 

and forth through 60 in. The maximum velocities of the slider are 

12 in./s to the right and 30 in./s to the left. When the slider is 

 moving to the right, it accelerates and decelerates at a constant rate 

of 6 in./s2; when moving to the left, the slider accelerates and 

 decelerates at a constant rate of 20 in./s2. Determine the time 

required for the slider to complete a full cycle, and construct the 

v–t and x–t curves of its motion.

 11.69 In a water-tank test involving the launching of a small model boat, 

the model’s initial horizontal velocity is 6 m/s and its horizontal 

acceleration varies linearly from 212 m/s2 at t 5 0 to 22 m/s2 at 

t 5 t1 and then remains equal to 22 m/s2 until t 5 1.4 s. Knowing 

that v 5 1.8 m/s when t 5 t1, determine (a) the value of t1, (b) the 

velocity and the position of the model at t 5 1.4 s.

 11.70 The acceleration record shown was obtained for a small airplane 

traveling along a straight course. Knowing that x 5 0 and v 5 

60 m/s when t 5 0, determine (a) the velocity and position of 

the plane at t 5 20 s, (b) its average velocity during the interval 

6 s , t , 14 s.

 11.71 In a 400-m race, runner A reaches her maximum velocity vA in 

4 s with constant acceleration and maintains that velocity until she 

reaches the halfway point with a split time of 25 s. Runner B reaches 

her maximum velocity vB in 5 s with constant acceleration and main-

tains that velocity until she reaches the halfway point with a split 

time of 25.2 s. Both runners then run the second half of the race 

with the same constant deceleration of 0.1 m/s2. Determine (a) the 

race times for both runners, (b) the position of the winner relative 

to the loser when the winner reaches the finish line.

v

Fig. P11.66

x

A B

60 in.

Fig. P11.68

x

v0 = 6 m/s

Fig. P11.69

0.75

6 8
0

10

12 14 20 t(s)
–0.75

a (m/s2)

Fig. P11.70

B

200 m 200 m

A

Fig. P11.71
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 11.72 A car and a truck are both traveling at the constant speed of 35 mi/h; 

the car is 40 ft behind the truck. The driver of the car wants to 

pass the truck, i.e., he wishes to place his car at B, 40 ft in front 

of the truck, and then resume the speed of 35 mi/h. The maximum 

acceleration of the car is 5 ft/s2 and the maximum deceleration 

obtained by applying the brakes is 20 ft/s2. What is the shortest 

time in which the driver of the car can complete the passing 

 operation if he does not at any time exceed a speed of 50 mi/h? 

Draw the v–t curve.

A B

16 ft
40 ft 50 ft 40 ft

Fig. P11.72

 11.73 Solve Prob. 11.72, assuming that the driver of the car does not pay 

any attention to the speed limit while passing and concentrates on 

reaching position B and resuming a speed of 35 mi/h in the shortest 

possible time. What is the maximum speed reached? Draw the 

v–t curve.

 11.74 Car A is traveling on a highway at a constant speed (vA)0 5 60 mi/h 

and is 380 ft from the entrance of an access ramp when car B enters 

the acceleration lane at that point at a speed (vB)0 5 15 mi/h.

Car B accelerates uniformly and enters the main traffic lane after travel-

ing 200 ft in 5 s. It then continues to accelerate at the same rate until 

it reaches a speed of 60 mi/h, which it then maintains. Determine the 

final distance between the two cars.

A (vA)0

(vB)0

(vA)0

380 ft

B
(vB)0

Fig. P11.74

 11.75  An elevator starts from rest and moves upward, accelerating at a rate 

of 1.2 m/s2 until it reaches a speed of 7.8 m/s, which it then main-

tains. Two seconds after the elevator begins to move, a man standing 

12 m above the initial position of the top of the elevator throws a 

ball upward with an initial velocity of 20 m/s. Determine when the 

ball will hit the elevator.

12 m

Fig. P11.75
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 11.76 Car A is traveling at 40 mi/h when it enters a 30 mi/h speed zone. The 

driver of car A decelerates at a rate of 16 ft/s2 until reaching a speed 

of 30 mi/h, which she then maintains. When car B, which was initially 

60 ft behind car A and traveling at a constant speed of 45 mi/h, enters 

the speed zone, its driver decelerates at a rate of 20 ft/s2 until reaching 

a speed of 28 mi/h. Knowing that the driver of car B maintains a speed 

of 28 mi/h, determine (a) the closest that car B comes to car A, (b) the 

time at which car A is 70 ft in front of car B.

B A

60 ft

(vB)0 = 45 mi/h (vA)0 = 40 mi/h

Fig. P11.76

 11.77 An accelerometer record for the motion of a given part of a mecha-

nism is approximated by an arc of a parabola for 0.2 s and a straight 

line for the next 0.2 s as shown in the figure. Knowing that v 5 0 

when t 5 0 and x 5 0.8 ft when t 5 0.4 s, (a) construct the v–t
curve for 0 # t # 0.4 s, (b) determine the position of the part at 

t 5 0.3 s and t 5 0.2 s.

0

16

24

a (ft/s2)

0 0.2 0.4 t (s)

a = 24 – 200t2

a = 32 – 80t

Fig. P11.77

 11.78 A car is traveling at a constant speed of 54 km/h when its driver 

sees a child run into the road. The driver applies her brakes until the 

child returns to the sidewalk and then accelerates to resume her 

original speed of 54 km/h; the acceleration record of the car is shown 

in the figure. Assuming x 5 0 when t 5 0, determine (a) the time 

t1 at which the velocity is again 54 km/h, (b) the position of the car 

at that time, (c) the average velocity of the car during the interval 

1 s # t # t1.

2

0
21

4.5 t(s)t1

–6

a (m/s2)

Fig. P11.78
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 11.79 An airport shuttle train travels between two terminals that are 1.6 mi 

apart. To maintain passenger comfort, the acceleration of the train is 

limited to 64 ft/s2, and the jerk, or rate of change of acceleration, 

is limited to 60.8 ft/s2 per second. If the shuttle has a maximum 

speed of 20 mi/h, determine (a) the shortest time for the shuttle to 

travel between the two terminals, (b) the corresponding average 

velocity of the shuttle.

 11.80 During a manufacturing process, a conveyor belt starts from rest and 

travels a total of 1.2 ft before temporarily coming to rest. Knowing 

that the jerk, or rate of change of acceleration, is limited to 64.8 ft/s2

per second, determine (a) the shortest time required for the belt to 

move 1.2 ft, (b) the maximum and average values of the velocity of 

the belt during that time.

 11.81 Two seconds are required to bring the piston rod of an air cylinder to 

rest; the acceleration record of the piston rod during the 2 s is as 

shown. Determine by approximate means (a) the initial velocity of 

the piston rod, (b) the distance traveled by the piston rod as it is 

brought to rest.

t (s)

4.0

3.0

2.0

1.0

0

–a (m/s2)

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Fig. P11.81

 11.82 The acceleration record shown was obtained during the speed trials 

of a sports car. Knowing that the car starts from rest, determine by 

approximate means (a) the velocity of the car at t 5 8 s, (b) the 

distance the car has traveled at t 5 20 s.

a (m/s2)

t (s)

6.0

7.0

5.0

4.0

3.0

2.0

1.0

0
0 2 4 6 8 10 12 14 16 18 20 22

Fig. P11.82
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 11.83 A training airplane has a velocity of 126 ft/s when it lands on an 

aircraft carrier. As the arresting gear of the carrier brings the airplane 

to rest, the velocity and the acceleration of the airplane are recorded; 

the results are shown (solid curve) in the figure. Determine by 

approximate means (a) the time required for the airplane to come to 

rest, (b) the distance traveled in that time.

60

50

30

40

20

10

0
0 20 40 60 80 100 120 140

–a (ft/s2)

v (ft /s)

Fig. P11.83

 11.84 Shown in the figure is a portion of the experimentally determined v–x 
curve for a shuttle cart. Determine by approximate means the accelera-

tion of the cart when (a) x 5 10 in., (b) v 5 80 in./s.

100

80

40

60

20

0
0 10 20 30 40 50

v (in./s)

x (in.)

Fig. P11.84

 11.85 An elevator starts from rest and rises 40 m to its maximum velocity 

in T s with the acceleration record shown in the figure. Determine 

(a) the required time T, (b) the maximum velocity, (c) the velocity 

and position of the elevator at t 5 T/2. 

0.6

0
TT/3 t(s)

a (m/s2)

Fig. P11.85
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11.86 Two road rally checkpoints A and B are located on the same highway 

and are 8 mi apart. The speed limits for the first 5 mi and the last 

3 mi are 60 mi/h and 35 mi/h, respectively. Drivers must stop at each 

checkpoint, and the specified time between points A and B is 10 min 

20 s. Knowing that the driver accelerates and decelerates at the same 

constant rate, determine the magnitude of her acceleration if she 

travels at the speed limit as much as possible.

A
C

B3 mi5 mi

Fig. P11.86

11.87 As shown in the figure, from t 5 0 to t 5 4 s, the acceleration of a 

given particle is represented by a parabola. Knowing that x 5 0 and 

v 5 8 m/s when t 5 0, (a) construct the v–t and x–t curves for 0 , t 
, 4 s, (b) determine the position of the particle at t 5 3 s. (Hint: 
Use table inside the front cover.)

42

t(s)

a = – 3 (t – 2)2 m/s2

–12

a (m/s2)

Fig. P11.87

 11.88 A particle moves in a straight line with the acceleration shown in 

the figure. Knowing that the particle starts from the origin with 

v0 5 22 m/s, (a) construct the v–t and x–t curves for 0 , t , 18 s, 

(b) determine the position and the velocity of the particle and the 

total distance traveled when t 5 18 s.

6

t(s)–0.75

2
8

12

a (m/s2)

Fig. P11.88
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11.4 Curvilinear Motion of Particles 663

11.4  CURVILINEAR MOTION 
OF PARTICLES

When a particle moves along a curve other than a straight line, we say 

that the particle is in curvilinear motion. We can use position, velocity, 

and acceleration to describe the motion, but now we must treat these 

quantities as vectors because they can have directions in two or three 

dimensions.

11.4A  Position, Velocity, and 
Acceleration Vectors

To define the position P occupied by a particle in curvilinear motion at a 

given time t, we select a fixed reference system, such as the x, y, z axes 

shown in Fig. 11.12a, and draw the vector r joining the origin O and 

point P. The vector r is characterized by its magnitude r and its direction 

with respect to the reference axes, so it completely defines the position of 

the particle with respect to those axes. We refer to vector r as the position 
vector of the particle at time t.

Consider now the vector r9 defining the position P9 occupied by the 

same particle at a later time t 1 Dt. The vector Dr joining P and P9 

 represents the change in the position vector during the time interval Dt 
and is called the displacement vector. We can check this directly from 

Fig. 11.12a, where we obtain the vector r9 by adding the vectors r and 

Dr according to the triangle rule. Note that Dr represents a change in 

direction as well as a change in magnitude of the position vector r. 

We define the average velocity of the particle over the time interval 

Dt as the quotient of Dr and Dt. Since Dr is a vector and Dt is a scalar, 

the quotient Dr/Dt is a vector attached at P with the same direction as Dr 

and a magnitude equal to the magnitude of Dr divided by Dt (Fig. 11.12b).

We obtain the instantaneous velocity of the particle at time t by 

taking the limit as the time interval Dt approaches zero. The instantaneous 

velocity is thus represented by the vector

 v 5 lim
Dty0

 
Dr
Dt

 (11.13)

As Dt and Dr become shorter, the points P and P9 get closer together. 

Thus, the vector v obtained in the limit must be tangent to the path of the 

particle (Fig. 11.12c).

Because the position vector r depends upon the time t, we can refer 

to it as a vector function of the scalar variable t and denote it by r(t). 
Extending the concept of the derivative of a scalar function introduced in 

elementary calculus, we refer to the limit of the quotient Dr/Dt as the 

derivative of the vector function r(t). We have

Velocity vector v 5
dr
dt

 (11.14)

The magnitude v of the vector v is called the speed of the particle. 

We can obtain the speed by substituting the magnitude of this vector, 

v 5
dr
dt

Fig. 11.12 (a) Position vectors for a particle 
moving along a curve from P to P9; (b) the 
average velocity vector is the quotient of the 
change in position to the elapsed time 
interval; (c) the instantaneous velocity vector 
is tangent to the particle’s path.
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664 Kinematics of Particles

which is represented by the straight-line segment PP9, for the vector Dr
in formula (11.13). However, the length of segment PP9 approaches the 

length Ds of arc PP9 as Dt decreases (Fig. 11.12a). Therefore, we can 

write

 v 5 lim
Dty0

 
PP9

Dt
5 lim

Dty0
 
Ds

Dt
    v 5

ds

dt
 (11.15)

Thus, we obtain the speed v by finding the length s of the arc described 

by the particle and differentiating it with respect to t.
Now let’s consider the velocity v of the particle at time t and its 

velocity v9 at a later time t 1 Dt (Fig. 11.13a). Let us draw both vectors 

v and v9 from the same origin O9 (Fig. 11.13b). The vector Dv joining Q 

and Q9 represents the change in the velocity of the particle during the time 

interval Dt, since we can obtain the vector v9 by adding the vectors v and 

Dv. Again, note that Dv represents a change in the direction of the velocity 

as well as a change in speed. We define the average acceleration of the 

particle over the time interval Dt as the quotient of Dv and Dt. Since Dv
is a vector and Dt is a scalar, the quotient Dv/Dt is a vector in the same 

direction as Dv.

We obtain the instantaneous acceleration of the particle at time t
by choosing increasingly smaller values for Dt and Dv. The instantaneous 

acceleration is thus represented by the vector

a 5 lim
Dty0

 
Dv
Dt

 (11.16)

Noting that the velocity v is a vector function v(t) of the time t, we can 

refer to the limit of the quotient Dv/Dt as the derivative of v with respect 

to t. We have

Acceleration vector a 5
dv
dt

 (11.17)

v 5
dsdd

dt

a 5
dvdd

dt
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Hodograph
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Fig. 11.13 (a) Velocities v and v9 of a 
particle at two different times; (b) the vector 
change in the particle’s velocity during the 
time interval; (c) the instantaneous 
acceleration vector is tangent to the 
hodograph; (d) in general, the acceleration 
vector is not tangent to the particle’s path.
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11.4 Curvilinear Motion of Particles  665

Observe that the acceleration a is tangent to the curve described by 

the tip Q of the vector v when we draw v from a fixed origin O9

(Fig. 11.13c). However, in general, the acceleration is not tangent to the 

path of the particle (Fig. 11.13d). The curve described by the tip of v and 

shown in Fig. 11.13c is called the hodograph of the motion.

11.4B Derivatives of Vector Functions
We have just seen that we can represent the velocity v of a particle in 

curvilinear motion by the derivative of the vector function r(t)  characterizing 

the position of the particle. Similarly, we can represent the acceleration a
of the particle by the derivative of the vector function v(t). Here we give 

a formal definition of the derivative of a vector function and establish a 

few rules governing the differentiation of sums and products of vector 

functions.

Let P(u) be a vector function of the scalar variable u. By that, we 

mean that the scalar u completely defines the magnitude and direction of 

the vector P. If the vector P is drawn from a fixed origin O and the scalar 

u is allowed to vary, the tip of P describes a given curve in space. Consider 

the vectors P corresponding, respectively, to the values u and u 1 Du
of the scalar variable (Fig. 11.14a). Let DP be the vector joining the tips 

of the two given vectors. Then we have

DP 5 P(u 1 Du) 2 P(u)

Dividing through by Du and letting Du approach zero, we define the 

 derivative of the vector function P(u) as

dP
du

5 lim
Duy0

 
DP
Du

5 lim
Duy0

 
P(u 1 Du) 2 P(u)

Du
 (11.18)

As Du approaches zero, the line of action of DP becomes tangent to the 

curve of Fig. 11.14a. Thus, the derivative dP/du of the vector function 

P(u) is tangent to the curve described by the tip of P(u) (Fig. 11.14b).

The standard rules for the differentiation of the sums and products 

of scalar functions extend to vector functions. Consider first the sum of 
two vector functions P(u) and Q(u) of the same scalar variable u. 

 According to the definition given in Eq. (11.18), the derivative of the 

 vector P 1 Q is

d(P 1 Q)

du
5 lim

Duy0
 
D (P 1 Q)

Du
5 lim

Duy0
 aDP

Du
1

DQ
Du
b

or since the limit of a sum is equal to the sum of the limits of its terms,

d(P 1 Q)

du
5 lim

Duy0
 
DP
Du

1 lim
Duy0

 
DQ
Du

 
d(P 1 Q)

du
5

dP
du

1
dQ
du

 (11.19)

That is, the derivative of a sum of vector functions equals the sum of the 

derivative of each function separately.

d(P 1 Q)

du
5

dPdd

du
1

dQ
du

Fig. 11.14 (a) The change in vector function 
for a particle moving along a curvilinear 
path; (b) the derivative of the vector function 
is tangent to the path described by the tip of 
the function.
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666 Kinematics of Particles

We now consider the product of a scalar function f(u) and a 
 vector function P(u) of the same scalar variable u. The derivative of the 

vector f  P is

d( f P)

du
5 lim

Duy0
 
( f 1 D f )(P 1 DP) 2 f P

Du
5 lim

Duy0 
a Df

Du
P 1 f 

DP
Du
b

or recalling the properties of the limits of sums and products,

 
d(f P)

du
5

df

du
 P 1 f 

dP
du

 (11.20)

In a similar way, we can obtain the derivatives of the scalar product and 

the vector product of two vector functions P(u) and Q(u). Thus, 

  
d(P ? Q)

du
5

dP
du

? Q 1 P ?
dQ
du

 (11.21)

  
d(P 3 Q)

du
5

dP
du

3 Q 1 P 3
dQ
du

 (11.22)†

We can use the properties just established to determine the rectan-
gular components of the derivative of a vector function P(u). Resolving 

P into components along fixed rectangular axes x, y, and z, we have

 P 5 Pxi 1 Pyj 1 Pzk (11.23)

where Px, Py, and Pz are the rectangular scalar components of the vector 

P, and i, j, and k are the unit vectors corresponding, respectively, to the 

x, y, and z axes (Sec. 2.12 or Appendix A). From Eq. (11.19), the deriva-

tive of P is equal to the sum of the derivatives of the terms in the right-

hand side. Since each of these terms is the product of a scalar and a vector 

function, we should use Eq. (11.20). However, the unit vectors i, j, and k 

have a constant magnitude (equal to 1) and fixed directions. Their deriva-

tives are therefore zero, and we obtain

 
dP
du

5
dPx

du
 i 1

dPy

du
 j 1

dPz

du
 k (11.24)

Note that the coefficients of the unit vectors are, by definition, the scalar 

components of the vector dP/du. We conclude that we can obtain the 

rectangular scalar components of the derivative dP/du of the vector  function 
P(u) by differentiating the corresponding scalar components of P.

Rate of Change of a Vector. When the vector P is a function of 

the time t, its derivative dP/dt represents the rate of change of P with 

respect to the frame Oxyz. Resolving P into rectangular components and 

using Eq. (11.24), we have

dP
dt

5
dPx

dt
 i 1

dPy

dt
 j 1

dPz

dt
 k

d(f(( P)

du
5

dfd

du
P 1 f

dPdd
f

du

d(P ? Q)

du
5

dPdd

du
? Q 1 P ?

dQ
du

d(P 3 Q)

du
5

dPdd

du
3 Q 1 P 3

dQ
du

dPdd

du
5

dPdd xP

du
i 1

dPdd yP

du
j 1

dPdd z

du
k

†Since the vector product is not commutative (see Sec. 3.4), the order of the factors in 

Eq. (11.22) must be maintained. 
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11.4 Curvilinear Motion of Particles  667

Alternatively, using dots to indicate differentiation with respect to t gives

 Ṗ 5 Ṗxi 1 Ṗyj 1 Ṗzk (11.249)

As you will see in Sec. 15.5, the rate of change of a vector as 

observed from a moving frame of reference is, in general, different from 

its rate of change as observed from a fixed frame of reference. However, 

if the moving frame O9x9y9z9 is in translation, i.e., if its axes remain 

 parallel to the corresponding axes of the fixed frame Oxyz (Fig. 11.15), 

we can use the same unit vectors i, j, and k in both frames, and at any 

given instant, the vector P has the same components Px, Py, and Pz in both 

frames. It follows from Eq. (11.249) that the rate of change Ṗ is the same 

with respect to the frames Oxyz and O9x9y9z9. Therefore,

The rate of change of a vector is the same with respect to a fixed 
frame and with respect to a frame in translation.

This property will greatly simplify our work, since we will be concerned 

mainly with frames in translation.

11.4C  Rectangular Components 
of Velocity and Acceleration

Suppose the position of a particle P is defined at any instant by its 

 rectangular coordinates x, y, and z. In this case, it is often convenient to 

resolve the velocity v and the acceleration a of the particle into rectangular 

components (Fig. 11.16).

To resolve the position vector r of the particle into rectangular 

 components, we write

r 5 xi 1 yj 1 zk (11.25)

Here the coordinates x, y, and z are functions of t. Differentiating twice, 

we obtain

Velocity and acceleration in 
rectangular components

  v 5
dr
dt

5 x
.
i 1 y

.
j 1 z

.
k (11.26)

 a 5
dv
dt

5 x
$i 1 y

$j 1 z
$k (11.27)

where ẋ , ẏ , and ż  and ẍ, ÿ, and z̈ represent, respectively, the first and second 

derivatives of x, y, and z with respect to t. It follows from Eqs. (11.26) 

and (11.27) that the scalar components of the velocity and acceleration are

vx 5 ẋ        vy 5 ẏ       vz 5 ż  (11.28)

ax 5 ẍ    ay 5 ÿ    az 5 z̈ (11.29)

A positive value for vx indicates that the vector component vx is directed to 

the right, and a negative value indicates that it is directed to the left. The sense 

of each of the other vector components is determined in a similar way from 

the sign of the corresponding scalar component. If desired, we can obtain the 

magnitudes and directions of the velocity and acceleration from their scalar 

components using the methods of Secs. 2.2A and 2.4A (or Appendix A).

v 5
dr
dt

5 x
.
i 1 y

.
jyy 1 z

.
k

a 5
dvdd

dt
5 x
$i 1 y

$j$ 1 z
$k

Fig. 11.15 The rate of change of a vector is 
the same with respect to a fixed frame of 
reference and with respect to a frame in 
translation.

z'

O'

y'

x'

x

y

z

O

P(t)

Fig. 11.16 (a) Rectangular components of 
position and velocity for a particle P; 
(b) rectangular components of acceleration 
for particle P.
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668 Kinematics of Particles

The use of rectangular components to describe the position, velocity, 

and acceleration of a particle is particularly effective when the component 

ax of the acceleration depends only upon t, x, and/or vx, and similarly when 

ay depends only upon t, y, and/or vy, and when az depends upon t, z, and/or 

vz. In this case, we can integrate Equations (11.28) and (11.29)  independently. 

In other words, the motion of the particle in the x direction, its motion in 

the y direction, and its motion in the z direction can be treated separately.

In the case of the motion of a projectile, we can show (see 

Sec. 12.1D) that the components of the acceleration are

ax 5 ẍ 5 0    ay 5 ÿ 5 2g    az 5 z̈ 5 0

if the resistance of the air is neglected. Denoting the coordinates of a gun 

by x0, y0, and z0 and the components of the initial velocity v0 of the 

 projectile by (vx)0, (vy)0, and (vz)0, we can integrate twice in t and obtain

 vx 5 ẋ  5 (vx)0 vy 5 ẏ  5 (vy)0 2 gt vz 5 ż  5 (vz)0

 x 5 x0 1 (vx)0t y 5 y0 1 (vy)0t 2 
1
2gt2 z 5 z0 1 (vz)0t

If the projectile is fired in the xy plane from the origin O, we have 

x0 5 y0 5 z0 5 0 and (vz)0 5 0, so the equations of motion reduce to

 vx 5 (vx)0     vy 5 (vy)0 2 gt          vz 5 0

 x 5 (vx)0t    y 5 (vy)0t 2 
1
2gt2    z 5 0

These equations show that the projectile remains in the xy plane, that its 

motion in the horizontal direction is uniform, and that its motion in the 

vertical direction is uniformly accelerated. Thus, we can replace the motion 

of a projectile by two independent rectilinear motions, which are easily 

visualized if we assume that the projectile is fired vertically with an initial 

velocity (vy)0 from a platform moving with a constant horizontal velocity 

(vx)0 (Fig. 11.17). The coordinate x of the projectile is equal at any instant 

to the distance traveled by the platform, and we can compute its 

coordinate y as if the projectile were moving along a vertical line. 

 Additionally, because the (vx)0 values are the same, the projectile will land 

on the platform regardless of the value of (vy)0.

Note that the equations defining the coordinates x and y of a 

 projectile at any instant are the parametric equations of a parabola. Thus, 

the trajectory of a projectile is parabolic. This result, however, ceases to 

be valid if we take into account the resistance of the air or the variation 

with altitude of the acceleration due to gravity.

11.4D  Motion Relative to a Frame 
in Translation

We have just seen how to describe the motion of a particle by using a single 

frame of reference. In most cases, this frame was attached to the earth and 

was considered to be fixed. Now we want to analyze situations in which 

it is convenient to use several frames of reference simultaneously. If one 

of the frames is attached to the earth, it is called a fixed frame of reference, 
and the other frames are referred to as moving frames of reference. You 

should recognize, however, that the selection of a fixed frame of reference 

is purely arbitrary. Any frame can be designated as “fixed”; all other frames 

not rigidly attached to this frame are then described as “moving.”

Photo 11.3 The motion of this snowboarder 
in the air is a parabola, assuming we can 
neglect air resistance.

Fig. 11.17 The motion of a projectile 
(a) consists of uniform horizontal motion and 
uniformly accelerated vertical motion and 
(b) is equivalent to two independent 
rectilinear motions.

y

x
O

(vy)0

(vx)0

v0

(a) Motion of a projectile

y

x

(vy)0

(vx)0 (vx)0

(b) Equivalent rectilinear motions
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11.4 Curvilinear Motion of Particles  669

Consider two particles A and B moving in space (Fig. 11.18). The 

vectors rA and rB define their positions at any given instant with respect 

to the fixed frame of reference Oxyz. Consider now a system of axes x9, 
y9, and z9 centered at A and parallel to the x, y, and z axes. Suppose that, 

while the origin of these axes moves, their orientation remains the same; 

then the frame of reference Ax9y9z9 is in translation with respect to Oxyz. 

The vector rB/A joining A and B defines the position of B relative to the 
moving frame Ax9y9z9 (or for short, the position of B relative to A).

Figure 11.18 shows that the position vector rB of particle B is the 

sum of the position vector rA of particle A and of the position vector rB/A

of B relative to A; that is,

Relative 
position

rB 5 rA 1 rB/A (11.30)

Differentiating Eq. (11.30) with respect to t within the fixed frame of 

reference, and using dots to indicate time derivatives, we have

ṙB 5 ṙA 1 ṙB/A (11.31)

The derivatives ṙA and ṙB represent, respectively, the velocities vA and vB

of the particles A and B. Since Ax9y9z9 is in translation, the derivative ṙB/A 

represents the rate of change of rB/A with respect to the frame Ax9y9z9 as 

well as with respect to the fixed frame (Sec. 11.4B). This derivative, there-

fore, defines the velocity vB/A of B relative to the frame Ax9y9z9 (or for 

short, the velocity vB/A of B relative to A). We have

Relative 
velocity

 vB 5 vA 1 vB/A (11.32)

Differentiating Eq. (11.32) with respect to t, and using the derivative v̇B/A 

to define the acceleration aB/A of B relative to the frame Ax9y9z9 (or for 

short, the acceleration aB/A of B relative to A), we obtain

Relative 
acceleration

 aB 5 aA 1 aB/A (11.33)

We refer to the motion of B with respect to the fixed frame Oxyz as the 

absolute motion of B. The equations derived in this section show that we 
can obtain the absolute motion of B by combining the motion of A and 
the relative motion of B with respect to the moving frame attached to A. 

Equation (11.32), for example, expresses that the absolute velocity vB of 

 particle B can be obtained by vectorially adding the velocity of A and the 

velocity of B relative to the frame Ax9y9z9. Equation (11.33) expresses a 

 similar property in terms of the accelerations. (Note that the product of the 

subscripts A and B/A used in the right-hand sides of Eqs. (11.30) through 

(11.33) is equal to the subscript B used in their left-hand sides.) Keep in mind, 

however, that the frame Ax9y9z9 is in translation; that is, while it moves with A, it 

maintains the same orientation. As you will see later (Sec. 15.7), you must 

use different relations in the case of a rotating frame of reference.

rB 5 rAr 1 rB/A

vB 5 vAv 1 vB/A

aB 5 aAa 1 aB/A

Fig. 11.18 The vector rB/A defines the 
position of B with respect to moving 
frame A.

y

A

rB rB/A
rA

O

B

y'

x'

z'

z

x

Vhelicopter Vhelicopter/ship

Vship

Photo 11.4 The pilot of a helicopter landing 
on a moving carrier must take into account 
the relative motion of the ship.
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670 Kinematics of Particles

Sample Problem 11.10

A projectile is fired from the edge of a 150-m cliff with an initial velocity 

of 180 m/s at an angle of 30° with the horizontal. Neglecting air resis-

tance, find (a) the horizontal distance from the gun to the point where the 

projectile strikes the ground, (b) the greatest elevation above the ground 

reached by the projectile.

STRATEGY: This is a projectile motion problem, so you can consider 

the vertical and horizontal motions separately. First determine the equations 

governing each direction, and then use them to find the distances.

MODELING and ANALYSIS: Model the projectile as a particle and 

neglect the effects of air resistance. The vertical motion has a constant 

acceleration. Choosing the positive sense of the y axis upward and placing 

the origin O at the gun (Fig. 1), you have

 (vy)0 5 (180 m/s) sin 30° 5 190 m/s

 a 5 29.81 m/s2

Substitute these values into the equations for motion with constant accel-

eration. Thus,

 vy 5 (vy)0 1 at      vy 5 90 2 9.81t (1)
 y 5 (vy)0t 1 

1
2 at2    y 5 90t 2 4.90t2 (2)

 v2
y 5 (vy)

2
0 1 2ay    v2

y 5 8100 2 19.62y (3)

The horizontal motion has zero acceleration. Choose the positive sense of 

the x axis to the right (Fig. 2), which gives you

(vx)0 5 (180 m/s) cos 30° 5 1155.9 m/s

Substituting into the equation for constant acceleration, you obtain

 x 5 (vx)0 t    x 5 155.9t (4)

a. Horizontal Distance. When the projectile strikes the ground,

y 5 2150 m

Substituting this value into Eq. (2) for the vertical motion, you have

2150 5 90t 2 4.90t2 t2 2 18.37t 2 30.6 5 0 t 5 19.91 s

Substituting t 5 19.91 s into Eq. (4) for the horizontal motion, you obtain

 x 5 155.9(19.91) x 5 3100 m b

b. Greatest Elevation. When the projectile reaches its greatest elevation, 

vy 5 0; substituting this value into Eq. (3) for the vertical motion, you have

0 5 8100 2 19.62y    y 5 413 m

Greatest elevation above ground 5 150 m 1 413 m 5 563 m b

REFLECT and THINK: Because there is no air resistance, you can treat 

the vertical and horizontal motions separately and can immediately write 

down the algebraic equations of motion. If you did want to include air 

resistance, you must know the acceleration as a function of the speed (you 

will see how to derive this in Chapter 12), and then you need to use the 

basic kinematic relationships, separate variables, and integrate.

x

30°

180 m/s

150 m

Fig. 1 Acceleration and initial 
velocity of the projectile in the 
y-direction.

O

y

30°

180 m/s

–150 m

a = –9.81 m /s2

(vy)0

Fig. 2 Initial velocity of the 
projectile in the x-direction.

x
O 30°

180 m/s

(vx)0
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11.4 Curvilinear Motion of Particles  671

Sample Problem 11.11

A projectile is fired with an initial velocity of 800 ft/s at a target B located 

2000 ft above the gun A and at a horizontal distance of 12,000 ft. Neglect-

ing air resistance, determine the value of the firing angle α needed to hit 

the target.

STRATEGY: This is a projectile motion problem, so you can consider the 

vertical and horizontal motions separately. First determine the  equations gov-

erning the motion in each direction, and then use them to find the firing angle.

MODELING and ANALYSIS: 

Horizontal Motion. Place the origin of the coordinate axes at the 

gun (Fig. 1). Then

(vx)0 5 800 cos α

Substituting into the equation of uniform horizontal motion, you obtain

x 5 (vx)0t  x 5 (800 cos α)t

Obtain the time required for the projectile to move through a horizontal 

distance of 12,000 ft by setting x equal to 12,000 ft.

 12,000 5 (800 cos α)t

 t 5
12,000

800 cos α
5

15

cos α

Vertical Motion. Again, place the origin at the gun (Fig. 2).

(vy)0 5 800 sin α  a 5 232.2 ft/s2

Substituting into the equation for constant acceleration in the vertical 

direction, you obtain

y 5 (vy)0 t 1 
1
2 at2    y 5 (800 sin α)t 2 16.1t2

Projectile Hits Target. When x 5 12,000 ft, you want y 5 2000 ft. 

Substituting for y and setting t equal to the value found previously, you have

 2000 5 800 sin α 

15

cos α
2 16.1a 15

cos α
b2

 (1)

Since 1/cos2 α 5 sec2 α 5 1 1 tan2 α, you have

2000 5 800(15) tan α 2 16.1(152)(1 1 tan2 
α)

3622 tan2 α 2 12,000 tan α 1 5622 5 0

Solving this quadratic equation for tan α gives you

tan α 5 0.565  and  tan α 5 2.75

α 5 29.5°  and  α 5 70.0° b

The target will be hit if either of these two firing angles is used (Fig. 3).

REFLECT and THINK: It is a well-known characteristic of projectile 

motion that you can hit the same target by using either of two firing 

angles. We used trigonometry to write the equation in terms of tan α, but 

most calculators or computer programs like Maple, Matlab, or Mathematica 

also can be used to solve (1) for α. You must be careful when using these 

tools, however, to make sure that you find both angles.

800 ft /s

2000 ftA

B

a

12,000 ft

Fig. 1 Initial velocity of the 
projectile in the x-direction.

(vx)0 = 800 cos �
x

O

v0 = 800 ft /s
B

a

12,000 ft

Fig. 2 Acceleration and initial 
velocity of the projectile in the 
y-direction.

(vy)0 = 800 sin a

a = – 32.2 ft /s2

O
v0 = 800 ft /s

B

a

y

2000 ft

Fig. 3 Firing angles that will 
hit target B.

70.0°

29.5°A

B
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672 Kinematics of Particles

Sample Problem 11.12

A conveyor belt at an angle of 20º with the horizontal is used to trans-

fer small packages to other parts of an industrial plant. A worker tosses 

a package with an initial velocity v0 at an angle of 45º so that its 

velocity is parallel to the belt as it lands 1 m above the release point. 

Determine (a) the magnitude of v0, (b) the horizontal distance d.

STRATEGY: This is a projectile motion problem, so you can con-

sider the vertical and the horizontal motions separately. First deter-

mine the equations governing the motion in each direction, then use 

them to determine the unknown quantities.

MODELING and ANALYSIS: 

Horizontal Motion. Placing the axes of your origin at the location 

where the package leaves the workers hands (Fig. 1), you can write 

Horizontal: vx 5 v0 cos 45°   and      x 5 (v0 cos 45°) t

Vertical: vy 5 v0 sin 45° 2 gt  and  y 5 (v0 sin 45°) t 2
1

2
 gt2

Landing on the Belt. The problem statement indicates that 

when the package lands on the belt, its velocity vector will be in the 

same direction as the belt is  moving. If this happens when t 5 t1, 

you can write

 
vy

vx
5 tan 20° 5

v0 sin 45° 2 gt1

v0 cos 45°
5 1 2

gt1

v0 cos 45°
 (1)

This equation has two unknown quantities: t1 and v0. Therefore, you 

need more equations. Substituting t 5 t1 into the remaining projectile 

motion equations gives 

 d 5 (v0 cos 45°) t (2)

 1 m 5 (v0 sin 45°) t1 2
1

2
 gt2

1 (3)

You now have three equations (1), (2), and (3) and three unknowns 

t1, v0, and d. Using g 5 9.81 m/s2 and solving these three equations 

give t1 5 0.3083 s and

v0 5 6.73 m/s b

d 5 1.466 m b

REFLECT and THINK: All of these projectile problems are simi-

lar. You write down the governing equations for motion in the hori-

zontal and vertical directions and then use additional information in 

the problem statement to solve the problem. In this case, the distance 

is just less than 1.5 meters, which is a reasonable distance for a 

worker to toss a package.

v0

45°

20°

1 m

d

Fig. 1 Initial velocity 
of the package.

v0

45°O

y

x
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11.4 Curvilinear Motion of Particles  673

Sample Problem 11.13 

Airplane B, which is travelling at a constant 560 km/h, is pursuing airplane 

A, which is travelling northeast at a constant 800 km/hr. At time t 5 0, 

airplane A is 640 km east of airplane B. Determine (a) the direction of 

the course airplane B should follow (measured from the east) to intercept 

plane A, (b) the rate at which the distance between the airplanes is 

decreasing, (c) how long it takes for airplane B to catch airplane A.

STRATEGY: To find when B intercepts A, you just need to find out 

when the two planes are at the same location. The rate at which the 

 distance is decreasing is the magnitude of vB/A, so you can use the relative 

velocity equation. 

MODELING and ANALYSIS: Choose x to be east, y to be north, and 

place the origin of your coordinate system at B (Fig. 1).

Positions of the Planes: You know that each plane has a constant 

speed, so you can write a position vector for each plane. Thus,

 rA 5 [(vA cos 45°) t 1 640 km]i 1 [(vA sin 45°) t] j (1)
 rB 5 [(vB cos θ) t]i 1 [(vB sin θ )t]j (2)

a. Direction of B. Plane B will catch up when they are at the same 

 location, that is, rA 5 rB. You can equate components in the j direction to find

vA sin 45°t1 5 vB sin θ t1

After you substitute in values,

sin θ 5
(vA sin 45°)t1

vBt1

5
(560 km/hr)sin 45°

800 km/hr
5 0.4950

 θ 5 sin21 0.4950 5 29.67° θ 5 29.7º b

b. Rate. The rate at which the distance is decreasing is the magnitude 

of vB/A, so

vB/A 5 vB 2 vA 5 (vB cos θ i 1 vB sin θ j) 2 (vA cos 45° i 1 vA sin 45° j)
 5 [(800 km/h)cos 29.668° 2 (560 km/h)cos 45°]i 
 1 [(800 km/h)sin 29.668° 2(560 km/h)sin 45°]j
 5 299.15 km/h i ZvB/AZ 5 299 km/h b

c. Time for B to catch up with A. To find the time, you equate 

the i components of each position vector, giving

(vA cos 45°) t1 1 640 km 5 (vB cos θ) t1

Solve this for t1. Thus,

t1 5
640 km

vB cos θ 2 vA cos 45°

 5
640 km

(800 km/h)cos 29.67° 2 (560 km/h)cos 45°
5 2.139 h

t1 = 2.14 h b

REFLECT and THINK: The relative velocity is only in the horizontal 

(eastern) direction. This makes sense, because the vertical (northern) 

 components have to be equal in order for the two planes to intersect.

Fig. 1 Initial velocity of 
airplanes A and B.

45°

640 km

q
O xB A

y

vAvB
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674 Kinematics of Particles

Sample Problem 11.14

Automobile A is traveling east at the constant speed of 36 km/h. As 

 automobile A crosses the intersection shown, automobile B starts from rest 

35 m north of the intersection and moves south with a constant  acceleration 

of 1.2 m/s2. Determine the position, velocity, and acceleration of B relative 

to A 5 s after A crosses the intersection.

STRATEGY: This is a relative motion problem. Determine the motion 

of each vehicle independently, and then use the definition of relative 

motion to determine the desired quantities.

MODELING and ANALYSIS: 

Motion of Automobile A.  Choose x and y axes with the origin at 

the intersection of the two streets and with positive senses directed east 

and north, respectively. First express the speed in m/s, as

vA 5 a36  

km

h
b a1000 m

1 km
b a 1 h

3600 s
b 5 10 m/s

The motion of A is uniform, so for any time t

 aA 5 0

 vA 5 110 m/s

 xA 5 (xA)0 1 vAt 5 0 1 10t

For t 5 5 s, you have (Fig. 1)

 aA 5 0 aA 5 0

 vA 5 110 m/s vA 5 10 m/s y

 xA 5 1(10 m/s)(5 s) 5 150 m  rA 5 50 m y

Motion of Automobile B. The motion of B is uniformly acceler-

ated, so

 aB 5 21.2 m/s2

 vB 5 (vB)0 1 at 5 0 2 1.2t
 yB 5 (yB)0 1 (vB)0t 1 

1
2aBt2 5 35 1 0 2 

1
2(1.2)t2

For t 5 5 s, you have (Fig. 1)

 aB 5 21.2 m/s2 aB 5 1.2 m/s2
w

 vB 5 2(1.2 m/s2)(5 s) 5 26 m/s vB 5 6 m/sw

 yB 5 35 2 
1
2(1.2 m/s2)(5 s)2 5 120 m  rB 5 20 mx

Motion of B Relative to A. Draw the triangle corresponding to the 

vector equation rB 5 rA 1 rB/A (Fig. 2) and obtain the magnitude and 

direction of the position vector of B relative to A.

rB/A 5 53.9 m    α 5 21.8°    rB/A 5 53.9 m b 21.8° b

Proceeding in a similar fashion (Fig. 2), find the velocity and acceleration 

of B relative to A. Hence,

 vB 5 vA 1 vB/A
 vB/A 5 11.66 m/s  β 5 31.0°  vB/A 5 11.66 m/s d 31.0° b

 aB 5 aA 1 aB/A aB/A 5 1.2 m/s2
w b

Fig. 2 Vector triangles for position, 
velocity, and acceleration.

rB

rA

rB/ArB/A

vB

vA

vB/A vB/A

aB aB/A aB/A

a

b

20 m

10 m/s

6 m/s

1.2 m/s2

50 m

A

B

36 km /h

1.2 m /s2
35 m

A

B

x

y

xA

yB

35 m

Fig. 1 Initial positions of 
car A and B.

bee87342_ch11_615-717.indd   674bee87342_ch11_615-717.indd   674 11/24/14   1:55 PM11/24/14   1:55 PM

UPLOADED BY AHMAD T JUNDI



11.4 Curvilinear Motion of Particles  675

REFLECT and THINK: Note that the relative position and velocity of 

B relative to A change with time; the values given here are only for the 

moment t 5 5 s. Rather than drawing triangles, you could have also used 

vector algebra. When the vectors are at right angles, as in this problem, 

drawing vector triangles is usually easiest.

Sample Problem 11.15 

Knowing that at the instant shown cylinder/ramp A has a velocity of 8 in./s 

directed down, determine the velocity of block B. 

STRATEGY: You have objects connected by cables, so this is a 

 dependent-motion problem. You should define coordinates for each block-

object and write a constraint equation for the cable. You will also need to 

use relative motion, since B slides on A.

MODELING and ANALYSIS: Define position vectors, as shown in 

Fig. 1. 

Constraint Equations. Assuming the cable is inextensible, you can 

write the length in terms of the coordinates and then differentiate.

The constraint equation for the cable is

xA 1 2xB/A 5 constant

Differentiating this gives 

 vA 5 22vB/A (1)

Substituting for vA gives vB/A 5 24 in./s or 4 in./s up the incline.

Dependent Motion: You know that the direction of vB/A is directed 

up the incline. Therefore, the relative motion equation relating the  velocities 

of blocks A and B is vB 5 vA 1 vB/A. You could either draw a vector 

triangle or use vector algebra. Let’s use vector algebra. Using the coordi-

nate system shown in Fig. 2 and substituting in the magnitudes gives

(vB)x i 1 (vB)y j 5 (28 in./s)j 1 (24 in./s) sin 50° i 1 (4 in./s) cos 50° j

Equating components gives 

i: (vB)x 5 2(4 in./s)sin 50° y vBx
5 23.064 in./s

j: (vB)y 5 (28 in./s) 1 (4 in./s)cos 50° y vBy
5 25.429 in./s

Finding the magnitude and direction gives 

vB 5 6.23 in./s d 60.6° b

REFLECT and THINK: Rather than using vector algebra, you could 

have also drawn a vector triangle, as shown in Fig. 3. To use this vector 

triangle, you need to use the law of cosines and the law of sines. Looking 

at the mechanism, block B should move up the incline if block A moves 

downward; our mathematical result is consistent with this. It is also 

 interesting to note that, even though B moves up the incline relative to A, 

block B is actually moving down and to the left, as shown in the  calculation 

here. This occurs because block A is also moving down.

B

A

q = 50°

Fig. 1 Position vectors to A and B.

B

xA

xB/A
A

θ = 50

Fig. 2 
Coordinates for 
vector algebra.

j

i

Fig. 3 Vector triangle for 
velocity of blocks A and B.

vA = 8 in./s

α

β

40°
vB/A = 4 in./s

vB
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In the problems for this section, you will analyze the curvilinear motion of a 

 particle. The physical interpretations of velocity and acceleration are the same as 

in the first sections of the chapter, but you should remember that these quantities are 

vectors. In addition, recall from your experience with vectors in statics that it is often 

advantageous to express position vectors, velocities, and accelerations in terms of their 

rectangular scalar components [Eqs. (11.25) through (11.27)].

A. Analyzing the motion of a projectile. Many of the following problems deal with 

the two-dimensional motion of a projectile where we can neglect the resistance of the 

air. In Sec. 11.4C, we developed the equations that describe this type of motion, and 

we observed that the horizontal component of the velocity remains constant (uniform 

motion), while the vertical component of the acceleration is constant (uniformly accel-

erated motion). We are able to consider the horizontal and the vertical motions of the 

particle separately. Assuming that the projectile is fired from the origin, we can write 

the two equations as

x 5 (vx)0t   y 5 (vy)0t 2
1
2gt2

1. If you know the initial velocity and firing angle, you can obtain the value of y 

corresponding to any given value of x (or the value of x for any value of y) by solving 

one of the previous equations for t and substituting for t into the other equation 

[Sample Prob. 11.10].

2. If you know the initial velocity and the coordinates of a point of the trajectory
and you wish to determine the firing angle α, begin your solution by expressing the 

components (vx)0 and (vy)0 of the initial velocity as functions of α. Then substitute 

these expressions and the known values of x and y into the previous equations. Finally, 

solve the first equation for t and substitute that value of t into the second equation to 

obtain a trigonometric equation in α, which you can solve for that unknown [Sample 

Prob. 11.11].

SOLVING PROBLEMS
ON YOUR OWN
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B. Solving translational two-dimensional relative-motion problems. You saw in 

Sec. 11.4D that you can obtain the absolute motion of a particle B by combining the 

motion of a particle A and the relative motion of B with respect to a frame attached 

to A that is in translation [Sample Probs. 11.12 and 11.13]. You can then express the 

velocity and acceleration of B as shown in Eqs. (11.32) and (11.33), respectively.

1. To visualize the relative motion of B with respect to A, imagine that you are 

attached to particle A as you observe the motion of particle B. For example, to a 

 passenger in automobile A of Sample Prob. 11.14, automobile B appears to be heading 

in a southwesterly direction (south should be obvious; west is due to the fact that 

automobile A is moving to the east—automobile B then appears to travel to the west). 

Note that this conclusion is consistent with the direction of vB/A.

2. To solve a relative-motion problem, first write the vector equations (11.30), 

(11.32), and (11.33), which relate the motions of particles A and B. You may then use 

either of the following methods.

 a. Construct the corresponding vector triangles and solve them for the 

desired position vector, velocity, and acceleration [Sample Prob. 11.14].

 b. Express all vectors in terms of their rectangular components and solve 

the resulting two independent sets of scalar equations [Sample Prob. 11.15]. If you 

choose this approach, be sure to select the same positive direction for the displace-

ment, velocity, and acceleration of each particle.
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Problems
CONCEPT QUESTIONS
11.CQ3 Two model rockets are fired simultaneously from a ledge and  follow 

the trajectories shown. Neglecting air resistance, which of the rock-

ets will hit the ground first?

a. A.
   b. B.

c. They hit at the same time.

   d. The answer depends on h.

h

A

B

Fig. P6.CQ3

 11.CQ4 Ball A is thrown straight up. Which of the following statements 

about the ball are true at the highest point in its path?

a. The velocity and acceleration are both zero.

b. The velocity is zero, but the acceleration is not zero.

   c. The velocity is not zero, but the acceleration is zero.

   d. Neither the velocity nor the acceleration is zero.

 11.CQ5 Ball A is thrown straight up with an initial speed v0 and reaches a 

maximum elevation h before falling back down. When A reaches its 

maximum elevation, a second ball is thrown straight upward with 

the same initial speed v0. At what height, y, will the balls cross 

paths?

   a. y 5 h
   b. y . h/2

   c. y 5 h/2

   d. y , h/2

   e. y 5 0

 11.CQ6 Two cars are approaching an intersection at constant speeds as shown. 

What velocity will car B appear to have to an observer in car A?

   a. S b. R c. a d. Q e. b

vA

vB

Fig. P6.CQ6

v0

h

y
A

Fig. P6.CQ4
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11.CQ7  Blocks A and B are released from rest in the positions shown. 

Neglecting friction between all surfaces, which figure best  indicates 

the  direction α of the acceleration of block B?

Fig. P6.CQ7

q

A

B

END-OF-SECTION PROBLEMS

 11.89 A ball is thrown so that the motion is defined by the equations 

x 5 5t and y 5 2 1 6t 2 4.9t2, where x and y are expressed in meters 

and t is expressed in seconds. Determine (a) the velocity at t 5 l s, 

(b) the horizontal distance the ball travels before hitting the ground.

y

x

Fig. P11.89

 11.90 The motion of a vibrating particle is defined by the position  vector 

r 5 10(1 2 e23t)i 1 (4e22t sin 15t)j, where r and t are expressed 

in millimeters and seconds, respectively. Determine the velocity 

and acceleration when (a) t 5 0, (b) t 5 0.5 s.

 11.91 The motion of a vibrating particle is defined by the position vector 

r 5 (4 sin πt)i 2 (cos 2πt)j, where r is expressed in inches and 

t in seconds. (a) Determine the velocity and acceleration when 

t 5 1 s. (b) Show that the path of the particle is parabolic.

 11.92 The motion of a particle is defined by the equations x 5 10t 2 

5 sin t and y 5 10 2 5 cos t, where x and y are expressed in feet 

and t is expressed in seconds. Sketch the path of the  particle for 

the time interval 0 # t # 2π, and determine (a) the magnitudes of 

the smallest and largest velocities reached by the particle, (b) the 

 corresponding times, positions, and directions of the velocities.

 11.93 The damped motion of a vibrating particle is defined by the posi-

tion vector r 5 x1[1 2 1/(t 1 1)]i 1 (y1e
2πt/2 cos 2πt)j, where t is 

expressed in seconds. For x1 5 30 mm and y1 5 20 mm, determine 

the position, the velocity, and the acceleration of the particle when 

(a) t 5 0, (b) t 5 1.5 s.

3

1

2

0

−1

−2

2 4 6 8 10

y

x

Fig. P11.90

y

O
x

4 in. 4 in.

1 in.

1 in.

Fig. P11.91

1.0

0.5

0

–0.5

–1.0

0.2 0.4 0.6

y/y1

x/x1

Fig. P11.93

a. b. c. d. e.
aB

aB

aB

a = q

aB

a > q
aB

a < q
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 11.94 A girl operates a radio-controlled model car in a vacant parking lot. 

The girl’s position is at the origin of the xy coordinate axes, and the 

surface of the parking lot lies in the x–y plane. The motion of the car 

is defined by the position vector r 5 (2 1 2t2)i 1 (6 1 t3) j where r and 

t are expressed in meters and seconds, respectively. Determine (a) 

the distance between the car and the girl when t 5 2 s, (b) the dis-

tance the car traveled in the interval from t 5 0 to t 5 2 s, (c) the 

speed and direction of the car’s velocity at t 5 2 s, (d) the magnitude 

of the car’s acceleration at t 5 2 s.

Fig. P11.94

0

6

2

y (m)

x (m)

 11.95 The three-dimensional motion of a particle is defined by the  position 

vector r 5 (Rt cos vnt)i 1 ctj 1 (Rt sin vnt)k. Determine the 

 magnitudes of the velocity and acceleration of the particle. (The 

space curve described by the particle is a conic helix.)

 *11.96 The three-dimensional motion of a particle is defined by the 

  position vector r 5 (At cos t)i 1 (A2t2 1 1)j 1 (Bt sin t)k, 

where r and t are expressed in feet and seconds, respectively. Show 

that the curve described by the particle lies on the hyperboloid 

(y/A)2 2 (x/A)2 2 (z/B)2 5 1. For A 5 3 and B 5 1, determine 

(a) the magnitudes of the velocity and acceleration when t 5 0, 

(b) the smallest nonzero value of t for which the position vector and 

the velocity are perpendicular to each other.

 11.97 An airplane used to drop water on brushfires is flying horizontally 

in a straight line at 180 mi/h at an altitude of 300 ft. Determine the 

distance d at which the pilot should release the water so that it will 

hit the fire at B.

Fig. P11.97

A

v0

B

d

Fig. P11.96

y

xz

y2

A2
x2

A2
z2

B2
– – = 1
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 11.98 A ski jumper starts with a horizontal take-off velocity of 25 m/s and 

lands on a straight landing hill inclined at 30°. Determine (a) the time 

between take-off and landing, (b) the length d of the jump, (c) the 

maximum vertical distance between the jumper and the  landing hill.

25 m/s

d

30°

Fig. P11.98

 11.99 A baseball pitching machine “throws” baseballs with a horizontal 

velocity v0. Knowing that height h varies between 788 mm and 

1068 mm, determine (a) the range of values of v0, (b) the values of 

α corresponding to h 5 788 mm and h 5 1068 mm.

v0A

Bh
1.5 m

12.2 m

α

Fig. P11.99

 11.100 While delivering newspapers, a girl throws a newspaper with a 

horizontal velocity v0. Determine the range of values of v0 if the 

newspaper is to land between points B and C.

v0A

B

C

14 in.

8 in.
8 in.

8 in.

36 in.

4 ft

7 ft

Fig. P11.100
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 11.101 Water flows from a drain spout with an initial velocity of 2.5 ft/s at 

an angle of 15° with the horizontal. Determine the range of values of 

the distance d for which the water will enter the trough BC.

A

CB

v0

15°

2 ft

1.2 ft

d

10 ft

Fig. P11.101

 11.102 In slow pitch softball, the underhand pitch must reach a maximum 

height of between 1.8 m and 3.7 m above the ground. A pitch is 

made with an initial velocity v0 with a magnitude of 13 m/s at an 

angle of 33° with the horizontal. Determine (a) if the pitch meets the 

maximum height requirement, (b) the height of the ball as it reaches 

the batter.

15.2 m

33°
0.6 m

v0

Fig. P11.102

 11.103 A volleyball player serves the ball with an initial velocity v0 of 

 magnitude 13.40 m/s at an angle of 20° with the horizontal. 

 Determine (a) if the ball will clear the top of the net, (b) how far 

from the net the ball will land.

v0

A
C

20°

2.1 m 2.43 m

9 m

Fig. P11.103
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 11.104 A golfer hits a golf ball with an initial velocity of 160 ft/s at an angle 

of 25° with the horizontal. Knowing that the fairway slopes down-

ward at an average angle of 5°, determine the distance d between 

the golfer and point B where the ball first lands.

A

B

v0

25°
5°

d

Fig. P11.104

11.105 A homeowner uses a snowblower to clear his driveway. Knowing 

that the snow is discharged at an average angle of 40° with the 

horizontal, determine the initial velocity v0 of the snow.

A

B
v0

40°
3.5 ft

2 ft

14 ft

Fig. P11.105

 11.106 At halftime of a football game souvenir balls are thrown to the 

 spectators with a velocity v0. Determine the range of values of v0 if 

the balls are to land between points B and C.

A

B

C

8 m

10 m

7 m

1.5 m2 m

v0

40° 35°

Fig. P11.106

 11.107 A basketball player shoots when she is 16 ft from the backboard. 

Knowing that the ball has an initial velocity v0 at an angle of 30° 

with the horizontal, determine the value of v0 when d is equal to 

(a) 9 in., (b) 17 in.

30°
A

B v0

d
16 ft

10 ft

6.8 ft

Fig. P11.107

bee87342_ch11_615-717.indd   683bee87342_ch11_615-717.indd   683 11/24/14   1:39 PM11/24/14   1:39 PM

UPLOADED BY AHMAD T JUNDI



684

 11.108 A tennis player serves the ball at a height h 5 2.5 m with an initial 

velocity of v0 at an angle of 5° with the horizontal. Determine the 

range of v0 for which the ball will land in the service area that 

extends to 6.4 m beyond the net.

12.2 m 6.4 m

0.914 m

5°

v0

h

Fig. P11.108

11.109 The nozzle at A discharges cooling water with an initial velocity v0 at 

an angle of 6° with the horizontal onto a grinding wheel 350 mm in 

diameter. Determine the range of values of the initial velocity for which 

the water will land on the grinding wheel between points B and C.

10°

6°

v0

20 mm

A B

C 30°
205 mm

200 mm

Fig. P11.109

 11.110 While holding one of its ends, a worker lobs a coil of rope over the 

lowest limb of a tree. If he throws the rope with an initial velocity 

v0 at an angle of 65° with the horizontal, determine the range of 

values of v0 for which the rope will go over only the lowest limb.

 11.111 The pitcher in a softball game throws a ball with an initial velocity 

v0 of 72 km/h at an angle α with the horizontal. If the height of the 

ball at point B is 0.68 m, determine (a) the angle α, (b) the angle θ

that the velocity of the ball at point B forms with the horizontal.

v0

vB

A
B

0.6 m

0.68 m

14 m

a
q

Fig. P11.111

65°

v0

A

B

C

0.9 m

0.7 m

5.7 m

5 m

Fig. P11.110
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 11.112 A model rocket is launched from point A with an initial velocity 

v0 of 75 m/s. If the rocket’s descent parachute does not deploy and 

the rocket lands a distance d 5 100 m from A, determine (a) the 

angle α that v0 forms with the vertical, (b) the maximum height 

above point A reached by the rocket, (c) the duration of the flight.

 11.113 The initial velocity v0 of a hockey puck is 105 mi/h. Determine 

(a) the largest value (less than 45°) of the angle α for which the 

puck will enter the net, (b) the corresponding time required for the 

puck to reach the net.

v0

DC

2.5 ft
16 ft

4 ft

B EA

a

Fig. P11.113

 11.114 A worker uses high-pressure water to clean the inside of a long 

drainpipe. If the water is discharged with an initial velocity v0 of 

11.5 m/s, determine (a) the distance d to the farthest point B on the 

top of the pipe that the worker can wash from his position at A, 

(b) the corresponding angle α.

A

B

1.1 m

d

v0

C

α

Fig. P11.114

 11.115 An oscillating garden sprinkler which discharges water with an 

 initial velocity v0 of 8 m/s is used to water a vegetable garden. 

 Determine the distance d to the farthest point B that will be watered 

and the corresponding angle α when (a) the vegetables are just 

beginning to grow, (b) the height h of the corn is 1.8 m.

A B

d

1.5 m

hv0

a

Fig. P11.115

400 ft

v0

a

B

A30°

Fig. P11.112
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 *11.116 A nozzle at A discharges water with an initial velocity of 36 ft/s 

at an angle α with the horizontal. Determine (a) the distance d to 

the farthest point B on the roof that the water can reach, (b) the 

 corresponding angle α. Check that the stream will clear the edge 

of the roof.

3.6 ft

α
A

13.5 ft d

A

18 ft

B

Fig. P11.116

 11.117 The velocities of skiers A and B are as shown. Determine the 

 velocity of A with respect to B.

A

B

25°

10°

45 ft/s

30 ft/s

Fig. P11.117

 11.118 The three blocks shown move with constant velocities. Find the 

velocity of each block, knowing that the relative velocity of A with 

respect to C is 300 mm/s upward and that the relative velocity of B 

with respect to A is 200 mm/s downward.

 11.119 Three seconds after automobile B passes through the intersection 

shown, automobile A passes through the same intersection. 

Knowing that the speed of each automobile is constant, determine 

(a) the relative velocity of B with respect to A, (b) the change 

in position of B with respect to A during a 4-s interval, (c) the 

distance between the two automobiles 2 s after A has passed 

through the intersection.

Fig. P11.118

A B

D

C

Fig. P11.119

70°

A

B

30 mi/h30 mi/h45 mi/h45 mi/h

N

S
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 11.120 Shore-based radar indicates that a ferry leaves its slip with a velocity 

v 5 18 km/h d70°, while instruments aboard the ferry indicate a 

speed of 18.4 km/h and a heading of 30° west of south relative to 

the river. Determine the velocity of the river.

 11.121 Airplanes A and B are flying at the same altitude and are tracking 

the eye of hurricane C. The relative velocity of C with respect to 

A is vC/A 5 350 km/h d75°, and the relative velocity of C with 

respect to B is vC/B 5 400 km/h c 40°. Determine (a) the relative 

velocity of B with respect to A, (b) the velocity of A if ground-based 

radar indicates that the hurricane is moving at a speed of 30 km/h 

due north, (c) the change in position of C with respect to B during 

a 15-min interval.

Fig. P11.121

A

B

C
N

11.122 Instruments in an airplane which is in level flight indicate that the 

velocity relative to the air (airspeed) is 120 km/h and the direction 

of the relative velocity vector (heading) is 70° east of north. Instru-

ments on the ground indicate that the velocity of the airplane (ground 

speed) is 110 km/h and the direction of flight (course) is 60° east of 

north. Determine the wind speed and direction.

 11.123 Knowing that at the instant shown block B has a velocity of 2 ft/s to 

the right and an acceleration of 3 ft/s2 to the left, determine (a) the 

velocity of block A, (b) the acceleration of block A.

Fig. P11.123

A

vB = 2 ft/s

aB = 3 ft/s2

B

Fig. P11.122

heading

course

N

60°
70°

Fig. P11.120
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Fig. P11.124

25°

15°

A

B

Fig. P11.127

vB

vA = 5 ft/s

3 ft

15°

A

B

Fig. P11.126

A

B
75°

20°

C

 11.124 Knowing that at the instant shown block A has a velocity of 8 in./s and 

an acceleration of 6 in./s2 both directed down the incline, determine 

(a) the velocity of block B, (b) the acceleration of block B.

 11.125 A boat is moving to the right with a constant deceleration of 

0.3 m/s2 when a boy standing on the deck D throws a ball with an 

initial velocity relative to the deck which is vertical. The ball rises 

to a maximum height of 8 m above the release point and the boy 

must step forward a distance d to catch it at the same height as the 

release point. Determine (a) the distance d, (b) the relative velocity 

of the ball with respect to the deck when the ball is caught.

Fig. P11.125

8 m

D
d

vD

aD = 0.3 m/s2

 11.126 The assembly of rod A and wedge B starts from rest and moves to the 

right with a constant acceleration of 2 mm/s2. Determine (a) the 

acceleration of wedge C, (b) the velocity of wedge C when t 5 10 s.

 11.127 Determine the required velocity of the belt B if the relative velocity with 

which the sand hits belt B is to be (a) vertical, (b) as small as possible.

 11.128 Conveyor belt A, which forms a 20° angle with the horizontal, moves 

at a constant speed of 4 ft/s and is used to load an airplane.  Knowing 

that a worker tosses duffel bag B with an initial velocity of 2.5 ft/s 

at an angle of 30° with the horizontal, determine the velocity of the 

bag relative to the belt as it lands on the belt.

Fig. P11.128

vA

(vB)0

30°

20°
A

B

1.5 ft
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 11.129 During a rainstorm the paths of the raindrops appear to form an 

angle of 30° with the vertical and to be directed to the left when 

observed from a side window of a train moving at a speed of 

15 km/h. A short time later, after the speed of the train has increased 

to 24 km/h, the angle between the vertical and the paths of the drops 

appears to be 45°. If the train were stopped, at what angle and with 

what velocity would the drops be observed to fall?

11.130 Instruments in airplane A indicate that, with respect to the air, the 

plane is headed 30° north of east with an air speed of 300 mi/h. At 

the same time, radar on ship B indicates that the relative velocity 

of the plane with respect to the ship is 280 mi/h in the direction 

33° north of east. Knowing that the ship is steaming due south at 

12 mi/h, determine (a) the velocity of the airplane, (b) the wind speed 

and direction.

 11.131 When a small boat travels north at 5 km/h, a flag mounted on its stern 

forms an angle θ 5 50° with the centerline of the boat as shown. A 

short time later, when the boat travels east at 20 km/h, angle θ is again 

50°. Determine the speed and the direction of the wind.

 11.132 As part of a department store display, a model train D runs on a slight 

incline between the store’s up and down escalators. When the train 

and shoppers pass point A, the train appears to a shopper on the up 

escalator B to move downward at an angle of 22° with the horizon-

tal, and to a shopper on the down escalator C to move upward at an 

angle of 23° with the horizontal and to travel to the left. Knowing 

that the speed of the escalators is 3 ft/s, determine the speed and 

the direction of the train.

Fig. P11.132

vB

vC

30°

A

B

C

D

30°

Fig. P11.130

30°

N

A

B

12 mi/h

Fig. P11.131

q
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690 Kinematics of Particles

11.5  NON-RECTANGULAR 
COMPONENTS

Sometimes it is useful to analyze the motion of a particle in a coordinate 

system that is not rectangular. In this section, we introduce two common 

and important systems. The first system is based on the path of the  particle; 

the second system is based on the radial distance and angular displacement 

of the particle.

11.5A  Tangential and Normal 
Components

We saw in Sec. 11.4 that the velocity of a particle is a vector tangent to 

the path of the particle, but in general, the acceleration is not tangent to the 

path. It is sometimes convenient to resolve the acceleration into  components 

directed, respectively, along the tangent and the normal to the path of the 

particle. We will refer to this reference frame as tangential and normal 

coordinates, which are sometimes called path coordinates. 

Planar Motion of a Particle. First we consider a particle that 

moves along a curve contained in a plane. Let P be the position of the 

particle at a given instant. We attach at P a unit vector et tangent to the 

path of the particle and pointing in the direction of motion (Fig. 11.19a). 

Let e9t be the unit vector corresponding to the position P9 of the particle 

at a later instant. Drawing both vectors from the same origin O9, we define 

the vector Det 5 e9t 2 et (Fig. 11.19b). Since et and e9t are of unit length, 

their tips lie on a circle with a radius of 1. Denote the angle formed by 

et and e9t by Dθ. Then the magnitude of Det is 2 sin (Dθ/2). Considering 

now the vector Det /Dθ, we note that, as Dθ approaches zero, this vector 

becomes tangent to the unit circle of Fig. 11.19b, i.e., perpendicular to et, 

and that its magnitude approaches

lim
Dθy0

2 sin(Dθ/2)

Dθ
5 lim

Dθy0

 sin(Dθ/2)

Dθ/2
5 1

Thus, the vector obtained in the limit is a unit vector along the normal to 

the path of the particle in the direction toward which et turns. Denoting 

this vector by en, we have

en 5 lim
Dθy0

 
Det

Dθ

 en 5
det

dθ
 (11.34)

Now, since the velocity v of the particle is tangent to the path, we 

can express it as the product of the scalar v and the unit vector et. We 

have

 v 5 vet (11.35)v 5 vet

Fig. 11.19 (a) Unit tangent vectors for two 
positions of particle P; (b) the angle between 
the unit tangent vectors and their difference 
Det.

y

O x

P

P'

en

et

et

Δete't
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11.5 Non-Rectangular Components 691

To obtain the acceleration of the particle, we differentiate Eq. (11.35) with 

respect to t. Applying the rule for the differentiation of the product of a 

scalar and a vector function (Sec. 11.4B), we have

a 5
dv
dt

5
dv

dt
 et 1v 

det

dt
 (11.36)

However,

det

dt
5

det

dθ
 

dθ

ds
 

ds

dt

Recall from Eq. (11.15) that ds/dt 5 v, from Eq. (11.34) that det/dθ 5 en, 

and from elementary calculus that dθ/ds is equal to 1/ρ, where ρ is the 

radius of curvature of the path at P (Fig. 11.20). Then we have

det

dt
5

v
r

 en  (11.37)

Substituting into Eq. (11.36), we obtain

Acceleration in normal 
and tangential components

a 5
dv

dt
 et 1

v2

r
 en  (11.38)

Thus, the scalar components of the acceleration are

at 5
dv

dt
   an 5

v2

r
 (11.39)

These relations state that the tangential component of the accelera-

tion is equal to the rate of change of the speed of the particle, whereas 

the normal component is equal to the square of the speed divided by 
the radius of curvature of the path at P. For a given speed, the normal 

acceleration increases as the radius of curvature decreases. If the particle 

travels in a straight line, then ρ is infinite, and the normal acceleration is 

zero. If the speed of the particle increases, at is positive, and the vector 

component at points in the direction of motion. If the speed of the particle 

decreases, at is negative, and at points against the direction of motion. The 

vector component an, on the other hand, is always directed toward the 
center of curvature C of the path (Fig. 11.21).

We conclude from this discussion that the tangential component of 

the acceleration reflects a change in the speed of the particle, whereas its 

normal component reflects a change in the direction of motion of the 

particle. The acceleration of a particle is zero only if both of its compo-

nents are zero. Thus, the acceleration of a particle moving with constant 

speed along a curve is not zero unless the particle happens to pass through 

a point of inflection of the curve (where the radius of curvature is infinite) 

or unless the curve is a straight line.

The fact that the normal component of acceleration depends upon 

the radius of curvature of the particle’s path is taken into account in the 

design of structures or mechanisms as widely different as airplane wings, 

railroad tracks, and cams. In order to avoid sudden changes in the accel-

eration of the air particles flowing past a wing, wing profiles are designed 

without any sudden change in curvature. Similar care is taken in designing 

a 5
dvdd

dt
et 1

v2

r
en

Fig. 11.20 Relationship among Dθ, Ds, and 
ρ. Recall that for a circle, the arc length is 
equal to the radius multiplied by the angle.

C

P

P'
et

e't

Δq

Δs
ρ

Δ q = Δs
ρ

O x

y

Fig. 11.21 Acceleration components in 
normal and tangential coordinates; the 
normal component always points toward the 
center of curvature of the path.

an =      en
v2

ρ

a t =      et
dv
dt

C

P
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692 Kinematics of Particles

railroad curves to avoid sudden changes in the acceleration of the cars 

(which would be hard on the equipment and unpleasant for the  passengers). 

A straight section of track, for instance, is never directly followed by a 

circular section. Special transition sections are used to help pass smoothly 

from the infinite radius of curvature of the straight section to the finite 

radius of the circular track. Likewise, in the design of high-speed cams 

(that can be used to transform rotary motion into translational motion), 

abrupt changes in acceleration are avoided by using transition curves that 

produce a continuous change in acceleration.

Motion of a Particle in Space. The relations in Eqs. (11.38) and 

(11.39) still hold in the case of a particle moving along a space curve. 

However, since an infinite number of straight lines are perpendicular to 

the tangent at a given point P of a space curve, it is necessary to define 

more precisely the direction of the unit vector en.

Let us consider again the unit vectors et and e9t tangent to the path 

of the particle at two neighboring points P and P9 (Fig. 11.22a). Again 

the vector Det represents the difference between et and e9t (Fig. 11.22b). 

Let us now imagine a plane through P (Fig. 11.22c) parallel to the plane 

defined by the vectors et, e9t, and Det (Fig. 11.22b). This plane contains 

the tangent to the curve at P and is parallel to the tangent at P9. If we let 

P9 approach P, we obtain in the limit the plane that fits the curve most 

closely in the neighborhood of P. This plane is called the osculating plane 

at P (from the Latin osculari, to kiss). It follows from this definition that 

the osculating plane contains the unit vector en, since this vector  represents 

the limit of the vector Det /Dθ. The normal defined by en is thus contained 

in the osculating plane; it is called the principal normal at P. The unit 

vector eb 5 et 3 en that completes the right-handed triad et, en, and eb 

(Fig. 11.22c) defines the binormal at P. The binormal is thus  perpendicular 

to the osculating plane. We conclude that the acceleration of the particle 

at P can be resolved into two components: one along the tangent and the 

other along the principal normal at P, as indicated in Eq. (11.38). Note 

that the acceleration has no component along the binormal.

Fig. 11.22 (a) Unit tangent vectors for a particle moving in space; (b) the plane defined by the unit vectors and the 
vector difference Det; (c) the osculating plane contains the unit tangent and principal normal vectors and is 
perpendicular to the unit binormal vector.

y

O
x
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e't
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Δet

e't
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P
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(a) (b)

Δθ

y

O
x

et

en

eb

z

P
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Photo 11.5 The passengers in a train 
traveling around a curve experience a 
normal acceleration toward the center of 
curvature of the path.
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11.5 Non-Rectangular Components 693

11.5B  Radial and Transverse 
Components

In some situations in planar motion, the position of particle P is defined 

by its polar coordinates r and θ (Fig. 11.23a). It is then convenient to 

resolve the velocity and acceleration of the particle into components 

 parallel and perpendicular to the radial line OP. These components are 

called radial and transverse components.

Fig. 11.23 (a) Polar coordinates r and θ of a particle at P; (b) radial and transverse unit vectors; (c) changes of 
the radial and transverse unit vectors resulting from a change in angle Dθ.

P
P

O O

r

θ θ

(a) (b) (c)

er

r = rer

eθ

er

eθ

e'θ

e'r
Δeθ

Δer

Δθ

O'

Δθ

We attach two unit vectors, er and eθ, at P (Fig. 11.23b). The vector 

er is directed along OP and the vector eθ is obtained by rotating er through 

90° counterclockwise. The unit vector er defines the radial direction, i.e., 

the direction in which P would move if r were increased and θ were kept 

constant. The unit vector eθ defines the transverse direction, i.e., the 

 direction in which P would move if θ were increased and r were kept 

constant. A derivation similar to the one we used in the preceding section 

to determine the unit vector et leads to the relations

 
der

dθ
5 eθ    

deθ

dθ
5 2er (11.40)

Here 2er denotes a unit vector with a sense opposite to that of er 

(Fig. 11.23c). Using the chain rule of differentiation, we express the time 

derivatives of the unit vectors er and eθ as 

der

dt
5

der

dθ
 

dθ

dt
5 eθ 

dθ

dt
    deθ

dt
5

deθ

dθ
 

dθ

dt
5 2er 

dθ

dt

or using dots to indicate differentiation with respect to t as

 e
.
r 5 θ

.
eθ   e

.
θ 5 2θ

.
er (11.41)

To obtain the velocity v of particle P, we express the position vector 

r of P as the product of the scalar r and the unit vector er and then 

 differentiate with respect to t for

v 5
d

dt
 (rer) 5 re

.
r 1 re

.
r

Photo 11.6 The foot pedals on an elliptical 
trainer undergo curvilinear motion.
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694 Kinematics of Particles

Using the first of the relations of Eq. (11.41), we can rewrite this as

Velocity in radial and 
transverse components

v 5
·re r 1 ru

.
eu (11.42)

Differentiating again with respect to t to obtain the acceleration, we have

a 5
dv
dt

5 r̈er 1 ṙ ̇er 1 ṙθ̇eθ 1 rθ̈ eθ 1 rθ̇  ̇eθ

Substituting for ėr and ėθ from Eq. (11.41) and factoring er and eθ, we 

obtain

Acceleration in radial and 
transverse components

 a 5 (r̈ 2 rθ
.

2)er 1 (rθ̈ 1 2r
.
θ
.
)eθ (11.43)

The scalar components of the velocity and the acceleration in the radial 

and transverse directions are

 vr 5 ṙ  vθ 5 rθ̇  (11.44)

 ar 5 r̈ 2 rθ̇
2  aθ 5 rθ̈  1 2 ṙθ̇  (11.45)

It is important to note that ar is not equal to the time derivative of vr and 

that aθ is not equal to the time derivative of vθ.

In the case of a particle moving along a circle with a center O, we 

have r 5 constant and ṙ 5 r̈ 5 0, so the formulas (11.42) and (11.43) 

reduce, respectively, to

 v 5 rθ̇eθ  a 5 2rθ̇
2er 1 rθ̈ eθ (11.46)

Compare this to using tangential and normal coordinates for a particle in 

a circular path. In this case, the radius of curvature ρ is equal to the radius 

of the circle r, and we have v 5 vet and a 5 v̇et 1(v2/r)en. Note that er 

and en point in opposite directions (en inward and er outward).

Extension to the Motion of a Particle in Space: Cylindrical 
Coordinates. Sometimes it is convenient to define the position of a 

particle P in space by its cylindrical coordinates R, θ, and z (Fig. 11.24a). 

We can then use the unit vectors eR, eθ, and k shown in Fig. 11.24b. 

Resolving the position vector r of particle P into components along the 

unit vectors, we have

 r 5 ReR 1 zk (11.47)

Observe that eR and eθ define the radial and transverse directions in the 

horizontal xy plane, respectively, and that the vector k, which defines the 

axial direction, is constant in direction as well as in magnitude. Then we 

can verify that

  v 5
dr
dt

5 R
.
eR 1 Rθ

.
eθ 1 z

.
k  (11.48)

 a 5
dv
dt

5 (R̈ 2 Rθ
.

2)eR 1 (Rθ̈ 1 2R
.
θ
.
)eθ 1 z̈k (11.49)

v 5
·re r 1 ru

.
eu

a 5 (r̈ 2 rθ
.

2)er 1 (rθ̈ 1 2r
.
θ
.
)eθ

Fig. 11.24 (a) Cylindrical coordinates R, θ, 
and z; (b) unit vectors in cylindrical 
coordinates for a particle in space.
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11.5 Non-Rectangular Components 695

Sample Problem 11.16

A motorist is traveling on a curved section of highway with a radius of 

2500 ft at a speed of 60 mi/h. The motorist suddenly applies the brakes, 

causing the automobile to slow down at a constant rate. If the speed has 

been reduced to 45 mi/h after 8 s, determine the acceleration of the auto-

mobile immediately after the brakes have been applied.

STRATEGY: You know the path of the motion, and that the forward 

speed of the vehicle defines the direction of et. Therefore, you can use 

tangential and normal components.

MODELING and ANALYSIS: 

Tangential Component of Acceleration. First express the speeds 

in ft/s.

 60 mi/h 5 a60  

mi

h
b a5280 ft

1 mi
b a 1 h

3600 s
b 5 88 ft/s

 45 mi/h 5 66 ft/s

Since the automobile slows down at a constant rate, you have the tangen-

tial acceleration of

at 5 average at 5
Dv

Dt
5

66 ft/s 2 88 ft/s

8 s
5 22.75 ft/s2

Normal Component of Acceleration. Immediately after the 

brakes have been applied, the speed is still 88 ft/s. Therefore, you have

an 5
v2

r
5

(88 ft/s)2

2500 ft
5 3.10 ft/s2

Magnitude and Direction of Acceleration. The magnitude and 

direction of the resultant a of the components an and at are (Fig. 1)

tan α 5
an

at
5

3.10 ft/s2

2.75 ft/s2
 α 5 48.4° b

  a 5
an

 sin α
5

3.10 ft/s2

 sin 48.48
 

a 5 4.14 ft/s2

 b

REFLECT and THINK: The tangential component of acceleration is 

opposite the direction of motion, and the normal component of  acceleration 

points to the center of curvature, which is what you would expect for 

slowing down on a curved path. Attempting to do this problem in  Cartesian 

coordinates is quite difficult.

A

vA = 60 mi /h

2500 ft

A

a t = 2.75 ft /s2

a n = 3.10 ft /s2

a

a
Motion

Fig. 1 Acceleration of 
the car.
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696 Kinematics of Particles

Sample Problem 11.17

Determine the minimum radius of curvature of the trajectory described by 

the projectile considered in Sample Prob. 11.10.

STRATEGY: You are asked to find the radius of curvature, so you 

should use normal and tangential coordinates.

MODELING and ANALYSIS: Since an 5 v2/ρ, you have ρ 5 v2/an. 

Therefore, the radius is small when v is small or when an is large. The 

speed v is minimum at the top of the trajectory, since vy 5 0 at that point; 

an is maximum at that same point, since the direction of the vertical coin-

cides with the direction of the normal (Fig. 1). Therefore, the  minimum 

radius of curvature occurs at the top of the trajectory. At this point, you 

have 

v 5 vx 5 155.9 m/s    an 5 a 5 9.81 m/s2

    r 5
v2

an
5

(155.9 m/s)2

9.81 m/s2
 ρ 5 2480 m b

REFLECT and THINK: The top of the trajectory is the easiest point to 

determine the radius of curvature. At any other point in the trajectory, you 

need to find the normal component of acceleration. You can do this easily 

at the top, because you know that the total acceleration is pointed verti-

cally downward and the normal component is simply the component 

 perpendicular to the tangent to the path. Once you have the normal 

 acceleration, it is straightforward to find the radius of curvature if you 

know the speed.

a = a n

v = vx

Fig. 1 Acceleration and velocity of 
the projectile.

Sample Problem 11.18

The rotation of the 0.9-m arm OA about O is defined by the relation 

θ 5 0.15t2, where θ is expressed in radians and t in seconds. Collar B 

slides along the arm in such a way that its distance from O is r 5 0.9 

2 0.12t2, where r is expressed in meters and t in seconds. After the arm 

OA has rotated through 30°, determine (a) the total velocity of the collar, 

(b) the total acceleration of the collar, (c) the relative acceleration of the 

collar with respect to the arm.

STRATEGY: You are given information in terms of r and θ, so you 

should use polar coordinates.

MODELING and ANALYSIS: Model the collar as a particle. 

Time t at which θ 5 30°.  Substitute θ 5 30° 5 0.524 rad into the 

expression for θ. You obtain

θ 5 0.15t 2    0.524 5 0.15t 2    t 5 1.869 s

O

B
A

q

r
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11.5 Non-Rectangular Components 697

Equations of Motion. Substituting t 5 1.869 s in the expressions 

for r, θ, and their first and second derivatives, you have

 r 5 0.9 2 0.12t 2 5 0.481 m  θ 5 0.15t 2 5 0.524 rad

 ṙ 5 20.24t 5 20.449 m/s   θ̇ 5 0.30t 5 0.561 rad /s

 r̈ 5 20.24 5 20.240 m/s2   θ̈ 5 0.30 5 0.300 rad /s2

a. Velocity of B. Using Eqs. (11.44), you can obtain the values of vr 

and vθ when t 5 1.869 s (Fig. 1).

 vr 5 ṙ 5 20.449 m/s

 vθ 5 rθ̇ 5 0.481(0.561) 5 0.270 m/s

Solve the right triangle shown in Fig. 2 to obtain the magnitude and 

 direction of the velocity,

v 5 0.524 m/s  β 5 31.0° b

b. Acceleration of B. Using Eqs. (11.45), you obtain (Fig. 3)

 ar 5 r̈ 2 rθ̇
2

 5 20.240 2 0.481(0.561)2 5 20.391 m/s2

 aθ 5 rθ̈ 1 2 ṙθ̇

 5 0.481(0.300) 1 2(20.449)(0.561) 5 20.359 m/s2

a 5 0.531 m/s2  γ 5 42.6° b

c. Acceleration of B with Respect to Arm OA. Note that the 

motion of the collar with respect to the arm is rectilinear and defined by 

the coordinate r (Fig. 4). You have

aB/OA 5  r̈ 5 20.240 m/s2

aB/OA 5 0.240 m/s2 toward O. b

Fig. 4

A

B

O

aB/OA = (–0.240 m/s2)er

REFLECT and THINK: You should consider polar coordinates for any 

kind of rotational motion. They turn this problem into a straightforward 

solution, whereas any other coordinate system would make this problem 

much more difficult. One way to make this problem harder would be to 

ask you to find the radius of curvature in addition to the velocity and 

acceleration. To do this, you would have to find the normal component of 

the acceleration; that is, the component of acceleration that is  perpendicular 

to the tangential direction defined by the velocity vector.

Fig. 1 Radial and transverse 
coordinates for collar B.

er

eq

B

q
O

v = vrer + vUeU

a = arer + aUeU

r

q

qq

q

Fig. 2 Velocity of collar B.

B

O

vU = (0.270 m /s)eU

vr = (–0.449 m /s)er

b

30°

r =
 0.481 m

v

qq

Fig. 3 Acceleration of collar B.

B

aU = (–0.359 m/s2)eq

a r = (–0.391 m/s2)er

g

a
q
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698 Kinematics of Particles

Sample Problem 11.19

A boy is flying a kite that is 60 m high with 75 m of cord out. The kite 

moves horizontally from this position at a constant 6 km/h that is directly 

away from the boy. Ignoring the sag in the cord, determine how fast the 

cord is being let out at this instant and how fast this rate is increasing.

STRATEGY: The most natural way to describe the position of the kite 

is using a radial vector and angle, as shown in Fig. 1. The distance r is 

changing, so use polar coordinates.

Fig. 1 Radial and transverse 
coordinates for the kite.

60 mr

O
q

75 m

ereθ

v

MODELING and ANALYSIS: The angle and the speed of the kite in 

m/s are found by

θ 5 sin21a60

75
b 5 53.13° and v 5 6 akm

hr
ba hr

3600 s
ba1000 m

km
b 5

5

3
  m/s

Velocity in Polar Coordinates: You know that in polar coordinates 

the velocity is v 5 ṙer 1 rθ̇er. Using Fig. 1, you can resolve the velocity 

vector into polar coordinates, giving

 
.
r 5 v cos θ 5 a5

3
   m/sb cos 53.13°  ṙ 5 1.000 m/s b

rθ
.

5 2v sinθ   θ
.

5 2
v sinθ

r
5 2

(5/3 m/s)sin 53.13°

75 m
5 0.01778 rad/s

Acceleration in Polar Coordinates: You know that the accelera-

tion is zero, because the kite is traveling at a constant speed. This means 

that both components of the acceleration need to be zero. You know the 

radial component is ar 5 r̈ 2 rθ̇
2 5 0. So

 r̈ 5 rθ̇
2 5 (75 m)(20.01778 rad/s)2  r̈ 5 0.0237 m/s2 b

REFLECT and THINK: When the angle is 90°, then ṙ will be zero. 

When the angle is very small––that is, when the kite is far away––you 

would expect the cord to increase at a rate of 6 m/s, which is the speed 

of the kite.  Our answer is reasonable since it is between these two 

limits.

60 mr

75 m

v
6 km/h
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11.5 Non-Rectangular Components 699

Sample Problem 11.20

At the instant shown, the length of the boom AB is being decreased at the 

constant rate of 0.2 m/s, and the boom is being lowered at the constant 

rate of 0.08 rad/s. Determine (a) the velocity of point B, (b) the  acceleration 

of point B. 

STRATEGY: Use polar coordinates, since that is the most natural way 

to describe the position of point B.

MODELING and ANALYSIS: From the problem statement, you know 

ṙ 5 20.2 m/s  r̈ 5 0   θ̇ 5 20.08 rad /s   θ̈ 5 0

a. Velocity of B. Using Eqs.(11.44), you can determine the values of 

vr and vθ at this instant to be

 vr 5 ṙ 5 20.2 m/s

 vθ 5 rθ̇ 5 (6 m)(20.08 rad/s) 5 20.48 m/s

Therefore, you can write the velocity vector as

v 5 (20.200 m/s)er 1 (20.480 m/s)et b

b. Acceleration of B. Using Eqs. (11.45), you find

 ar 5 r̈ 2 rθ̇
2 5 0 2 (6 m)(20.08 rad/s)2 5 20.0384 m/s2

 aθ 5 rθ̈ 1 2 ṙθ̇ 5 0 1 2(20.02 m/s)(20.08 rad/s) 5 0.00320 m/s2

or

a 5 (20.0384 m/s2)er 1 (0.00320 m/s2)eθ b

REFLECT and THINK: Once you identify what you are given in the 

problem statement, this problem is quite straightforward. Sometimes you 

will be asked to express your answer in terms of a magnitude and  direction. 

The easiest way is to first determine the x and y components and then to 

find the magnitude and direction. From Fig. 1, 

 y
1

: (vB)x 5 0.48 cos 60° 2 0.2 cos 30° 5 0.06680 m/s

 1x: (vB)y 5 20.48 sin 60° 2 0.2 sin 30° 5 20.5157 m/s

So the magnitude and direction are

vB 5 20.066802 1 0.51572

 5 0.520 m/s tan β 5
0.51569

0.06680
, β 5 82.6°

So, an alternative way of expressing the velocity of B is vB 5 0.520 m/s c 82.6°

You could also find the magnitude and direction of the acceleration if you 

needed it expressed in this way. It is important to note that no matter what 

coordinate system we choose, the resultant velocity vector is the same. 

You can choose to express this vector in whatever coordinate system is 

most useful. Figure 2 shows the velocity vector vB resolved into x and y 

components and r and θ coordinates.

A

B

θ = 30�

6 m

Fig. 1 Velocity of B.

B
30° 60°

vr = –0.2 m/s

vθ = –0.48 m/s

eθ er

Fig. 2 Resultant velocity 
of collar B in Cartesian 
and in radial and 
transverse coordinates.

B

vr

vy vB

vθ

vx
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700700

In the following problems, you will be asked to express the velocity and the accel-

eration of particles in terms of either their tangential and normal components or 

their radial and transverse components. Although these components may not be as 

familiar to you as rectangular components, you will find that they can simplify the 

solution of many problems and that certain types of motion are more easily described 

when they are used.

1. Using tangential and normal components. These components are most often 

used when the particle of interest travels along a known  curvilinear path or when the 

radius of curvature of the path is to be determined [Sample Prob. 11.16]. Remember 

that the unit vector et is tangent to the path of the particle (and thus aligned with the 

velocity), whereas the unit vector en is directed along the normal to the path and 

always points toward its center of curvature. It follows that the directions of the two 

unit vectors are constantly changing as the particle moves.

2. Acceleration in terms of tangential and normal components. We derived in 

Sec. 11.5A the following equation, which is applicable to both the two-dimensional 

and the three-dimensional motion of a particle:

a 5
dv

dt
 et 1

v2

r
 en (11.38)

The following observations may help you in solving the problems of this section.

 a. The tangential component of the acceleration measures the rate of change 

of the speed as at 5 dv/dt. It follows that, when at is constant, you can use the 

 equations for uniformly accelerated motion with the acceleration equal to at. Further-

more, when a particle moves at a constant speed, we have at 5 0, and the acceleration 

of the particle reduces to its normal component.

 b. The normal component of the acceleration is always directed toward the 

center of curvature of the path of the particle, and its magnitude is an 5 v2/ρ. Thus, 

you can determine the normal component if you know the speed of the particle and 

the radius of curvature ρ of the path.  Conversely, if you know the speed and normal 

acceleration of the particle, you can find the radius of curvature of the path by solving 

this equation for ρ [Sample Prob. 11.17].

SOLVING PROBLEMS
ON YOUR OWN
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3. Using radial and transverse components. These components are used to analyze 

the planar motion of a particle P when the position of P is defined by its polar 

 coordinates r and θ. As shown in Fig. 11.23, the unit vector er, which defines the 

radial direction, is attached to P and points away from the fixed point O, whereas 

the unit vector eθ, which defines the transverse direction, is obtained by rotating er 

counterclockwise through 90°. The velocity and acceleration of a particle are expressed 

in terms of their radial and transverse components in Eqs. (11.42) and (11.43), respec-

tively. Note that the expressions obtained contain the first and second derivatives with 

respect to t of both coordinates r and θ.

In the problems of this section, you will encounter the following types of problems 

involving radial and transverse components.

 a. Both r and θ are known functions of t. In this case, you  compute the first 

and second derivatives of r and θ and substitute the resulting expressions into 

Eqs. (11.42) and (11.43).

 b. A certain relationship exists between r and θ. First, you should determine 

this relationship from the geometry of the given system and use it to express r as a 

function of θ. Once you know the function r 5 f(θ), you can apply the chain rule to 

determine ṙ in terms of θ and θ̇, and r̈ in terms of θ, θ̇, and θ̈:

 ṙ 5 f 9(θ)θ̇

r̈ 5 f 0(θ)θ̇2 1 f 9(θ)θ̈ 

You can then substitute these expressions into Eqs. (11.42) and (11.43).

 c. The three-dimensional motion of a particle, as indicated at the end of 

Sec. 11.5B, often can be described effectively in terms of the cylindrical coordinates 
R, θ, and z (Fig. 11.24). The unit vectors then should consist of eR, eθ, and k. The 

 corresponding components of the velocity and the acceleration are given in Eqs. (11.48) 

and (11.49). Note that the radial distance R is always measured in a plane parallel to 

the xy plane, and be careful not to confuse the position vector r with its radial 

 component ReR.
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Problems
CONCEPT QUESTIONS
11.CQ8 The Ferris wheel is rotating with a constant angular velocity v. 

What is the direction of the acceleration of point A?

a. y b. x c. w d. z e. The acceleration is zero.

 11.CQ9 A race car travels around the track shown at a constant speed. At 

which point will the race car have the largest acceleration?

   a.  A. b. B. c. C. d. D. e. The acceleration will be zero at all 

the points.

Fig. P11.CQ9

C

B

A

D

v

 11.CQ10 A child walks across merry-go-round A with a constant speed u 

relative to A. The merry-go-round undergoes fixed-axis rotation 

about its center with a constant angular velocity v counterclockwise. 

When the child is at the center of A, as shown, what is the direction 

of his acceleration when viewed from above?

   a. y b. z c. x d. w e. The acceleration is zero.

END-OF-SECTION PROBLEMS

 11.133 Determine the smallest radius that should be used for a highway 

if the normal component of the acceleration of a car traveling at 

72 km/h is not to exceed 0.8 m/s2.

Fig. P11.133

A
r

B

 11.134 Determine the maximum speed that the cars of the roller-coaster can 

reach along the circular portion AB of the track if ρ 5 25 m and the 

normal component of their acceleration cannot exceed 3g.

Fig. P11.CQ8

A

Fig. P11.CQ10

ω

u

A

Fig. P11.134

B
A

ρ
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 11.135 Human centrifuges are often used to simulate different acceleration 

levels for pilots and astronauts. Space shuttle pilots typically face 

inwards towards the center of the gondola in order to experience 

a simulated 3-g forward acceleration. Knowing that the astronaut 

sits 5 m from the axis of rotation and experiences 3 g’s inward, 

determine her velocity.

Fig. P11.135

A

5 m

 11.136 The diameter of the eye of a stationary hurricane is 20 mi and the 

maximum wind speed is 100 mi/h at the eye wall with r 5 10 mi. 

Assuming that the wind speed is constant for constant r and decreases 

uniformly with increasing r to 40 mi/h at r 5 110 mi, determine the 

magnitude of the acceleration of the air at (a) r 5 10 mi, (b) r 5 60 mi, 

(c) r 5 110 mi.

Fig. P11.136

220 mi

20 mi

r

 11.137 The peripheral speed of the tooth of a 10-in.-diameter circular saw 

blade is 150 ft/s when the power to the saw is turned off. The speed 

of the tooth decreases at a constant rate, and the blade comes to rest 

in 9 s. Determine the time at which the total acceleration of the tooth 

is 130 ft/s2.

 11.138 A robot arm moves so that P travels in a circle about point B, which is 

not moving. Knowing that P starts from rest, and its speed increases 

at a constant rate of 10 mm/s2, determine (a) the magnitude of the 

acceleration when t 5 4 s, (b) the time for the magnitude of the 

acceleration to be 80 mm/s2. Fig. P11.138

B

P

O

0.8 m
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 11.139 A monorail train starts from rest on a curve of radius 400 m and 

accelerates at the constant rate at. If the maximum total acceleration 

of the train must not exceed 1.5 m/s2, determine (a) the shortest 

distance in which the train can reach a speed of 72 km/h, (b) the 

corresponding constant rate of acceleration at.

 11.140 A motorist starts from rest at point A on a circular entrance ramp 

when t 5 0, increases the speed of her automobile at a constant rate 

and enters the highway at point B. Knowing that her speed continues 

to  increase at the same rate until it reaches 100 km/h at point C, 

determine (a) the speed at point B, (b) the magnitude of the total 

acceleration when t 5 20 s.

 11.141 Race car A is traveling on a straight portion of the track while race 

car B is traveling on a circular portion of the track. At the instant 

shown, the speed of A is increasing at the rate of 10 m/s2, and the 

speed of B is decreasing at the rate of 6 m/s2. For the position shown, 

determine (a) the velocity of B relative to A, (b) the acceleration of 

B relative to A.

Fig. P11.141

50°

A

B

200 km/h
300 m

240 km/h

 11.142 At a given instant in an airplane race, airplane A is flying horizontally 

in a straight line, and its speed is being increased at the rate of 8 m/s2. 

Airplane B is flying at the same altitude as airplane A and, as it 

rounds a pylon, is following a circular path of 300-m radius. Knowing 

that at the given instant the speed of B is being decreased at the rate 

of 3 m/s2, determine, for the positions shown, (a) the velocity of B 
relative to A, (b) the acceleration of B relative to A.

Fig. P11.142

A

30°

400 m

B

300 m

450  km/h

540 km/h

 11.143 A race car enters the circular portion of a track that has a radius of 

70 m. When the car enters the curve at point P, it is travelling with 

a speed of 120 km/h that is increasing at 5 m/s2. Three seconds later, 

determine the x and y components of velocity and acceleration of 

the car.

Fig. P11.140

B C

A

150 m

100 m

Fig. P11.143

q

y

x

r = 70 m

120 km/h

P
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 11.144 An airplane flying at a constant speed of 240 m/s makes a banked 

horizontal turn. What is the minimum allowable radius of the turn 

if the structural specifications require that the acceleration of the 

airplane shall never exceed 4 g?

 11.145 A golfer hits a golf ball from point A with an initial velocity of 

50 m/s at an angle of 25° with the horizontal. Determine the radius 

of curvature of the trajectory described by the ball (a) at point A, 

(b) at the highest point of the trajectory.

 11.146 Three children are throwing snowballs at each other. Child A throws 

a snowball with a horizontal velocity v0. If the snowball just passes 

over the head of child B and hits child C, determine the radius of 

curvature of the trajectory described by the snowball (a) at point B, 

(b) at point C.

A

B

C

1 m

2 m

7 m d

v0

Fig. P11.146

 11.147 Coal is discharged from the tailgate A of a dump truck with an 

 initial velocity vA 5 2 m/s d 50°. Determine the radius of  curvature 

of the trajectory described by the coal (a) at point A, (b) at the point 

of the trajectory 1 m below point A.

 11.148 From measurements of a photograph, it has been found that as 

the stream of water shown left the nozzle at A, it had a radius 

of  curvature of 25 m. Determine (a) the initial velocity vA of the 

stream, (b) the radius of curvature of the stream as it reaches its 

maximum height at B.

 11.149 A child throws a ball from point A with an initial velocity v0 at an 

angle of 3° with the horizontal. Knowing that the ball hits a wall at 

point B, determine (a) the magnitude of the initial velocity, (b) the 

minimum radius of curvature of the trajectory.

Fig. P11.149

v0
3°

1.5 m

A B

6 m

0.97 m

A

vA

25°

Fig. P11.145

Fig. P11.147

vA

50° A

Fig. P11.148

A

B

4

3

vA

Fig. P11.144
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 11.150 A projectile is fired from point A with an initial velocity v0. (a) Show 

that the radius of curvature of the trajectory of the projectile 

reaches its minimum value at the highest point B of the trajectory. 

(b) Denoting by θ the angle formed by the trajectory and the 

horizontal at a given point C, show that the radius of curvature of 

the trajectory at C is ρ 5 ρmin/cos3
θ.

A

B

C θminρ

ρ

v0

x

α

Fig. P11.150

  *11.151 Determine the radius of curvature of the path described by the 

particle of Prob. 11.95 when t 5 0.

  *11.152 Determine the radius of curvature of the path described by the 

particle of Prob. 11.96 when t 5 0, A 5 3, and B 5 1.

 11.153 and 11.154 A satellite will travel indefinitely in a circular orbit 

around a planet if the normal component of the acceleration of the 

satellite is equal to g(R/r)2, where g is the acceleration of gravity 

at the surface of the planet, R is the radius of the planet, and r is 

the distance from the center of the planet to the satellite. Knowing 

that the diameter of the sun is 1.39 Gm and that the acceleration of 

gravity at its surface is 274 m/s2, determine the radius of the orbit 

of the indicated planet around the sun assuming that the orbit is 

circular.

   11.153 Earth: (ymean)orbit 5 107 Mm/h.

   11.154 Saturn: (ymean)orbit 5 34.7 Mm/h.

 11.155 through 11.157 Determine the speed of a satellite relative to the 

indicated planet if the satellite is to travel indefinitely in a circular 

orbit 100 mi above the surface of the planet. (See information given 

in Probs. 11.153–11.154.)

   11.155 Venus: g 5 29.20 ft/s2, R 5 3761 mi.

 11.156 Mars: g 5 12.17 ft/s2, R 5 2102 mi.

  11.157 Jupiter: g 5 75.35 ft/s2, R 5 44,432 mi.

 11.158 A satellite will travel indefinitely in a circular orbit around the earth 

if the normal component of its acceleration is equal to g(R/r)2, where 

g 5 9.81 m/s2, R 5 radius of the earth 5 6370 km, and r 5 distance 

from the center of the earth to the satellite. Assuming that the orbit 

of the moon is a circle with a radius of 384 3 103 km, determine 

the speed of the moon relative to the earth.
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 11.159 Knowing that the radius of the earth is 6370 km, determine the 

time of one orbit of the Hubble Space Telescope if the telescope 

travels in a circular orbit 590 km above the surface of the earth. 

(See information given in Probs. 11.153–11.154.)

 11.160 Satellites A and B are traveling in the same plane in circular orbits 

around the earth at altitudes of 120 and 200 mi, respectively. If at 

t 5 0 the satellites are aligned as shown and knowing that the radius 

of the earth is R 5 3960 mi, determine when the satellites will next 

be radially aligned. (See information given in Probs. 11.153–11.154.)

 11.161 The oscillation of rod OA about O is defined by the relation 

θ 5 (3yπ)(sin πt), where θ and t are expressed in radians and seconds, 

respectively. Collar B slides along the rod so that its distance from 

O is r 5 6(1 2 e22t ) where r and t are expressed in inches and 

seconds, respectively. When t 5 1 s, determine (a) the velocity of 

the collar, (b) the acceleration of the collar, (c) the acceleration of 

the collar relative to the rod.

 11.162 The path of a particle P is a limaçon. The motion of the particle is 

defined by the relations r 5 b(2 1 cos πt) and θ 5 πt where t and θ 

are expressed in seconds and radians, respectively. Determine (a) the 

velocity and the acceleration of the particle when t 5 2 s, (b) the 

value of θ for which the magnitude of the velocity is maximum.

 11.163 During a parasailing ride, the boat is traveling at a constant 30 km/hr 

with a 200-m long tow line. At the instant shown, the angle between 

the line and the water is 30° and is increasing at a constant rate of 

2°/s. Determine the velocity and acceleration of the parasailer at 

this instant. 

r

θ

Fig. P11.163

 11.164 Some parasailing systems use a winch to pull the rider back to the 

boat. During the interval when θ is between 20° and 40° (where 

t 5 0 at θ 5 20°), the angle increases at the constant rate of 2°/s. 

During this time, the length of the rope is defined by the relationship 

r 5 600 2
1
8 
t5/2, where r and t are expressed in feet and seconds, 

respectively. Knowing that the boat is travelling at a constant rate 

of 15 knots (where 1 knot 5 1.15 mi/h), (a) plot the magnitude of 

the velocity of the parasailer as a function of time, (b) determine 

the magnitude of the acceleration of the parasailer when t 5 5 s. 

Fig. P11.160

A

B

rB

rA

Fig. P11.161

O

B

A

θ
r

Fig. P11.162

P

r

q
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11.165 As rod OA rotates, pin P moves along the parabola BCD. Knowing 

that the equation of this parabola is r 5 2b/(1 1 cos θ) and that 

θ 5 kt, determine the velocity and acceleration of P when (a) θ 5 0, 

(b) θ 5 90°.

 11.166 The pin at B is free to slide along the circular slot DE and along 

the rotating rod OC. Assuming that the rod OC rotates at a  constant 

rate 
·
u, (a) show that the acceleration of pin B is of constant  magnitude, 

(b) determine the direction of the acceleration of pin B.

Fig. P11.166

r

b

B
D C

A
O

E

b

θ

 11.167 To study the performance of a race car, a high-speed camera is 

 positioned at point A. The camera is mounted on a mechanism 

which permits it to record the motion of the car as the car travels 

on straightaway BC. Determine (a) the speed of the car in terms of 

b, θ, and θ̇, (b) the magnitude of the acceleration in terms of b, θ, 

θ̇, and ü .

 11.168 After taking off, a helicopter climbs in a straight line at a constant 

angle β. Its flight is tracked by radar from point A. Determine the 

speed of the helicopter in terms of d, β, θ, and θ̇. 

Fig. P11.168

B

A θ

d

v

β

Fig. P11.165

A

O

D

P

C

B

θ

r

b

Fig. P11.167

B

r

A θ

C

v a

b
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 11.169 At the bottom of a loop in the vertical plane an airplane has a 

horizontal velocity of 315 mi/h and is speeding up at a rate of 

10 ft/s2. The radius of curvature of the loop is 1 mi. The plane is 

being tracked by radar at O. What are the recorded values of ṙ, r̈,

θ̇, and θ̈ for this instant?

Fig. P11.169

315 mi/hr

1800 ft

2400 ftO

q

1 mi

r

 11.170 Pin C is attached to rod BC and slides freely in the slot of rod 

OA which rotates at the constant rate v. At the instant when 

β 5 60°,  determine (a) r
.
 and 

.
θ, (b) r̈ and  θ̈ . Express your answers 

in terms of d and v.

Fig. P11.170

r

d

B

A

C

b d
O q

 11.171 For the race car of Prob. 11.167, it was found that it took 0.5 s for 

the car to travel from the position θ 5 60° to the position θ 5 35°. 

Knowing that b 5 25 m, determine the average speed of the car 

during the 0.5-s interval.

 11.172 For the helicopter of Prob. 11.168, it was found that when the 

 helicopter was at B, the distance and the angle of elevation of the 

helicopter were r 5 3000 ft and θ 5 20°, respectively. Four seconds 

later, the radar station sighted the helicopter at r 5 3320 ft and 

θ 5 23.1°. Determine the average speed and the angle of climb β 

of the  helicopter during the 4-s interval.

bee87342_ch11_615-717.indd   709bee87342_ch11_615-717.indd   709 11/24/14   1:40 PM11/24/14   1:40 PM

UPLOADED BY AHMAD T JUNDI



710

11.173 and 11.174 A particle moves along the spiral shown. Determine 

the magnitude of the velocity of the particle in terms of b, θ, and θ̇.

Fig. P11.173 and P11.175

O

r = be
1
2

2q

 Fig. P11.174 and P11.176

r 2 = bq

O

 11.175 and 11.176 A particle moves along the spiral shown. Knowing 

that θ̇ is  constant and denoting this constant by v, determine the 

 magnitude of the acceleration of the particle in terms of b, θ, and θ̇.

 11.177 The motion of a particle on the surface of a right circular cylinder is 

defined by the relations R 5 A, θ 5 2πt, and z 5 B sin 2πnt, where 

A and B are constants and n is an integer. Determine the magnitudes 

of the velocity and acceleration of the particle at any time t.

Fig. P11.177

y

z

B

A

B

n = 10
x

 11.178 Show that r
.

5 hϕ
.

  sin θ  knowing that at the instant shown, step 

AB of the step exerciser is rotating counterclockwise at a constant 

rate 
·
f.

11.179 The three-dimensional motion of a particle is defined by the 

relations R 5 A(1 2 e2t), θ 5 2πt, and z 5 B(1 2 e2t ). Determine 

the magnitudes of the velocity and acceleration when (a) t 5 0, 

(b) t 5 .̀

  *11.180 For the conic helix of Prob. 11.95, determine the angle that the 

osculating plane forms with the y axis.

  *11.181 Determine the direction of the binormal of the path described by 

the particle of Prob. 11.96 when (a) t 5 0, (b) t 5 π/2 s.Fig. P11.178

h

B

A

P

O

φ

θ

d

r
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Position Coordinate of a Particle in Rectilinear Motion
In the first half of this chapter, we analyzed the rectilinear motion of a 
 particle, i.e., the motion of a particle along a straight line. To define the posi-

tion P of the particle on that line, we chose a fixed origin O and a positive 

direction (Fig. 11.25). The distance x from O to P, with the appropriate sign, 

completely defines the position of the particle on the line and is called the 

position  coordinate of the particle [Sec. 11.1A].

Velocity and Acceleration in Rectilinear Motion
The velocity v of the particle was shown to be equal to the time derivative of 

the position coordinate x, so

 v 5
dx

dt
 (11.1)

And we obtained the acceleration a by differentiating v with respect to t, as

 a 5
dv

dt
 (11.2)

or

 a 5
d2x

dt2
 (11.3)

We also noted that a could be expressed as

 a 5 v 

dv

dx
 (11.4)

 We observed that the velocity v and the acceleration a are represented 

by algebraic numbers that can be positive or negative. A positive value for v 

indicates that the particle moves in the positive direction, and a negative value 

shows that it moves in the negative direction. A positive value for a, however, 

may mean that the particle is truly accelerated (i.e., moves faster) in the 

 positive direction or that it is decelerated (i.e., moves more slowly) in the 

negative direction. A negative value for a is subject to a similar interpretation 

[Sample Prob. 11.1].

Determination of the Velocity and Acceleration by 
Integration
In most problems, the conditions of motion of a particle are defined by the 

type of acceleration that the particle possesses and by the initial conditions 

[Sec. 11.1B]. Then we can obtain the velocity and position of the particle by 

integrating two of the equations (11.1) to (11.4). The selection of these equa-

tions depends upon the type of acceleration involved [Sample Probs. 11.2 

through 11.4].

Review and Summary
O P

x
x

Fig. 11.25
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Uniform Rectilinear Motion
Two types of motion are frequently encountered. Uniform rectilinear motion
[Sec. 11.2A], in which the velocity v of the particle is constant, is described by

 x 5 x0 1 vt (11.5)

Uniformly Accelerated Rectilinear Motion
Uniformly accelerated rectilinear motion [Sec. 11.2B], in which the accel-

eration a of the particle is constant, is described by

 v  5 v0 1 at  (11.6)

x  5 x0 1 v0t 1
1
2at2  (11.7)

v2 5 v0
2 1 2a(x 2 x0) (11.8)

Relative Motion of Two Particles
When two particles A and B (such as two aircraft) move, we may wish to 

consider the relative motion of B with respect to A [Sec. 11.2C]. Denoting 

the relative position coordinate of B with respect to A by xB/A (Fig. 11.26), 

we have

 xB 5 xA 1 xB/A (11.9)

Differentiating Eq. (11.9) twice with respect to t, we obtained successively

 vB 5 vA 1 vB/A (11.10)

aB 5 aA 1 aB/A (11.11)

where vB/A and aB/A represent, respectively, the relative velocity and the 

relative acceleration of B with respect to A.

Dependent Motion
When several blocks are connected by inextensible cords, it is possible to 

write a linear relation between their position coordinates. We can then write 

similar relations between their velocities and between their accelerations, 

which we can use to analyze their motion [Sample Probs. 11.7 and 11.8].

Graphical Solutions
It is sometimes convenient to use a graphical solution for problems involving 

the rectilinear motion of a particle [Sec. 11.3]. The graphical solution most 

commonly used involves the x–t, v–t, and a–t curves [Sample Prob. 11.10]. It 

was shown at any given time t that

v 5 slope of x–t curve

a 5 slope of v–t curve

Also, over any given time interval from t1 to t2, we have

v2 2 v1 5 area under a–t curve

x2 2 x1 5 area under v–t curve

Position Vector and Velocity in Curvilinear Motion
In the second half of this chapter, we analyzed the curvilinear motion of a 
particle, i.e., the motion of a particle along a curved path. We defined the 

 position P of the particle at a given time [Sec. 11.4A] by the position vector r

x
 xA

AO B

 xB

 xB/A

Fig. 11.26
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joining the O of the coordinates and point P (Fig. 11.27). We defined the 

velocity v of the particle by the relation

 v 5
dr
dt

 (11.14)

The velocity is a vector tangent to the path of the particle with a magnitude 

v (called the speed of the particle) equal to the time derivative of the length 

s of the arc described by the particle. Thus,

 v 5
ds

dt
 (11.15)

Acceleration in Curvilinear Motion
We defined the acceleration a of the particle by the relation

 a 5
dv
dt

 (11.17)

and we noted that, in general, the acceleration is not tangent to the path of 
the particle.

Derivative of a Vector Function
Before proceeding to the consideration of the components of velocity and 

acceleration, we reviewed the formal definition of the derivative of a vector 

function and established a few rules governing the differentiation of sums and 

products of vector functions. We then showed that the rate of change of a 

vector is the same with respect both to a fixed frame and to a frame in transla-

tion [Sec. 11.4B].

Rectangular Components of Velocity and Acceleration
Denoting the rectangular coordinates of a particle P by x, y, and z, we found 

that the rectangular components of the velocity and acceleration of P equal, 

respectively, the first and second derivatives with respect to t of the 

 corresponding coordinates. Thus,

  vx 5 x
.     vy 5 y

.    vz 5 z
.
 (11.28)

  ax 5 ẍ    ay 5 ÿ    az 5 z̈  (11.29)

Component Motions
When the component ax of the acceleration depends only upon t, x, and/or 

vx; when, similarly, ay depends only upon t, y, and/or vy; and az upon t, z, 

and/or vz, Eq. (11.29) can be integrated independently. The analysis of the 

given curvilinear motion then reduces to the analysis of three independent 

rectilinear component motions [Sec. 11.4C]. This approach is particularly 

effective in the study of the motion of projectiles [Sample Probs. 11.10 

and 11.11].

Relative Motion of Two Particles
For two particles A and B moving in space (Fig. 11.28), we considered the rela-

tive motion of B with respect to A, or more precisely, with respect to a moving 

frame attached to A and in translation with A [Sec. 11.4D]. Denoting the relative 
position vector of B with respect to A by rB/A (Fig. 11.28), we have

rB 5 rA 1 rByA (11.30)

O

y

x

P

P0

r

v

s

Fig. 11.27

rB/A
rA

rB

y

O x

z

B

A x'

z'

y'

Fig. 11.28
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Denoting the relative velocity and the relative acceleration of B with respect 

to A by vB/A and aB/A, respectively, we also showed that

 vB 5 vA 1 vB/A (11.32)

and

aB 5 aA 1 aB/A (11.33)

Tangential and Normal Components
It is sometimes convenient to resolve the velocity and acceleration of a particle 

P into components other than the rectangular x, y, and z components. For a particle 

P moving along a path contained in a plane, we attached to P unit vectors et

tangent to the path and en normal to the path and directed toward the center of 

curvature of the path [Sec. 11.5A]. We then express the velocity and acceleration 

of the particle in terms of tangential and normal components. We have

v 5 vet (11.35)

and

a 5
dv

dt
 et 1

v2

r
 en  (11.38)

where v is the speed of the particle and ρ is the radius of curvature of its path 

[Sample Probs. 11.16, ,and 11.17]. We observed that, while the velocity v is 

directed along the tangent to the path, the acceleration a consists of a  component 

at directed along the tangent to the path and a component an directed toward 

the center of curvature of the path (Fig. 11.29).

Motion Along a Space Curve
For a particle P moving along a space curve, we defined the plane that most 

closely fits the curve in the neighborhood of P as the osculating plane. This 

plane contains the unit vectors et and en that define the tangent and principal 

normal to the curve, respectively. The unit vector eb, which is perpendicular 

to the osculating plane, defines the binormal.

Radial and Transverse Components
When the position of a particle P moving in a plane is defined by its polar 

coordinates r and θ, it is convenient to use radial and transverse components 

directed, respectively, along the position vector r of the particle and in the 

direction obtained by rotating r through 90° counterclockwise [Sec. 11.5B]. 

We attached to P unit vectors er and eθ directed in the radial and transverse 

directions, respectively (Fig. 11.30). We then expressed the velocity and accel-

eration of the particle in terms of radial and transverse components as

v 5 r
.
er 1 r

.
θeθ (11.42)

a 5 (r
$

2 r
.

θ
2)er 1 (rθ

$
1 2

.
r

.
θ)eθ (11.43)

where dots are used to indicate differentiation with respect to time. The scalar 

components of the velocity and acceleration in the radial and transverse 

 directions are therefore

 vr 5
.
r    vθ 5 r

.
θ  (11.44)

 ar 5 r
$

2 r
.

θ
2    aθ 5 rθ

$
1 2

.
r

.
θ (11.45)

It is important to note that ar is not equal to the time derivative of vr and that aθ 

is not equal to the time derivative of vθ [Sample Probs. 11.18, 11.19, and 11.20].

 This chapter ended with a discussion of the use of cylindrical coordi-

nates to define the position and motion of a particle in space.

an =      en
v2

ρ

a t =      et
dv
dt

C

P

y

O x

Fig. 11.29

r = rer

er

eθ

O

P

θ

Fig. 11.30
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11.182 The motion of a particle is defined by the relation x 5 2t3 2 15t2 1 

24t 1 4, where x and t are expressed in meters and seconds, respec-

tively. Determine (a) when the velocity is zero, (b) the position and 

the total distance traveled when the acceleration is zero.

 11.183 A drag car starts from rest and moves  down the racetrack with 

an acceleration defined by a 5 50 2 10t , where a and t are in 

m/s2 and seconds, respectively. After reaching a speed of 125 m/s, a 

 parachute is deployed to help slow down the dragster. Knowing that 

this deceleration is defined by the relationship a 5 20.02v2
, where v

is the velocity in m/s, determine (a) the total time from the  beginning 

of the race until the car slows back down to 10 m/s, (b) the total 

distance the car travels during this time.

11.184 A particle moves in a straight line with the acceleration shown in the 

figure. Knowing that the particle starts from the origin with 

v0 5 22 m/s, (a) construct the v – t and x – t curves for 0 , t , 18 s, 

(b) determine the position and the velocity of the particle and the 

total distance traveled when t 5 18 s.

6

2

12
8

t (s)

a (m /s2)

0.75–

Fig. P11.184

11.185 The velocities of commuter trains A and B are as shown. Knowing that 

the speed of each train is constant and that B reaches the  crossing 

10 min after A passed through the same crossing, determine (a) the 

relative velocity of B with respect to A, (b) the distance between the 

fronts of the engines 3 min after A passed through the crossing.

Review Problems

66 km/h

48 km/h 25°B

A

Fig. P11.185
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11.186 Knowing that slider block A starts from rest and moves to the left 

with a constant acceleration of 1 ft/s2, determine (a) the relative 

acceleration of block A with respect to block B, (b) the velocity of 

block B after 2 s.

 11.187 Collar A starts from rest at t 5 0 and moves downward with 

a constant acceleration of 7 in./s2. Collar B moves upward with a 

constant acceleration, and its initial velocity is 8 in./s. Knowing that 

collar B moves through 20 in. between t 5 0 and t 5 2 s, determine 

(a) the accelerations of collar B and block C, (b) the time at which 

the velocity of block C is zero, (c) the distance through which block 

C will have moved at that time.

 11.188 A golfer hits a ball with an initial velocity of magnitude v0 at an 

angle α with the horizontal. Knowing that the ball must clear the 

tops of two trees and land as close as possible to the flag, determine 

v0 and the distance d when the golfer uses (a) a six-iron with α 5 31°, 

(b) a five-iron with α 5 27°.

12 m 14 m

30 m 70 m
10 m

d

a

v0

Fig. P11.188

11.189 As the truck shown begins to back up with a constant acceleration 

of 4 ft/s2, the outer section B of its boom starts to retract with a 

constant acceleration of 1.6 ft/s2 relative to the truck. Determine 

(a) the acceleration of section B, (b) the velocity of section B when 

t 5 2 s.

 11.190 A velodrome is a specially designed track used in bicycle racing that 

has constant radius curves at each end. Knowing that a rider starts 

from rest at 5 (11.46 2 0.01878v2) m/s2, determine her acceleration 

at point B.

A

B

18.5 m

28 m

Fig. P11.190

B

A

Fig. P11.186

A

B

50°

Fig. P11.189

C

A

B

Fig. P11.187
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11.191 Sand is discharged at A from a conveyor belt and falls onto the top 

of a stockpile at B. Knowing that the conveyor belt forms an angle 

α 5 25° with the horizontal, determine (a) the speed v0 of the belt, 

(b) the radius of curvature of the trajectory described by the sand 

at point B.

11.192 The end point B of a boom is originally 5 m from fixed point A
when the driver starts to retract the boom with a constant radial 

acceleration of r̈ 5 21.0 m/s2  and lower it with a constant angular 

acceleration θ
$

5 20.5 rad/s2. At t 5 2 s, determine (a) the velocity 

of point B, (b) the acceleration of point B, (c) the radius of curvature 

of the path.

A

B

60°

Fig. P11.192

 11.193 A telemetry system is used to quantify kinematic values of a ski 

jumper immediately before she leaves the ramp. According to 

the system r 5 500 ft, r
.

5 2105 ft/s, r̈ 5 210 ft/s2,  θ 5 25°, 

u
.

5 0.07 rad/s, u
$

5 0.06 rad/s2. Determine (a) the velocity of the 

skier immediately before she leaves the jump, (b) the acceleration of 

the skier at this instant, (c) the distance of the jump d neglecting lift 

and air resistance.

10 ft

30°

θ
d

r

Fig. P11.193

v0

α

A

B
18 ft

30 ft

Fig. P11.191
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The forces experienced by the  passengers on a roller coaster will 

 depend on whether the roller-coaster car is traveling up a hill or 

down a hill, in a straight line, or along a horizontal or vertical 

curved path. The relation existing among force, mass, and 

acceleration will be studied in this chapter.

Kinetics of Particles:
Newton’s Second Law

12
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Introduction 719

Introduction
In statics, we used Newton’s first and third laws of motion extensively to 

study bodies at rest and the forces acting upon them. We also use these 

two laws in dynamics; in fact, they are sufficient for analyzing the motion 

of bodies that have no acceleration. However, when a body is  accelerated––

that is, when the magnitude or the direction of its velocity changes––it is 

necessary to use Newton’s second law of motion to relate the motion of 

the body to the forces acting on it.

In this chapter, we discuss Newton’s second law and apply it to ana-

lyzing the motion of particles. According to the second law, if the  resultant 

of the forces acting on a particle is not zero, the particle has an acceleration 

proportional to the magnitude of the resultant and in the direction of this 

resultant force. Moreover, we use the ratio of the magnitudes of the resultant 

force and of the acceleration to define the mass of the particle. In Sec. 

12.1B, we define the linear momentum of a particle as the product L 5 mv 

of the mass m and velocity v of the particle. Then we can express Newton’s 

second law in an alternative form, relating the rate of change of the linear 

momentum to the resultant of the forces acting on that particle.

In the Sample Problems, we apply Newton’s second law to the 

 solution of engineering problems using either rectangular components, 

tangential and normal components, or radial and transverse coordinates of 

the forces and accelerations involved. Recall that we can consider an 

actual body—including bodies as large as a car, rocket, or airplane—as a 

particle for the purpose of analyzing its motion, as long as the effect of a 

rotation of the body about its center of mass can be ignored. We stress 

the need for consistent units in solving these problems, briefly reviewing 

the International System of Units (SI units) and the system of U.S. 

customary units.

The second part of this chapter is devoted to the study of the motion 

of particles under central forces. We define the angular momentum HO of a 

particle about a point O as the moment about O of the linear momentum of 

the particle: HO 5 r 3 mv. It then follows from Newton’s second law that 

the rate of change of the angular momentum HO of a particle is equal to the 

sum of the moments about O of the forces acting on that particle.

 Introduction

 12.1 NEWTON’S SECOND LAW 
AND LINEAR MOMENTUM

12.1A Newton’s Second Law of 
Motion

12.1B Linear Momentum of a 
Particle and Its Rate of 
Change

12.1C Systems of Units
12.1D Equations of Motion

 12.2 ANGULAR MOMENTUM 
AND ORBITAL MOTION

12.2A A. Angular Momentum of a 
Particle and Its Rate of 
Change

12.2B Motion Under a Central Force 
and Conservation of Angular 
Momentum

12.2C Newton’s Law of Gravitation

 12.3 APPLICATIONS OF 
CENTRAL-FORCE MOTION

12.3A Trajectory of a Particle Under 
a Central Force

12.3B Application to Space 
Mechanics

12.3C Kepler’s Laws of Planetary 
Motion

Objectives
• Explain the relationships between mass, force, and 

acceleration.

• Model physical systems by drawing complete free-
body diagrams and kinetic diagrams.

• Apply Newton's second law of motion to solve 
particle kinetics problems using different coordinate 
systems.

• Analyze central force motion problems using 
principles of angular momentum and Newton's law of 
gravitation. 
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720 Kinetics of Particles: Newton’s Second Law

We can use this form of the second law to deal with the motion of 

a particle under a central force, i.e., under a force directed toward or away 

from a fixed point O. Since such a force has zero moment about O, it 

follows that the angular momentum of the particle about O is conserved. 

This property greatly simplifies the analysis of the motion, as we show by 

solving problems involving the orbital motion of bodies under gravita-

tional attraction.

In Sec.12.3, which is optional, we present a more extensive 

 discussion of orbital motion, including several problems related to space 

mechanics.

12.1  NEWTON’S SECOND LAW 
AND LINEAR MOMENTUM

In statics, we dealt with forces acting on particles that led to a state of 

equilibrium. Now we study forces acting on particles that lead to a state 

of motion. The key relationship connecting force and motion is Newton’s 

second law.

12.1A  Newton’s Second Law 
of Motion

We can state Newton’s second law as follows:

If the resultant force acting on a particle is not zero, the particle 
has an acceleration proportional to the magnitude of the resultant 
and in the direction of this resultant force.

Newton’s second law of motion is best understood by imagining the 

following experiment: A particle is subjected to a force F1 of constant 

direction and constant magnitude F1. Under the action of that force, the 

particle moves in a straight line and in the direction of the force (Fig. 12.1a). 

By determining the position of the particle at various instants, we find that 

its acceleration has a constant magnitude a1. If we repeat the experiment 

with forces F2, F3, . . . of a different magnitude or direction (Fig. 12.1b
and c), we find each time that the particle moves in the direction of the 

force acting on it and that the magnitudes a1, a2, a3, . . . of the  accelerations 

are proportional to the magnitudes F1, F2, F3, . . . of the corresponding 

forces. Thus,

F1

a1

5
F2

a2

5
F3

a3

5 � 5 constant

The constant value obtained for the ratio of the magnitudes of the 

forces and accelerations is a characteristic of the particle under 

 consideration; it is called the mass of the particle and is denoted by m. 

When a particle of mass m is acted upon by a force F, the force F and 

the acceleration a of the particle must therefore satisfy the relation

Newton’s second law F 5 ma (12.1)F 5 ma

Fig. 12.1 Experiments show that a force 
applied to a particle gives the particle an 
acceleration proportional to the magnitude 
of the force and in the same direction as 
the force.

F1

a1

(a)

F2

a2

(b)

F3

a3

(c)
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12.1 Newton’s Second Law and Linear Momentum 721

This relation provides a complete formulation of Newton’s second law; it 

states not only that the magnitudes of F and a are proportional, but also 

(since m is a positive scalar) that the vectors F and a have the same 

 direction (Fig. 12.2). Note that Eq. (12.1) still holds when F is not con-

stant, but varies with time in magnitude or direction. The magnitudes of 

F and a remain proportional, and the two vectors have the same direction 

at any given instant. However, they are not, in general, tangent to the path 

of the particle.

When a particle is subjected simultaneously to several forces, 

Eq. (12.1) should be replaced by

Newton’s second law, 
multiple forces

 oF 5 ma (12.2)

where oF represents the sum or resultant of all the forces acting on the 

particle.

Note that the system of axes with respect to which we determine the 

acceleration a is not arbitrary. These axes must have a constant orientation 

with respect to the stars, and their origin either must be attached to the sun 

(more accurately, to the center of mass of the solar system) or move with 

a constant velocity with respect to the sun. Such a system of axes is called 

a newtonian frame of reference†. A system of axes attached to the earth 

does not constitute a newtonian frame of reference, since the earth rotates 

with respect to the stars and is accelerated with respect to the sun. However, 

in most engineering applications, we can determine the accele-ration a with 

respect to axes attached to the earth and use Eqs. (12.1) and (12.2) without 

any appreciable error. However, these equations do not hold if a represents 

a relative acceleration measured with respect to moving axes, such as axes 

attached to an accelerated car or to a rotating piece of machinery.

If the resultant oF of the forces acting on the particle is zero, it 

follows from Eq. (12.2) that the acceleration a of the particle is also zero. 

If the particle is initially at rest (v0 5 0) with respect to the newtonian 

frame of reference used, it will thus remain at rest (v 5 0). If originally 

moving with a velocity v0, the particle will maintain a constant velocity 

v 5 v0; that is, it will move with the constant speed v0 in a straight line. 

This, we recall, is the statement of Newton’s first law (Sec. 2.3B); thus, 

Newton’s first law is a particular case of Newton’s second law.

12.1B  Linear Momentum of a Particle 
and its Rate of Change 

Suppose we replace the acceleration a in Eq. (12.2) by the derivative dv/dt. 
We have

©F 5 m 

dv
dt

Since the mass m of the particle is constant, we can write this as

 ©F 5
d

dt
 (mv) (12.3)

oF 5 ma

†Stars are not actually fixed, so a more rigorous definition of a newtonian frame of reference 

(also called an inertial system) is one with respect to which Eq. (12.2) holds. 

Fig. 12.2 By Newton’s second law, the 
proportionality constant between an applied 
force and the resulting acceleration is the 
particle’s mass m.

a

m

F = ma

Photo 12.1 When the racecar accelerates 
forward, the rear tires have a friction force 
acting on them in the direction the car is 
moving.
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722 Kinetics of Particles: Newton’s Second Law

The product mv is called the linear momentum, or simply the 

momentum, of the particle. It has the same direction as the velocity of 

the particle, and its magnitude is equal to the product of the mass m and 

the speed v of the particle (Fig. 12.3). Equation (12.3) says:

The resultant of the forces acting on the particle is equal to the rate 
of change of the  linear momentum of the particle.

The second law of motion was originally stated by Newton in this form. 

Denoting the linear momentum of the particle by L, we have

Linear momentum L 5 mv (12.4)

If we denote its derivative with respect to t as 
.
L, we can write Eq. (12.3) 

in the alternative form as

Newton’s second law, 
momentum form

 oF 5 
.
L (12.5)

We assumed that the mass m of the particle is constant in Eqs. (12.3) 

through (12.5).Therefore, you should not use Equation (12.3) or (12.5) to 

solve problems involving the motion of bodies, such as rockets, that gain 

or lose mass. We will consider problems of that type in Sec. 14.3B.†

It follows from Eq. (12.3) that the rate of change of the linear 

momentum mv is zero when oF 5 0. Thus, we have the statement:

If the resultant force acting on a particle is zero, the linear 
momentum of the particle remains constant in both magnitude and 
direction. 

This is the principle of conservation of linear momentum for a 

particle.

12.1C Systems of Units
In using the fundamental equation F 5 ma, the units of force, mass, 

length, and time cannot be chosen arbitrarily. If they are, the magnitude 

of the force F required to give an acceleration a to the mass m will not
be numerically equal to the product ma; it will only be proportional to 

this product. Thus, we can choose three of the four units arbitrarily, but 

we must choose the fourth unit so that the equation F 5 ma is satisfied. 

The units are then said to form a system of consistent kinetic units.

Two systems of consistent kinetic units are currently used by 

 American engineers: the International System of Units (SI units‡) and the 

system of U.S. customary units. Both systems were discussed in detail in 

Sec. 1.3, so we describe them only briefly in this section.

International System of Units (SI Units). In this system, the 

base units are the units of length, mass, and time and are called, respec-

tively, the meter (m), the kilogram (kg), and the second (s). All three are 

L 5 mv

oF 5
.
L

†Note that Eqs. (12.3) and (12.5) do hold in relativistic mechanics, where the mass m of the 

particle is assumed to vary with the speed of the particle.

‡SI stands for Système International d’Unités (French).

Fig. 12.3 Linear momentum is the product 
of the mass m and the velocity v of a 
particle. It is a vector in the same direction as 
the velocity.

v

m
mv
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12.1 Newton’s Second Law and Linear Momentum 723

arbitrarily defined (Sec. 1.3). The unit of force is a derived unit. It is called 

the newton (N) and is defined as the force that gives an acceleration of 

1 m/s2 to a mass of 1 kg (Fig. 12.4). From Eq. (12.1), we have

1 N 5 (1 kg)(1 m/s2) 5 1 kg?m/s2

The SI units are said to form an absolute system of units. This means that 

the three base units chosen are independent of the location where measure-

ments are made. The meter, the kilogram, and the second may be used 

anywhere on the earth; they may even be used on another planet. They 

always have the same meaning.

The weight W of a body, or the force of gravity exerted on that body, 

should, like any other force, be expressed in newtons. A body subjected 

only to its own weight acquires an acceleration equal to the acceleration 

due to gravity g. (Be careful using the term acceleration due to gravity, 
since the only time an object accelerates with a magnitude g is during 

free-fall in the absence of drag.) It follows from Newton’s second law that 

the magnitude W of the weight of a body of mass m is

 W 5 mg (12.6)

Recall that g 5 9.81 m/s2, so the weight of a body of mass 1 kg 

(Fig. 12.5) is

W 5 (1 kg)(9.81 m/s2) 5 9.81 N

This value would be much less on the moon, where the acceleration due 

to gravity is 1.6249 m/s2.

Multiples and submultiples of the units of length, mass, and force 

are frequently used in engineering practice. They are, respectively, the 

kilometer (km) and the millimeter (mm); the megagram (Mg, which is also 

called the metric ton) and the gram (g); and the kilonewton (kN). By 

definition,

1 km 5 1000 m  1 mm 5 0.001 m

1 Mg 5 1000 kg   1 g 5 0.001 kg

1 kN 5 1000 N

You can convert these units to meters, kilograms, and newtons, respec-

tively, simply by moving the decimal point three places to the right or to 

the left.

Units other than those of mass, length, and time all can be expressed 

in terms of these three base units. For example, we can obtain the unit of 

linear momentum by recalling the definition and writing

mv 5 (kg)(m/s) 5 kg?m/s

U.S. Customary Units. Most practicing American engineers still 

commonly use a system in which the base units are those of length, force, 

and time. These units are, respectively, the foot (ft), the pound (lb), and the 

second (s). The second is the same as the corresponding SI unit. The foot is 

equal to 0.3048 m. The pound is defined as the weight of a platinum stan-

dard, called the standard pound,which is kept at the National Institute of 

Standards and Technology outside Washington, D.C. The mass of this 

 standard is 0.453 592 43 kg. Since the weight of a body depends upon the 

gravitational attraction of the earth, which varies with location, the standard 

Fig. 12.4 A force of 1 newton gives a 
1-kilogram mass an acceleration of 1 m/s2.

a = 1 m/s2

m = 1 kg
F = 1 N

Fig. 12.5 In the SI system, a block with mass 
1 kg has a weight of 9.81 N.

a = 9.81 m/s2

m = 1 kg

W = 9.81 N
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724 Kinetics of Particles: Newton’s Second Law

pound should be placed at sea level and at a latitude of 45° to  properly define 

a force of 1 lb. Clearly, the U.S. customary units do not form an absolute 

system of units. Because of their dependence upon the earth’s gravitational 

attraction, they are said to form a gravitational system of units.

Although the standard pound also serves as the unit of mass in com-

mercial transactions in the United States, it cannot be used that way in 

engineering computations because such a unit would not be consistent 

with the base units defined in this system. Indeed, when acted upon by a 

force of 1 lb––that is, when subjected to its own weight––the standard 

pound receives the acceleration of gravity, g 5 32.2 ft/s2 (Fig. 12.6), and 

not the unit acceleration required by Eq. (12.1). The unit of mass  consistent 

with the foot, the pound, and the second is the mass that receives an 

acceleration of 1 ft/s2 when a force of 1 lb is applied to it (Fig. 12.7). This 

unit, sometimes called a slug, can be derived from the equation F 5 ma 

after substituting 1 lb and 1 ft/s2 for F and a, respectively. We have

 F 5 ma    1 lb 5 (1 slug)(1 ft/s2)

From this, we obtain

1 slug 5
1 lb

1 ft/s2
5 1 lb?s2/ft

Comparing Figs. 12.6 and 12.7, we conclude that the slug is a mass 

32.2 times larger than the mass of the standard pound. (On a horizontal 

surface, when acted on by a force of 1 pound, the motion of the larger 

mass is relatively “sluggish.”)

The fact that bodies are characterized in the U.S. customary system 

of units by their weight in pounds rather than by their mass in slugs was 

convenient in the study of statics, where we were dealing (for the most 

part) with weights and other forces and only seldom with masses.  However, 

in the study of kinetics, which involves forces, masses, and accelerations, 

we will often have to express the mass m of a body in slugs, the weight 

W of which is given in pounds. Recalling Eq. (12.6), we have

 m 5
W
g

 (12.7)

where g is the acceleration due to gravity (g 5 32.2 ft/s2).

Units other than the units of force, length, and time all can be 

expressed in terms of these three base units. For example, we can obtain 

the unit of linear momentum from its definition as

mv 5 (slug)(ft/s) 5 (lb?s2/ft)(ft/s) 5 lb?s

Conversion from One System of Units to Another. The 

conversion from U.S. customary units to SI units, and vice versa, was 

discussed in Sec. 1.4. Recall that the conversion factors obtained for the 

units of length, force, and mass are, respectively,

 Length: 1 ft 5 0.3048 m

 Force: 1 lb 5 4.448 N

 Mass: 1 slug 5 1 lb?s2/ft 5 14.59 kg

Thermodynamicists often use a unit called the pound-mass (lbm); this is 

not a unit that is consistent with Newton’s second law, and whenever we 

use pounds in dynamics, it will refer to pounds-force (lbf).

Fig. 12.6 In the U.S. customary system, a 
block with a weight of 1 lb in free fall has 
an acceleration of 32.2 ft/s2.

a = 32.2 ft/s2

m = 1 lb

F = 1 lb

Fig. 12.7 In the U.S. customary system, a 
force of 1 lb applied to a block with a mass 
of 1 slug produces an acceleration of 1 ft/s2.

a = 1 ft/s2

m = 1 slug
(= 1 lb⋅s2/ft)

F = 1 lb
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12.1 Newton’s Second Law and Linear Momentum 725

Although it cannot be used as a consistent unit of mass, the mass 

of the standard pound is, by definition,

1 pound-mass 5 0.4536 kg

This constant can be used to determine the mass in SI units (kilograms) 

of a body that has been characterized by its weight in U.S. customary 

units (pounds).

12.1D Equations of Motion
Consider a particle of mass m acted upon by several forces. Recall that 

we can express Newton’s second law by the equation

 oF 5 ma (12.2)

which relates the forces acting on the particle to the vector ma (Fig. 12.8).† 

Two of the most important tools you will use in solving dynamics 

 problems, particularly those involving Newton’s second law, are the free-

body diagram and the kinetic diagram. These diagrams will help you to 

model dynamic systems and apply appropriate equations of motion. The 

free-body diagram shown on the left side of Fig. 12.9 is no different from 

what you did in statics in Chapter 4 and consists of the following steps:

†In the 1700s, Jean-Baptiste le Rond d’Alembert expressed Newton’s second law as 

oF 2 ma 5 0 so he could solve dynamics problems using the principles of statics. The 2ma 

term has been called a fictitious inertial force, but it is important for you to realize that there 

is no such thing as inertial forces (or centrifugal forces that “push” you outward when going 

around a curve). D’Alembert’s principle (also called dynamic equilibrium) is seldom used 

in modern engineering.

Fig. 12.8 The sum of forces applied to a 
particle of mass m produces a vector ma in 
the direction of the resultant force.

= 
m m

ma

F1

F2

Fig. 12.9 Steps in drawing a free-body diagram and a kinetic 
diagram for solving dynamics problems.

=
x

y

m = 80 kg

Axes

Applied force

Free-body diagram Kinetic diagram

Dimensions

Support forces

Body Body

Body force

Inertial term

W = 785 N

F
N

30°

P

ma

Body: Define your system by isolating the body (or bodies) of 

interest. If a problem has multiple bodies (such as in Sample 

 Problems 12.3 through 12.5), you may have to draw multiple free-

body diagrams and kinetic diagrams. 

Axes: Draw an appropriate coordinate system (e.g., Cartesian, 

 normal and tangential, or radial and transverse). 

Support Forces: Replace supports or constraints with appropriate 

forces (e.g., two perpendicular forces for a pin, normal forces, 

 friction forces).
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726 Kinetics of Particles: Newton’s Second Law

Applied Forces and Body Forces: Draw any applied forces and 

body forces (also sometimes called field forces) on your diagram 

(e.g., weight, magnetic forces, a known pulling force).

Dimensions: Add any angles or distances that are important for 

solving the problem.

In statics problems, we deal with bodies in equilibrium, and the inertial 

term in Newton’s second law is zero. For dynamics problems, this is not 

the case. We utilize the kinetic diagram to visualize this term.

Body: This is the same body as in the free-body diagram; place 

this beside the free-body diagram.

Inertial terms: Draw the ma term to be consistent with the  coordinate 

system. Generally, draw this term in different  components (e.g., max 

and may or man and mat). If they are unknown  quantities, it is best to 

draw them in the positive directions as defined by your coordinates.

Drawing these two diagrams clarifies how to develop your equations 

of motion. The free-body diagram is a visual representation of the oF 

term, and the kinetic diagram is a visual representation of the ma term. 

Since Newton’s second law is a vector equation, you can use the free-body 

diagram and kinetic diagram to write oF 5 ma directly in component 

form. Examples of using these diagrams to help you write your equations 

of motion are shown in the Sample Problems, and you can get extra 

 practice by solving the Free-Body Problems 12.F1 through 12.F12. 

As mentioned, it is usually more convenient to replace Eq. (12.2) 

with equivalent equations involving scalar quantities. As we saw in 

Chapter 11, we can resolve these vectors into components using several 

different coordinate systems (e.g., Cartesian, tangential and normal, or 

radial and transverse), depending on the type of problem we are solving.

Rectangular Components. Resolving each force F and the accele-

ration a into rectangular components, we have

o(Fxi 1 Fyj 1 Fzk) 5 m(axi 1 ayj 1 azk)

It follows from this equation that

 oFx 5 max  oFy 5 may  oFz 5 maz (12.8)

Recall from Sec. 11.4C that the components of the acceleration are equal 

to the second derivatives of the coordinates of the particle. This gives us

 oFx 5 mẍ  oFy 5 mÿ  oFz 5 mz̈ (12.89)

Consider, as an example, the motion of a projectile. If we neglect 

air resistance, the only force acting on the projectile after it has been fired 

is its weight W 5 2Wj. The equations defining the motion of the  projectile 

are therefore

mẍ 5 0  mÿ 5 2W  mz̈ 5 0

and the components of the acceleration of the projectile are

ẍ 5 0  ÿ 5 2
W
m

5 2g  z̈ 5 0

where g is 9.81 m/s2 or 32.2 ft/s2. You can integrate these equations inde-

pendently, as shown in Sec. 11.4C, to obtain the velocity and displacement 

of the projectile at any instant.

Photo 12.2 Biomechanics researchers use 
video analysis and force plate measurements 
in Cartesian coordinates to analyze human 
motion.
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12.1 Newton’s Second Law and Linear Momentum 727

When a problem involves two or more bodies, you should write 

equations of motion for each of the bodies (see Sample Probs. 12.3 

through 12.5). Recall from Sec. 12.1A that all accelerations should be 

measured with respect to a newtonian frame of reference. In most 

 engineering applications, you can determine accelerations with respect to 

axes attached to the earth, but relative accelerations measured with respect 

to moving axes, such as axes attached to an accelerated body, cannot be 

substituted for a in the equations of motion.

Tangential and Normal Components. We can also resolve the 

forces and the acceleration of the particle into components along the 

 tangent to the path (in the direction of motion) and the normal (toward 

the inside of the path) (Fig. 12.10). Substituting into Eq. (12.2), we obtain 

the two scalar equations of

 oFt 5 mat  oFn 5 man (12.9)

Photo 12.3 A fighter jet making a sharp 
turn has a large normal component of 
acceleration, often equal to several g. As a 
result, the pilot experiences a large normal 
force, which in extreme cases, can cause 
blackouts.

Fig. 12.10 The net force acting on a particle moving in 
a curvilinear path can be resolved into components 
tangent to the path and normal to the path, producing 
tangential and normal components of acceleration.

=
man

ma t

n

m

t

n

m

t
ΣFn

ΣFt

Now substituting for at and an from Eqs. (11.39), we have

 oFt 5 m 

dv

dt
    oFn 5 m 

v2

ρ
 (12.99)

We can solve these equations for two unknowns.

Radial and Transverse Components. Consider a particle P, 

with polar coordinates r and θ, that moves in a plane under the action of 

several forces. Resolving the forces and the acceleration of the particle 

into radial and transverse components (Fig. 12.11) and substituting into 

Eq. (12.2), we obtain the two scalar equations of

 oFr 5 mar  oFθ 5 maθ (12.10)

Substituting for ar and aθ from Eqs. (11.45), we have

  oFr 5 m(r̈ 2 rθ
.
2)  (12.11)

  oFθ 5 m(rθ̈ 1 2r
.
θ
.
) (12.12)

We can solve these equations for two unknowns.

Fig. 12.11 Pictorial representation of Newton’s second law in 
radial and transverse components.

P

O

r
m P

O

r
m=

mar

ma
ΣF ΣFrq

q

q q Photo 12.4 The forces on the specimens 
used in a high speed centrifuge can be 
described in terms of radial and transverse 
components.

bee87342_ch12_718-794.indd   727bee87342_ch12_718-794.indd   727 11/26/14   11:44 AM11/26/14   11:44 AM

UPLOADED BY AHMAD T JUNDI



728 Kinetics of Particles: Newton’s Second Law

Sample Problem 12.1

A 200-lb block rests on a horizontal plane. Find the magnitude of the force P 

required to give the block an acceleration of 10 ft/s2 to the right. The coef-

ficient of kinetic friction between the block and the plane is μk 5 0.25.

STRATEGY: You are given an acceleration and want to find the applied 

force. Therefore, you need to use Newton’s second law.

MODELING: Pick the block as your system and model it as a particle. 

Drawing its free-body and kinetic diagrams, you obtain Fig. 1.

ANALYSIS: Before using Fig. 1, it is convenient to determine the mass 

of the object.

m 5
W
g

5
200 lb

32.2 ft/s2 
5 6.21 lb?s2/ft

From Fig. 1, it is clear that the forces acting on the block shown in the 

free-body diagram need to be equal to the vector ma, as shown in the 

kinetic diagram. Using these diagrams, you can write

y
1  oFx 5 ma:  P cos 30° 2 0.25N 5 (6.21 lb?s2/ft)(10 ft/s2)

 P cos 30° 2 0.25N 5 62.1 lb (1)
1xoFy 5 0:   N 2 P sin 30° 2 200 lb 5 0 (2)

Solving Eq. (2) for N and substituting the result into Eq. (1), you obtain

N 5 P sin 30° 1 200 lb

 P cos 30° 2 0.25(P sin 30° 1 200 lb) 5 62.1 lb P 5 151 lb b

REFLECT and THINK: When you begin pushing on an object, you 

first have to overcome the static friction force (F 5 μsN ) before the object 

will move. Also note that the downward component of force P increases 

the normal force N, which in turn increases the friction force F that you 

must overcome.

P

30°

200 lb

Fig. 1 Free-body diagram and kinetic 
diagram for the block.

=

P
30°

N
F

W = 200 lb

ma

m = 6.21 lb⋅s2/ft

y

x

Sample Problem 12.2

A 0.5-kg fragile glass vase is dropped onto a thick pad that has a force-

deflection relationship as shown. Knowing that the vase has a speed of 

3 m/s when it first contacts the pad, determine the maximum downward 

displacement of the vase.

STRATEGY: Use Newton’s second law to find the acceleration of the 

vase and then integrate it to find the displacement.

250

200

100

150

50

0
0 10 20

Deflection (mm)

F
or

ce
 (

N
)

30
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12.1 Newton’s Second Law and Linear Momentum 729

MODELING: Choose the vase to be your system and model it as a 

particle. Because the force is a linear function of displacement, you can 

write the force acting on the vase as

FP 5  

200 N

0.02 m
  y 5 (10 000 N/m)x

Draw its free-body diagram and kinetic diagram (Fig. 1).

W

FP = 10 000x

ma

x

=

Fig. 1 Free-body diagram 
and kinetic diagram for 
the vase.

ANALYSIS: You can obtain a scalar equation by applying Newton’s 

second law in the vertical direction. Thus, 

1woFx 5 ma  W 2 (10 000)x 5 ma

Substituting in values and solving for a gives

a 5 9.81 2 20 000x

Maximum Displacement. Now that you have the acceleration 

as a function of displacement, you need to use the basic kinematic 

relationships to find the maximum compression of the pad.  Substituting 

a 5 9.81 2 20 000x into a 5 v dv/dx gives

a 5 9.81 2 20 000x 5
v dv

dx

Separating variables and integrating, you find

v dv 5 19.81 2 20 000x2dx ¡ #
0

v0

v dv 5 #
xmax

0

19.81 2 20 000x2dx

 0 2
1

2
 v2

0 5 9.81xmax 2 10 000x2
max (1)

Substituting v0 5 3 m/s into Eq. (1) and solving for xmax using the quadratic 

formula gives xmax 5 0.0217 m.

xmax 5 21.7 mm b

REFLECT and THINK: A distance of 21.7 mm indicates that the pad 

must be relatively thick. For a real pad, the assumption that it acts as a 

linear spring may not be an accurate model. For the numbers given in this 

problem, the maximum acceleration the vase experiences is 

a 5 9.812(20 000)(0.0217) 5 2207.3 m/s2 or about 21 g’s

x

3 m/s.

bee87342_ch12_718-794.indd   729bee87342_ch12_718-794.indd   729 11/26/14   11:44 AM11/26/14   11:44 AM

UPLOADED BY AHMAD T JUNDI



730 Kinetics of Particles: Newton’s Second Law

Sample Problem 12.3

The two blocks shown start from rest. The horizontal plane and the pulley 

are frictionless, and the pulley is assumed to be of negligible mass. Deter-

mine the acceleration of each block and the tension in each cord.

STRATEGY: You are interested in finding the tension in the rope and 

the acceleration of the two blocks, so use Newton’s second law. The two 

blocks are connected by a cable, indicating that you need to relate their 

accelerations using the techniques discussed in Chapter 11 for objects with 

dependent motion.

MODELING: Treat both blocks as particles and assume that the pulley 

is massless and frictionless. Since there are two masses, you need two 

systems: block A by itself and block B by itself. The free-body and kinetic 

diagrams for these objects are shown in Figs. 1 and 2. To help determine 

the forces acting on block B, you can also isolate the massless pulley C 

as a system (Fig. 3). 

ANALYSIS: You can start with either kinetics or kinematics. The key 

is to make sure you keep track of your equations and unknowns.

Kinetics. Apply Newton’s second law successively to block A, block B, 

and pulley C.

Block A. Denote the tension in cord ACD by T1 (Fig. 1). Then you have

 y
1  oFx 5 mAaA:     T1 5 100aA (1)

Block B. Observe that the weight of block B is

WB 5 mBg 5 (300 kg)(9.81 m/s2) 5 2940 N

Denote the tension in cord BC by T2 (Fig. 2). Then

 1woFy 5 mBaB:     2940 2 T2 5 300aB (2)

Pulley C. Assuming mC is zero, you have (Fig. 3)

 1woFy 5 mC aC 5 0:     T2 2 2T1 5 0 (3)

At this point, you have three equations, (1), (2), and (3), and four unknowns, 

T1, T2, aB, and aA. Therefore, you need one more equation, which you can 

get from kinematics.

Kinematics. It is important to make sure that the directions you 

assumed for the kinetic diagrams are consistent with the kinematic 

 analysis. Note that if block A moves through a distance xA to the right, 

block B moves down through a distance

xB 5
1

2
 xA

Differentiating twice with respect to t, you have

 aB 5
1

2
 aA (4)

100 kg

300 kg

A

B

D

C

=A

WA

T1

N

mAaA

mA = 100 kg

y
x

Fig. 1 Free-body diagram and kinetic 
diagram for A.

=B

WB = 2940 N

T2

mBaB

mB = 300 kg

y
x

Fig. 2 Free-body diagram and kinetic 
diagram for B.

Fig. 3 Free-body diagram and kinetic 
diagram for the pulley.

=
T1 T1

T2

 0C
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12.1 Newton’s Second Law and Linear Momentum 731

You now have four equations and four unknowns, so you can solve this 

problem. You can do this using a computer, a calculator, or by hand. To 

solve these equations by hand, you can substitute for aB from Eq. (4) into 

Eq. (2) for

2940 2 T2 5 300(
1
2aA)

 T2 5 2940 2 150aA (5)

Now substitute for T1 and T2 from Eqs. (1) and (5), respectively, into 

Eq. (3).

 2940 2 150aA 2 2(100aA) 5 0

 2940 2 350aA 5 0 aA 5 8.40 m/s2 b

Then substitute the value obtained for aA into Eqs. (4) and (1).

 aB 5 
1
2 aA 5 

1
2(8.40 m/s2) aB 5 4.20 m/s2 b

 T1 5 100aA 5 (100 kg)(8.40 m/s2) T1 5 840 N b

Recalling Eq. (3), you have

 T2 5 2T1  T2 5 2(840 N) T2 5 1680 N b

REFLECT and THINK: Note that the value obtained for T2 is not equal 

to the weight of block B. Rather than choosing B and the pulley as sepa-

rate systems, you could have chosen the system to be B and the  pulley. 

In this case, T2 would have been an internal force.

Sample Problem 12.4

Collar A has a ramp that is welded to it and a force P 5 5 lb applied as 

shown. Collar A and the ramp weigh 3 lb, and block B weighs 0.8 lb. 

Neglecting friction, determine the tension in the cable.

STRATEGY: The principle you need to use is Newton’s second law. 

Since a block is sliding down an incline and a cable is connecting A and B, 

you also need to use relative motion and dependent motion.

MODELING: Model A and B as particles and assume all surfaces are 

smooth. As usual, start by choosing a system and then drawing a free-body 

diagram and a kinetic diagram. This problem has two systems, and you 

need to be careful with how you define them. The easiest systems to use 

are (a) collar A with its pulley and the ramp welded to it (system 1) and 

(b) block B and the pulley attached to it (system 2), as shown in Fig. 1. 

The free-body and kinetic diagrams for system 1 are shown in Fig. 2. The 

free-body and kinetic diagrams for B are a little trickier, because you don’t 

know the direction of the acceleration of B. 
(continued)

B

A

q = 50°
P
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732 Kinetics of Particles: Newton’s Second Law

Kinematics for Block B. Express the acceleration aB of block B as the 

sum of the acceleration of A and the acceleration of B relative to A. Hence,

aB 5 aA 1 aB/A

Here aB/A is directed along the inclined surface of the wedge. Now you 

can draw the appropriate diagrams (Fig. 3). Note that you do not need to 

use the same x–y coordinate system for each mass, since these directions 

are simply used for obtaining the scalar equations.

A

θ = 50°

y

x

T

T
T

P

WA

NA

NB

A

θ = 50°mAaA

=

Fig. 2 Free-body diagram and kinetic diagram for system 1.

NB WB mBaB/AmBaA

y

x

=B B

T

T

Fig. 3 Free-body diagram and kinetic diagram for B.

ANALYSIS: You can obtain a scalar equation by applying Newton’s 

second law to each of these systems.

a. System 1:

y
1  oFx 5 mAaAx

 NA 2 NB cos 50° 1 2T cos 40° 5 0 (1)

1↑oFy 5 mAaAy
 2WA 1 P 1 T 2 2T sin 40° 2 NB sin 50° 5 2mAaA (2)

b. Block B:

1R oFx 5 mBaBx
 22T 1 WB sin 40° 5 mBaB/A 1 mBaA sin 40° (3)

1Q oFy 5 mBaBy
 NB 2 WB cos 40° 5 2mBaA cos 40° (4)

You now have four equations and five unknowns (T, NA, NB, aA, and aB/A), 

so you need one more equation. The motion of A and B are related because 

they are connected by a cable.

Constraint Equations. Define position vectors as shown in Fig. 4. 

Note that the positive directions for the position vectors for A and B are 

B

A

θ = 50°

System 1

System 2

Fig. 1 System boundaries.
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12.1 Newton’s Second Law and Linear Momentum 733

Sample Problem 12.5

The 12-lb block B starts from rest and slides on the 30-lb wedge A, which 

is supported by a horizontal surface. Neglecting friction, determine (a) the 

acceleration of the wedge, (b) the acceleration of the block relative to 

the wedge.

STRATEGY: You are given the forces (weights) of the two objects and 

want to find their accelerations. You can use Newton’s second law, but 

you have to take into account relative motion as well.

MODELING: Treat both objects as particles. Since you have two objects, 

you will need two systems: wedge A and block B. In order to draw the 

kinetic diagrams for each of these systems, you need to know the direction 

of the accelerations. Therefore, before drawing the free-body and kinetic 

diagrams, look at the kinematics.

Kinematics. First examine the acceleration of the wedge and the 

 acceleration of the block.

Wedge A. Since the wedge is constrained to move on the horizontal 

surface, its acceleration aA is horizontal (Fig. 1). Assume that it is directed 

to the right.
(continued)

30°
A

B

Fig. 1 Acceleration 
of A.

A
aA

defined from the kinetic diagrams in Figs. 2 and 3. Assuming the cable 

is inextensible, you can write the lengths in terms of the coordinates and 

then differentiate.

Constraint equation for the cable: xA 1 2xB/A 5 constant

Differentiating this twice gives

 aA 5 22aB/A (5)

You now have five equations and five unknowns, so all that remains is to 

substitute the known values and solve for the unknowns. The results are 

NA 5 20.1281 lb, NB 5 0.869 lb, T 5 0.281 lb, aA 5213.46 ft/s2, and 

aB/A 5 6.73 ft/s2.

T 5 0.281 lb b 

REFLECT and THINK: In this problem, we focused on the problem 

formulation and assumed that you can solve the resulting equations either 

by hand or by using a calculator/computer. It is important to note that you 

are given the weights of A and B, so you need to calculate the masses in 

slugs using m 5 W/g. The solution required multiple systems and multiple 

concepts, including Newton’s second law, relative motion, and dependent 

motion. If friction occurred between B and the ramp, you would first need 

to determine whether or not the system would move under the applied 

force by assuming that it does not move and calculating the friction force. 

Then you would compare this force to the maximum allowable force μsN. 

B

A

θ = 50°

xA

xB/A

Fig. 4 Position vectors for 
dependent motion.

bee87342_ch12_718-794.indd   733bee87342_ch12_718-794.indd   733 11/26/14   11:44 AM11/26/14   11:44 AM

UPLOADED BY AHMAD T JUNDI



734 Kinetics of Particles: Newton’s Second Law

Block B. You can express the acceleration aB of block B as the sum of 

the acceleration of A and the acceleration of B relative to A (Fig. 2), so

aB 5 aA 1 aB/A

Here aB/A is directed along the inclined surface of the wedge. Now you 

can draw the appropriate diagrams. The free-body diagrams and kinetic 

diagrams for A and B are shown in Figs. 3 and 4, respectively. The forces 

exerted by the block and the horizontal surface on wedge A are  represented 

by N1 and N2, respectively.

ANALYSIS: 

Kinetics. Recall that Figs. 3 and 4 are visual representations of  Newton’s 

second law. Therefore, you can use them to obtain scalar equations.

Wedge A. For Wedge A, the positive x-direction is defined to be to 

the right. Applying Newton’s second law in the x-direction gives 

y
1  oFx 5 mAaA:     N1 sin 30° 5 mAaA

 0.5N1 5 (WA/g)aA (1)

Block B. Using the coordinate axes shown in Fig. 4 and resolving aB 

into its components aA and aB/A, you have

1Q  oFx 5 mBax:    2WB sin 30° 5 mBaA cos 30° 2 mBaB/A

 2WB sin 30° 5 (WB/g)(aA cos 30° 2 aB/A)

    aB/A 5 aA cos 30° 1 g sin 30° (2)
1a  oFy 5 mBay:   N1 2 WB cos 30° 5 2mBaA sin 30°

 N1 2 WB cos 30° 5 2(WB/g)aA sin 30° (3)
You now have three equations, (1), (2), and (3), and three unknowns, N1, aA, 

and aB/A, so you can solve these with your calculator or by hand as shown 

here.

a. Acceleration of Wedge A. Substitute for N1 from Eq. (1) into 

Eq. (3).

2(WA/g)aA 2 WB cos 30° 5 2(WB/g)aA sin 30°

Then solve for aA and substitute the numerical data.

aA 5
W B cos 30°

2W A 1 W B sin 30°
 g 5

(12 lb) cos 30°

2(30 lb) 1 (12 lb) sin 30°
 (32.2 ft/s2)

 aA 5 15.07 ft/s2 aA 5 5.07 ft/s2 
y b

b. Acceleration of Block B Relative to A. Now substitute the 

value obtained for aA into Eq. (2).

aB/A 5 (5.07 ft/s2) cos 30° 1 (32.2 ft/s2) sin 30°

 aB/A 5 120.5 ft/s2 aB/A 5 20.5 ft/s2 d30° b

REFLECT and THINK: Many students are tempted to draw the 

acceleration of block B down the incline in the kinetic diagram. It is 

important to recognize that this is the direction of the relative acceleration. 

Rather than the kinetic diagram you used for block B, you could have 

simply put unknown accelerations in the x and y directions and then used 

your relative motion equation to obtain more scalar equations.

Fig. 2 Acceleration 
of B.

30°

B aA

Fig. 3 Free-body diagram and kinetic 
diagram for A.

=30° WA

N1

N2

mAaA

y

x

Fig. 4 Free-body diagram and kinetic 
diagram for B.

=
30°

30°

WB

N1

mBaA

mBaB/A

y y

x x
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12.1 Newton’s Second Law and Linear Momentum 735

Sample Problem 12.6

The bob of a 2-m pendulum describes an arc of a circle in a vertical plane. 

If the tension in the cord is 2.5 times the weight of the bob for the  position 

shown, find the velocity and the acceleration of the bob in that position.

STRATEGY: The most direct approach is to use Newton’s law with 

tangential and normal components.

MODELING: Choose the bob as your system; if its radius is small, you 

can model it as a particle. Draw the free-body and kinetic diagrams for 

the bob knowing that the weight of the bob is W 5 mg; the tension in the 

cord is 2.5mg. The normal acceleration an is directed toward O, and you 

can assume that at is in the direction shown in Fig. 1.

ANALYSIS: You can obtain scalar equations by applying Newton’s 

 second law in the normal and tangential directions. Hence,

 1b  oFt 5 mat:    mg sin 30° 5 mat

 at 5 g sin 30° 5 14.90 m/s2 at 5 4.90 m/s2b b

  1a   oFn 5 man:   2.5mg 2 mg cos 30° 5 man

 an 5 1.634g 5 116.03 m/s2  an 5 16.03 m/s2  a b

Since an 5 v2/ρ, you have v2 5 ρan 5 (2 m)(16.03 m/s2). Thus,

 v 5 65.66 m/s  v 5 5.66 m/s
G
 (up or down) b

REFLECT and THINK: If you look at these equations for an angle of 

zero instead of 30°, you will see that when the bob is straight below 

point O, the tangential acceleration is zero, and the velocity is a maximum. 

The normal acceleration is not zero because the bob has a velocity at this 

point.

30°
2 m

O

m

=
T = 2.5 mg

W = mg

man

n

t

mat

30°

Fig. 1 Free-body diagram and 
kinetic diagram for the bob.

Sample Problem 12.7

Determine the rated speed of a highway curve with a radius of 

ρ 5 400 ft banked through an angle θ 5 18°. The rated speed of a banked 

highway curve is the speed at which a car should travel to have no lateral 

friction force exerted on its wheels.

STRATEGY: You are given information about the lateral friction force––

that is, it is equal to zero––so use Newton’s second law. Use normal and 

tangential components, since the car is traveling in a curved path and the 

problem involves speed and a radius of curvature.

MODELING: Choose the car to be the system. Assuming you can 

neglect the rotation of the car about its center of mass, treat it as a particle. 

(continued)
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736 Kinetics of Particles: Newton’s Second Law

Sample Problem 12.8

Two wires AC and BC are tied at C to a sphere that revolves at the constant 

speed v in the horizontal circle shown. Knowing that the wires will break 

if their tension exceeds 15 lb, determine the range of values of v for which 

both wires remain taut and the wires do not break.

STRATEGY: You are given information about the forces in the wires, 

so use Newton’s second law. The sphere is  moving along a curved path, 

so use normal and tangential coordinates.

MODELING: Choose the sphere for the system and assume you can 

treat it as a particle. Draw the free-body and kinetic diagrams as shown 

in Fig. 1. The tensions act in the direction of the wires, and the normal 

direction is toward the center of the circular path. 

The car travels in a horizontal circular path with a radius of ρ. The normal 

component an of the acceleration is directed toward the center of the path, 

as shown in the kinetic diagram (Fig. 1); its magnitude is an 5 v2/ρ, where 

v is the speed of the car in ft/s. The mass m of the car is W/g, where W 

is the weight of the car. Since no lateral friction force is exerted on the 

car, the reaction R of the road is perpendicular to the roadway, as shown 

in the free-body diagram (Fig. 1).

ANALYSIS: You can obtain scalar equations by applying Newton’s 

 second law in the vertical and normal directions. Thus,

1xoFy 5 0: R cos θ 2 W 5 0 
  

R 5
W

cosθ
 (1)

   z1  oFn 5 man:
 

R sin θ 5
W
g

 an
 

(2)

Substituting R from Eq. (1) into Eq. (2), and recalling that an 5 v2/ρ, you 

obtain

W

 cos θ
 sin θ 5

W
g

 
v2

ρ
   v2 5 g ρ tan θ

Finally, substituting ρ 5 400 ft and θ 5 18° into this equation, you get 

v2 5 (32.2 ft/s2)(400 ft) tan 18°. Hence,

 v 5 64.7 ft/s v 5 44.1 mi/h b

REFLECT and THINK: For a highway curve, this seems like a reason-

able speed for avoiding a spin-out. For this problem, the tangential direc-

tion is into the page; since you were not asked about forces or accelerations 

in this direction, you did not need to analyze motion in the tangential 

direction. If the roadway were banked at a larger angle, would the rated 

speed be larger or smaller than this calculated value?

n

y

W

R

man

 = 18° 90°

 = 18°

 = 18°

=

q

q

q

Fig. 1 Free-body diagram and kinetic 
diagram of the car.

30°

6 lb

A

C

B

45°

3 ft
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12.1 Newton’s Second Law and Linear Momentum 737

ANALYSIS: You can obtain a scalar equation by applying Newton’s 

second law in the normal and vertical directions. Thus, 

1← oFn 5 man TAC  cos 60° 1 TBC cos 45° 5 man 5 m 

v2

ρ
 (1)

1↑oFy 5 may 2W 1 TAC  sin 60° 2 TBC sin 45° 5 0 (2)

where m 5 W/g 5 6 lb/(32.2 ft/s2) 5 0.1863 lb?s2/ft and ρ 5 3 ft. In these 

two equations, you have three unknowns, TAC, TBC, and v, so you need a 

third equation. The problem statement indicates that you want the range 

of speeds when the both wires remain taut (that is, the tension is positive) 

and that this tension must be less than 15 lb. To find this range, first set 

each tension equal to zero and solve the resulting set of equations. 

For TAC 5 0, you find v 5 9.83 ft/s and TBC 5 28.485 lb, which is 

impossible for a wire.

For TBC 5 0, you find v 5 7.468 ft/s and TAC 5 6.928 lb.

Thus, the minimum speed is 7.47 ft/s. Now set the tensions equal to 

15 lb to find the maximum speed.

For TAC 5 15 lb, you find v 5 15.29 ft/s and TBC 5 9.886 lb.

For TBC 5 15 lb, you find v 5 18.03 ft/s and TAC 5 19.18 lb.

Therefore, the maximum speed is 15.29 ft/s. Combining these results 

gives you

7.47 ft/s # v # 15.29 ft/s b

REFLECT and THINK: In this problem, you needed to use the 

 information in the problem statement to obtain additional equations so that 

you could determine the range of speeds. Another way to look at the solu-

tion is to solve Eqs. (1) and (2) for TAC and TBC in terms of v and to plot 

these as shown in Fig. 2. It is easy to see from this graph that TAC deter-

mines the maximum speed and TBC determines the minimum speed if both 

wires are to remain taut and also have tensions less than 15 lb.

C60°

45°

TAC

TBC

man

W

C

y

n

=
Fig. 1 Free-body diagram and 
kinetic diagram for the sphere.

20 TAC

TBC

10

5

15

0

−5

−10

50 10

n (ft/s)

F
or

ce
 (

lb
)

15 20

Fig. 2 Tension in cables as a function 
of speed.

Sample Problem 12.9

A 0.5-kg collar is attached to a spring and slides without friction 

along a circular rod in a vertical plane. The spring has an unde-

formed length of 150 mm and a constant k 5 200 N/m. Knowing 

that the collar has a speed of 3 m/s as it passes through point B, 

determine the tangential acceleration of the collar and the force of 

the rod on the collar at this instant.

STRATEGY: This problem deals with forces and accelerations, so 

you need to use Newton’s second law. The collar moves along a 

curved path, so you should use normal and tangential coordinates.

(continued)

A

B

C

D

O
125 mm

175 mm
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738 Kinetics of Particles: Newton’s Second Law

MODELING: Choose the collar as your system and assume you can 

treat it as a particle. Draw the free-body and kinetic diagrams as shown 

in Fig. 1. The spring force acts in the direction of the spring, and the force 

is drawn assuming that the spring is stretched and not compressed. Check 

this using geometry.

 sin α 5
125 mm

300 mm
5 0.4167 y  α 5  24.62°

 LBD 5 2(300 mm)2 1 (125 mm)2 5 325 mm

Thus,when the collar is at B, the spring is extended as x 5 LBD 2 L0 5 

325 mm 2 150 mm 5 175 mm.

ANALYSIS: You can obtain scalar equations by applying Newton’s 

 second law in the normal and tangential directions. Hence,

   1↑oFn 5 man kx sin α 1 N 2 mg 5 man 5 m 

v2

r
 (1)

       z1 oFt 5 mat Fx cos α 5 mat (2)

You now have two equations (1) and (2) and two unknown at and N. You 

can solve for these by hand or using your calculator/computer. You can 

solve for the normal force in Eq. (1) as

N 5 mg 1 m 

v2

r
2 kx cos α

Substituting values gives

N 5 10.5 kg219.81 m/s22 1 10.5 kg2 13 m/s22
0.125 m

 21200 N/m210.175 m2  sin 124.62°2
N 5 26.3 N b

at 5
Fx cos α

m
5

(200 N/m)(0.175) cos (24.62°)

0.5 kg

at 5 63.6 m/s2
 b

REFLECT and THINK: How would this problem have changed if you 

had been told friction was acting between the rod and the collar? You would 

have had one additional term in your free-body diagram, μkN, in the  direction 

opposite to the velocity. Thus, you would need to be told the direction the 

collar was moving as well as the coefficient of kinetic friction.

Sample Problem 12.10

A block B with a mass m can slide freely on a frictionless arm OA that 

rotates in a horizontal plane at a constant rate θ̇0. Knowing that B is 

released at a distance r0 from O, express as a function of r, (a) the 

 component vr of the velocity of B along OA, (b) the magnitude of the 

horizontal force F exerted on B by the arm OA.

STRATEGY: You want to find a force, so use Newton’s second law. The 

radial distance r of the mass is changing, as is the angular displacement 

θ, so use radial and transverse coordinates.

q

vr
r

B

A

O

q    q⋅     ⋅
0=

N

mg
Fs = kx man

mat

n

t
α =

Fig. 1 Free-body diagram and 
kinetic diagram for the collar.
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12.1 Newton’s Second Law and Linear Momentum 739

MODELING: Choose block B as your system and assume you can 

model it as a particle. Since all other forces are perpendicular to the plane 

of the figure, the only force shown acting on B is the force F perpendicular 

to OA. Draw free-body and kinetic diagrams for block B as shown in 

Fig. 1.

ANALYSIS: 

Equations of Motion. You can obtain scalar equations by applying 

Newton’s second law in the radial and transverse directions. Hence,

1Q oFr 5 mar: 0 5 m(r̈ 2 rθ̇
2) (1)

 1a oFθ 5 maθ: F 5 m(r θ̈ 1 2ṙθ̇) (2)

a. Component vr of Velocity. Since vr 5 ṙ , you have

r̈ 5 v
.

r 5
dvr

dt
5

dvr

dr
 
dr

dt
5 vr 

dvr

dr

After using Eq. (1) to obtain r̈ 5 r θ̇
2 and recalling that θ̇  5 θ̇0, you can 

separate the variables to obtain

vr
 dvr 5  θ̇

2
0 r dr

Multiply by 2 and integrate from 0 to vr and from r0 to r. The result is

 vr
2 5  θ̇2

0(r
2 2 r 2

0) vr 5  θ̇0(r
2 2 r2

0)
1/2 b

b. Horizontal Force F. Set θ̇  5 θ̇0, θ̈ 5 0, and ṙ  5 vr in Eq. (2). 

Then substitute for vr the expression obtained in part a. The result is

 F 5 2m θ̇0(r
2 2 r2

0)
1/2

θ̇0 F 5 2m θ̇
2
0(r

2 2 r 2
0)

1/2 b

REFLECT and THINK: Introducing radial and transverse components 

of force and acceleration involves using components of velocity as well 

in the computations. But this is still much simpler and more direct than 

trying to use other coordinate systems. Even though the radial acceleration 

is zero, the block accelerates relative to the rod with acceleration r̈.

Sample Problem 12.11

NASA flies a reduced-gravity aircraft (affectionately known as the Vomit 

Comet) in an elliptic flight to train astronauts in a microgravity  environment. 

The plane is being tracked by radar located at O. When the plane is near 

the bottom of its trajectory, as shown, values from the radar tracking 

 station are ṙ  5 120 m/s, θ̇  5 20.900 rad/s, r̈ 5 34.8 m/s2, and 

θ̈ 5 0.0156 rad/s2. At the instant shown, determine the force exerted on 

the 80-kg pilot by his seat.

STRATEGY: You want to find the force the pilot experiences at this 

instant and you can calculate the accelerations, so you should use Newton’s 

second law. Since you know that the radial distance and the angle are 

changing with time, use radial and transverse components.

(continued)

Fig. 1 Free-body diagram and kinetic 
diagram for the block.

θ

ma

mar

O

F

=
θ

600 m

O
800 m

q

r
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740 Kinetics of Particles: Newton’s Second Law

MODELING: Choosing the pilot as the system, draw the free-body and 

kinetic diagrams as shown in Fig. 1. You could choose to put the forces 

and the pilot in the r and θ direction or the x and y direction (we chose 

Fx and Fy to represent the forces from the seat back and bottom, 

respectively).

Fx

Fy

maθ

mg

marrθ θ

=
y

x

θ

Fig. 1

ANALYSIS: Before you apply Newton’s second law, determine r and θ 

from the geometry.

r 5 28002 1 6002 5 1000 m  θ 5  tan 
21(600/800) 5 36.87°

Kinematics. Determine the components of the accelerations as

   ar 5 r̈ 2 rθ̇
2

 5 34.8 m/s2 2 (100 m)(20.090 rad/s)2 5 26.7 m/s2

aθ 5 rθ̈ 1 2ṙ θ̇  5 (1000 m)(0.0156 rad/s2) 1 2(120 m/s)(20.090 rad/s)

 5 26.00 m/s2

Kinetics. Obtain scalar equations by applying Newton’s second law in 

the horizontal and vertical directions. Thus,

 y1  oFx 5 max Fx 5 mar cos θ 2 maθ sin θ (1)

1  ↑oFy 5 may Fy 2 mg 5 mar sin θ 1 maθ cos θ  (2)

You have two equations, (1) and (2), and two unknowns, Fx and Fy. 

 Substituting the known values into Eqs. (1) and (2) gives

Fx 5 (80 kg)(26.7 m/s2) cos 36.87° 2 (80 kg)(26.00 m/s2) sin 36.87°

  Fx 5 1997 N y b

 Fy 5 180 kg2 19.81 m/s22 1 180kg2 126.7 m/s22sin36.87° 1

 180 kg2 126.00 m/s22  cos 36.87°

  Fy 5 1682 Nx b

REFLECT and THINK: These forces correspond to a forward  acceleration 

of 2.54 g and a vertical acceleration of 2.14 g.  Although this is a bit high 

for a passenger aircraft, it is within the flight characteristics for the Vomit 

Comet.  If you had been asked to determine whether the plane was speeding 

up or slowing down, you would need to find the component of the 

acceleration in the tangential direction, which is defined by the direction 

of the velocity vector. 
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741 741

In the problems for this section, you will apply Newton’s second law of motion, 

oF 5 ma, to relate the forces acting on a particle to its motion.

1. Writing the equations of motion. When applying Newton’s second law to the 

types of motion discussed in this section, you will find it most convenient to express 

the vectors F and a in terms of either their rectangular components, their tangential 

and normal components, or their radial and transverse components.

 a. When using rectangular components [Sample Probs. 12.1 through 12.5],

recall from Sec. 11.4C the expressions found for ax, ay, and az. Then you can write

oFx 5 mẍ  oFy 5 mÿ  oFz 5 mz̈

 b. When using tangential and normal components [Sample Probs. 12.6 

and 12.9], recall from Sec. 11.5A the expressions found for at and an. Then you 

can write

oFt 5 m 

dv

dt
   oFn 5 m 

v2

r

 c. When using radial and transverse components [Sample Probs. 12.10 

and 12.11], recall from Sec. 11.5B the expressions found for ar and aθ. Then you can 

write

oFr 5 m1 r̈ 2 rθ
.

22  oFθ 5 m1rθ
$

1 2r
.
θ
.2

2. Drawing a free-body diagram and a kinetic diagram. Drawing a free-body 

diagram showing the applied forces and a kinetic diagram showing the vector ma or 

its components will provide you with a pictorial representation of Newton’s second 

law [Sample Probs. 12.1 through 12.11]. These diagrams will be of great help to you 

when writing the equations of motion. Note that when a problem involves two or 

more bodies, it is usually best to consider each body separately.

3. Applying Newton’s second law. As we observed in Sec. 12.1A, the acceleration 

used in the equation oF 5 ma always should be the absolute acceleration of the 

particle (that is, it should be measured with respect to a newtonian frame of reference). 

Also, if the sense of the acceleration a is unknown or is not easily deduced, assume 

an arbitrary sense for a (usually the positive direction of a coordinate axis), and then 

let the solution provide the correct sense. Finally, note how the solutions of Sample 

Probs. 12.3 through 12.5 were divided into a kinematics portion and a kinetics portion, 

and how in Sample Probs. 12.4 and 12.5 we used two systems of coordinate axes to 

simplify the equations of motion.

SOLVING PROBLEMS 
ON YOUR OWN
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742

4. When a problem involves dry friction, be sure to review the relevant section of 

Statics [Sec. 8.1] before attempting to solve that problem. In particular, you should 

know when to use each of the equations F 5 μs N and F 5 μk N. You should also 

recognize that if the motion of a system is not specified, it is necessary first to 

assume a possible motion and then to check the validity of that assumption. For 

example, you can assume that the motion is impending, then check to see if the 

friction force is greater than μs N (if it is, then your assumption was wrong and the 

particle is moving).

5. Solving problems involving relative motion. When a body B moves with respect 

to a body A, as in Sample Probs. 12.4 and 12.5, it is often convenient to express the 

acceleration of B as

aB 5 aA 1 aB/A

where aB/A is the acceleration of B relative to A, that is, the acceleration of B as 

observed from a frame of reference attached to A and in translation. If B is observed 

to move in a straight line, aB/A is directed along that line. On the other hand, if B is 

observed to move along a circular path, you should resolve the relative acceleration 

aB/A into components tangential and normal to that path.

6. Finally, always consider the implications of any assumption you make. Thus, 

in a problem involving two cords, if you assume that the tension in one of the cords 

is equal to its maximum allowable value, check whether any requirements set for the 

other cord will be satisfied. For instance, will the tension T in that cord satisfy the 

relation 0 # T # Tmax? That is, will the cord remain taut and will its tension be less 

than its maximum allowable value?
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743

CONCEPT QUESTIONS

12.CQ1 A 1000-lb boulder B is resting on a 200-lb platform A when 

truck C accelerates to the left with a constant acceleration. 

Which of the following statements are true (more than one may 

be true)?

a. The tension in the cord connected to the truck is 200 lb.

b. The tension in the cord connected to the truck is 1200 lb.

c.  The tension in the cord connected to the truck is greater than 

1200 lb.

d. The normal force between A and B is 1000 lb.

e. The normal force between A and B is 1200 lb.

f. None of the above are true.

12.CQ2 Marble A is placed in a hollow tube, and the tube is swung in a 

horizontal plane causing the marble to be thrown out. As viewed 

from the top, which of the following choices best describes the path 

of the marble after leaving the tube?

a. 1 b. 2 c. 3 d. 4 e. 5

12.CQ3 The two systems shown start from rest. On the left, two 40-lb 

weights are connected by an inextensible cord, and on the right, 

a constant 40-lb force pulls on the cord. Neglecting all frictional 

forces, which of the following statements is true?

a. Blocks A and C will have the same acceleration.

   b. Block C will have a larger acceleration than block A.

   c. Block A will have a larger acceleration than block C.

   d. Block A will not move.

   e. None of the above are true.

40 lb

40 lbA

B

40 lb

40 lb

C

Fig. P12.CQ3

 12.CQ4 Blocks A and B are released from rest in the position shown. 

 Neglecting friction, the normal force between block A and the 

ground is:

   a. Less than the weight of A plus the weight of B.

   b. Equal to the weight of A plus the weight of B.

   c. Greater than the weight of A plus the weight of B.

Problems

C

A

B

Fig. P12.CQ1

4

3

2

5

Top View

1

A

w

w

Fig. P12.CQ2

B

A

Fig. P12.CQ4
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744

12.CQ5 People sit on a Ferris wheel at points A, B, C, and D. The Ferris 

wheel travels at a constant angular velocity. At the instant shown, 

which person experiences the largest force from his or her chair 

(back and seat)? Assume you can neglect the size of the chairs— 

that is, the people are located the same distance from the axis of 

rotation.

   a. A
   b. B
   c. C
   d. D
   e. The force is the same for all the passengers.

FREE-BODY PRACTICE PROBLEMS

 12.F1 Crate A is gently placed with zero initial velocity onto a moving 

conveyor belt. The coefficient of kinetic friction between the crate 

and the belt is μk. Draw the FBD and KD for A immediately after 

it contacts the belt.

Av

Fig. P12.F1

 12.F2 Two blocks weighing WA and WB are at rest on a conveyor that is 

initially at rest. The belt is suddenly started in an upward direction 

so that slipping occurs between the belt and the boxes. Assuming 

the coefficient of friction between the boxes and the belt is μk, draw 

the FBDs and KDs for blocks A and B. How would you determine 

if A and B remain in contact?

 12.F3 Objects A, B, and C have masses mA, mB, and mC, respectively. The 

coefficient of kinetic friction between A and B is μk, and the friction 

between A and the ground is negligible and the pulleys are massless 

and frictionless. Assuming B slides on A, draw the FBD and KD for 

each of the three masses A, B, and C.

C

B
A

Fig. P12.F3

 12.F4 Blocks A and B have masses mA and mB, respectively. Neglect-

ing  friction between all surfaces, draw the FBD and KD for 

each mass.

A

B

C

D

Fig. P12.CQ5

A B

q

Fig. P12.F2

B

A

q

Fig. P12.F4
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12.F5 Blocks A and B have masses mA and mB, respectively. Neglecting 

friction between all surfaces, draw the FBD and KD for the two 

systems shown.

A P

System 2

System 1B

q

Fig. P12.F5

 12.F6 A pilot of mass m flies a jet in a half-vertical loop of radius R so 

that the speed of the jet, v, remains constant. Draw a FBD and KD 

of the pilot at points A, B, and C.

 12.F7 Wires AC and BC are attached to a sphere which revolves at a 

 constant speed v in the horizontal circle of radius r as shown. Draw 

a FBD and KD of C.

B

A

C

r

d

1

2q

q

Fig. P12.F7

 12.F8 A collar of mass m is attached to a spring and slides without 

friction along a circular rod in a vertical plane. The spring has an 

undeformed length of 5 in. and a constant k. Knowing that the 

collar has a speed v at point C, draw the FBD and KD of the collar 

at this point.

 12.F9 Four pins slide in four separate slots cut in a horizontal circular plate 

as shown. When the plate is at rest, each pin has a velocity directed 

as shown and of the same constant magnitude u. Each pin has a 

mass m and maintains the same velocity relative to the plate when 

the plate rotates about O with a constant counterclockwise angular 

velocity v. Draw the FBDs and KDs to determine the forces on pins 

P1 and P2. 

A

B

C O
5 in.

7 in.

Fig. P12.F8

u

u

u

uOP1

P2

P3

P4

r

r
r

r

Fig. P12.F9

A

B

C

R

Fig. P12.F6
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 12.F10 At the instant shown, the length of the boom AB is being decreased 
at the constant rate of 0.2 m/s, and the boom is being lowered at the 

constant rate of 0.08 rad/s. If the mass of the men and lift connected 

to the boom at point B is m, draw the FBD and KD that could be 

used to determine the horizontal and vertical forces at B.

 12.F11 Disk A rotates in a horizontal plane about a vertical axis at the con-

stant rate u
.
0. Slider B has a mass m and moves in a frictionless slot 

cut in the disk. The slider is attached to a spring of constant k, which 

is undeformed when r 5 0. Knowing that the slider is released with 

no radial velocity in the position r 5 r0, draw a FBD and KD at an 

arbitrary distance r from O.

  0

B

A

O

Spring

r

θ⋅

Fig. P12.F11

 12.F12 Pin B has a mass m and slides along the slot in the rotating arm OC 
and along the slot DE which is cut in a fixed horizontal plate. 

Neglecting friction and knowing that rod OC rotates at the  constant 

rate u
.
0, draw a FBD and KD that can be used to determine the 

forces P and Q exerted on pin B by rod OC and the wall of slot DE, 

respectively.

END-OF-SECTION PROBLEMS
 12.1 Astronauts who landed on the moon during the Apollo 15, 16, and 

17 missions brought back a large collection of rocks to the earth. 

Knowing the rocks weighed 139 lb when they were on the moon, 

determine (a) the weight of the rocks on the earth, (b) the mass of 

the rocks in slugs. The acceleration due to gravity on the moon is 

5.30 ft/s2.

 12.2 The value of g at any latitude f may be obtained from the formula

g 5 32.09(1 1 0.0053 sin2 f)ft/s2

  which takes into account the effect of the rotation of the earth, 

as well as the fact that the earth is not truly spherical. Knowing 

that the weight of a silver bar has been officially designated as 5 lb, 

determine to four significant figures, (a) the mass in slugs, (b) the 

weight in pounds at the latitudes of 0°, 45°, and 60°.

 12.3 A 400-kg satellite has been placed in a circular orbit 1500 km above 

the surface of the earth. The acceleration of gravity at this elevation is 

6.43 m/s2. Determine the linear momentum of the satellite, knowing 

that its orbital speed is 25.6 3 103 km/h.

A

B

a

6 m

Fig. P12.F10

B

O

E

D
C

r

q

0.2 m

Fig. P12.F12
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12.4 A spring scale A and a lever scale B having equal lever arms are 

 fastened to the roof of an elevator, and identical packages are 

attached to the scales as shown. Knowing that when the elevator 

moves downward with an acceleration of 1 m/s2 the spring scale 

indicates a load of 60 N, determine (a) the weight of the packages, 

(b) the load indicated by the spring scale and the mass needed to 

balance the lever scale when the elevator moves upward with an 

acceleration of 1 m/s2.

 12.5 In anticipation of a long 7° upgrade, a bus driver accelerates at a 

constant rate of 3 ft/s2 while still on a level section of the highway. 

Knowing that the speed of the bus is 60 mi/h as it begins to climb 

the grade and that the driver does not change the setting of his 

throttle or shift gears, determine the distance traveled by the bus 

up the grade when its speed has decreased to 50 mi/h.

 12.6 A 0.2-lb model rocket is launched vertically from rest at time 

t 5 0 with a constant thrust of 2 lb for one second and no thrust 

for t . 1 s. Neglecting air resistance and the decrease in mass 

of the rocket, determine (a) the maximum height h reached by 

the rocket, (b) the time required to reach this maximum height.

 12.7 A tugboat pulls a small barge through a harbor. The propeller thrust 

minus the drag produces a net thrust that varies linearly with speed. 

Knowing that the combined weight of the tug and barge is 3600 kN, 

determine (a) the time required to increase the speed from an initial 

value v1 5 1.0 m/s to a final value v2 5 2.5 m/s, (b) the distance 

traveled during this time interval.

 12.8 Determine the maximum theoretical speed that may be achieved 

over a distance of 60 m by a car starting from rest, knowing that 

the coefficient of static friction is 0.80 between the tires and the 

pavement and that 60 percent of the weight of the car is distributed 

over its front wheels and 40 percent over its rear wheels. Assume 

(a) four-wheel drive, (b) front-wheel drive, (c) rear-wheel drive.

A

B

Fig. P12.4

h

Fig. P12.6

Fig. P12.7

Propeller thrust

Net thrust

81 000

40 500

1.0 2.0 3.0

Drag

v [m/s]

F [N]
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12.9 If an automobile’s braking distance from 90 kmyh is 45 m on level 

pavement, determine the automobile’s braking distance from 90 kmyh 

when it is (a) going up a 5° incline, (b) going down a 3-percent 

incline. Assume the braking force is independent of grade.

12.10 A mother and her child are skiing together, and the mother is 

 holding the end of a rope tied to the child’s waist. They are  moving 

at a speed of 7.2 km/h on a gently sloping portion of the ski slope 

when the mother observes that they are approaching a steep descent. 

She pulls on the rope with an average force of 7 N. Knowing the 

 coefficient of friction between the child and the ground is 0.1 and the 

angle of the rope does not change, determine (a) the time required 

for the child’s speed to be cut in half, (b) the distance traveled in 

this time.

20 kg

20°

5°

Fig. P12.10

 12.11 The coefficients of friction between the load and the flatbed trailer 

shown are μs 5 0.40 and μk 5 0.30. Knowing that the speed of the 

rig is 72 km/h, determine the shortest distance in which the rig can 

be brought to a stop if the load is not to shift.

 12.12 A light train made up of two cars is traveling at 90 km/h when the 

brakes are applied to both cars. Knowing that car A has a mass of 

25 Mg and car B a mass of 20 Mg, and that the braking force is 

30 kN on each car, determine (a) the distance traveled by the train 

before it comes to a stop, (b) the force in the coupling between the 

cars while the train is slowing down.

90 km/h

20 Mg25 Mg
BA

Fig. P12.12

 12.13 The two blocks shown are originally at rest. Neglecting the masses 

of the pulleys and the effect of friction in the pulleys and between 

block A and the incline, determine (a) the acceleration of each block, 

(b) the tension in the cable.

 12.14 Solve Prob. 12.13, assuming that the coefficients of friction between 

block A and the incline are μs 5 0.25 and μk 5 0.20.

4 m

Fig. P12.11

A

200 lb

350 lb

B

30°

Fig. P12.13
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 12.15 Each of the systems shown is initially at rest. Neglecting axle 

friction and the masses of the pulleys, determine for each system 

(a) the acceleration of block A, (b) the velocity of block A after it 

has moved through 10 ft, (c) the time required for block A to reach 

a velocity of 20 ft/s.

AA A
100 lb 100 lb

2100 lb

2200 lb200 lb200 lb

(1) (2) (3)

Fig. P12.15

 12.16 Boxes A and B are at rest on a conveyor belt that is initially at 

rest. The belt is suddenly started in an upward direction so that 

slipping occurs between the belt and the boxes. Knowing that the 

coefficients of kinetic friction between the belt and the boxes are 

(μk)A 5 0.30 and (μk)B 5 0.32, determine the initial acceleration 

of each box.

 12.17 A 5000-lb truck is being used to lift a 1000-lb boulder B that is on 

a 200-lb pallet A. Knowing the acceleration of the truck is 1 ft/s2, 

determine (a) the horizontal force between the tires and the ground, 

(b) the force between the boulder and the pallet.

a

A

B

Fig. P12.17

 12.18 Block A has a mass of 40 kg, and block B has a mass of 8 kg. The 

coefficients of friction between all surfaces of contact are μs 5 0.20 

and μk 5 0.15. If P 5 0, determine (a) the acceleration of block B, 

(b) the tension in the cord.

 12.19 Block A has a mass of 40 kg, and block B has a mass of 8 kg. The 

coefficients of friction between all surfaces of contact are μs 5 0.20 

and μk 5 0.15. If P 5 40 N, determine (a) the acceleration of block 

B, (b) the tension in the cord.

A B

100 lb

80 lb

15°

Fig. P12.16

B

P

25°

A

Fig. P12.18 and P12.19
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 12.20 The flat-bed trailer carries two 1500-kg beams with the upper beam 

secured by a cable. The coefficients of static friction between the two 

beams and between the lower beam and the bed of the trailer are 0.25 

and 0.30, respectively. Knowing that the load does not shift, determine 

(a) the maximum acceleration of the trailer and the  corresponding 

tension in the cable, (b) the maximum  deceleration of the trailer.

 12.21 A baggage conveyor is used to unload luggage from an airplane. The 

10-kg duffel bag A is sitting on top of the 20-kg suitcase B. The 

conveyor is moving the bags down at a constant speed of 0.5  m/s 

when the belt suddenly stops. Knowing that the coefficient of fric-

tion between the belt and B is 0.3 and that bag A does not slip 

on suitcase B, determine the smallest allowable coefficient of static 

friction between the bags.

 12.22 To unload a bound stack of plywood from a truck, the driver first 

tilts the bed of the truck and then accelerates from rest. Knowing 

that the coefficients of friction between the bottom sheet of plywood 

and the bed are μs 5 0.40 and μk 5 0.30, determine (a) the smallest 

acceleration of the truck which will cause the stack of plywood to 

slide, (b) the acceleration of the truck which causes corner A of the 

stack to reach the end of the bed in 0.9 s.

 12.23 To transport a series of bundles of shingles A to a roof, a contractor 

uses a motor-driven lift consisting of a horizontal platform BC which 

rides on rails attached to the sides of a ladder. The lift starts from 

rest and initially moves with a constant acceleration a1 as shown. 

The lift then decelerates at a constant rate a2 and comes to rest at 

D, near the top of the ladder. Knowing that the coefficient of static 

friction between a bundle of shingles and the horizontal platform is 

0.30, determine the largest allowable acceleration a1 and the largest 

allowable deceleration a2 if the bundle is not to slide on the platform.

A

B C

4.4 m

65°

0.8 m

a1

D

Fig. P12.23

Fig. P12.20

B

v0

20°
A

Fig. P12.21

2 m 20°
A

Fig. P12.22
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12.24 An airplane has a mass of 25 Mg and its engines develop a total 

thrust of 40 kN during take-off. If the drag D exerted on the plane 

has a magnitude D 5 2.25 v2, where v is expressed in meters per 

second and D in newtons, and if the plane becomes airborne at a 

speed of 240 km/h, determine the length of runway required for the 

plane to take off.

 12.25 A 4-kg projectile is fired vertically with an initial velocity of 90 m/s, 

reaches a maximum height, and falls to the ground. The aerody-

namic drag D has a magnitude D 5 0.0024 v2 where D and v are 

expressed in newtons and m/s, respectively. Knowing that the direc-

tion of the drag is always opposite to the direction of the velocity, 

determine (a) the maximum height of the trajectory, (b) the speed 

of the projectile when it reaches the ground.

 12.26 A constant force P is applied to a piston and rod of total mass m to 

make them move in a cylinder filled with oil. As the piston moves, 

the oil is forced through orifices in the piston and exerts on the 

piston a force of magnitude kv in a direction opposite to the motion 

of the piston. Knowing that the piston starts from rest at t 5 0 and 

x 5 0, show that the equation relating x, v, and t, where x is the 

distance traveled by the piston and v is the speed of the piston, is 

linear in each of these variables.

P

Fig. P12.26

 12.27 A spring AB of constant k is attached to a support at A and to a 

collar of mass m. The unstretched length of the spring is l. Knowing 

that the collar is released from rest at x 5 x0 and neglecting friction 

between the collar and the horizontal rod, determine the magnitude 

of the velocity of the collar as it passes through point C.

 12.28 Block A has a mass of 10 kg, and blocks B and C have masses of 

5 kg each. Knowing that the blocks are initially at rest and that 

B moves through 3 m in 2 s, determine (a) the magnitude of the 

force P, (b) the tension in the cord AD. Neglect the masses of the 

pulleys and axle friction.

P

BA C

D

Fig. P12.28

A

BC
l

x0

Fig. P12.27
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12.29 A 40-lb sliding panel is supported by rollers at B and C. A 25-lb 

counterweight A is attached to a cable as shown and, in cases a and c, 

is initially in contact with a vertical edge of the panel. Neglecting 

friction, determine in each case shown the acceleration of the panel 

and the tension in the cord immediately after the system is released 

from rest.

CBCB

A A

CB

(a) (b) (c)

A

Fig. P12.29
 12.30 An athlete pulls handle A to the left with a constant force of 

P 5 100 N. Knowing that after the handle A has been pulled 30 cm 

and its velocity is 3 m/s, determine the mass of the weight stack B.

B

A

Fig. P12.30

 12.31 A 10-lb block B rests as shown on a 20-lb bracket A. The coef-

ficients of friction are μs 5 0.30 and μk 5 0.25 between block B 

and bracket A, and there is no friction in the pulley or between 

the bracket and the horizontal surface. (a) Determine the maximum 

weight of block C if block B is not to slide on bracket A. (b) If 

the weight of block C is 10 percent larger than the answer found in 

a, determine the accelerations of A, B, and C.

C

B
A

Fig. P12.31
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 12.32 Knowing that μk 5 0.30, determine the acceleration of each block 

when mA 5 mB 5 mC.

 12.33 Knowing that μk 5 0.30, determine the acceleration of each block 

when mA 5 5 kg, mB 5 30 kg, and mC 5 15 kg.

12.34 A 25-kg block A rests on an inclined surface, and a 15-kg 

 counterweight B is attached to a cable as shown. Neglecting 

 friction,  determine the acceleration of A and the tension in the cable 

 immediately after the system is released from rest.

20°

A
B

Fig. P12.34

 12.35 Block B of mass 10 kg rests as shown on the upper surface of a 

22-kg wedge A. Knowing that the system is released from rest and 

neglecting friction, determine (a) the acceleration of B, (b) the veloc-

ity of B relative to A at t 5 0.5 s.

 12.36 A 450-g tetherball A is moving along a horizontal circular path at 

a constant speed of 4 m/s. Determine (a) the angle θ that the cord 

forms with pole BC, (b) the tension in the cord.

 12.37 During a hammer thrower’s practice swings, the 7.1-kg head A of 

the hammer revolves at a constant speed v in a horizontal  circle as 

shown. If ρ 5 0.93 m and θ 5 60°, determine (a) the tension in 

wire BC, (b) the speed of the hammer’s head.

A

C

B

θ ρ

Fig. P12.37

C

A B

Fig. P12.32 and P12.33

B

30°

A

20°

Fig. P12.35

A

C

1.8 m

B

θ

Fig. P12.36
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 12.38 Human centrifuges are often used to simulate different acceleration 

levels for pilots. When aerospace physiologists say that a pilot is 

pulling 9 g’s, they mean that the resultant normal force on the pilot 

from the bottom of the seat is nine times their weight. Knowing that 

the centrifuge starts from rest and has a constant angular acceleration 

of 1.5 RPM per second until the pilot is pulling 9 g’s and then 

continues with a constant angular velocity, determine (a) how long 

it will take for the pilot to reach 9 g’s (b) the angle θ of the normal 

force once the pilot reaches 9 g’s. Assume that the force parallel to 

the seat is zero.

A

q

7 m

Fig. P12.38

 12.39 A single wire ACB passes through a ring at C attached to a sphere 

that revolves at a constant speed v in the horizontal circle shown. 

Knowing that the tension is the same in both portions of the wire, 

determine the speed v.

B

A

C

30°

45°

5 kg

1.6 m

Fig. P12.39 and P12.40

 *12.40 Two wires AC and BC are tied at C to a sphere that revolves at a 

constant speed v in the horizontal circle shown. Determine the range 

of the allowable values of v if both wires are to remain taut and if 

the tension in either of the wires is not to exceed 60 N.

 12.41 A 1-kg sphere is at rest relative to a parabolic dish that rotates at a 

constant rate about a vertical axis. Neglecting friction and  knowing 

that r 5 1 m, determine (a) the speed v of the sphere, (b) the 

magnitude of the normal force exerted by the sphere on the inclined 

surface of the dish.

1 m

r

y
y = r2

2

Fig. P12.41
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 *12.42 As part of an outdoor display, a 12-lb model C of the earth is 

attached to wires AC and BC and revolves at a constant speed v in 

the horizontal circle shown. Determine the range of the allowable 

values of v if both wires are to remain taut and if the tension in 

either of the wires is not to exceed 26 lb.

 *12.43 The 1.2-lb flyballs of a centrifugal governor revolve at a constant 

speed v in the horizontal circle of 6-in. radius shown. Neglecting the 

weights of links AB, BC, AD, and DE and requiring that the links 

support only tensile forces, determine the range of the allowable 

values of v so that the magnitudes of the forces in the links do not 

exceed 17 lb.

A

B

C

D

E

20°

1.2 lb 1.2 lb30°

Fig. P12.43

 12.44 A 130-lb wrecking ball B is attached to a 45-ft-long steel cable AB 
and swings in the vertical arc shown. Determine the tension in the 

cable (a) at the top C of the swing, (b) at the bottom D of the swing, 

where the speed of B is 13.2 ft/s.

A

BC

D

20°

Fig. P12.44

 12.45 During a high-speed chase, a 2400-lb sports car traveling at a speed 

of 100 mi/h just loses contact with the road as it reaches the crest A of 

a hill. (a) Determine the radius of curvature ρ of the vertical profile 

of the road at A. (b) Using the value of ρ found in part a, determine 

the force exerted on a 160-lb driver by the seat of his 3100-lb car as 

the car, traveling at a constant speed of 50 mi/h, passes through A.

B

A

C

15°

40°
3 ft

Fig. P12.42

A

r

Fig. P12.45
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 12.46 An airline pilot climbs to a new flight level along the path shown. 

Knowing that the speed of the airplane decreases at a constant rate 

from 180 m/s at point A to 160 m/s at point C, determine the magni-

tude of the abrupt change in the force exerted on a 90-kg passenger 

as the airplane passes point B.

 12.47 The roller-coaster track shown is contained in a vertical plane. The 

portion of track between A and B is straight and horizontal, while 

the portions to the left of A and to the right of B have radii of cur-

vature as indicated. A car is traveling at a speed of 72 km/h when 

the brakes are suddenly applied, causing the wheels of the car to 

slide on the track (μk 5 0.20). Determine the initial deceleration of 

the car if the brakes are applied as the car (a) has almost reached A, 

(b) is traveling between A and B, (c) has just passed B.

A B

r = 45 m

r = 30 m

Fig. P12.47

 12.48 A spherical-cap governor is fixed to a vertical shaft that rotates with 

angular velocity v. When the string-supported clapper of mass m 

touches the cap, a cutoff switch is operated electrically to reduce the 

speed of the shaft. Knowing that the radius of the clapper is small 

relative to the cap, determine the minimum angular speed at which 

the cutoff switch operates. 

 12.49 A series of small packages, each with a mass of 0.5 kg, are  discharged 

from a conveyor belt as shown. Knowing that the  coefficient of 

static friction between each package and the conveyor belt is 0.4, 

 determine (a) the force exerted by the belt on the package just after 

it has passed point A, (b) the angle θ defining the point B where the 

packages first slip relative to the belt.

250 mm

1 m/s
A

B

q

Fig. P12.49

0.8 km

8°

ρ = 6 km

A B C

Fig. P12.46

Cap

Clapper

600 mm

30
0 

m
m

ω

Fig. P12.48
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 12.50 A 54-kg pilot flies a jet trainer in a half-vertical loop of 1200-m 

radius so that the speed of the trainer decreases at a constant rate. 

Knowing that the pilot’s apparent weights at points A and C are 

1680 N and 350 N, respectively, determine the force exerted on her 

by the seat of the trainer when the trainer is at point B.

A

B

C

1200 m

Fig. P12.50

 12.51 A carnival ride is designed to allow the general public to experience 

high-acceleration motion. The ride rotates about point O in a 

 horizontal circle such that the rider has a speed v0. The rider reclines 

on a platform A which rides on rollers such that friction is negligible. 

A mechanical stop prevents the platform from rolling down the 

incline. Determine (a) the speed v0 at which the platform A begins 

to roll upward, (b) the normal force experienced by an 80-kg rider 

at this speed.

70°

A

5 m O

v0

1.5 m

Fig. P12.51

 12.52 A curve in a speed track has a radius of 1000 ft and a rated speed 

of 120 mi/h. (See Sample Prob. 12.7 for the definition of rated 

speed.) Knowing that a racing car starts skidding on the curve 

when traveling at a speed of 180 mi/h, determine (a) the banking 

angle θ, (b) the coefficient of static friction between the tires and 

the track under the prevailing conditions, (c) the minimum speed 

at which the same car could negotiate the curve.

θ

Fig. P12.52
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 12.53 Tilting trains, such as the American Flyer which will run from 

Washington to New York and Boston, are designed to travel safely 

at high speeds on curved sections of track which were built for 

slower, conventional trains. As it enters a curve, each car is tilted 

by hydraulic actuators mounted on its trucks. The tilting feature 

of the cars also increases passenger comfort by eliminating or 

greatly reducing the side force Fs (parallel to the floor of the 

car) to which passengers feel subjected. For a train traveling at 

100 mi/h on a curved section of track banked through an angle 

θ 5 6° and with a rated speed of 60 mi/h, determine (a) the 

magnitude of the side force felt by a passenger of weight W in a 

standard car with no tilt (f 5 0), (b) the required angle of tilt f

if the passenger is to feel no side force. (See Sample Prob. 12.7 

for the definition of rated speed.)

 12.54 Tests carried out with the tilting trains described in Prob. 12.53 

revealed that passengers feel queasy when they see through the car 

windows that the train is rounding a curve at high speed, yet do 

not feel any side force. Designers, therefore, prefer to reduce, but 

not eliminate that force. For the train of Prob. 12.53, determine the 

required angle of tilt f if passengers are to feel side forces equal to 

10 percent of their weights.

 12.55 A 3-kg block is at rest relative to a parabolic dish which rotates at 

a constant rate about a vertical axis. Knowing that the coefficient 

of static friction is 0.5 and that r 5 2 m, determine the maximum 

allowable velocity v of the block.

 12.56 A polisher is started so that the fleece along the circumference under-

goes a constant tangential acceleration of 4 m/s2. Three seconds after 

it is started, small tufts of fleece from along the circumference of the 

225-mm-diameter polishing pad are observed to fly free of the pad. 

At this instant, determine (a) the speed v of a tuft as it leaves the pad, 

(b) the magnitude of the force required to free a tuft if the average 

mass of a tuft is 1.6 mg.

v

Fig. P12.56

12.57 A turntable A is built into a stage for use in a theatrical production. 

It is observed during a rehearsal that a trunk B starts to slide on 

the turntable 10 s after the turntable begins to rotate. Knowing that 

the trunk undergoes a constant tangential acceleration of 0.24 m/s2, 

determine the coefficient of static friction between the trunk and the 

turntable.

q

f

Fig. P12.53 and P12.54

y = r2

4

2 m

r

y

Fig. P12.55

A B2.5 m

Fig. P12.57
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 12.58 The carnival ride from Prob. 12.51 is modified so that the 80-kg 

riders can move up and down the inclined wall as the speed of 

the ride increases. Assuming that the friction between the wall and 

the carriage is negligible, determine the position h of the rider if the 

speed v0 5 13 m/s.

70°

A

5 m O

v0

h

Fig. P12.58 and P12.59

12.59 The carnival ride from Prob 12.51 is modified so that the 80-kg 

 riders can move up and down the inclined wall as the speed of 

the ride increases. Knowing that the coefficient of static friction 

between the wall and the platform is 0.2, determine the range of 

values of the constant speed v0 for which the platform will remain 

at h 5 1.5 m.

12.60 A semicircular slot of 10-in. radius is cut in a flat plate that rotates 

about the vertical AD at a constant rate of 14 rad/s. A small, 0.8-lb 

block E is designed to slide in the slot as the plate rotates.  Knowing 

that the coefficients of friction are μs 5 0.35 and μk 5 0.25,  determine 

whether the block will slide in the slot if it is released in the  position 

corresponding to (a) θ 5 80°, (b) θ 5 40°. Also determine the 

 magnitude and the direction of the friction force exerted on the block 

immediately after it is released.

 12.61 A small block B fits inside a slot cut in arm OA that rotates in a 

vertical plane at a constant rate. The block remains in contact with 

the end of the slot closest to A and its speed is 1.4 m/s for 0 # θ 

# 150°. Knowing that the block begins to slide when θ 5 150°, 

determine the coefficient of static friction between the block and 

the slot.

B

0.3 m

O

θ

A

Fig. P12.61

A
B

C
D

θ
E

26 in.

Fig. P12.60

bee87342_ch12_718-794.indd   759bee87342_ch12_718-794.indd   759 11/26/14   11:45 AM11/26/14   11:45 AM

UPLOADED BY AHMAD T JUNDI



760

 12.62 The parallel-link mechanism ABCD is used to transport a compo-

nent I between manufacturing processes at stations E, F, and G
by picking it up at a station when θ 5 0 and depositing it at the 

next station when θ 5 180°. Knowing that member BC remains 

horizontal throughout its motion and that links AB and CD rotate 

at a constant rate in a vertical plane in such a way that vB 5 2.2 ft/s, 

determine (a) the minimum value of the coefficient of static friction 

between the component and BC if the component is not to slide on 

BC while being transferred, (b) the values of θ for which sliding is 

impending.

I

B
E F G

C

DA

10 in. 10 in.

10 in. 10 in.

q

vB

20 in. 20 in.

Fig. P12.62

 12.63 Knowing that the coefficients of friction between the component I 
and member BC of the mechanism of Prob. 12.62 are μS 5 0.35 and 

μk 5 0.25, determine (a) the maximum allowable constant speed 

vB if the component is not to slide on BC while being transferred, 

(b) the values of θ for which sliding is impending.

 12.64 A small 250-g collar C can slide on a semicircular rod which is 

made to rotate about the vertical AB at a constant rate of 7.5 rad/s. 

Determine the three values of θ for which the collar will not slide 

on the rod, assuming no friction between the collar and the rod.

 12.65 A small 250-g collar C can slide on a semicircular rod which is 

made to rotate about the vertical AB at a constant rate of 7.5 rad/s. 

Knowing that the coefficients of friction are μs 5 0.25 and μk 5 0.20, 

indicate whether the collar will slide on the rod if it is released in the 

position corresponding to (a) θ 5 75°, (b) θ = 40°. Also, determine 

the magnitude and direction of the friction force exerted on the 

collar immediately after release.

 12.66 An advanced spatial disorientation trainer allows the cab to rotate 

around multiple axes as well as to extend inwards and outwards. It can 

be used to simulate driving, fixed-wing aircraft flying, and helicopter 

maneuvering. In one training scenario, the trainer rotates and trans-

lates in the horizontal plane where the location of the pilot is defined 

by the relationships r 5 10 1 2 cos Aπ3tB and θ 5 0.1(2t2 2 t), where 

r, θ, and t are expressed in feet, radians, and seconds, respectively. 

Knowing that the pilot has a weight of 175 lbs, (a) determine the 

 magnitude of the resulting force acting on the pilot at t 5 5 s, 

(b) plot the  magnitudes of the radial and transverse components of 

the force exerted on the pilot from 0 to 10 seconds. 

A

B

O

C
250 g

r = 500 mm

θ

Fig. P12.64 and P12.65

r

θ

Fig. P12.66 and P12.67
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12.67 An advanced spatial disorientation trainer is programmed to only 

rotate and translate in the horizontal plane. The pilot’s location is 

defined by the relationships r 5 8(1 2 e2t) and θ 5 2/π Asin 

π

2  
tB, 

where r, θ, and t are expressed in feet, radians, and seconds, respec-

tively. Determine the radial and transverse components of the force 

exerted on the 175-lb pilot at t 5 3 s.

 12.68 The 3-kg collar B slides on the frictionless arm AA9. The arm is 

attached to drum D and rotates about O in a horizontal plane at the 

rate  θ̇ 5 0.75t, where θ̇ and t are expressed in rad/s and seconds, 

respectively. As the arm-drum assembly rotates, a mechanism within 

the drum releases cord so that the collar moves outward from O with 

a constant speed of 0.5 m/s. Knowing that at t 5 0, r 5 0, determine 

the time at which the tension in the cord is equal to the magnitude of 

the horizontal force exerted on B by arm AA9.

A

r

q
B

A'

O

D

Fig. P12.68

 12.69 A 0.5-kg block B slides without friction inside a slot cut in arm OA
that rotates in a vertical plane. The rod has a constant  angular accel-

eration θ̈ 5 10 rad/s2. Knowing that when θ 5 45° and r 5 0.8 m 

the velocity of the block is zero, determine at this instant, (a) the 

force exerted on the block by the arm, (b) the relative acceleration 

of the block with respect to the arm.

12.70 Pin B weighs 4 oz and is free to slide in a horizontal plane along 

the rotating arm OC and along the fixed circular slot DE of radius 

b 5 20 in. Neglecting friction and assuming that θ̇ 5 15 rad/s 

and θ̈ 5 250 rad/s2 for the position θ 5 20°, determine for that 

 position (a) the radial and transverse components of the resultant force 

exerted on pin B, (b) the forces P and Q exerted on pin B, respectively, 

by rod OC and the wall of slot DE.

A

C

E

D

O

Br

q

b

b

Fig. P12.70

r

B

θ

O

A

Fig. P12.69
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 12.71 The two blocks are released from rest when r 5 0.8 m and θ 5 30°. 

Neglecting the mass of the pulley and the effect of friction in the 

pulley and between block A and the horizontal surface, determine 

(a) the initial tension in the cable, (b) the initial acceleration of 

block A, (c) the initial acceleration of block B.

20 kg 25 kg

r q

A B

Fig. P12.71 and P12.72

 12.72 The velocity of block A is 2 m/s to the right at the instant when 

r 5 0.8 m and θ 5 30°. Neglecting the mass of the pulley and 

the effect of friction in the pulley and between block A and the 

 horizontal surface, determine, at this instant, (a) the tension in the 

cable, (b) the acceleration of block A, (c) the acceleration of block B.

 *12.73 Slider C has a weight of 0.5 lb and may move in a slot cut in arm AB, 

which rotates at the constant rate  θ̇0 5 10 rad/s in a horizontal plane. 

The slider is attached to a spring of constant k 5 2.5 lb/ft, which is 

unstretched when r 5 0. Knowing that the slider is released from 

rest with no radial velocity in the position r 5 18 in. and neglecting 

friction, determine for the position r 5 12 in. (a) the radial and 

transverse components of the velocity of the slider, (b) the radial 

and transverse components of its acceleration, (c) the horizontal force 

exerted on the slider by arm AB.

A B

C
r

  0 = 10 rad/s⋅ q

O

Fig. P12.73
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12.2 Angular Momentum and Orbital Motion 763

12.2  ANGULAR MOMENTUM AND 
ORBITAL MOTION

In Sec. 12.1, we introduced the idea of linear momentum and showed how 

Newton’s second law could be expressed as the rate of change of linear 

momentum. Angular momentum, or the moment of linear momentum, is 

another useful quantity. In this section, we define angular momentum for 

a particle and discuss the motion of a particle under a central force, which 

is applicable to many types of orbital motion.

12.2A  Angular Momentum of a Particle 
and Its Rate of Change 

Consider a particle P with a mass m moving with respect to a newtonian 

frame of reference Oxyz. As we saw in Sec. 12.1B, the linear momentum 

of the particle at a given instant is defined as the vector mv that is obtained 

by multiplying the velocity v of the particle by its mass m. The moment 

about O of the vector mv is called the moment of momentum, or the 

angular momentum, of the particle about O at that instant and is denoted 

by HO. Recall the definition of the moment of a vector (Sec. 3.1E) and 

denote the position vector of P by r. Then we have

Angular momentum 
of a particle HO 5 r 3 mv (12.13)

Note that HO is a vector perpendicular to the plane containing r and mv
and has a magnitude

HO 5 rmv sin f (12.14)

where f is the angle between r and mv (Fig. 12.12). We can determine 

the sense of HO from the sense of mv by applying the right-hand rule. 

The unit of angular momentum is obtained by multiplying the units of 

length and of linear momentum (Sec. 12.1C). In SI units, we have

(m)(kg?m/s) 5 kg?m2/s

In U.S. customary units, we have

(ft)(slug)(ft/s) 5 (ft)(lb?s) 5 ft?lb?s

Resolving the vectors r and mv into components and applying 

 formula (3.10), we obtain

HO 5 †
i
x

mvx

 

j
y

mvy

 

k
z

mvz

†  (12.15)

The components of HO, which also represent the moments of the linear 

momentum mv about the coordinate axes, can be obtained by expanding 

the determinant in Eq. (12.15). The results are

 Hx 5 m(yvz 2 zvy)

 Hy 5 m(zvx 2 xvz) (12.16)

Hz 5 m(xvy 2 yvx)

HO 5 r 3 mv

HO 5 rmv sin f

Fig. 12.12 The angular momentum vector of 
a particle is the vector product of the 
position vector r and the linear momentum 
vector mv.

P

HO

r
O

z

x

y

mv

f
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764 Kinetics of Particles: Newton’s Second Law

In the case of a particle moving in the xy plane, we have z 5 vz 5 0 

and the components Hx and Hy reduce to zero. The angular momentum is 

thus perpendicular to the xy plane; it is then completely defined by the 

scalar

HO 5 Hz 5 m(xvy 2 yvx) (12.17)

This value can be positive or negative, according to the sense in which 

the particle is observed to move from O. If we use polar coordinates, we 

resolve the linear momentum of the particle into radial and transverse 

components (Fig. 12.13), which gives us

 HO 5 rmv sin f 5 rmvθ (12.18)

Alternatively, recalling from Eq. (11.44) that vθ 5 r θ̇ we have

Angular momentum
in polar coordinates

 HO 5 mr2
θ
.
 (12.19)

Let us now compute the derivative with respect to t of the angular 

momentum HO of a particle P moving in space. Differentiating both sides 

of Eq. (12.13) and recalling the rule for the differentiation of a vector 

product (Sec. 11.4B), we have

H
.

O 5 r. 3 mv 1 r 3 mv
.

5 v 3 mv 1 r 3 ma

Since the vectors v and mv are collinear, the first term of this expression 

is zero; by Newton’s second law, ma is equal to the sum oF of the forces 

acting on P. Noting that r 3 oF represents the sum oMO of the moments 

about O of these forces, we obtain

 ©MO 5 H
.

O (12.20)

Equation (12.20), which results directly from Newton’s second law, 

states: 

The sum of the moments about O of the forces acting on the particle 
is equal to the rate of change of angular momentum (or moment of 
momentum) of the particle about O.

12.2B  Motion Under a Central Force 
and Conservation of Angular 
Momentum

When the only force acting on a particle P is a force F directed toward 

or away from a fixed point O, the particle is said to be moving under a

central force, and the point O is referred to as the center of force
(Fig. 12.14). Since the line of action of F passes through O, we must have 

oMO 5 0 at any given instant. Substituting into Eq. (12.20), we obtain

H
.

O 5 0

for all values of t and, integrating in t,

 HO 5 constant  (12.21)

HOHH 5 mr2
θ
.

©MO 5 H
.

O

Fig. 12.13 In polar coordinates, angular 
momentum of a particle is the product of the 
position r and the transverse component of 
linear momentum.

P

O

r

mv

mvr

mv
f

q

q

Fig. 12.14 The central force F acts towards 
the center of force O.

P

F

O

z

x

y
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12.2 Angular Momentum and Orbital Motion 765

We thus conclude that 

The angular momentum of a particle moving under a central force 
is constant in both magnitude and direction.

Recall the definition of the angular momentum of a particle 

(Sec. 12.2A). From that, we have

Conservation of 
angular momentum r 3 mv 5 HO 5 constant (12.22)

It follows that the position vector r of the particle P must be perpendicular 

to the constant vector HO. Thus, a particle under a central force moves in 

a fixed plane perpendicular to HO. The vector HO and the fixed plane are 

defined by the initial position vector r0 and the initial velocity v0 of the 

particle. For convenience, let us assume that the plane of the figure 

 coincides with the fixed plane of motion (Fig. 12.15).

Since the magnitude HO of the angular momentum of the particle P
is constant, the right-hand side in Eq. (12.14) must be constant. Therefore, 

we have

 rmv sin f 5 r0mv0 sin f0 (12.23)

This is another way to express the conservation of angular momentum; 

this relation applies to the motion of any particle under a central force. 

Since the gravitational force exerted by the sun on a planet is a central 

force directed toward the center of the sun, Eq. (12.23) is fundamental to 

the study of planetary motion. For a similar reason, it is also fundamental 

to studying the motion of space vehicles in orbit about the earth.

Alternatively, from Eq. (12.19), we can express the fact that the mag-

nitude HO of the angular momentum of the particle P is constant by writing

mr2
θ
.

5 HO 5 constant (12.24)

Dividing by m and using h to denote the angular momentum per unit mass 

HO /m, we have

 r2
θ
.

5 h (12.25)

Equation (12.25) has an interesting geometric interpretation. Note from 

Fig. 12.16 that the radius vector OP sweeps across an infinitesimal area 

dA 5
1
2 
r2dθ as it rotates through an angle dθ. Then, defining the areal 

velocity of the particle as the quotient dA/dt, we see that the left-hand 

side of Eq. (12.25) represents twice the areal velocity of the particle. We 

thus conclude that 

When a particle moves under a central force, its areal velocity is 
constant.

12.2C Newton’s Law of Gravitation
As you saw in the preceding section, the gravitational force exerted by 

the sun on a planet or by the earth on an orbiting satellite is an important 

example of a central force. In this section, you will learn how to determine 

the magnitude of a gravitational force.

Newton’s law of universal gravitation states that two particles of 

masses M and m at a distance r from each other have a mutual attraction 

r 3 mv 5 HO 5 constant

r2
θ
.

5 h

Fig. 12.15 Angular momentum of a particle 
moving in a fixed plane under the action of a 
central force.

O

P

r

mv

mv0

P0r0

φ0

φ

Fig. 12.16 When a particle moves under a 
central force, its areal velocity is constant.

P

r

O

F
dq

r d

dA

q

q
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766 Kinetics of Particles: Newton’s Second Law

of equal and opposite forces F and 2F directed along the line joining the 

particles (Fig. 12.17). The common magnitude F of the two forces is

Newton’s law of
universal gravitation 

F 5 G  

Mm

r2
 (12.26)

where G is a universal constant, called the constant of gravitation.  Experiments 

show that the value of G is (66.73 6 0.03) 3 10212 m3/kg?s2 in SI units or 

approximately 34.4 3 1029 ft4/lb?s4 in U.S. customary units.  Gravitational 

forces exist between any pair of bodies, but their effect is appreciable only 

when one of the bodies has a very large mass. The effect of  gravitational forces 

is apparent in the cases of the motion of a planet about the sun, of satellites 

orbiting about the earth, or of bodies falling on the surface of the earth.

Since the force exerted by the earth on a body of mass m located 

on or near its surface is defined as the weight W of the body, we can 

substitute the magnitude W 5 mg of the weight for F, and the earth’s 

radius R for r in Eq. (12.26). We obtain

 W 5 mg 5
GM

R2
m or g 5

GM

R2
 (12.27)

where M is the mass of the earth. Since the earth is not truly spherical, 

the distance R from the center of the earth depends upon the point selected 

on its surface. Thus, the values of W and g vary with the altitude and 

 latitude of the point considered. Another reason for the variation of W 

and g with latitude is that a system of axes attached to the earth does not 

constitute a newtonian frame of reference (see Sec. 12.1A). A more 

 accurate definition of the weight of a body should therefore include a 

component representing the effects of this centripetal acceleration due to 

the earth’s rotation. Values of g at sea level vary from 9.781 m/s2 

(or 32.09 ft/s2) at the equator to 9.833 m/s2 (or 32.26 ft/s2) at the poles.†

We can use Eq. (12.26) to find the force exerted by the earth on a 

body of mass m located in space at a distance r from its center. The com-

putations are somewhat simplified by noting that, according to Eq. (12.27), 

we can express the product of the constant of gravitation G and the 

mass M of the earth as

 GM 5 gR2 (12.28)

Here we give g and the earth’s radius R as their average values 

g 5 9.81 m/s2 and R 5 6.37 3 106 m in SI units‡ and g 5 32.2 ft/s2 and 

R 5 (3960 mi)(5280 ft/mi) in U.S. customary units.

The discovery of the law of universal gravitation often has been attrib-

uted to the belief that, after observing an apple falling from a tree, Newton 

realized that the earth must attract an apple in much the same way as the 

moon. It is doubtful that this incident actually took place, but we can say that 

Newton would not have formulated his law if he had not first perceived that 

the acceleration of a falling body must have the same cause as the accelera-

tion that keeps the moon in its orbit. 

F 5 G
MmMM

r2

Fig. 12.17 By Newton’s law of gravitation, 
two masses attract each other with equal 
force.

m

M

F

–F

r

†A formula expressing g in terms of the latitude f was given in Prob. 12.2.
‡You can find the value of R simply by relating the earth’s circumference to its radius as 

2πr 5 40 3 106 m.
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12.2 Angular Momentum and Orbital Motion 767

Sample Problem 12.12

A satellite is launched in a direction parallel to the surface of the earth 

with a velocity of 18,820 mi/h from an altitude of 240 mi. Determine the 

velocity of the satellite as it reaches its maximum altitude of 2340 mi. 

Recall that the earth’s radius is 3960 mi.

STRATEGY: The satellite is acted on by a central force, so angular 

momentum is conserved. You can use the principle of conservation of 

angular momentum to determine the velocity of the satellite.

MODELING and ANALYSIS: Since the satellite is moving under a 

central force directed toward the center O of the earth, its angular 

 momentum HO is constant. From Eq. (12.14), you have

rmv sin f 5 HO 5 constant

This equation shows that v is at a minimum at B, where both r and sin f 

are maximum. Expressing the conservation of angular momentum between 

A and B, we have

rAmvA 5 rBmvB

Hence,

vB 5 vA 

rA

rB
5 (18,820 mi/h) 

3960 mi 1 240 mi

3960 mi 1 2340 mi

vB 5 12,550 mi/h b

REFLECT and THINK: Note that in order to increase velocity, you 

could choose to apply thrusters pushing the spacecraft closer to the earth. 

Since this is a central force, the spacecraft’s angular momentum remains 

constant. Therefore, its speed v increases as the radial distance r decreases.

Sample Problem 12.13

A space tug travels a circular orbit with a 6000-mi radius around the earth. 

In order to transfer it to a larger orbit with a 24,000-mi radius, the tug is 

first placed on an elliptical path AB by firing its engines as it passes 

through A, thus increasing its velocity by 3810 mi/h. Determine how much 

the tug’s velocity should be increased as it reaches B to insert it into the 

larger circular orbit.

STRATEGY: Use Newton’s second law and conservation of angular 

momentum. 

MODELING: Choose the space tug as the system, and assume you can 

treat it as a particle. Draw free-body and kinetic diagrams of the system 

at A as shown in Fig. 1. 
(continued)

2340 mi

18,820 mi /h

Earth

240 mi

AB

Fig. 1 The satellite at various positions.

mvA

mvB

rB rA

mv

O
AB

f

6000 mi
24,000 mi

BA
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768 Kinetics of Particles: Newton’s Second Law

ANALYSIS: 

Circular Orbit through A. Applying Newton’s second law in the 

normal direction when the tug is at A gives

y
1  oFn 5 man  

GMm

r2
A

5
mv2

A

rA
 (1)

Solve Eq. (1) for vA and substitute in numbers to find

vA 5
B

GM
rA

5
B

gR2

rA
5
B

132.2 ft/s22 1 13960 mi2 15280 ft/mi2 22
1600 mi2 15280 ft/mi2 5 21,080 ft/s

Converting this to mi/h gives vA 5 14,370 mi/h. Thus, the  velocity to put 

the space tug into an elliptic orbit is (vA)ell 5 14,370 mi/h 1 3810 mi/h 5

18,180 mi/h.

Elliptic Path AB. To find the velocity at B, use the conservation of 

angular momentum between A and B. The velocity is perpendicular to r 

at both A and B, so you have

 HO 5 rAmvA 5 rBmvB (2)

Solving Eq. (2) for vB and substituting in numbers give

1vB2ell 5
rA

rB
 1vA2ell 5

6000 mi

24,000 mi
118,180 mi/h2 5 4545 mi/h

Circular Orbit through B. Applying Newton’s second law in the 

normal direction when the tug is at B gives

z
1  oFn 5 man 

GMm

r 2
B

5
mv2

B

rB
 (3)

By solving Eq. (3) for vB and substituting in numbers, you find

vB 5
B

GM
rB

 5
B

gR2

rB
5
B

132.2 ft/s22 1 13960 mi2 15280 ft/mi2 22
124,000 mi2 15280 ft/mi2 5 10,540 ft/s

This is the speed of the space tug at B for it to have a circular orbit. 

Converting this to mi/h gives vB 5 7186 mi/h. Therefore, the required 

increase in velocity is 

DvB 5 7186 mi/h 2 4545 mi/h

DvB 5 2640 mi/h b

REFLECT and THINK: The speeds of satellites and orbiting vehicles 

are quite large, as seen in this problem. The next type of question we 

could ask is what force is required to impart this change in speed.

=
t

n

F = GMm
r2

man = mv2

r

Fig. 1 Free-body diagram and 
kinetic diagram of satellite at 
point A.
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769 769

In this section, we introduced the angular momentum or the moment of the momentum, 

HO, of a particle about O as

 HO 5 r 3 mv (12.13)

and found that HO is constant when the particle moves under a central force with its 

center located at O.

1. Solving problems involving the motion of a particle under a central force. In 

problems of this type, the angular momentum HO of the particle about the center of 

force O is conserved. Therefore, we can express the conservation of angular momentum 

of particle P about O by rmv sin f 5 r0mv0 sin f0.

2. In space mechanics problems involving the orbital motion of a planet about the 

sun or of a satellite about the earth, the moon, or some other planet, the central force F 

is the force of gravitational attraction. This force is directed toward the center of 

force O and has the magnitude

 F 5 G 

Mm

r2
 (12.26)

Note that in the particular case of the gravitational force exerted by the earth, the 

product GM can be replaced by gR2, where R is the earth’s radius [Eq. 12.28]. 

The following two cases of orbital motion are frequently encountered:

 a. For a satellite in a circular orbit, the force F is normal to the orbit and 

you can write F 5 man [Sample Prob. 12.13]. Substituting for F from Eq. (12.26) and 

observing that an 5 v2/ρ 5 v2/r, you obtain

G 

Mm

r2
5 m 

v2

r
   or   v2 5

GM
r

 b. For a satellite in an elliptical orbit, the radius vector r and the velocity v 

of the satellite are perpendicular to each other at points A and B, which are closest 

and farthest to the center of force O, respectively [Sample Prob. 12.12]. Thus, the 

conservation of angular momentum of the satellite between these two points can be 

expressed as

rAmvA 5 rBmvB

SOLVING PROBLEMS 
ON YOUR OWN
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 12.74 A particle of mass m is projected from point A with an initial 

 velocity v0 perpendicular to line OA and moves under a central 

force F directed away from the center of force O. Knowing that the 

particle follows a path defined by the equation r 5 r0 
/1cos 2θ and 

using Eq. (12.25), express the radial and transverse components of 

the velocity v of the particle as functions of θ.

 12.75 For the particle of Prob. 12.74, show (a) that the velocity of the par-

ticle and the central force F are proportional to the distance r from 

the particle to the center of force O, (b) that the radius of curvature 

of the path is proportional to r3.

 12.76 A particle of mass m is projected from point A with an initial 

 velocity v0 perpendicular to line OA and moves under a central 

force F along a semicircular path of diameter OA. Observing that 

r 5 r0 cos θ and using Eq. (12.25), show that the speed of the 

 particle is v 5 v0/cos2 θ.

O
q

F

A

v

v0

r0

m

r

Fig. P12.76

 12.77 For the particle of Prob. 12.76, determine the tangential component 

Ft of the central force F along the tangent to the path of the particle 

for (a) θ 5 0, (b) θ 5 45°.

 12.78 Determine the mass of the earth knowing that the mean radius of 

the moon’s orbit about the earth is 238,910 mi and that the moon 

requires 27.32 days to complete one full revolution about the earth.

 12.79 Show that the radius r of the moon’s orbit can be determined from the 

radius R of the earth, the acceleration of gravity g at the  surface of 

the earth, and the time τ required for the moon to  complete one full 

revolution about the earth. Compute r knowing that τ 5 27.3 days, 

giving the answer in both SI and U.S.  customary units.

 12.80 Communication satellites are placed in a geosynchronous orbit, i.e., in 

a circular orbit such that they complete one full revolution about the 

earth in one sidereal day (23.934 h), and thus appear stationary with 

respect to the ground. Determine (a) the altitude of these satellites 

above the surface of the earth, (b) the velocity with which they describe 

their orbit. Give the answers in both SI and U.S. customary units.

Problems

r0
AO

F

mr

θ v0

v

Fig. P12.74
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 12.81 Show that the radius r of the orbit of a moon of a given planet can 

be determined from the radius R of the planet, the acceleration of 

gravity at the surface of the planet, and the time τ required by the 

moon to complete one full revolution about the planet. Determine the 

acceleration of gravity at the surface of the planet Jupiter knowing 

that R 5 71 492 km and that τ 5 3.551 days and r 5 670.9 3 103 km 

for its moon Europa.

 12.82 The orbit of the planet Venus is nearly circular with an orbital 

velocity of 126.5 3 103 km/h. Knowing that the mean distance 

from the center of the sun to the center of Venus is 108 3 106 km 

and that the radius of the sun is 695.5 3 103 km, determine 

(a) the mass of the sun, (b) the acceleration of gravity at the surface 

of the sun.

 12.83 A satellite is placed into a circular orbit about the planet Saturn at an 

altitude of 2100 mi. The satellite describes its orbit with a velocity 

of 54.7 3 103 mi/h. Knowing that the radius of the orbit about 

Saturn and the periodic time of Atlas, one of Saturn’s moons, are 

85.54 3 103 mi and 0.6017 days, respectively, determine (a) the radius 

of Saturn, (b) the mass of Saturn. (The periodic time of a satellite is 

the time it requires to complete one full revolution about the planet.)

 12.84 The periodic time (see Prob. 12.83) of an earth satellite in a  circular 

polar orbit is 120 minutes. Determine (a) the altitude h of the  satellite, 

(b) the time during which the satellite is above the horizon for an 

observer located at the north pole.

 12.85 A 500-kg spacecraft first is placed into a circular orbit about 

the earth at an altitude of 4500 km and then is transferred to a 

 circular orbit about the moon. Knowing that the mass of the moon 

is 0.01230 times the mass of the earth and that the radius of the 

moon is 1737 km, determine (a) the gravitational force exerted on 

the spacecraft as it was orbiting the earth, (b) the required radius of 

the orbit of the spacecraft about the moon if the periodic times (see 

Prob. 12.83) of the two orbits are to be equal, (c) the acceleration 

of gravity at the surface of the moon.

 12.86 A space vehicle is in a circular orbit of 2200-km radius around the 

moon. To transfer it to a smaller circular orbit of 2080-km radius, 

the vehicle is first placed on an elliptic path AB by reducing its 

speed by 26.3 m/s as it passes through A. Knowing that the mass of 

the moon is 73.49 3 1021 kg, determine (a) the speed of the vehicle 

as it approaches B on the elliptic path, (b) the amount by which 

its speed should be reduced as it approaches B to insert it into the 

smaller circular orbit.

 12.87 As a first approximation to the analysis of a space flight from the earth 

to the planet Mars, assume the orbits of the earth and Mars are circular 

and coplanar. The mean distances from the sun to the earth and to 

Mars are 149.6 3 106 km and 227.8 3 106 km, respectively. To place 

the spacecraft into an elliptical transfer orbit at point A, its speed is 

increased over a short interval of time to vA, which is 2.94 km/s faster 

than the earth’s orbital speed. When the spacecraft reaches point B on 

the elliptical transfer orbit, its speed vB is increased to the orbital speed 

of Mars. Knowing that the mass of the sun is 332.8 3 103 times the 

mass of the earth, determine the increase in speed required at B.

2080 km

2200 km

A B

Fig. P12.86

Orbit
of earth

Sun
A B

Transfer
orbit

Orbit
of Mars

Fig. P12.87

h
A

N

S

B
Horizon

R = 3960 mi

Fig. P12.84
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 12.88 To place a communications satellite into a geosynchronous orbit 

(see Prob. 12.80) at an altitude of 22,240 mi above the surface of 

the earth, the satellite first is released from a space shuttle, which 

is in a circular orbit at an altitude of 185 mi, and then is propelled 

by an upper-stage booster to its final altitude. As the satellite passes 

through A, the booster’s motor is fired to insert the satellite into an 

elliptic transfer orbit. The booster is again fired at B to insert the 

satellite into a geosynchronous orbit. Knowing that the second  firing 

increases the speed of the satellite by 4810 ft/s, determine (a) the 

speed of the satellite as it approaches B on the elliptic transfer orbit, 

(b) the increase in speed resulting from the first firing at A.

185 mi

A B

R = 3960 mi

22,240 mi

Fig. P12.88

 12.89 A space vehicle is in a circular orbit with a 1400-mi radius around 

the moon. To transfer to a smaller orbit with a 1300-mi radius, the 

vehicle is first placed in an elliptic path AB by reducing its speed 

by 86 ft/s as it passes through A. Knowing that the mass of the 

moon is 5.03 3 1021 lb?s2/ft, determine (a) the speed of the vehicle 

as it approaches B on the elliptic path, (b) the amount by which 

its speed should be reduced as it approaches B to insert it into the 

smaller circular orbit.

 12.90 A 1-kg collar can slide on a horizontal rod that is free to rotate 

about a vertical shaft. The collar is initially held at A by a cord 

attached to the shaft. A spring of constant 30 N/m is attached to the 

collar and to the shaft and is undeformed when the collar is at A. 

As the rod rotates at the rate θ̇ 5 16 rad/s, the cord is cut and the 

collar moves out along the rod. Neglecting friction and the mass 

of the rod, determine (a) the radial and transverse components of 

the acceleration of the collar at A, (b) the acceleration of the collar 

relative to the rod at A, (c) the transverse component of the velocity 

of the collar at B.

BA

450 mm

150 mm

Fig. P12.90

1300 mi

1400 mi

A B

Fig. P12.89
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12.91 A 1-lb ball A and a 2-lb ball B are mounted on a horizontal rod that 

rotates freely about a vertical shaft. The balls are held in the posi-

tions shown by pins. The pin holding B is suddenly removed and the 

ball moves to position C as the rod rotates. Neglecting friction and 

the mass of the rod and knowing that the initial speed of A is vA 5 

8 ft/s, determine (a) the radial and transverse components of the 

acceleration of ball B immediately after the pin is removed, (b) the 

acceleration of ball B relative to the rod at that instant, (c) the speed 

of ball A after ball B has reached the stop at C.

A B

C

16 in. 16 in.

8 in.10 in.

vA

vB

Fig. P12.91

 12.92 Two 2.6-lb collars A and B can slide without friction on a frame, 

 consisting of the horizontal rod OE and the vertical rod CD, which 

is free to rotate about CD. The two collars are connected by a cord 

running over a pulley that is attached to the frame at O and a stop 

prevents collar B from moving. The frame is rotating at the 

rate θ̇ 5 12 rad/s and r 5 0.6 ft when the stop is removed allowing 

collar A to move out along rod OE. Neglecting friction and the mass 

of the frame, determine, for the position r 5 1.2 ft, (a) the transverse 

 component of the velocity of collar A, (b) the  tension in the cord and 

the acceleration of collar A relative to the rod OE.

r

E

A

O

D

B

C

Fig. P12.92

 12.93 A small ball swings in a horizontal circle at the end of a cord of 

length l1, which forms an angle θ1 with the vertical. The cord is then 

slowly drawn through the support at O until the length of the free 

end is l2. (a) Derive a relation among l1, l2, θ1, and θ2. (b) If the ball 

is set in motion so that initially l1 5 0.8 m and θ1 5 35°, determine 

the angle θ2 when l2 5 0.6 m.

1

2

O

l1
l2

q

q

Fig. P12.93
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774 Kinetics of Particles: Newton’s Second Law

*12.3  APPLICATIONS OF 
CENTRAL-FORCE MOTION

The most important examples of a particle moving under the action of a 

central force occur in space mechanics, where gravity is the central force. In 

this section, we examine some of the basic ideas of this motion,  concentrating 

on the motions of satellites around the earth and planets around a star.

12.3A  Trajectory of a Particle Under 
a Central Force

Consider a particle P moving under a central force F. In order to fully 

characterize the motion of particle P (which could represent a satellite, a 

moon, etc.), we must develop a differential equation that defines its 

trajectory.

Assuming that the force F is directed toward the center of force O, 

we note that oFr and oFθ reduce, respectively, to 2F and zero in 

Eqs. (12.11) and (12.12). Therefore, we have

  m(r̈ 2 rθ
.

2) 5 2F (12.29)

 m(rθ̈ 1 2r
.
θ
.
) 5 0 (12.30)

These equations define the motion of P. We can also use Eq. (12.25) to 

analyze the motion of P, obtaining

r2
θ
.

5 h  or  r2
 

dθ

dt
5 h (12.31)

We can use Eq. (12.31) to eliminate the independent variable t from 

Eq. (12.29). Solving Eq. (12.31) for 
?
θ, or dθ/dt, we have

θ
.

5
dθ

dt
5

h

r2
 (12.32)

It follows that

 r
.

5
dr

dt
5

dr

dθ
 

dθ

dt
5

h

r2
 

dr

dθ
5 2h

d

dθ
 a1

r
b (12.33)

 r̈ 5
dr

.

dt
5

dr
.

dθ
 

dθ

dt
5

h

r2
 

dr
.

dθ

If we substitute for ?r from Eq. (12.33) into the expression for r̈, we obtain

 r̈ 5
h

r2
 

d

dθ
c2h 

d

dθ
 a1

r
b d

  r̈ 5 2
h2

r 2
 

d2

dθ
2

 a1

r
b  (12.34)

Now, substituting for θ and r̈ from Eqs. (12.32) and (12.34), respectively, 

in Eq. (12.29) and introducing the function u 5 1/r, we obtain, after 

reductions,

 
d2u

dθ
2

1 u 5
F

mh2u2
 (12.35)

d2u

dθ
2

1 u 5
F

mh2u2
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*12.3 Applications of Central-Force Motion 775

In deriving Eq. (12.35), we assumed force F to be directed toward O.
The magnitude F therefore should be positive if F is actually directed 

toward O (attractive force) and negative if F is directed away from O
(repulsive force). If F is a known function of r and thus of u, Eq. (12.35) 

is a differential equation in u and θ. This differential equation defines the 

trajectory followed by the particle under the central force F. We can obtain 

the equation of the trajectory by solving the differential equation (12.35) 

for u as a function of θ and determining the constants of integration from 

the initial conditions.

*12.3B Application to Space Mechanics
After the last stages of their launching rockets have burned out, earth satel-

lites and other space vehicles are subject to only the gravitational pull of 

the earth. We can therefore determine their motion from Eqs. (12.31) and 

(12.35), which govern the motion of a particle under a central force, after 

replacing F by the expression for the force of gravitational attraction.† We 

set F in Eq. (12.35) as

  F 5
GMm

r2
5 GMmu2

where M 5 mass of the earth

 m 5 mass of space vehicle

 r 5 distance from center of the earth to vehicle

 u 5 1/r

Then we obtain the differential equation

 
d2u

dθ
2

1 u 5
GM

h2
 (12.36)

Note that the right-hand side is a constant.

To solve the differential equation (12.36), we add the particular 

 solution u 5 GM/h2 to the general solution u 5 C cos (θ 2 θ0) of the 

corresponding homogeneous equation (i.e., the equation obtained by 

 setting the right-hand side equal to zero). Choosing the polar axis so that 

θ0 5 0, we have

 
1

r
5 u 5

GM

h2
1 C cos θ (12.37)

Equation (12.37) is the equation of a conic section (ellipse, parabola, or 

hyperbola) in the polar coordinates r and θ. The origin O of the coordi-

nates, which is located at the center of the earth, is a focus of this conic 

section, and the polar axis is one of its axes of symmetry (Fig. 12.18).

The ratio of the constants C and GM/h2 defines the eccentricity « 

of the conic section. If we set 

 « 5
C

GM/h2
5

Ch2

GM
 (12.38)

d2u

dθ
2

1 u 5
GMGG

h2

†We assume that the space vehicles considered here are attracted by the earth only and that 

their masses are negligible compared to the mass of the earth. If a vehicle travels very far 

from the earth, its path may be affected by the gravitational attraction of the sun, the moon, 

or another planet.

Photo 12.5 The Hubble telescope was 
carried into orbit by the space shuttle 
in 1990.

Fig. 12.18 The trajectory of an earth 
satellite is a conic section with the center 
of the earth as one of its foci.

A

r

O

q

bee87342_ch12_718-794.indd   775bee87342_ch12_718-794.indd   775 11/27/14   9:41 AM11/27/14   9:41 AM

UPLOADED BY AHMAD T JUNDI



776 Kinetics of Particles: Newton’s Second Law

we can write Eq. (12.37) in the form

1

r
5

GM

h2
  (1 1 « cos θ) (12.379)

This equation represents three possible trajectories.

 1. «  . 1, or C . GM/h2: There are two values θ1 and 2θ1 of the polar 

angle, defined by cos θ1 5 2GM/Ch2, for which the right-hand side of 

Eq. (12.37) becomes zero. For both these values, the radius vector r
becomes infinite; the conic section is a hyperbola (Fig. 12.19).

 2. « = 1, or C 5 GM/h2: The radius vector becomes infinite for θ 5 180°; 

the conic section is a parabola.
 3. « , 1, or C , GM/h2: The radius vector remains finite for every value 

of θ; the conic section is an ellipse. In the particular case when « 5 C 5 0, 

the length of the radius vector is constant; the conic section is a circle.

Let’s now see how we can determine the constants C and GM/h2, 

which characterize the trajectory of a space vehicle, from the vehicle’s 

position and velocity at the beginning of its free flight. We assume that, 

as is generally the case, the powered phase of its flight has been 

 programmed in such a way that as the last stage of the launching rocket 

burns out, the vehicle has a velocity parallel to the surface of the earth 

(Fig. 12.20). In other words, we assume that the space vehicle begins its 

free flight at the vertex A of its trajectory. (In Sec. 13.2D, we consider 

problems involving oblique launchings.)

Denoting the radius and speed of the vehicle at the beginning of its 

free flight by r0 and v0, respectively, we observe that the velocity reduces 

to its transverse component. Thus, v0 5 r0θ
.
0. Recalling Eq. (12.25), we 

express the angular momentum per unit mass h as

 h 5 r2
0θ

.
0 5 r0v0 (12.39)

The value obtained for h can be used to determine the constant GM/h2. 

We also note that the computation of this constant is simplified if we use 

the relation obtained in Sec. 12.2C.

 GM 5 gR2 (12.28)

where R is the radius of the earth (R 5 6.37 3 106 m or 3960 mi) and g 

is the acceleration due to gravity at the earth’s surface.

We obtain the constant C by setting θ 5 0, r 5 r0 in Eq. (12.37). 

Hence,

 C 5
1

r0

2
GM

h2
 (12.40)

Substituting for h from Eq. (12.39), we can easily express C in terms of 

r0 and v0.

Initial Conditions. Now we can determine the initial conditions 

 corresponding to each of the three fundamental trajectories indicated. 

 Considering first the parabolic trajectory, we set C equal to GM/h2 in 

Eq. (12.40) and eliminate h between Eqs. (12.39) and (12.40). Solving for 

v0, we obtain

v0 5
A

2GM
r0

h 5 r2
0θ

.
0θθ 5 r0rr v0

Fig. 12.19 Depending on the eccentricity, 
the orbit of an earth satellite can be a 
hyperbola, a parabola, or an ellipse.

A

parabola

hyperbola

elipse

O

1q

–    1q

< 1

= 1

> 1

e

e

e

Fig. 12.20 Typically, a space vehicle has a 
velocity parallel to the surface of the earth 
after the powered portion of its flight.

A

Launching

Powered flight

Free flight

BurnoutO r0

v0
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*12.3 Applications of Central-Force Motion 777

We can check that a larger value of the initial velocity corresponds to a 

hyperbolic trajectory and a smaller value corresponds to an elliptic orbit. 

Since the value of v0 obtained for the parabolic trajectory is the smallest 

value for which the space vehicle does not return to its starting point, it 

is called the escape velocity. Therefore, making use of Eq. (12.28), we 

have

 vesc 5
A

2GM
r0

  or  vesc 5
B

2gR2

r0

 (12.41)

Note that the trajectory is (1) hyperbolic if v0 . vesc, (2) parabolic if 

v0 5 vesc, and (3) elliptic if v0 , vesc.

Among the various possible elliptic orbits, the one obtained when 

C 5 0, the circular orbit, is of special interest. Taking into account 

Eq. (12.28), the value of the initial velocity corresponding to a circular 

orbit is 

 vcirc 5
A

GM
r0

  or  vcirc 5
B

gR2

r0
 (12.42)

Note from Fig. 12.21 that, for values of v0 larger than vcirc but smaller 

than vesc, point A is the point of the orbit closest to the earth where free 

flight begins. This point is called the perigee, whereas point A9, which is 

farthest away from the earth, is known as the apogee. For values of v0 

smaller than vcirc, point A is the apogee and point A0, which is on the other 

side of the orbit, is the perigee. For values of v0 much smaller than vcirc, 

the trajectory of the space vehicle intersects the surface of the earth; in 

such a case, the vehicle does not go into orbit.

Ballistic missiles, which were designed to hit the surface of the 

earth, also travel along elliptic trajectories. In fact, you should now realize 

that any object projected in vacuum with an initial velocity v0 smaller than 

vesc moves along an elliptic path. Only when the distances involved are 

small enough that we can assume the gravitational field of the earth is 

uniform can we approximate the elliptic path by a parabolic path, as we 

did earlier (Sec. 11.4C) in the case of conventional projectiles.

Periodic Time. An important characteristic of the motion of an earth 

satellite is the time required by the satellite to travel through one complete 

orbit. This time, which is known as the satellite’s periodic time, is denoted 

by τ. We first observe, in view of the definition of areal velocity 

(Sec. 12.2B), that we can obtain τ by dividing the area inside the orbit 

by the areal velocity. The area of an ellipse is equal to πab, where a and b 

denote the semimajor and semiminor axes, respectively. Since the areal 

velocity is equal to h/2, we have

 τ 5
2πab

h
 (12.43)

Although we can readily determine h from r0 and v0 in the case of 

a satellite launched in a direction parallel to the earth’s surface, the 

 semiaxes a and b are not directly related to the initial conditions. However, 

the values r0 and r1 of r corresponding to the perigee and apogee of the 

orbit can be determined from Eq. (12.37), so we can express the semiaxes 

a and b in terms of r0 and r1.

τ 5
2πaππ b

h

Fig. 12.21 Various elliptic orbits are possible 
for earth satellites, depending on the initial 
velocity.

O

v0 < vcirc

vcirc < v0 < vesc

v0 = vcirc

A' A" A
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778 Kinetics of Particles: Newton’s Second Law

Consider the elliptic orbit shown in Fig. 12.22. The earth’s center 

is located at O and coincides with one of the two foci of the ellipse, and 

the points A and A9 represent, respectively, the perigee and apogee of the 

orbit. We easily check that

r0 1 r1 5 2a

and thus

 a 5 
1
2(r0 1 r1) (12.44)

Recall that the sum of the distances from each of the foci to any point of 

the ellipse is constant, so we have

O9B 1 BO 5 O 9A 1 OA 5 2a  or  BO 5 a

On the other hand, we have CO 5 a 2 r0. We can therefore write

b2 5 (BC)2 5 (BO)2 2 (CO)2 5 a2 2 (a 2 r0)
2

b2 5 r0(2a 2 r0) 5 r0r1

and thus

 b 5 1r0r1 (12.45)

Formulas (12.44) and (12.45) indicate that the semimajor and semiminor 

axes of the orbit are equal, respectively, to the arithmetic and geometric 

means of the maximum and minimum values of the radius vector. Once 

you have determined r0 and r1, you can compute the lengths of the 

 semiaxes and substitute for a and b in Eq. (12.43).

*12.3C  Kepler’s Laws of Planetary 
Motion

We can use the equations governing the motion of an earth satellite to 

describe the motion of the moon around the earth. In that case, however, 

the mass of the moon is not negligible compared with the earth’s mass, 

and the results are not entirely accurate.

We can also apply the theory developed in the preceding sections to 

the study of the motion of the planets around the sun. Although another error 

is introduced by neglecting the forces exerted by the planets on one another, 

the approximation obtained is excellent. Indeed, even before  Newton had 

formulated his fundamental theory, the properties expressed by Eq. (12.37), 

where M now represents the mass of the sun, and by Eq. (12.31) had been 

discovered by the German astronomer Johannes Kepler (1571–1630) from 

astronomical observations of the motion of the planets.

Kepler’s three laws of planetary motion can be stated as follows.

 1. The path of each planet describes an ellipse, with the sun located at one 

of its foci.

 2. The radius vector drawn from the sun to a planet sweeps equal areas 

in equal times.

 3. The squares of the periodic times of the planets are proportional to the 

cubes of the semimajor axes of their orbits.

The first law states a particular case of the result established in 

Sec. 12.3B, and the second law expresses that the areal velocity of each 

planet is constant (see Sec. 12.2B). Kepler’s third law also can be derived 

from the results obtained in Sec. 12.3B. (See also Prob. 12.120.)

Fig. 12.22 For an elliptic orbit, the distances 
to apogee (A’) and perigee (A) are related to 
the semimajor and semiminor axes.

b

a

r1 r0

CA' AO'

B

O
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*12.3 Applications of Central-Force Motion 779

Sample Problem 12.14

A satellite is launched in a direction parallel to the earth’s surface with a 

velocity of 36 900 km/h from an altitude of 500 km. Determine (a) the 

maximum altitude reached by the satellite, (b) the periodic time of the 

satellite.

STRATEGY: After the satellite is launched, it is subjected to the earth’s 

gravitational attraction only and undergoes central-force motion. Knowing 

this, you can determine the satellite’s trajectory, maximum altitude, and 

periodic time. 

MODELING and ANALYSIS: The satellite can be modeled as a 

particle. 

a. Maximum Altitude. After the satellite is launched, it is subject 

only to the earth’s gravitational attraction. Thus, its motion is governed 

by Eq. (12.37), so

 
1

r
5

GM

h2
1 C cos θ (1)

Since the radial component of the velocity is zero at the point of 

launching A, you have h 5 r0v0. Recalling that for the earth, R 5 6370 km, 

you can compute

 r0 5 6370 km 1 500 km 5 6870 km 5 6.87 3 106 m

 v0 5 36 900 km/h 5
36.9 3 106 m

3.6 3 103 s
5 10.25 3 103 m/s

 h 5 r0v0 5 (6.87 3 106 m)(10.25 3 103 m/s) 5 70.4 3 109 m2/s

 h2 5 4.96 3 1021 m4/s2

Since GM 5 gR2, where R is the radius of the earth, you also have

 GM 5 gR2 5 (9.81 m/s2)(6.37 3 106 m)2 5 398 3 1012 m3/s2

 
GM

h2
5

398 3 1012 m3/s2

4.96 3 1021 m4/s2
5 80.3 3 1029 m21

 Substituting this value into Eq. (1) gives

 
1

r
5 80.3 3 1029 m21 1 C cos θ (2)

Note that at point A, θ 5 0 and r 5 r0 = 6.87 3 106 m (Fig. 1). From 

this, you can compute the constant C as

1

6.87 3 106 m
5 80.3 3 1029 m21 1 C cos 08   C 5 65.3 3 1029 m21

At A9, which is the point on the orbit farthest from the earth, you have 

θ 5 180° (Fig. 1). Using Eq. (2), you can compute the corresponding 

 distance r1 to be

1

r1

 5 80.3 3 1029 m21 1 (65.3 3 1029 m21) cos 180°

 r1 5 66.7 3 106 m 5 66 700 km

Maximum altitude 5 66 700 km 2 6370 km 5 60 300 km b

Maximum altitude

36 900 km/h

Earth

500 km

R
A' A

r1

v0

r0

r
q

Fig. 1 Satellite orbit after 
launch velocity vo.

(continued)
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780 Kinetics of Particles: Newton’s Second Law

b. Periodic Time. Since A and A9 are the perigee and apogee, respec-

tively, of the elliptic orbit, use Eqs. (12.44) and (12.45) to compute the 

semimajor and semiminor axes of the orbit (Fig. 2):

 a 5
1
2(r0 1 r1) 5

1
2(6.87 1 66.7)(106) m 5 36.8 3 106 m

 b 5 1r0r1 5 1(6.87)(66.7) 3 106 m 5 21.4 3 106 m

 t 5
2pab

h
5

2p(36.8 3 106m)(21.4 3 106m)

70.4 3 109 m2/s

τ 5 70.3 3 103 s 5 1171 min 5 19 h 31 min b

OA' A
C

B

r1 r0

a

b

Fig. 2 Semimajor and 
semiminor axes of the orbit.

REFLECT and THINK: The satellite takes less than one day to travel 

over 60 000 km around the earth. In this problem, you started with Eq. 12.37, 

but it is important to remember that this formula was the solution to a 

differential equation that was derived using Newton’s second law.
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781 781

SOLVING PROBLEMS 
ON YOUR OWN

In this section, we continued our study of the motion of a particle under a central 

force and applied the results to problems in space mechanics. We found that the 

trajectory of a particle under a central force is defined by the differential equation

d2u

d θ
2

1 u 5
F

mh2u2
 (12.35)

where u is the reciprocal of the distance r of the particle from the center of force 

(u 5 1/r), F is the magnitude of the central force F, and h is a constant equal to the 

angular momentum per unit mass of the particle. In space mechanics problems, F is 

the force of gravitational attraction exerted on the satellite or spacecraft by the sun, 

the earth, or other planet about which it travels. Substituting F 5 GMm/r2 5 GMmu2

into Eq. (12.35), we obtain for that case

d2u

d θ
2

1 u 5
GM

h2
 (12.36)

where the right-hand side is a constant.

1. Analyzing the motion of satellites and spacecraft. The solution of the differential 

equation (12.36) defines the trajectory of a satellite or spacecraft. We obtained it in 

Sec. 12.3B in the alternative forms

 
1

r
5

GM

h2
 1 C cos θ  or  1

r
5  

GM

h2
 (1 1 « cos θ) (12.37, 12.379)

Remember when applying these equations that θ 5 0 always corresponds to the 

 perigee (the point of closest approach) of the trajectory (Fig. 12.18) and that h is a 

constant for a given trajectory. Depending on the value of the eccentricity «, the 

trajectory is either a hyperbola, a parabola, or an ellipse.

 a. e + 1: The trajectory is a hyperbola. For this case, the spacecraft never 

returns to its starting point.

 b. e 5 1: The trajectory is a parabola. This is the limiting case between 

open (hyperbolic) and closed (elliptic) trajectories. We had observed for this case that 

the velocity v0 at the perigee is equal to the escape velocity vesc. Hence,

 v0 5 vesc 5
A

2GM
r0

 (12.41)

Note that the escape velocity is the smallest velocity for which the spacecraft does 

not return to its starting point.

 c. e * 1: The trajectory is an elliptic orbit. For problems involving elliptic 

orbits, you may find that the relation derived in Prob. 12.102 

1

r0

1
1

r1

5
2GM

h2
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782

is useful in the solution of subsequent problems. When you apply this equation, 

remember that r0 and r1 are the distances from the center of force to the perigee 

(θ 5 0) and apogee (θ 5 180°), respectively; that h 5 r0v0 5 r1v1; and that, for a 

satellite orbiting the earth, GMearth 5 gR2, where R is the radius of the earth. Also 

recall that the trajectory is a circle when « 5 0.

2. Determining the point of impact of a descending spacecraft. For problems of 

this type, you may assume that the trajectory is elliptic and that the initial point of 

the descent trajectory is the apogee of the path (Fig. 12.21). Note that at the point of 

impact, the distance r in Eqs. (12.37) and (12.379) is equal to the radius R of the body 

on which the spacecraft lands or crashes. In addition, we have h 5 RvI sin fI, where vI 

is the speed of the spacecraft at impact and fI is the angle that its path forms with 

the vertical at the point of impact.

3. Calculating the time to travel between two points on a trajectory. For central-

force motion, you can determine the time t required for a particle to travel along a 

portion of its trajectory by recalling from Sec. 12.2B that the rate at which area is 

swept per unit time by the position vector r is equal to one-half of the angular momen-

tum per unit mass h of the particle: dA/dt 5 h/2. Since h is a constant for a given 

trajectory, it follows that

t 5
2A

h

where A is the total area swept in the time t.

 a. In the case of an elliptic trajectory, the time required to complete one 

orbit is called the periodic time and is expressed as

 τ 5
2(πab)

h
 (12.43)

where a and b are the semimajor and semiminor axes, respectively, of the ellipse and 

are related to the distances r0 and r1 by

 a 5
1
2(r0 1 r1)  and  b 5 1r0r1 (12.44, 12.45)

 b. Kepler’s third law provides a convenient relation between the periodic 

times of two satellites describing elliptic orbits about the same body [Sec. 12.3C]. 

Denoting the semimajor axes of the two orbits by a1 and a2, respectively, and the 

corresponding periodic times by τ1 and τ2, we have

τ
2
1

τ
2
2

5
a3

1

a3
2

 c. In the case of a parabolic trajectory, you may be able to use the  expression 

given on the inside of the front cover of this book for a parabolic or a semiparabolic 

area to calculate the time required to travel between two points of the trajectory.
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Problems
CONCEPT QUESTIONS
12.CQ6 A uniform crate C with mass m is being transported to the left by 

a forklift with a constant speed v1. What is the magnitude of the 

angular momentum of the crate about point D, that is, the upper left 

corner of the crate?

a. 0

b. mv1a
c. mv1b
d. 

mv1b
mv12a2 1 b2

Fig. P12.CQ6 and P12.CQ7

A

G

B

3 ft 3 ft4 ft

3 ft

D

C

d

a

b

v1

12.CQ7 A uniform crate C with mass m is being transported to the left by 

a forklift with a constant speed v1. What is the magnitude of the 

angular momentum of the crate about point A, that is, the point of 

contact between the front tire of the forklift and the ground?

   a. 0

   b. mv1d
   c. 3mv1

   d. mv1232 1 d2

END-OF-SECTION PROBLEMS

 12.94 A particle of mass m is projected from point A with an  initial 

velocity v0 perpendicular to OA and moves under a central force F 

along an elliptic path defined by the equation r 5 r0/(2 2 cos θ). 
Using Eq. (12.35), show that F is inversely proportional to the 

square of the distance r from the particle to the center of force O.

 12.95 A particle of mass m describes the logarithmic spiral r 5 r0 e
bθ 

under a central force F directed toward the center of force O. Using 

Eq. (12.35), show that F is inversely proportional to the cube of the 

distance r from the particle to O.

 12.96 A particle with a mass m describes the path defined by the equation 

r 5 r0/(6 cos θ 2 5) under a central force F directed away from 

the center of force O. Using Eq. (12.35), show that F is inversely 

proportional to the square of the distance r from the particle to O.

AO

r

q

r0

F

m v0

v

Fig. P12.94

F m

O

q

r

Fig. P12.96
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784784

 12.97 A particle of mass m describes the parabola y 5 x2/4r0 under 

a  central force F directed toward the center of force C. Using 

Eq. (12.35) and Eq. (12.379) with « 5 1, show that F is inversely 

proportional to the square of the distance r from the particle to 

the center of force and that the angular momentum per unit mass 

h 5 22GMr0.

12.98 It was observed that during its second flyby of the earth, the Galileo 

spacecraft had a velocity of 14.1 km/s as it reached its  minimum 

altitude of 303 km above the surface of the earth. Determine the 

eccentricity of the trajectory of the spacecraft during this portion of 

its flight.

12.99 It was observed that during the Galileo spacecraft’s first flyby of 

the earth, its minimum altitude was 600 mi above the surface of the 

earth. Assuming that the trajectory of the spacecraft was parabolic, 

determine the maximum velocity of Galileo during its first flyby of 

the earth.

12.100 As a space probe approaching the planet Venus on a parabolic trajec-

tory reaches point A closest to the planet, its velocity is decreased to 

insert it into a circular orbit. Knowing that the mass and the radius 

of Venus are 4.87 3 1024 kg and 6052 km, respectively, determine 

(a) the velocity of the probe as it approaches A, (b) the decrease in 

velocity required to insert it into the circular orbit.

 12.101 It was observed that as the Voyager I spacecraft reached the point 

of its trajectory closest to the planet Saturn, it was at a distance of 

185 3 103 km from the center of the planet and had a velocity of 

21.0 km/s. Knowing that Tethys, one of Saturn’s moons, describes 

a circular orbit of radius 295 3 103 km at a speed of 11.35 km/s, 

 determine the eccentricity of the trajectory of Voyager I on its 

approach to Saturn.

 12.102 A satellite describes an elliptic orbit about a planet of mass M. 

Denoting by r0 and r1, respectively, the minimum and maximum 

values of the distance r from the satellite to the center of the planet, 

derive the relation

1

r0

1
1

r1

5
2GM

h2

  where h is the angular momentum per unit mass of the satellite.

 12.103 A space probe is describing a circular orbit about a planet of 

radius R. The altitude of the probe above the surface of the planet 

is αR and its speed is v0. To place the probe in an elliptic orbit 

which will bring it closer to the planet, its speed is reduced from 

v0 to βv0, where β , 1, by firing its engine for a short interval of 

time. Determine the smallest permissible value of β if the probe is 

not to crash on the surface of the planet.

280 km

A

C

B

Fig. P12.100

y

C

m
q

F

O

r

r0

x

Fig. P12.97

A B
O

r1r0

Fig. P12.102
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12.104 A satellite describes a circular orbit at an altitude of 19 110 km 

above the surface of the earth. Determine (a) the increase in speed 

required at point A for the satellite to achieve the escape velocity 

and enter a parabolic orbit, (b) the decrease in speed required at 

point A for the satellite to enter an elliptic orbit with a minimum 

altitude of 6370 km, (c) the eccentricity « of the elliptic orbit.

6370 km
19 110 km

R = 6370 km A

Fig. P12.104

 12.105 A space probe is to be placed in a circular orbit of 5600-mi radius 

about the planet Venus in a specified plane. As the probe reaches 

A, the point of its original trajectory closest to Venus, it is inserted 

in a first elliptic transfer orbit by reducing its speed by DvA. This 

orbit brings it to point B with a much reduced velocity. There the 

probe is inserted in a second transfer orbit located in the specified 

plane by changing the direction of its velocity and further reducing 

its speed by DvB. Finally, as the probe reaches point C, it is inserted 

in the desired circular orbit by reducing its speed by DvC. Knowing 

that the mass of Venus is 0.82 times the mass of the earth, that 

rA 5 9.3 3 103 mi and rB 5 190 3 103 mi, and that the probe 

approaches A on a parabolic trajectory, determine by how much the 

velocity of the probe should be reduced (a) at A, (b) at B, (c) at C.

 12.106 For the space probe of Prob. 12.105, it is known that rA 5 9.3 3 103 mi 

and that the velocity of the probe is reduced to 20,000 ft/s as it passes 

through A. Determine (a) the distance from the center of Venus to 

point B, (b) the amounts by which the velocity of the probe should be 

reduced at B and C, respectively.

 12.107 As it describes an elliptic orbit about the sun, a spacecraft reaches a 

maximum distance of 202 3 106 mi from the center of the sun at 

point A (called the aphelion) and a minimum distance of 92 3 106 mi 

at point B (called the perihelion). To place the spacecraft in a smaller 

elliptic orbit with aphelion at A9 and perihelion at B9, where A9 and B9 
are located 164.5 3 106 mi and 85.5 3 106 mi, respectively, from 

the center of the sun, the speed of the spacecraft is first reduced as it 

passes through A and then is further reduced as it passes through B9. 

Knowing that the mass of the sun is 332.8 3 103 times the mass of the 

earth, determine (a) the speed of the spacecraft at A, (b) the amounts 

by which the speed of the spacecraft should be reduced at A and B9 
to insert it into the desired elliptic orbit.

A

C

Circular orbit

5600 mi

Second transfer orbit

First transfer orbit

B

rB rA

Approach trajectory

Fig. P12.105

A' B'A B

164.5 × 106 mi  

202 × 106 mi  

85.5 × 106 mi  

92 × 106 mi  

Fig. P12.107
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12.108 Halley’s comet travels in an elongated elliptic orbit for which the 

 minimum distance from the sun is approximately 
1
2 rE, where 

rE 5 150 3 106 km is the mean distance from the sun to the earth. 

Knowing that the periodic time of Halley’s comet is about 76 years, 

determine the maximum distance from the sun reached by the comet.

 12.109 Based on observations made during the 1996 sighting of comet 

 Hyakutake, it was concluded that the trajectory of the comet is a 

highly elongated ellipse for which the eccentricity is approximately 

e 5 0.999887. Knowing that for the 1996 sighting the minimum 

distance between the comet and the sun was 0.230RE, where RE is 

the mean distance from the sun to the earth, determine the periodic 

time of the comet.

 12.110 A space probe is to be placed in a circular orbit of radius 4000 km 

about the planet Mars. As the probe reaches A, the point of its 

original trajectory closest to Mars, it is inserted into a first elliptic 

transfer orbit by reducing its speed. This orbit brings it to point 

B with a much-reduced velocity. There the probe is inserted into 

a second transfer orbit by further reducing its speed. Knowing 

that the mass of Mars is 0.1074 times the mass of the earth, that 

rA 5 9000 km and rB 5 180 000 km, and that the probe approaches 

A on a parabolic trajectory, determine the time needed for the space 

probe to travel from A to B on its first transfer orbit.

 12.111 A spacecraft and a satellite are at diametrically opposite positions 

in the same circular orbit of altitude 500 km above the earth. As 

it passes through point A, the spacecraft fires its engine for a short 

interval of time to increase its speed and enter an elliptic orbit. 

Knowing that the spacecraft returns to A at the same time the  satellite 

reaches A after completing one and a half orbits,  determine (a) the 

increase in speed required, (b) the periodic time for the  elliptic orbit.

 12.112 The Clementine spacecraft described an elliptic orbit of minimum 

 altitude hA 5 400 km and maximum altitude hB 5 2940 km above the 

surface of the moon. Knowing that the radius of the moon is 1737 km 

and that the mass of the moon is 0.01230 times the mass of the earth, 

determine the periodic time of the spacecraft.

A BhBhA

Fig. P12.112

 12.113 Determine the time needed for the space probe of Prob. 12.100 to 

travel from B to C.

 12.114 A space probe is describing a circular orbit of radius nR with a velocity 

v0 about a planet of radius R and center O. As the probe passes through 

point A, its velocity is reduced from v0 to βv0, where β , 1, to place 

the probe on a crash trajectory. Express in terms of n and β the angle 

AOB, where B denotes the point of impact of the probe on the planet.

C

AB

Second transfer orbit

First
transfer

orbit

Approach trajectory

4000 km

rB rA

O

Fig. P12.110

A
SpacecraftSatellite

500 km

R = 6370 km

Fig. P12.111

B

R

A

b v0

nR

O

Fig. P12.114
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 12.115 A long-range ballistic trajectory between points A and B on the earth’s 

surface consists of a portion of an ellipse with the apogee at point C. 

Knowing that point C is 1500 km above the surface of the earth and 

the range Rf of the trajectory is 6000 km, determine (a) the velocity 

of the projectile at C, (b) the eccentricity « of the trajectory.

12.116 A space shuttle is describing a circular orbit at an altitude of 563 km 

above the surface of the earth. As it passes through point A, it fires 

its engine for a short interval of time to reduce its speed by 152 m/s 

and begin its descent toward the earth. Determine the angle AOB so 

that the altitude of the shuttle at point B is 121 km. (Hint: Point A 

is the apogee of the elliptic descent trajectory.)

A

B

O

563 km

R = 6370 km

Fig. P12.116

 12.117 As a spacecraft approaches the planet Jupiter, it releases a probe 

which is to enter the planet’s atmosphere at point B at an altitude of 

280 mi above the surface of the planet. The trajectory of the probe 

is a hyperbola of eccentricity « 5 1.031. Knowing that the radius 

and the mass of Jupiter are 44,423 mi and 1.30 3 1026 slug, respec-

tively, and that the velocity vB of the probe at B forms an angle of 

82.9° with the direction of OA, determine (a) the angle AOB, (b) the 

speed vB of the probe at B.

 12.118 A satellite describes an elliptic orbit about a planet. Denoting by r0 

and r1 the distances corresponding, respectively, to the perigee and 

apogee of the orbit, show that the curvature of the orbit at each of 

these two points can be expressed as

1

r
5

1

2
 a 1

r0

1
1

r1

b
 12.119 (a) Express the eccentricity « of the elliptic orbit described by a sat-

ellite about a planet in terms of the distances r0 and r1 correspond-

ing, respectively, to the perigee and apogee of the orbit. (b) Use the 

result obtained in part a and the data given in Prob. 12.109, where 

RE 5 149.6 3 106 km, to determine the approximate maximum 

distance from the sun reached by comet Hyakutake.

 12.120 Derive Kepler’s third law of planetary motion from Eqs 12.37 and 

12.43.

 12.121 Show that the angular momentum per unit mass h of a satellite 

describing an elliptic orbit of semimajor axis a and eccentricity « 

about a planet of mass M can be expressed as

h 5 2GMa(1 2 e2)

R = 6370 km

O

A

C

B

vC

f

Fig. P12.115

vB

44,000 mi

A

B

O

Fig. P12.117

A B
O

r1r0

Fig. P12.118 and P12.119
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This chapter was devoted to Newton’s second law and its application to 

analyzing the motion of particles.

Newton’s Second Law
Denote the mass of a particle by m, the sum (or resultant) of the forces acting 

on the particle by oF, and the acceleration of the particle relative to a 

newtonian frame of reference by a [Sec. 12.1A]. Then we have

 oF 5 ma (12.2)

Linear Momentum
Introducing the linear momentum of a particle, L 5 mv [Sec. 12.1B], we 

saw that Newton’s second law also can be written in the form

 oF 5 L̇ (12.5)

This equation states that the resultant of the forces acting on a particle is 
equal to the rate of change of the linear momentum of the particle.

Consistent Systems of Units
Equation (12.2) holds only if we use a consistent system of units. With SI 

units, the forces should be expressed in newtons, the masses in kilograms, and 

the accelerations in m/s2; with U.S. customary units, the forces should be 

expressed in pounds, the masses in lb?s2/ft (also referred to as slugs), and the 

accelerations in ft/s2 [Sec. 12.1C].

Free-Body Diagram and Kinetic Diagram
A free-body diagram for a system shows the applied forces and a kinetic 
diagram shows the vector ma or its components. These diagrams provide a 

pictorial representation of Newton’s second law. Drawing them will be of 

great help to you when writing the equations of motion. Note that when a 

problem involves two or more bodies, it is usually best to consider each body 

separately.

Equations of Motion for a Particle
To solve a problem involving the motion of a particle, we should first draw 

the free-body diagram and kinetic diagram for each particle in the system. 

Then we can use these diagrams to help us write equations containing 

scalar quantities (Sec. 12.1D). Using rectangular components of F and a, 

we have

 oFx 5 max  oFy 5 may  oFz 5 maz (12.8)

Using tangential and normal components, we have

 ©Ft 5 m 

dv

dt
    ©Fn 5 m 

v2

r
 (12.99)

Review and Summary
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789

Using radial and transverse components, we have

oFr 5 m(r̈ 2 rθ̇
2) (12.11)

oFθ 5 m(rθ̈ 1 2ṙθ̇) (12.12)

Sample Probs. 12.1 through 12.5 used rectangular components, Sample 

Probs. 12.6 through 12.9 use d tangential and normal coordinates, and Sample 

Probs. 12.10 and 12.11 used radial and transverse coordinates.

Angular Momentum
In the second part of this chapter, we defined the angular momentum HO of 

a particle about a point O as the moment about O of the linear momentum 

mv of that particle [Sec. 12.2A]. Thus,

HO 5 r 3 mv (12.13)

We noted that HO is a vector perpendicular to the plane containing r and mv 

(Fig. 12.23) and has a magnitude of

 HO 5 rmv sin f (12.14)

Resolving the vectors r and mv into rectangular components, we expressed 

the angular momentum HO in the determinant form

 HO 5 † i j k
x y z

mvx mvy mvz

†  (12.15)

In the case of a particle moving in the xy plane we have z 5 vz 5 0. The angular 

momentum is perpendicular to the xy plane and is completely defined by its 

magnitude. We have

 HO 5 Hz 5 m(xvy 2 yvx) (12.17)

Rate of Change of Angular Momentum
Computing the rate of change  

.
H0 of the angular momentum HO and applying 

Newton’s second law, we obtain the equation

oMO 5 H
.

O (12.20)

This equation states that the sum of the moments about O of the forces 
acting on a particle is equal to the rate of change of the angular  momentum 
of the particle about O.

Motion Under a Central Force
When the only force acting on a particle P is a force F directed toward or 

away from a fixed point O, the particle is said to be moving under a central 
force [Sec. 12.2B]. Since oMO 5 0 at any given instant, it follows from 

Eq. (12.20) that H
.

O 5 0 for all values of t and thus

 HO 5 constant  (12.21)

We concluded that the angular momentum of a particle moving under a 
central force is constant, both in magnitude and direction, and that the 

particle moves in a plane perpendicular to the vector HO.

 Recalling Eq. (12.14), we wrote the relation

 rmv sin f 5 r0mv0 sin f0 (12.23)

Fig. 12.23

P

HO

r
O

z

x

y

mv

f
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for the motion of any particle under a central force (Fig. 12.24). Using polar 

coordinates and recalling Eq. (12.19), we also had

r2
θ
.

5 h (12.25)

where h is a constant representing the angular momentum per unit mass, 

HO /m, of the particle. We observed (Fig. 12.25) that the infinitesimal area dA
swept by the radius vector OP as it rotates through dθ is equal to dA 5

1
2 
r2dθ

and, thus, that the left-hand side of Eq. (12.25) represents twice the areal 
velocity dA/dt of the particle. Therefore, the areal velocity of a particle 
moving under a central force is constant.

Fig. 12.25

P

r

O

F
d

r d

dA

q

q

q

Newton’s Law of Universal Gravitation
An important application of the motion under a central force is provided by 

the orbital motion of bodies under gravitational attraction [Sec. 12.2C]. 

According to Newton’s law of universal gravitation, two particles at a 

 distance r from each other and of masses M and m, respectively, attract each 

other with equal and opposite forces F and 2F directed along the line joining 

the particles (Fig. 12.26). The common magnitude F of the two forces is

 F 5 G 
Mm

r 2
 (12.26)

where G is the constant of gravitation. In the case of a body of mass m
subjected to the gravitational attraction of the earth, we can express the 

 product GM, where M is the mass of the earth, as

GM 5 gR2 (12.28)

where g 5 9.81 m/s2 = 32.2 ft/s2 and R is the radius of the earth.

Orbital Motion
We showed in Sec. 12.3A that a particle moving under a central force describes 

a trajectory defined by the differential equation

 
d2u

dθ
2

1 u 5
F

mh2u2
 (12.35)

where F . 0 corresponds to an attractive force and u 5 1/r. In the case of a 

particle moving under a force of gravitational attraction [Sec. 12.12C], we 

substituted for F the expression given in Eq. (12.26). Measuring θ from the 

axis OA joining the focus O to the point A of the trajectory closest to O
(Fig. 12.27), we found that the solution to Eq. (12.35) is

1

r
5 u 5

GM

h2
1 C cos θ (12.37)

Fig. 12.24

O

P

r

mv

mv0

P0r0

0

f

f

Fig. 12.26

r
F

m

–F

M

Fig. 12.27

A

r

O

q
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This is the equation of a conic of eccentricity « 5 Ch2/GM. The conic is an 

ellipse if « , 1, a parabola if « 5 1, and a hyperbola if « . 1. We can 

determine the constants C and h from the initial conditions; if the particle is 

projected from point A (θ 5 0, r 5 r0) with an initial velocity v0 that is 

perpendicular to OA, we have h 5 r0v0 [Sample Prob. 12.14].

Escape Velocity
We also showed that the values of the initial velocity corresponding, respec-

tively, to a parabolic and a circular trajectory are

 vesc 5
A

2GM
r0

 (12.41)

 vcirc 5
A

GM
r0

 (12.42)

The first of these values, called the escape velocity, is the smallest value of 

v0 for which the particle will not return to its starting point.

Periodic Time
The periodic time τ of a planet or satellite is defined as the time required 

by that body to describe its orbit. We showed that

 
τ 5

2πab

h  
(12.43)

where h 5 r0v0 and where a and b represent the semimajor and semiminor 

axes of the orbit. We further showed that these semiaxes are respectively equal 

to the arithmetic and geometric means of the maximum and minimum values 

of the radius r.

Kepler’s Laws
The last part of the chapter [Sec. 12.3C] presented Kepler’s laws of planetary 
motion and showed that these empirical laws, obtained from early  astronomical 

observations, confirm Newton’s laws of motion as well as his law of 

gravitation.
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Review Problems
12.122 In the braking test of a sports car its velocity is reduced from 

70  mi/h to zero in a distance of 170 ft with slipping impending. 

Knowing that the coefficient of kinetic friction is 80 percent of the 

coefficient of static friction, determine (a) the coefficient of static 

friction, (b) the stopping distance for the same initial velocity if the 

car skids. Ignore air resistance and rolling resistance.

12.123 A bucket is attached to a rope of length L 5 1.2 m and is made 

to revolve in a horizontal circle. Drops of water leaking from the 

bucket fall and strike the floor along the perimeter of a circle of 

radius a. Determine the radius a when θ 5 308.

12.124 A 12-lb block B rests as shown on the upper surface of a 30-lb wedge 

A. Neglecting friction, determine immediately after the  system is 

released from rest (a) the acceleration of A, (b) the acceleration of 

B relative to A.

 12.125 A 500-lb crate B is suspended from a cable attached to a 40-lb trol-

ley A which rides on an inclined I-beam as shown. Knowing that at 

the instant shown the trolley has an acceleration of 1.2 ft/s2 up and to 

the right, determine (a) the acceleration of B relative to A, (b) the 

tension in cable CD.

A

B

C D

T

25°

Fig. P12.125

 12.126 The roller-coaster track shown is contained in a vertical plane. The 

portion of track between A and B is straight and horizontal, while 

the portions to the left of A and to the right of B have radii of cur-

vature as indicated. A car is traveling at a speed of 72 km/h when 

the brakes are suddenly applied, causing the wheels of the car to 

slide on the track (μk 5 0.25). Determine the initial deceleration of 

the car if the brakes are applied as the car (a) has almost reached A, 

(b) is traveling between A and B, (c) has just passed B.

2L

L

θ

a

Fig. P12.123

A

B

12 lb

30 lb

30°

Fig. P12.124

A B

 = 45 mr

 = 30 mr

Fig. P12.126
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12.127 The parasailing system shown uses a winch to pull the rider in 

towards the boat, which is travelling with a constant velocity. 

During the interval when θ is between 20° and 40° (where t 5 0 

at θ 5 20°), the angle increases at the constant rate of 2°/s. During 

this time, the length of the rope is defined by the relationship 

r 5 125 2
1
3 
t3/2, where r and t are expressed in meters and seconds, 

respectively. At the instant when the rope makes a 30° angle with 

the water, the tension in the rope is 18 kN. At this instant, what is 

the magnitude and direction of the force of the parasail on the 75 kg 

parasailor?

Fig. P12.127

r

θ

12.128 A small 200-g collar C can slide on a semicircular rod that is 

made to rotate about the vertical AB at the constant rate of 6 rad/s. 

Determine the minimum required value of the coefficient of static 

friction between the collar and the rod if the collar is not to slide 

when (a) θ 5 90°, (b) θ 5 75°, (c) θ 5 45°. Indicate in each case 

the direction of the impending motion.

12.129 Telemetry technology is used to quantify kinematic values of a 200-kg 

roller-coaster cart as it passes overhead. According to the  system, 

r 5 25 m, r
.

5 210 m/s, r̈ 5 22 m/s2, θ 5 90°, θ
.

5 20.4 rad/s, 

θ̈ 5 20.32 rad/s2. At this instant, determine (a) the normal force 

between the cart and the track, (b) the radius of  curvature of the 

track.

r

m

q

Fig. P12.129

A

B

O

C
200 g

r = 600 mm

θ

Fig. P12.128
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12.130 The radius of the orbit of a moon of a given planet is equal to twice 

the radius of that planet. Denoting by ρ the mean  density of the 

planet, show that the time required by the moon to  complete one full 

revolution about the planet is (24π/Gρ)1/2, where G is the constant 

of gravitation.

 12.131 At engine burnout on a mission, a shuttle had reached point A at an 

altitude of 40 mi above the surface of the earth and had a horizontal 

velocity v0. Knowing that its first orbit was elliptic and that the shuttle 

was transferred to a circular orbit as it passed through point B at an 

altitude of 170 mi, determine (a) the time needed for the shuttle to 

travel from A to B on its original elliptic orbit, (b) the periodic time 

of the shuttle on its final circular orbit.

A O B

v0

50 mi 170 mi

R = 3960 mi

Fig. P12.131

12.132 A space probe in a low earth orbit is inserted into an elliptic  transfer orbit 

to the planet Venus. Knowing that the mass of the sun is 332.8 3 103

times the mass of the earth and assuming that the probe is subjected 

only to the gravitational attraction of the sun, determine the value of f, 

which defines the relative position of Venus with respect to the earth 

at the time the probe is inserted into the transfer orbit.

*12.133 Disk A rotates in a horizontal plane about a vertical axis at the 

constant rate 
.
θ0 5 10 rad/s. Slider B has mass 1 kg and moves 

in a frictionless slot cut in the disk. The slider is attached to a 

spring of constant k, which is undeformed when r 5 0.  Knowing 

that the slider is released with no radial velocity in the position 

r 5 500 mm, determine the position of the slider and the  horizontal 

force exerted on it by the disk at t 5 0.1 s for (a) k 5 100 N/m, 

(b) k 5 200 N/m.

   0
⋅ 

B

A

O

Spring

r

q

Fig. P12.133

Earth at insertion

Venus at
insertion

Venus at arrival

Sun

f

rE = 93.0 × 106 mi

rV = 67.2 × 106 mi

Fig. P12.132
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A golf ball will deform upon impact as shown by this high-speed 

photo. The maximum deformation will occur when the club head 

velocity and the ball  velocity are the same. In this chapter 

impacts will be analyzed using the coefficient of restitution and 

conservation of linear  momentum. The kinetics of particles  using 

energy and momentum methods is the subject of this chapter.

Kinetics of Particles: Energy 
and Momentum Methods

13
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796 Kinetics of Particles: Energy and Momentum Methods

Introduction

 13.1 WORK AND ENERGY
13.1A Work of a Force
13.1B Principle of Work and Energy
13.1C Applications of the Principle 

of Work and Energy
13.1D Power and Efficiency

 13.2 CONSERVATION OF 
ENERGY

13.2A Potential Energy
*13.2B Conservative Forces
13.2C The Principle of Conservation 

of Energy
13.2D Application to Space 

Mechanics: Motion Under a 
Conservative Central Force

 13.3 IMPULSE AND 
MOMENTUM

13.3A Principle of Impulse and 
Momentum

13.2B Impulsive Motion

 13.4 IMPACTS
13.4A Direct Central Impact
13.4B Oblique Central Impact
13.4C Problems Involving Multiple 

Principles

Objectives
• Calculate the work done by a force.

• Calculate the kinetic energy of a particle.

• Calculate the gravitational and elastic potential 
energy of a system.

• Solve particle kinetics problems using the principle of 
work and energy. 

• Calculate the power and effi ciency of a mechanical 
system. 

• Solve particle kinetics problems using conservation of 
energy.

• Solve particle kinetic problems involving conservative 
central forces.

• Draw complete and accurate impulse-momentum 
 diagrams. 

• Solve particle kinetics problems using the principle of 
impulse and momentum.

• Solve particle kinetics problems using conservation of 
linear momentum.

• Solve impact problems using the principle of impact 
and momentum and the coeffi cient of restitution.

• Determine the appropriate principle(s) to apply when 
solving a particle dynamics problem.

• Solve multi-step dynamics problems using multiple 
kinetics principles.

Introduction
In the preceding chapter, we solved most problems dealing with the motion 

of particles through the use of the fundamental equation of motion F 5 ma. 

Given a particle acted upon by a force F, we could solve this equation for 

the acceleration a; then by applying the principles of  kinematics, we could 

determine from a the velocity and position of the particle at any time.

However, using the general equation F 5 ma together with kinematics 

allows us to obtain two additional concepts: the principle of work and 
energy and the principle of impulse and momentum. The  advantage of 

these ideas lies in the fact that they make the determination of the 

acceleration unnecessary. Indeed, the principle of work and energy directly 

relates force, mass, velocity, and displacement, whereas the principle of 

impulse and momentum relates force, mass, velocity, and time.

We present work and energy first. In Sec. 13.1, we define the work of 
a force and the kinetic energy of a particle. Then we apply the principle of 

work and energy to the solution of engineering problems. We also  introduce 

the concepts of power and efficiency of a machine, which are important in 

engineering applications such as motors and hydraulic actuators.
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13.1 Work and Energy 797

In Sec. 13.2, we examine the concept of potential energy of a con-

servative force, and we apply the principle of conservation of energy to 

various problems of practical interest. In Sec. 13.2D, we use the principles 

of conservation of energy and of conservation of angular momentum 

jointly to solve problems of space mechanics.

The second part of this chapter deals with the principle of impulse 

and momentum and its application to the study of the motion of a particle. 

You will see in Sec. 13.3B that this principle is particularly effective in 

the study of the impulsive motion of a particle, where very large forces 

act for a very short time interval––like hitting a nail with a hammer.

We also consider the central impact of two bodies. We will show 

that a relation exists between the relative velocities of the two colliding 

bodies before and after impact. We can use this relation, together with the 

fact that the total momentum of the two bodies is conserved, to solve 

several types of practical problems.

Finally, we will discuss how to choose the best principle for solving 

a given problem from among Newton’s second law, work and energy, or 

impulse and momentum. You may even need to apply multiple principles 

in order to solve some dynamics problems.

13.1 WORK AND ENERGY
Work and energy have very specific meanings in science and engineering. 

In everyday speech, you might say that holding up a concrete block is a 

lot of work, but in science, if the block doesn’t move, you don’t do any 

work at all while holding it. Similarly, people talk about energy all the 

time, from how you feel on a particular day (“I don’t seem to have much 

energy today”) to national and international policy (“The high cost of 

energy is affecting our trade balance with other countries.”). In science 

and engineering, work and energy have very specific definitions that 

involve forces, displacements, masses, and velocities. These two concepts 

are of great value in analyzing a wide range of engineering problems.

13.1A Work of a Force
We first define the terms displacement and work as they are used in 

mechanics.† Consider a particle that moves from a point A to a  neighboring 

point A9 (Fig. 13.1). If r denotes the position vector corresponding to point A, 

we can denote the small vector joining A and A9 by the differential dr; 

the vector dr is called the displacement of the particle. Now, let us 

assume that a force F is acting on the particle. We define the work of the 
force F corresponding to the displacement dr as the quantity

 dU 5 F?dr (13.1)

We obtain dU by taking the scalar product of the force F and the 

displacement dr. We denote the magnitudes of the force and of the 

 displacement by F and ds, respectively, and the angle formed by F and 

dU 5 F?dr

†We defined work in Sec. 10.1A and outlined its basic properties in Secs. 10.1A and 10.2A. 

For convenience, we repeat here the portions of this material that relate to the kinetics of 

particles. 

O

A
A'

F

r

dr

a

r + dr 

Fig. 13.1 The work of a force acting on a 
particle is the scalar product of the force F 
and the displacement dr of the particle.
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798 Kinetics of Particles: Energy and Momentum Methods

dr by α. Then from the definition of the scalar product of two vectors 

(Sec. 3.2A), we have

dU 5 F ds cos α  (13.19)

Using Eq. (3.30), we can also express the work dU in terms of the 

 rectangular components of the force and of the displacement:

 dU 5 Fx dx 1 Fy dy 1 Fz dz (13.10)

Work is a scalar quantity, so it has a magnitude and a sign but no 

direction. 

Note that work is expressed in units obtained by multiplying units 

of length by units of force. Thus, if we use U.S. customary units, work is 

expressed in ft?lb or in?lb. If we use SI units, work is expressed in N?m. 

The unit of work N?m is called a joule (J).† Recalling the conversion 

 factors indicated in Sec. 12.1C, we have

1 ft?lb 5 (1 ft)(1 lb) 5 (0.3048 m)(4.448 N) 5 1.356 J

It follows from Eq. (13.19) that the work dU is positive if angle α is acute 

and negative if α is obtuse. Three particular cases are of special interest. 

If the force F has the same direction as dr, the work dU reduces to F ds. 

If F has a direction opposite to that of dr, the work is dU 5 2F ds. 

Finally, if F is perpendicular to dr, the work dU is zero.

We can obtain the work of F during a finite displacement of the 

particle from A1 to A2 (Fig. 13.2a) by integrating Eq. (13.1) along the path 

described by the particle. This work, denoted by U1y2, is

Work of a force U1y2 5 #
A2

A1

 

F?dr (13.2)

Using the alternative expression of Eq. (13.19) for the elementary work 

dU, and observing that F cos α represents the tangential component Ft of 

the force, we can also express the work U1y2 as

 U1y2 5 #
s2

s1

 

(F cos α) ds 5 #
s2

s1

 
Ft ds (13.29)

where the variable of integration s measures the distance traveled by the 

particle along the path. The work U1y2 is represented by the area under 

the curve obtained by plotting Ft 5 F cos α against s (Fig. 13.2b).

When the force F is defined by its rectangular components, we can 

use the expression of Eq. (13.10) for the elementary work. We have

 U1y2 5 #
A2

A1

 

(Fx dx 1 Fy dy 1 Fz dz) (13.20)

where the integration is performed along the path described by the 

particle.

U1y2 5 #
A2

A
##

1

F?dr

†The joule (J) is the SI unit of energy, whether in mechanical form (work, potential energy, 

or kinetic energy) or in chemical, electrical, or thermal form. Note that even though N?m 5 J, 

the moment of a force must be expressed in N?m and not in joules, since the moment of a 

force is not a form of energy.

O

O

A

F

dr

ds

s

s

s1

s1

s2

s2

A2

A1

Ft

a

(a)

(b)

Fig. 13.2 (a) The work of force F over a 
finite displacement is the integral of Eq. (13.1) 
from point A1 to point A2. (b) The work is 
represented by the area under the graph of 
Ft versus s from s1 to s2.
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13.1 Work and Energy 799

We can use these equations to derive formulas for the work done 

by a force in several common and important situations, as we now show. 

These formulas can simplify the calculations needed to solve many 

 common problems. For other situations, you can return to the basic 

Equations (13.1) and (13.2) and their variants.

Work of a Constant Force in Rectilinear Motion. When a 

particle moving in a straight line is acted upon by a force F of constant 

magnitude and of constant direction (Fig. 13.3), formula (13.29) yields

 U1y2 5 (F cos α) Dx (13.3)

where α 5 angle the force forms with direction of motion

 Dx 5 displacement from A1 to A2

Work of the Force of Gravity. We can obtain the work of the 

weight W of a body––i.e., of the force of gravity exerted on that body––by 

substituting the components of W into Eqs. (13.10) and (13.20). Choosing 

the y axis upward (Fig. 13.4), we have Fx 5 0, Fy 5 2W, and Fz 5 0. 

This gives us

 dU 5 2W dy

  U1y2 5 2#
y

2

y
1

 

W dy 5 Wy1 2 Wy2 (13.4)

or

 U1y2 5 2W(y2 2 y1) 5 2W Dy (13.49)

where Dy is the vertical displacement from A1 to A2. The work of the 

weight W is thus equal to the product of W and the vertical displace-
ment of the center of gravity of the body. The work is positive when 

Dy , 0, that is, when the body moves down. When the body moves up 

(and Dy . 0), the force and displacement are in opposite directions, and 

the work is negative.

Work of the Force Exerted by a Spring. Consider a body A 

attached to a fixed point B by a spring; we assume that the spring is 

undeformed when the body is at A0 (Fig. 13.5a). For a linear spring, the 

magnitude of the force F exerted by the spring on body A is proportional 

to the deflection x of the spring measured from the unstretched position 

A0 (i.e., x 5 Lstretched 2 Lunstretched). We have

 F 5 kx (13.5)

where k is the spring constant expressed in N/m or kN/m if SI units are 

used and in lb/ft or lb/in. if U.S. customary units are used.†

O

A2

A1

x

A

F

a

Δx

Fig. 13.3 For a constant force in rectilinear 
motion, the work equals the displacement 
times the component of force in the direction 
of the displacement.

A2

A

A1

y2

y1

dy

y

W

Fig. 13.4 The work done by the force of 
gravity is the product of the weight and the 
vertical displacement of the object’s center of 
gravity. If the object moves up, the work 
done by gravity is negative.

†The relation F 5 kx is correct under static conditions only. Under dynamic conditions, 

Eq. (13.5) should be modified to take into account the inertia of the spring. However, the 

error introduced by using F 5 kx in the solution of kinetics problems is small if the mass 

of the spring is small compared with the other masses in motion.
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800 Kinetics of Particles: Energy and Momentum Methods

We can obtain the work of force F exerted by the spring during a 

finite displacement of the body from A1(x 5 x1) to A2(x 5 x2) by writing

 dU 5 2F dx 5 2kx dx

 U1y2 5 2#
x2

x1

 

kx dx 5
1
2 kx2

1 2
1
2 kx2

2 (13.6)

You need to be careful in expressing k and x in consistent units. For 

 example, if you use U.S. customary units, k should be expressed in lb/ft 

and x in feet, or k should be given in lb/in. and x in inches. In the first 

case, the work will have units of ft?lb; in the second case, it will have 

units of in?lb. Note that the work of force F exerted by the spring on the 

body is positive when x2 , x1; that is, when the spring is returning to its 

undeformed  position. When the body is moved from x1 to x2, the work of 

the force is negative, since the displacement and force are in opposite 

directions.

Since Eq. (13.5) is the equation of a straight line of slope k passing 

through the origin, we can also obtain the work U1y2 of F during the 

displacement from A1 to A2 by evaluating the area of the trapezoid shown 

in Fig. 13.5b. We can do this by computing F1 and F2 and multiplying 

the base Dx of the trapezoid by its mean height 
1
2 (F1 1 F2). Since the 

work of the force F exerted by the spring is positive for a negative value 

of Dx, we have

 U1y2 5 2
1
2(F1 1 F2) Dx (13.69)

Work of a Gravitational Force. We saw in Sec. 12.2C that two 

particles of mass M and m separated by a distance r attract each other 

with equal and opposite forces F and 2F, directed along the line joining 

the particles and of magnitude as

F 5 G  

Mm

r2

Let us assume that particle M occupies a fixed position O while particle 

m moves along the path shown in Fig. 13.6. We can obtain the work of 

force F exerted on particle m during an infinitesimal displacement of the 

particle from A to A9 by multiplying the magnitude F of the force by the 

radial component dr of the displacement. Since F is directed toward O 
and dr is directed away from O, the work is negative, and we have

dU 5 2F dr 5 2G 

Mm

r2
 dr

The work of the gravitational force F during a finite displacement from 

A1(r 5 r1) to A2(r 5 r2) is therefore

 U1y2 5 2#
r2

r1

 

GMm

r2
 dr 5

GMm
r2

2
GMm

r1

 (13.7)

where M is the mass of the earth. We can use this formula to determine 

the work of the force exerted by the earth on a body of mass m at a 

 distance r from the earth’s center when r is larger than the radius R of the 

earth. Recalling the first of the relations in Eq. (12.27), we can replace 

the product GMm in Eq. (13.7) by WR2, where R is the earth’s radius 

F

x

A0

A1

F2

F1

Spring undeformed

B

B

B

F

(a)

(b)

F = kx

A

A2

x1

x

x2

x2x1

Δ x

Fig. 13.5 (a) The work of a force exerted by 
a spring depends on the spring constant and 
the initial and final positions of the spring. 
(b) The work is represented by the area 
under the graph of force versus position.

Fig. 13.6 The work of a gravitational force 
depends on the gravitational constant, the 
masses of the interacting bodies, and the 
radial distance between them.

O

A2

A1

r2

r1
θ

dr

F

–F

M

r

A'

A
m

dθ
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13.1 Work and Energy 801

(R 5 6.37 3 106 m or 3960 mi) and W is the weight of the body at the 

earth’s surface.

Some forces frequently encountered in kinetics problems do no 
work. They are forces applied to fixed points (ds 5 0) or acting in a 

direction perpendicular to the displacement (cos α 5 0). Forces that do 

no work include the reaction at a frictionless pin when the body supported 

rotates about the pin; the normal force at a frictionless fixed surface when 

the body in contact moves along the surface; the reaction at a roller 

 moving along its track; and the weight of a body when its center of gravity 

moves horizontally.

13.1B Principle of Work and Energy
Consider a particle of mass m acted upon by a force F and moving along 

a path that is either rectilinear or curved (Fig. 13.7). Expressing Newton’s 

second law in terms of the tangential components of the force and of the 

acceleration (see Sec. 12.1D), we have

Ft 5 mat or Ft 5 m
dv

dt

where v is the speed of the particle. Recalling from Sec. 11.4A that 

v 5 ds/dt, we obtain

Ft 5 m 

dv

ds
  

ds

dt
5 mv 

dv

ds

 Ft ds 5 mv dv

Integrating from A1, where s 5 s1 and v 5 v1, to A2, where s 5 s2 and 

v 5 v2, we have

 #
s2

s1

 

Ft ds 5 m#
v2

v1

 

v dv 5
1
2 mv2

2 2
1
2 mv2

1 (13.8)

The left-hand side of Eq. (13.8) represents the work U1y2 of the force F 

exerted on the particle during the displacement from A1 to A2; as indicated 

earlier, the work U1y2 is a scalar quantity. Thus, the expression 
1
2 
mv2 is 

also a scalar quantity. We define it as the kinetic energy of the particle, 

denoted by T. That is,

Kinetic energy 
of a particle T 5

1

2
 mv2 (13.9)

Substituting into Eq. (13.8), we have

Principle of work 
and energy U1y2 5 T2 2 T1 (13.10)

This equation states that when a particle moves from A1 to A2 under the 

action of a force F, the work of the force F is equal to the change in 
kinetic energy of the particle. This is known as the principle of work 
and energy. Rearranging the terms in Eq. (13.10) gives 

T1 1 U1y2 5 T2 (13.11)

T 5
1

2
mv2

U1y2 5 T2TT 2 T1TT

T1TT 1 U1y2 5 T2TT

A2

A1

F

Ft

Fn

m a

Fig. 13.7 A particle m acted upon by a 
force F.
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802 Kinetics of Particles: Energy and Momentum Methods

Like Newton’s second law from which it is derived, the principle of work 

and energy applies only with respect to a newtonian frame of reference 

(Sec. 12.1A). The speed v used to determine the kinetic energy T therefore 

should be measured with respect to a newtonian frame of reference.

Since both work and kinetic energy are scalar quantities, we can 

compute their sum as an ordinary algebraic sum with the work U1y2 being 

positive or negative according to the direction of F. When several forces 

act on the particle, the expression U1y2 represents the total work of the 

forces acting on the particle; it is obtained by adding algebraically the 

work of the various forces.

As just noted, the kinetic energy of a particle is a scalar quantity. It

further appears from the definition T 5
1
2 
mv2 that, regardless of the

 particle’s direction of motion, the kinetic energy is always positive. 

 Considering the particular case when v1 5 0 and v2 5 v, and substituting 

T1 5 0 and T2 5 T into Eq. (13.10), we observe that the work done by 

the forces acting on the particle is equal to T. Thus, the kinetic energy of 

a particle moving with a speed v represents the work that must be done 

to bring the particle from rest to the speed v. Substituting T1 5 T and 

T2 5 0 into Eq. (13.10), we also note that when a particle moving with 

a speed v is brought to rest, the work done by the forces acting on the 

particle is 2T. Assuming that no energy is dissipated into heat, we 

 conclude that the work done by the forces exerted by the particle on the 

bodies that cause it to come to rest is equal to T. Thus, the kinetic energy 

of a particle also represents the capacity to do work associated with the 
speed of the particle.

The kinetic energy is measured in the same units as work, i.e., in 

joules if we use SI units and in ft?lb if we use U.S. customary units. We 

check that, in SI units,

T 5
1
2 mv2 5 kg(m/s)2 5 (kg?m/s2)m 5 N?m 5 J

whereas in customary units,

T 5
1
2 mv2 5 1slug21ft/s22 5 (lb?s2/ft)(ft/s)2 5 ft?lb

13.1C  Applications of the Principle
of Work and Energy

Using the principle of work and energy greatly simplifies the solution of 

many problems involving forces, displacements, and velocities. Consider, 

for example, the pendulum OA consisting of a bob A of weight W attached 

to a cord of length l (Fig. 13.8a). The pendulum is released with no initial 

velocity from a horizontal position OA1 and allowed to swing in a vertical 

plane. We wish to determine the speed of the bob as it passes through A2, 

directly under O.

We first determine the work done during the displacement from A1 

to A2 by the forces acting on the bob. We draw a free-body diagram of 

the bob, showing all the actual forces acting on it; i.e., the weight W and 

the force P exerted by the cord (Fig. 13.8b). (Recall that an inertia vector 

is not an actual force and should not be included in the free-body  diagram.) 

Note that force P does no work, since it is normal to the path; the only 

force that does work is thus the weight W. We obtain the work of W by 

(a) (b)

A2

A1

A

l

O

A

W

P

Fig. 13.8 (a) A bob of weight W swings 
from an initial position A1 to a final 
position A2; (b) free-body diagram of the bob 
at position A.
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13.1 Work and Energy 803

multiplying its magnitude W by the vertical displacement l (Sec. 13.1A); 

since the displacement is downward, the work is positive. We therefore 

have U1y2 5 Wl.
Now consider the kinetic energy of the bob. We have T1 5 0 at A1 

and T2 5
1
2(W/g)v2

2 at A2. We can now apply the principle of work and 

energy. From Eq. (13.11), we have

T1 1 U1y2 5 T2  0 1 Wl 5
1

2
 

W
g

 v2
2

Solving for v2, we find v2 5 22gl. Note that this speed is also that of a 

body falling freely from a height l.
This example illustrates the following advantages of the method of 

work and energy:

 1. In order to find the speed at A2, there is no need to determine the 

acceleration in an intermediate position A and to integrate the accelera-

tion expression from A1 to A2.

 2. All quantities involved are scalars and can be added directly, without 

using x and y components.

 3. Forces that do no work are eliminated from the solution of the 

problem.

What is an advantage in one problem, however, may be a disadvan-

tage in another. It is evident, for instance, that the method of work and 

energy cannot be used to directly determine an acceleration. It is also 

evident that to determine a force that is normal to the path of the particle 

(i.e., a force that does no work) we must supplement the method of work 

and energy by the direct application of Newton’s second law. Suppose, 

for example, that we wish to determine the tension in the cord of the 

pendulum of Fig. 13.8a as the bob passes through A2. We draw a free-

body diagram and kinetic diagram of the bob in that position (Fig. 13.9) 

and express Newton’s second law in terms of tangential and normal 

 components. The equations oFt 5 mat and oFn 5 man yield, respectively, 

at 5 0 and

P 2 W 5 man 5
W
g

 

v2
2

l

But earlier, we determined the speed at A2 by the method of work and 

energy. Substituting v2
2 5 2gl and solving for P, we have

P 5 W 1
W
g

 

2gl

l
5 3W

If we used only statics principles and designed the cord to hold the weight 

of the bob (or even twice the weight of the bob), the cord would have 

failed.

When a problem involves two particles or more, we can apply the 

principle of work and energy to each particle separately. Adding the 

kinetic energies of the various particles and considering the work of all 

the forces acting on them, we can also write a single equation of work 

and energy for all the particles involved. We have

 T1 1 U1y2 5 T2 (13.11)

=A2

W

A2 ma t

P

man

Fig. 13.9 Free-body diagram and kinetic 
diagram for determining the force on a 
pendulum bob.
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804 Kinetics of Particles: Energy and Momentum Methods

where T1 represents the arithmetic sum of the kinetic energies of the 

 particles involved at position 1, T2 represents the arithmetic sum of 

the kinetic energies of the particles involved at position 2, and U1y2 is 

the work of all the forces acting on the particles, including the forces of 

action and reaction exerted by the particles on each other. In problems 

involving bodies connected by inextensible cords or links, however, the 

work of the forces exerted by a given cord or link on the two bodies it 

connects cancels out, since the points of application of these forces move 

through equal distances (see Sample Prob. 13.2). (In Chapter 14 we 

 discuss how to apply the method of work and energy to a system of 

particles.)

Friction forces have a direction opposite of that of the displacement 

of the body on which they act, so the work of friction forces is always 
negative. This work represents energy dissipated into heat and always 

results in a decrease in the kinetic energy of the body involved (see 

 Sample Prob. 13.3).

13.1D Power and Efficiency
We define power as the time rate at which work is done. In the selection 

of a motor or engine, power is a much more important criterion than is 

the actual amount of work to be performed. Either a small motor or a 

large power plant can be used to do a given amount of work, but the small 

motor may require a month to do the work done by the power plant in a 

matter of minutes. If DU is the work done during the time interval Dt, the 

average power during that time interval is

Average power 5
DU

Dt

Letting Dt approach zero, we obtain in the limit

Power Power 5
dU

dt
 (13.12)

Substituting the scalar product F?dr for dU, we can also write

Power 5
dU

dt
5

F?dr
dt

Then, recalling that dr/dt represents the velocity v of the point of 

application of F, we have

 Power 5 F?v (13.13)

Since we defined power as the time rate at which work is done, we 

obtain its units by dividing units of work by the unit of time. Thus, if 

Power 5
dU

dt

Power 5 F?v

Photo 13.1 The power used to operate a 
chair lift at a ski resort is the product of the 
force applied and the speed of the lift.
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13.1 Work and Energy 805

we use SI units, power is expressed in J/s; this unit is called a watt (W). 

We have

1 W 5 1 J/s 5 1 N?m/s

If we use U.S. customary units, power is expressed in ft?lb/s or in horse-
power (hp), where one horsepower is defined as

1 hp 5 550 ft?lb/s

Recall from Sec. 13.1A that 1 ft?lb 5 1.356 J, so we can verify that

1 ft?lb/s 5 1.356 J/s 5 1.356 W

1 hp 5 550(1.356 W) 5 746 W 5 0.746 kW

We defined the mechanical efficiency of a machine in Sec. 10.1D 

as the ratio of the output work to the input work:

h 5
output work

input work
 (13.14)

This definition is based on the assumption that work is done at a 

 constant rate. The ratio of the output to the input work is therefore equal 

to the ratio of the rates at which output and input work are done, and 

we have

Mechanical 
efficiency h 5

power output

power input
 (13.15)

Because of energy losses due to friction, the output work is always smaller 

than the input work, and consequently, the power output is always smaller 

than the power input. The mechanical efficiency of a machine is therefore 

always less than 1.

When we use a machine to transform mechanical energy into electri-

cal energy or thermal energy into mechanical energy, we can obtain its 

overall efficiency from Eq. (13.15). The overall efficiency of a machine is 

always less than 1; it provides a measure of all the various energy losses 

involved (losses of electric or thermal energy as well as frictional losses). 

Note that you have to express the power output and the power input in 

the same units before using Eq. (13.15).

h 5
power output

power input
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806 Kinetics of Particles: Energy and Momentum Methods

Sample Problem 13.1

An automobile weighing 4000 lb is driven down a 5° incline at a speed 

of 60 mi/h when the brakes are applied, causing a constant total braking 

force (applied by the road on the tires) of 1500 lb. Determine the distance 

traveled by the automobile as it comes to a stop.

STRATEGY: You are given the velocity of the car at two positions along 

the road and need to determine the distance x between them (Fig. 1), so 

use the principle of work and energy.

MODELING: Choose the car as the system and assume it can be 

modeled as a particle.

ANALYSIS: To apply the principle of work and energy, you find the 

kinetic energy at each position of the car. The difference between the 

kinetic energies will be equal to the work done by the braking force.

Principle of Work and Energy.

 T1 1 U1y2 5 T2 (1)

Therefore, you need to calculate each term in this equation.

Kinetic Energy.

Position 1. v1 5 a60  

mi

h
b a5280 ft

1 mi
ba 1 h

3600 s
b 5 88 ft/s

 T1 5
1
2 mv2

1 5
1
2(4000/32.2)(88)2 5 481,000 ft?lb

Position 2. v2 5 0  T2 5 0

Work. The best way to identify which forces do work is to draw a 

free-body diagram, as shown in Fig. 2. It is clear that the only external 

forces that do work are the total braking force and the weight. The normal 

force does no work because it is perpendicular to the motion. Using the 

definition of work gives 

 U1y2 5 21500x 1 (4000 sin 5°)x 5 21151x

Note that the work of the gravitational force is positive since the automobile 

is moving down. Substituting into Eq. (1) gives

 481,000 2 1151x 5 0 x 5 418 ft b

REFLECT and THINK: Solving this problem using Newton’s second 

law would require determining the car’s deceleration from the free-body 

diagram (Fig. 2) and then integrating this using the given velocity 

 information. Using the principle of work and energy allows you to avoid 

that calculation.

5°

v1 = 60 mi/h
v2 = 0

x

Fig. 1 Car at the two positions of 
interest.

5°

5°

4000 lb

1500 lb

N

Fig. 2 Free-body diagram for the car.
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13.1 Work and Energy 807

Sample Problem 13.2

Two blocks are joined by an inextensible cable as shown. If the system is 

released from rest, determine the velocity of block A after it has moved 

2 m. Assume that the coefficient of kinetic friction between block A and 

the plane is μk 5 0.25 and that the pulley is weightless and frictionless.

STRATEGY: You are interested in determining the velocity and are 

given two locations in space, so use the principle of work and energy. You 

can apply this principle to each block and combine the resulting equations, 

or you can choose your system to be both blocks and the cable, thereby 

avoiding the need to determine the work of internal forces.

MODELING: Define two separate systems, one for each block, and 

model them as particles. As stated in the problem, assume the pulley is 

weightless and frictionless.

ANALYSIS: 

Work and Energy for Block A.  Denote the friction force by FA 

and the force exerted by the cable by FC. Then you have (Fig. 1)

mA 5 200 kg  WA 5 (200 kg)(9.81 m/s2) 5 1962 N

FA 5 μkNA 5 μkWA 5 0.25(1962 N) 5 490 N

T1 1 U1y2 5 T2:  0 1 FC(2 m) 2 FA(2 m) 5
1
2 mAv2

 FC(2 m) 2 (490 N)(2 m) 5
1
2(200 kg)v2 (1)

Work and Energy for Block B. From the free-body diagram for 

Block B (Fig. 2), you have

mB 5 300 kg  WB 5 (300 kg)(9.81 m/s2) 5 2940 N

T1 1 U1y2 5 T2:  0 1 WB(2 m) 2 FC(2 m) 5
1
2 mBv2

 (2940 N)(2 m) 2 FC(2 m) 5
1
2(300 kg)v2 (2)

 Now add the left-hand and right-hand sides of Eqs. (1) and (2). The 

work of the forces exerted by the cable on A and B cancels out. This is 

why when solving problems using work and energy, it is usually best to 

choose your system to include all the objects of interest, so you don’t need 

to worry about the work of internal forces. Therefore, after combining 

Eqs. (1) and (2) or by choosing your system to be block A, block B, and 

the cable, you get

  (2940 N)(2 m) 2 (490 N)(2 m) 5
1
2(200 kg 1 300 kg)v2

 4900 J 5
1
2(500 kg)v2 v 5 4.43 m/s b

REFLECT and THINK: When using the principle of work and energy, 

it usually saves time to choose your system to be everything that moves. 

Now that you know the velocity of the block, you could use Eq. (1) to 

determine the force in the cable. Only when you need to determine an 

internal force would you need to isolate part of a system.

300 kg

200 kg

A

B

WA

mA

FA

FC

NA
2 m

v1 = 0 v2 = v

Fig. 1 Free-body diagram 
and two positions for 
block A.

2 mWB

mB

FC

v1 = 0

v2 = v

Fig. 2 Free-body diagram 
and two positions for 
block B.
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808 Kinetics of Particles: Energy and Momentum Methods

Sample Problem 13.3

A spring is used to stop a 60-kg package that is sliding on a horizontal 

surface. The spring has a constant k 5 20 kN/m and is held by cables so 

that it is initially compressed 120 mm. The package has a velocity of 

2.5 m/s in the position shown, and the maximum additional deflection of 

the spring is 40 mm. Determine (a) the coefficient of kinetic friction 

between the package and the surface, (b) the velocity of the package as 

it passes again through the position shown.

STRATEGY: You have velocity information and specific locations in 

space, so use the principle of work and energy. Break the motion into two 

segments: segment 1 is the initial position to the point where the spring 

has a maximum deflection (Fig. 1), and segment 2 is from the point the 

spring has a maximum deflection back to the original position.

MODELING: The system is the crate, which you can model as a 

 particle. A free-body diagram for the crate when it is not in contact with 

the spring is shown in Fig. 2. After it hits the spring, it has an additional 

force P acting on it due to the compression of the spring (Fig. 3).

ANALYSIS: The principle of work and energy is

 T1 1 U1y2 5 T2 (1)

Call the initial position of the package position 1 and the position where 

maximum spring deflection occurs position 2 (Fig. 1)

a. Motion from Position 1 to Position 2

Kinetic Energy. Position 1. v1 5 2.5 m/s

T1 5
1
2 mv2

1 5
1
2(60 kg)(2.5 m/s)2 5 187.5 N?m 5 187.5 J

Position 2. (maximum spring deflection):  v2 5 0   T2 5 0

Work. Friction Force F. You have (Fig. 2)

F 5 μkN 5 μkW 5 μkmg 5 μk(60 kg)(9.81 m/s2) 5 (588.6 N)μk

The work of F is negative and equal to

(U1y2)f 5 2Fx 5 2(588.6 N)μk(0.600 m 1 0.040 m) 5 2(377 J)μk

Spring Force P. The variable force P exerted by the spring does an 

amount of negative work equal to the area under the force-deflection curve 

of the spring force. You have

Pmin 5 kx0 5 (20 kN/m)(120 mm) 5 (20 000 N/m)(0.120 m) 5 2400 N

 Pmax 5 Pmin 1 k Dx 5 2400 N 1 (20 kN/m)(40 mm) 5 3200 N

(U1y2)e 5 2
1
2(Pmin 1 Pmax) Dx 5 2

1
2(2400 N 1 3200 N)(0.040 m) 5 2112.0 J

The total work between positions 1 and 2 is thus

U1y2 5 (U1y2)f 1 (U1y2)e 5 2(377 J)μk 2 112.0 J

Principle of Work and Energy. You can determine the coefficient 

of kinetic friction from the expression for the principle of work and energy 

in this segment of the motion.

T1 1 U1y2 5 T2:  187.5 J 2 (377 J)μk 2 112.0 J 5 0 μk 5 0.20 b

2.5 m/s Cable

60 kg

600 mm

N
F = μkN

W

Fig. 2 Free-body diagram before 
spring is engaged.

Fig. 3 Force P on the block after it 
hits the spring.

P

Pmin

Pmax

x

Δx = 40 mm

P

Fig. 1 The package at position 1 and 
position 2.

v1

600 mm 40 mm

1

v2 = 0

2
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13.1 Work and Energy 809

b. Motion from Position 2 to Position 3. Call the position where 

the package returns to its initial position as position 3 (Fig. 4).

Kinetic Energy.  Position 2. 

v2 5 0    T2 5 0

Position 3.   T3 5 1
2mv2

3 5 1
2(60 kg)v2

3

Work. Since the distances involved are the same, the numerical values 

of the work of the friction force F and of the spring force P are the same 

as before. However, the work of F is still negative, whereas the work of 

P is now positive.

U2y3 5 2(377 J)μk 1 112.0 J 5 275.5 J 1 112.0 J 5 136.5 J

Principle of Work and Energy.

T2 1 U2y3 5 T3:    0 1 36.5 J 5 1
2(60 kg)v2

3

  v3 5 1.103 m/s v3 5 1.103 m/sz b

REFLECT and THINK: You needed to break this problem into two 

 segments. From the first segment you were able to determine the  coefficient 

of friction. Then you could use the principle of work and energy to 

 determine the velocity of the package at any other location. Note that the 

system does not lose any energy due to the spring; it returns all of its 

energy back to the package. You would need to design something that 

could absorb the kinetic energy of the package in order to bring it to rest.

Sample Problem 13.4 

The 2-kg collar A starts from rest in the position shown when a 

constant force F 5 100 N is applied to the cable, causing the collar 

A to move up the smooth vertical shaft. Neglecting the mass of the 

frictionless pulley and the spring, determine the speed of A when the 

spring is compressed 50 mm.

STRATEGY: You have information about two positions and are 

asked to find a speed, so use the principle of work and energy.

MODELING: You have several choices of systems. Two possible 

 systems are shown in Fig. 1.

A

B

System 1

F

A

B

System 2

F

Fig. 1 Possible systems for this problem.

A

B

300 mm

400 mm
50 mm

F
k = 2 kN/m

(continued)

Fig. 4 Free-body diagram 
when the package is moving to 
the left.

v3

640 mm

3

v2 = 0

2

N
F = μkN

W

P
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810 Kinetics of Particles: Energy and Momentum Methods

Which one should you use? You can solve the problem using either one, 

but it turns out that some system choices make the problem easier to solve 

than others. For system 1, the tension in the rope is F, but only the 

component of F in the direction of the motion does work. This component 

is continually changing, so calculating the work is difficult. For system 2, 

the work the force F does is just the magnitude of F (since it is constant) 

times the distance the force travels horizontally. Therefore, the problem is 

easiest to solve using system 2.

ANALYSIS: The principle of work and energy is

 T1 1 U1y2 5 T2 (1)

To start, draw the system in the two positions shown in Fig. 2. Since the 

figure will be very cluttered if you draw the two positions on the same 

figure, you should draw them side by side.

A

B

300 mm

Position 1

400 mm
50 mm

F
k

A

B

300 mm

Position 2

400 mm

50 mm F
k

Fig. 2 System in the two positions of interest.

Kinetic Energy. Since the collar is initially at rest, T1 5 0. In position 2, 

when the upper spring is compressed 50 mm, the kinetic energy is 

T2 5
1

2
 mv2

2 5
1

2
 (2 kg)v2

2 5 v2
2

Work. As the collar is raised from position 1 to where the spring is 

 compressed 50 mm, the work done by the weight is

(U1y2)g 5 2mgy2 5 2(2 kg)(9.81 m/s2)(0.4 m) 5 27.848 J

and the work of the spring force is 

1U1y22s 5
1

2
 kx2

1 2
1

2
 kx2

2 5 0 2
1

2
 12000 N/m2 10.05 m22 5 22.50 J

Finally, you must calculate the work of the 100-N force. In position 1, the 

length AB is

(lAB)1 5 2(0.4)2 1 (0.3)2 5 0.5 m

In position 2, the length AB is (lAB)2 5 0.3 m. The distance the 100-N 

force travels through is therefore

d 5 (lAB)1 2 (lAB)2 5 0.5 m 2 0.3 m 5 0.2 m
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13.1 Work and Energy 811

The work done by the 100-N force F is

(U1y2)F 5 Fd 5 (100 N)(0.5 m 2 0.3 m) 5 20 J

Thus, the total work is

U1y2 5 1U1y22g 1 1U1y22s 1 1U1y22F 5 27.848 J 2 2.50 J 1 20 J 5 9.652 J

Substituting these values in the principle of work and energy gives

T1 1 U1y2 5 T2

 0 1 9.652 5 v2
2

v2 5 3.11 m/s b

REFLECT and THINK: What if the force had been only 10 N instead 

of 100 N? The work would have been a factor of 10 smaller (that is, 2 J), 

and you would have v2
2 5 28.348, which obviously makes no sense. What 

does this mean? It means the assumption that the mass will actually reach 

position 2 is incorrect.

Sample Problem 13.5

The 650-kg hammer of a drop-hammer pile driver falls onto the top of a 

140-kg pile. After the impact, the hammer and the pile stick together and 

have a velocity of 3 m/s. The vertical force exerted on the pile by the 

ground after the impact is given by F 5 0.02x2, where x and F are 

expressed in mm and kN, respectively. Determine the velocity of the 

system after it has penetrated 80 mm into the ground.

STRATEGY: You are given a force as a function of displacement and are 

interested in two positions; therefore, use the principle of work and energy.

MODELING: The system is the hammer and the pile together after the 

impact. They can be modeled as a single particle. A free-body diagram 

for this system (Fig. 1) shows that the only two forces that do work are 

the weight and the force from the ground.

ANALYSIS: The principle of work and energy is

 T1 1 U1y2 5 T2 (1)

Kinetic Energy. The two positions being considered are immediately 

after the impact and after the system has moved down 50 mm. Since the 

system is initially traveling at 3 m/s, the initial kinetic energy is

T1 5
1

2
 mv2

1 5
1

2
 (650 kg 1 140 kg)(3 m/s)2 5 3555 J

In position 2, the kinetic energy is

T2 5
1

2
 mv2

2 5
1

2
 (650 kg 1 140 kg)v2

2 5 395v2
2

Work. As the system moves into the ground, the weight and the 

 resisting force, F, do work. The work the weight does is

1U1y22g 5 mgy 5 1790 kg2 19.81 m/s22 10.08 m2 5 620.0 J

(continued)

140 kg

650 kg

x (mm)200
0

50

100

150

200

250

40 60 80 100

F(kN)
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812 Kinetics of Particles: Energy and Momentum Methods

The given equation for the force is such that F is in kN when x is expressed 

in mm. This means that the number in front (that is, the 0.02) has to have 

the units of kN/mm2 for the units to work out. The work of the resisting 

force is

(U1y2)F 5 #
x2

x1

F
x 

dx

 5 #
0.05

0

2 10.02 kN/mm22x2 dx 5 2a0.02

3
  kN/mm2b x3 ` 80

0

 5 23413 kN?mm 5 23413 J

Thus, the total work is

U1y2 5 1U1y22g 1 1U1y22F 5 620.0 J 2 3413 J 5 22793 J

Substituting the kinetic energies and total work in the principle of work 

and energy gives

 T1 1 U1y2 5 T2

3555 2 2793 5 395v2
2

v2 5 1.389 m/s w b

REFLECT and THINK: To determine how deep the system enters the 

ground before it stops, you need to set the final kinetic energy equal to 

zero and make the maximum depth, xm, unknown. This gives 

3555 1 79019.812xm 2 a0.02

3
 
 kN/mm2b x3

m 5 0

Solving this, you find xm 5 0.0859 m or 85.9 mm.

Sample Problem 13.6

A 2000-lb roller coaster car starts from rest at point 1 and moves without 

friction down the track shown. (a) Determine the force exerted by the 

track on the car at point 2, where the radius of curvature of the track is 

20 ft. (b) Determine the minimum safe value of the radius of curvature at 

point 3.

STRATEGY: Use the principle of work and energy to determine the 

speed of the car at any location along the track. To determine the force 

exerted by the track, you need to use Newton’s second law. You will need 

to draw a free-body diagram and kinetic diagram of the car at each 

position.

MODELING: Choose the car as the system and assume it can be 

 modeled as a particle.

ANALYSIS: Apply the principle of work and energy

 T1 1 U1y2 5 T2 (1)

1

2

340 ft

15 ft
r2 = 20 ft

F

mg

Fig. 1 Free-body 
diagram after the impact.
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13.1 Work and Energy 813

a. Force Exerted by the Track at Point 2. Use the principle of 

work and energy to determine the velocity of the car as it passes through 

point 2.

Kinetic Energy. T1 5 0   T2 5
1
2 mv2

2 5
1

2
 
W
g

 v2
2

Work. The only force that does work is the weight W. Since the vertical 

displacement from point 1 to point 2 is 40 ft downward, the work of the 

weight is

U1y2 5 1W(40 ft)

Principle of Work and Energy. Substituting these values into Eq. (1) 

gives 

T1 1 U1y2 5 T2      0 1 W(40 ft) 5
1

2
 
W
g

 v2
2

v2
2 5 80g 5 80(32.2)      v2 5 50.8 ft/s

Newton’s Second Law at Point 2. The acceleration an of the car at 

point 2 has a magnitude of an 5 v2
2yρ and is directed upward. Since the 

external forces acting on the car are W and N (Fig. 1), you have

1xoFn 5 man:  2W 1 N 5 man

  5
W
g

 
v2

2

ρ

  5
W
g

 
80g

20

N 5 5W  N 5 10,000 lbx b

b. Minimum Value of ρ at Point 3. 

Principle of Work and Energy. Applying the principle of work and 

energy between point 1 and point 3, you obtain

T1 1 U1y3 5 T3      0 1 W(25 ft) 5
1

2
 
W
g

 v2
3

v2
3 5 50g 5 50(32.2)      v3 5 40.1 ft/s

Newton’s Second Law at Point 3. The minimum safe value of ρ 

occurs when N 5 0. In this case, the acceleration an with a magnitude of 

an 5 v2
3yρ, is directed downward (Fig. 2), and you have

1woFn 5 man:  W 5
W
g

 
v2

3

ρ

  5
W
g

 
50g

ρ
 ρ 5 50 ft b

REFLECT and THINK: This is an example where you need both 

 Newton’s second law and the principle of work and energy. Work–energy 

is used to determine the speed of the car, and Newton’s second law is 

used to determine the normal force. A normal force of 5W is equivalent 

to a fighter pilot pulling 5g’s and should only be experienced for a very 

short time. For safety, you would also want to make sure your radius of 

curvature was quite a bit larger than 50 ft.

W

N

=

mann

t

Fig. 1 Free-body diagram 
and kinetic diagram at 
point 2.

W

N = 0

=
man

n

t

Fig. 2 Free-body diagram 
and kinetic diagram at 
point 3.
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814 Kinetics of Particles: Energy and Momentum Methods

Sample Problem 13.7

The dumbwaiter D and its load have a combined weight of 600 lb, whereas 

the counterweight C weighs 800 lb. Determine the power delivered by the 

electric motor M when the dumbwaiter (a) is moving up at a constant 

speed of 8 ft/s, (b) has an instantaneous velocity of 8 ft/s and an acceleration 

of 2.5 ft/s2, where both are directed upward.

STRATEGY: This problem requires you to use the definition of power. 

You will need to use Newton’s second law to determine the tensions in 

the two cables.

MODELING: Define two separate systems, one for body C and one for 

body D, and model them as particles. Assume the pulley is weightless and 

frictionless.

ANALYSIS: The force F exerted by the motor cable has the same 

 direction as the velocity vD of the dumbwaiter, so the power is equal to 

FvD, where vD 5 8 ft/s. To obtain the power, you must first determine F 

in each of the two given situations.

a. Uniform Motion. You have aC 5 aD 5 0; both bodies are in 

equilibrium (Fig. 1).

Body C:    1xoFy 5 0:    2T 2 800 lb 5 0    T 5 400 lb

Body D:    1xoFy 5 0:         F 1 T 2 600 lb 5 0

 F 5 600 lb 2 T 5 600 lb 2 400 lb 5 200 lb

FvD 5 (200 lb)(8 ft/s) 5 1600 ft?lb/s

Power 5 (1600 ft?lb/s) 

1 hp

550 ft?lb/s
5 2.91 hp b

b. Accelerated Motion. You have

aD 5 2.5 ft/s2
x    aC 5 2

1

2
 aD 5 1.25 ft /s2

w

The equations of motion are obtained using Figs 2 and 3. 

Body C:      1woFy 5 mCaC:  800 2 2T 5 
800

32.2
 (1.25) T 5 384.5 lb

Body D:    1xoFy 5 mDaD:    F 1 T 2 600 5 
600

32.2
 (2.5)

F 1 384.5 2 600 5 46.6    F 5 262.1 lb

FvD 5 (262.1 lb)(8 ft/s) 5 2097 ft?lb/s

Power 5 (2097 ft?lb/s) 

1 hp

550 ft?lb/s
5 3.81 hp b

REFLECT and THINK: As you might expect, the motor needs to deliver 

more power to produce accelerated motion than to produce motion at 

constant velocity.

M

C D

C D

800 lb 600 lb

T

vC vD

2T F

Fig. 1 Free-body 
diagrams for C and D.

C C

800 lb mCaC

2T

=
y

Fig. 2 Free-body diagram 
and kinetic diagram for C.

mD aD

D D

600 lb

T F

=
y

Fig. 3 Free-body diagram 
and kinetic diagram for D.
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815 815

In the preceding chapter, you solved problems dealing with the motion of a particle 

by using the fundamental equation F 5 ma to determine the acceleration a. By 

applying the principles of kinematics, you could then use a to determine the velocity 

and displacement of the particle at any time. In this section, we combined F 5 ma 

and kinematic relationships to obtain an additional principle called the principle of 
work and energy. This eliminates the need to calculate the acceleration and enables 

you to relate the velocities of the particle at two points along its path of motion. To 

solve a problem using work and energy, you need to follow these steps:

1. Compute the work of each of the external forces. The work U1y2 of a given 

force F during the finite displacement of a particle from A1 to A2 is defined as

U1y2 5#  
F?dr  or  U1y2 5#  

(F cos α) ds (13.2, 13.29)

where α is the angle between F and the displacement dr. The work U1y2 is a scalar 

quantity and is expressed in ft?lb or in?lb in the U.S. customary system of units and 

in N?m or joules (J) in the SI system of units. Note that the work done is zero for a 

force perpendicular to the displacement (α 5 90°). Negative work is done for 

90° , α , 180° and in particular for a friction force, which is always opposite in 

 direction to the displacement (α 5 180°).

  The work U1y2 can be easily evaluated in the following cases that you will 

encounter.

a. Work of a constant force in rectilinear motion [Sample Prob. 13.1]

 U1y2 5 (F cos α) Dx (13.3)

  where α 5 angle the force forms with the direction of motion

 Dx 5 displacement from A1 to A2 (Fig. 13.3)

 b. Work of the force of gravity [Sample Probs. 13.2 and 13.6]

 U1y2 5 2WDy (13.49)

where Dy is the vertical displacement of the center of gravity of the body of 

weight W. Note that the work is positive when Dy is negative, that is, when the body 

moves down (Fig. 13.4).

 c. Work of the force exerted by a linear spring [Sample Probs. 13.3 and 13.4]

 U1y2 5
1
2kx2

1 2
1
2kx2

2 (13.6)

where k is the spring constant and x1 and x2 are the elongations of the spring 

 corresponding to the positions A1 and A2 (Fig. 13.5).

SOLVING PROBLEMS 
ON YOUR OWN
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 d. Work of a gravitational force

U1y2 5
GMm

r2

2
GMm

r1

 
(13.7)

for a displacement of the body from A1(r 5 r1) to A2(r 5 r2) (Fig. 13.6).

2. Calculate the kinetic energy at A1 and A2. The kinetic energy T is

 T 5
1
2 mv2 (13.9)

where m is the mass of the particle and v is the magnitude of its velocity. The units 

of kinetic energy are the same as the units of work, that is, ft?lb or in?lb if you use 

U.S. customary units and N?m or joules (J) if you use SI units.

3. Substitute the values for the work done U1y2 and the kinetic energies T1 and 
T2 into the equation

 T1 1 U1y2 5 T2 (13.11)

You will now have one scalar equation that you can solve for one unknown. Note that 

this equation does not yield the time of travel or the acceleration directly. However, 

if you know the radius of curvature ρ of the path of the particle at a point where you 

have obtained the velocity v, you can express the normal component of the accelera-

tion as an 5 v2/ρ and obtain the normal component of the force exerted on the particle 

by using Newton’s second law.

4. We introduced power in this section as the time rate at which work is done 
as P 5 dU/dt. Power is measured in ft?lb/s or horsepower (hp) in U.S. customary 

units and in J/s or watts (W) in the SI system of units. To calculate the power, you 

can use the equivalent formula

 P 5 F?v (13.13)

where F and v denote the force and the velocity, respectively, at a given time [Sample 

Prob. 13.7]. In some problems [see, e.g., Prob. 13.47], you will be asked for the 

 average power that you can obtain by dividing the total work by the time interval 

during which the work is done.
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Problems
CONCEPT QUESTIONS

 13.CQ1 Block A is traveling with a speed v0 on a smooth surface when the 

surface suddenly becomes rough with a coefficient of friction of μ

causing the block to stop after a distance d. If block A were  traveling 

twice as fast, that is, at a speed 2v0, how far will it travel on the 

rough surface before stopping?

   a. d/2

   b. d
   c. 12d
   d. 2d
   e. 4d

END-OF-SECTION PROBLEMS

 13.1 A 400-kg satellite is placed in a circular orbit 6394 km above the 

surface of the earth. At this elevation, the acceleration of gravity is 

4.09 m/s2. Knowing that its orbital speed is 20 000 km/h, determine 

the kinetic energy of the satellite.

 13.2 A 1-lb stone is dropped down the “bottomless pit” at Carlsbad 

 Caverns and strikes the ground with a speed of 95 ft/s. Neglecting 

air resistance, (a) determine the kinetic energy of the stone as it 

strikes the ground and the height h from which it was dropped. 

(b) Solve part a assuming that the same stone is dropped down a hole 

on the moon. (Acceleration of gravity on the moon 5 5.31 ft/s2.)

Fig. P13.2

13.3 A baseball player hits a 5.1-oz baseball with an initial velocity of 

140 ft/s at an angle of 408 with the horizontal as shown. Determine 

(a) the kinetic energy of the ball immediately after it is hit, (b) the 

kinetic energy of the ball when it reaches its maximum height, (c) the 

maximum height above the ground reached by the ball.

13.4 A 500-kg communications satellite is in a circular geosynchronous 

orbit and completes one revolution about the earth in 23 h and 

56 min at an altitude of 35 800 km above the surface of the earth. 

Knowing that the radius of the earth is 6370 km, determine the 

kinetic energy of the satellite.

 13.5 In an ore-mixing operation, a bucket full of ore is suspended from a 

traveling crane which moves along a stationary bridge. The bucket is 

to swing no more than 10 ft horizontally when the crane is brought to a 

sudden stop. Determine the maximum allowable speed v of the crane.

 13.6 In an ore-mixing operation, a bucket full of ore is suspended from 

a traveling crane which moves along a stationary bridge. The crane 

is traveling at a speed of 10 ft/s when it is brought to a sudden stop. 

Determine the maximum horizontal distance through which the 

bucket will swing.

smooth

v0

rough

d

Fig. P13.CQ1

B

A v

30 ft

Fig. P13.5 and P13.6

v0

40°

2 ft

Fig. P13.3
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 13.7 Determine the maximum theoretical speed that may be achieved over 

a distance of 110 m by a car starting from rest assuming there is no 

slipping. The coefficient of static friction between the tires and pave-

ment is 0.75, and 60 percent of the weight of the car is distributed 

over its front wheels and 40 percent over its rear wheels. Assume 

(a) front-wheel drive, (b) rear-wheel drive.

 13.8 A 2000-kg automobile starts from rest at point A on a 6° incline and 

coasts through a distance of 150 m to point B. The brakes are then 

applied, causing the automobile to come to a stop at point C, which 

is 20 m from B. Knowing that slipping is impending during the 

braking period and neglecting air resistance and rolling resistance, 

determine (a) the speed of the automobile at point B, (b) the 

coefficient of static friction between the tires and the road.

150 m 20 m

A B C
6°

Fig. P13.8

 13.9 A package is projected up a 15° incline at A with an initial velocity 

of 8 m/s. Knowing that the coefficient of kinetic friction between 

the package and the incline is 0.12, determine (a) the maximum 

distance d that the package will move up the incline, (b) the velocity 

of the package as it returns to its original position.

13.10 A 1.4-kg model rocket is launched vertically from rest with a constant 

thrust of 25 N until the rocket reaches an altitude of 15 m and the 

thrust ends. Neglecting air resistance, determine (a) the speed of the 

rocket when the thrust ends, (b) the maximum height reached by the 

rocket, (c) the speed of the rocket when it returns to the ground.

 13.11 Packages are thrown down an incline at A with a velocity of 1 m/s. 

The packages slide along the surface ABC to a conveyor belt which 

moves with a velocity of 2 m/s. Knowing that μk 5 0.25 between 

the packages and the surface ABC, determine the distance d if the 

packages are to arrive at C with a velocity of 2 m/s.

 13.12 Packages are thrown down an incline at A with a velocity of 1 m/s. 

The packages slide along the surface ABC to a conveyor belt which 

moves with a velocity of 2 m/s. Knowing that d 5 7.5 m and μk 5 0.25 

between the packages and all surfaces, determine (a) the speed of the 

package at C, (b) the distance a package will slide on the conveyor 

belt before it comes to rest relative to the belt.

 13.13 Boxes are transported by a conveyor belt with a velocity v0 to a fixed 

incline at A where they slide and eventually fall off at B. Knowing 

that μk 5 0.40, determine the velocity of the conveyor belt if the 

boxes leave the incline at B with a velocity of 8 ft/s.

 13.14 Boxes are transported by a conveyor belt with a velocity v0 to a fixed 

incline at A where they slide and eventually fall off at B. Knowing 

that μk 5 0.40, determine the velocity of the conveyor belt if the 

boxes are to have zero velocity at B.

A

C
B

10 m

d

15°

Fig. P13.9

30°

B

C

A

7 m

2 m/s

1 m/s

d

Fig. P13.11 and P13.12

15°B

A

v0

20 ft

Fig. P13.13 and P13.14
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 13.15 A 1200-kg trailer is hitched to a 1400-kg car. The car and trailer are 

traveling at 72 km/h when the driver applies the brakes on both 

the car and the trailer. Knowing that the braking forces exerted 

on the car and the trailer are 5000 N and 4000 N, respectively, 

determine (a) the distance traveled by the car and trailer before they 

come to a stop, (b) the horizontal component of the force exerted by 

the trailer hitch on the car.

 13.16 A trailer truck enters a 2 percent uphill grade traveling at 72 km/h 

and reaches a speed of 108 km/h in 300 m. The cab has a mass of 

1800 kg and the trailer 5400 kg. Determine (a) the average force at 

the wheels of the cab, (b) the average force in the coupling between 

the cab and the trailer.

CROSS COUNTRY MOVERS
CROSS COUNTRY MOVERS

108 km/h
72 km/h

2% up grade

300 m

Fig. P13.16

 13.17 The subway train shown is traveling at a speed of 30 mi/h when the 

brakes are fully applied on the wheels of cars B and C, causing them 

to slide on the track, but are not applied on the wheels of car A. 

Knowing that the coefficient of kinetic friction is 0.35 between the 

wheels and the track, determine (a) the distance required to bring 

the train to a stop, (b) the force in each coupling.

30 mi/h

40 tons50 tons40 tons
A CB

Fig. P13.17 and P13.18

 13.18 The subway train shown is traveling at a speed of 30 mi/h when the 

brakes are fully applied on the wheels of car A, causing it to slide 

on the track, but are not applied on the wheels of cars B or C. Know-

ing that the coefficient of kinetic friction is 0.35 between the wheels 

and the track, determine (a) the distance required to bring the train 

to a stop, (b) the force in each coupling.

 13.19 Blocks A and B weigh 25 lb and 10 lb, respectively, and they are 

both at a height 6 ft above the ground when the system is released 

from rest. Just before hitting the ground, block A is moving at a speed 

of 9 ft/s. Determine (a) the amount of energy dissipated in friction 

by the pulley, (b) the tension in each portion of the cord during the 

motion.

A B C

D

Fig. P13.15 

Fig. P13.19

A B

h

bee87342_ch13_795-914.indd   819bee87342_ch13_795-914.indd   819 11/26/14   12:16 PM11/26/14   12:16 PM

UPLOADED BY AHMAD T JUNDI



820

 13.20 The system shown is at rest when a constant 30-lb force is applied 

to collar B. (a) If the force acts through the entire motion, determine 

the speed of collar B as it strikes the support at C. (b) After what 

distance d should the 30-lb force be removed if the collar is to reach 

support C with zero velocity?

Fig. P13.20

B

A

C
30 lb

18 lb

6 lb

2 ft

 13.21 Car B is towing car A at a constant speed of 10 m/s on an uphill 

grade when the brakes of car A are fully applied causing all four 

wheels to skid. The driver of car B does not change the throttle 

setting or change gears. The masses of the cars A and B are 1400 kg 

and 1200 kg, respectively, and the coefficient of kinetic friction is 

0.8. Neglecting air resistance and rolling resistance, determine (a) the 

distance traveled by the cars before they come to a stop, (b) the 

tension in the cable.

A B

5 m10 m/s
10 m/s

5°

Fig. P13.21

 13.22 The system shown is at rest when a constant 250-N force is applied 

to block A. Neglecting the masses of the pulleys and the effect of 

friction in the pulleys and between block A and the horizontal 

surface, determine (a) the velocity of block B after block A has 

moved 2 m, (b) the tension in the cable.

 13.23 The system shown is at rest when a constant 250-N force is applied 

to block A. Neglecting the masses of the pulleys and the effect of 

friction in the pulleys and assuming that the coefficients of friction 

between block A and the horizontal surface are μs 5 0.25 and 

μk 5 0.20, determine (a) the velocity of block B after block A has 

moved 2 m, (b) the tension in the cable.

A

30 kg

25 kg
B

250 N

Fig. P13.22 and P13.23

bee87342_ch13_795-914.indd   820bee87342_ch13_795-914.indd   820 11/26/14   12:16 PM11/26/14   12:16 PM

UPLOADED BY AHMAD T JUNDI



821

 13.24 Two blocks A and B, of mass 4 kg and 5 kg, respectively, are con-

nected by a cord that passes over pulleys as shown. A 3-kg collar C
is placed on block A and the system is released from rest. After the 

blocks have moved 0.9 m, collar C is removed and blocks A and B
continue to move. Determine the speed of block A just before it 

strikes the ground.

 13.25 Four 3-kg packages are held in place by friction on a conveyor which 

is disengaged from its drive motor. When the system is released from 

rest, package 1 leaves the belt at A just as package 4 comes onto the 

inclined portion of the belt at B. Determine (a) the velocity of pack-

age 2 as it leaves the belt at A, (b) the velocity of package 3 as it 

leaves the belt at A. Neglect the mass of the belt and rollers.

3 kg

2.4 m

A

B

1

3 kg

3 kg

3 kg

2 m

2 m

2 m
2

3
4

Fig. P13.25

 13.26 A 3-kg block rests on top of a 2-kg block supported by, but not 

attached to, a spring of constant 40 N/m. The upper block is  suddenly 

removed. Determine (a) the maximum speed reached by the 2-kg 

block, (b) the maximum height reached by the 2-kg block.

 13.27 Solve Prob. 13.26, assuming that the 2-kg block is attached to the 

spring.

 13.28 People with mobility impairments can gain great health and social 

benefits from participating in different recreational activities. You are 

tasked with designing an adaptive spring-powered  shuffleboard 

attachment that can be utilized by people who use wheelchairs. 

Knowing that the coefficient of kinetic friction between the 15 ounce 

puck A and the wooden surface is 0.3, the maximum spring displace-

ment you desire is 6 inches, and that you want the puck to travel at 

least 30 ft/s, determine (a) the spring constant k, (b) how far the 

athlete should pull back the spring to make the puck come to rest 

after 34 ft.

k
A 10

O
F

F7
7

8
8

10

10
O

F
F

7
7

8
8

10

Fig. P13.28

A

B

C

D

0.3 m

0.6 m

1 m

Fig. P13.24

2 kg

3 kg

Fig. P13.26
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 13.29 A 7.5-lb collar is released from rest in the position shown, slides 

down the inclined rod, and compresses the spring. The direction of 

motion is reversed and the collar slides up the rod. Knowing that the 

maximum deflection of the spring is 5 in., determine (a) the coef-

ficient of kinetic friction between the collar and the rod, (b) the 

maximum speed of the collar.

 13.30 A 10-kg block is attached to spring A and connected to spring B by 

a cord and pulley. The block is held in the position shown with both 

springs unstretched when the support is removed and the block is 

released with no initial velocity. Knowing that the constant of each 

spring is 2 kN/m, determine (a) the velocity of the block after it has 

moved down 50 mm, (b) the maximum velocity achieved by the 

block.

B

C

A

k = 2 kN/m

k = 2 kN/m

10 kg

Fig. P13.30

 13.31 A 5-kg collar A is at rest on top of, but not attached to, a spring 

with stiffness k1 5 400 N/m when a constant 150-N force is applied 

to the cable. Knowing A has a speed of 1 m/s when the upper spring 

is compressed 75 mm, determine the spring stiffness k2. Ignore fric-

tion and the mass of the pulley.

 13.32 A piston of mass m and cross-sectional area A is in equilibrium under 

the pressure p at the center of a cylinder closed at both ends. Assum-

ing that the piston is moved to the left a distance a/ 2 and released, 

and knowing that the pressure on each side of the piston varies 

inversely with the volume, determine the velocity of the piston as it 

again reaches the center of the cylinder. Neglect friction between the 

piston and the cylinder and express your answer in terms of m, a, p,

and A.

m pp

a a

Fig. P13.32

k = 60 lb/ft

18 in.

30°

Fig. P13.29

A

B

400 mm

450 mm
75 mm

k2

k1

150 N

Fig. P13.31
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 13.33 An uncontrolled automobile traveling at 65 mph strikes squarely a 

highway crash cushion of the type shown in which the automobile 

is brought to rest by successively crushing steel barrels. The 

magnitude F of the force required to crush the barrels is shown as a 

function of the distance x the automobile has moved into the cushion. 

Knowing that the weight of the automobile is 2250 lb and neglecting 

the effect of friction, determine (a) the distance the automobile will 

move into the cushion before it comes to rest, (b) the maximum 

deceleration of the automobile.

v0

y

x

z

F(kips)

36
27
18

145 x(ft)

Fig. P13.33

 13.34 Two types of energy-absorbing fenders designed to be used on a pier 

are statically loaded. The force-deflection curve for each type of 

fender is given in the graph. Determine the maximum deflection of 

each fender when a 90-ton ship moving at 1 miyh strikes the fender 

and is brought to rest.

 13.35 Nonlinear springs are classified as hard or soft, depending upon 

the curvature of their force-deflection curve (see figure). If a 

delicate instrument having a mass of 5 kg is placed on a spring 

of length l so that its base is just touching the undeformed spring 

and then inadvertently released from that position, determine 

the maximum deflection xm of the spring and the maximum 

force Fm exerted by the spring, assuming (a) a linear spring of 

constant k 5 3 kN/m, (b) a hard, nonlinear spring, for which 

F 5 (3 kN/m)(x 1 160x3).

F(lb)

x(in.)

Soft spring

x

l

Linear spring

Hard spring

Fig. P13.35

 13.36 A meteor starts from rest at a very great distance from the earth. 

Knowing that the radius of the earth is 6370 km and neglecting all 

forces except the gravitational attraction of the earth, determine the 

speed of the meteor (a) when it enters the ionosphere at an altitude 

of 1000 km, (b) when it enters the stratosphere at an altitude of 

50 km, (c) when it strikes the earth’s surface.

x(in.)2
0

20

40

60

80

4 6 8 10 12

F(kips)

A

B

Fig. P13.34
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 13.37 Express the acceleration of gravity gh at an altitude h above the 

surface of the earth in terms of the acceleration of gravity g0 at the 

surface of the earth, the altitude h, and the radius R of the earth. 

Determine the percent error if the weight that an object has on 

the surface of the earth is used as its weight at an altitude of 

(a) 0.625 mi, (b) 625 mi.

 13.38 A golf ball struck on earth rises to a maximum height of 60 m and 

hits the ground 230 m away. How high will the same golf ball travel 

on the moon if the magnitude and direction of its velocity are the 

same as they were on earth immediately after the ball was hit? 

Assume that the ball is hit and lands at the same elevation in both 

cases and that the effect of the atmosphere on the earth is neglected, 

so that the trajectory in both cases is a parabola. The acceleration 

of gravity on the moon is 0.165 times that on earth.

 13.39 The sphere at A is given a downward velocity v0 of magnitude 

5 m/s and swings in a vertical plane at the end of a rope of length 

l 5 2 m attached to a support at O. Determine the angle θ at which 

the rope will break, knowing that it can withstand a maximum ten-

sion equal to twice the weight of the sphere.

 13.40 The sphere at A is given a downward velocity v0 and swings in a 

vertical circle of radius l and center O. Determine the smallest veloc-

ity v0 for which the sphere will reach point B as it swings about 

point O (a) if AO is a rope, (b) if AO is a slender rod of negligible 

mass.

 13.41 A bag is gently pushed off the top of a wall at A and swings in a 

vertical plane at the end of a rope of length l. Determine the 

angle θ for which the rope will break, knowing that it can withstand 

a maximum tension equal to twice the weight of the bag.

 13.42 A roller coaster starts from rest at A, rolls down the track to B, 

describes a circular loop of 40-ft diameter, and moves up and down 

past point E. Knowing that h 5 60 ft and assuming no energy loss 

due to friction, determine (a) the force exerted by his seat on a 

160-lb rider at B and D, (b) the minimum value of the radius of cur-

vature at E if the roller coaster is not to leave the track at that point.

�

h

A

D

C

B

E

r 5 20 ft

Fig. P13.42

hm

Rm

he = 60 m

230 m

Moon trajectory

Earth trajectory

v

Fig. P13.38

A

B

O
l

v0

q

Fig. P13.39 and P13.40

C

B

A

q

l

Fig. P13.41
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 13.43 In Prob. 13.42, determine the range of values of h for which the 

roller coaster will not leave the track at D or E, knowing that the 

radius of curvature at E is ρ 5 75 ft. Assume no energy loss due to 

friction.

 13.44 A small block slides at a speed v on a horizontal surface. Knowing 

that h 5 0.9 m, determine the required speed of the block if it is to 

leave the cylindrical surface BCD when θ 5 308.

 13.45 A small block slides at a speed v 5 8 ft/s on a horizontal surface at 

a height h 5 3 ft above the ground. Determine (a) the angle θ at 

which it will leave the cylindrical surface BCD, (b) the distance x at 

which it will hit the ground. Neglect friction and air resistance.

 13.46 A chair-lift is designed to transport 1000 skiers per hour from the 

base A to the summit B. The average mass of a skier is 70 kg and 

the average speed of the lift is 75 m/min. Determine (a) the average 

power required, (b) the required capacity of the motor if the mechan-

ical efficiency is 85 percent and if a 300-percent overload is to be 

allowed.

 13.47 It takes 15 s to raise a 1200-kg car and the supporting 300-kg 

hydraulic car-lift platform to a height of 2.8 m. Determine 

(a) the average output power delivered by the hydraulic pump to lift 

the system, (b) the average electric power required, knowing that the 

overall conversion efficiency from electric to mechanical power for 

the system is 82 percent.

 13.48 The velocity of the lift of Prob. 13.47 increases uniformly from zero 

to its maximum value at mid-height in 7.5 s and then decreases 

uniformly to zero in 7.5 s. Knowing that the peak power output of 

the hydraulic pump is 6 kW when the velocity is maximum, deter-

mine the maximum lift force provided by the pump.

 13.49 (a) A 120-lb woman rides a 15-lb bicycle up a 3-percent slope at a 

constant speed of 5 ft/s. How much power must be developed by the 

woman? (b) A 180-lb man on an 18-lb bicycle starts down the same 

slope and maintains a constant speed of 20 ft/s by braking. How 

much power is dissipated by the brakes? Ignore air resistance and 

rolling resistance.

5 ft/s 20 ft/s

(a) (b)

3% slope

Fig. P13.49

q

B

C

D E

x

v

h

Fig. P13.44 and P13.45

750 m

300 m

B

A

Fig. P13.46

v

Fig. P13.47
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 13.50 A power specification formula is to be derived for electric motors 

which drive conveyor belts moving solid material at different rates 

to different heights and distances. Denoting the efficiency of a 

motor by η and neglecting the power needed to drive the belt 

itself, derive a formula (a) in the SI system of units for the power 

P in kW, in terms of the mass flow rate m in kg/h, the height b 
and horizontal distance l in meters and (b) in U.S. customary units, 

for the power in hp, in terms of the material flow rate w in tons/h, 

and the height b and horizontal distance l in feet.

l

b

Fig. P13.50

 13.51 A 1400-kg automobile starts from rest and travels 400 m during a 

performance test. The motion of the automobile is defined by the 

relation x 5 4000 ln(cosh 0.03t), where x and t are expressed in 

meters and seconds, respectively. The magnitude of the  aerodynamic 

drag is D 5 0.35v2, where D and v are expressed in newtons and 

m/s, respectively. Determine the power dissipated by the  aerodynamic 

drag when (a) t 5 10 s, (b) t 5 15 s.

v
D

Fig. P13.51 and P13.52

 13.52 A 1400-kg automobile starts from rest and travels 400 m during a 

performance test. The motion of the automobile is defined by the 

relation a 5 3.6e20.0005x, where a and x are expressed in m/s2 and 

meters, respectively. The magnitude of the aerodynamic drag is 

D 5 0.35v2, where D and v are expressed in newtons and m/s, 

respectively. Determine the power dissipated by the aerodynamic 

drag when (a) x 5 200 m, (b) x 5 400 m.

 13.53 The fluid transmission of a 15-Mg truck allows the engine to deliver 

an essentially constant power of 50 kW to the driving wheels. 

 Determine the time required and the distance traveled as the speed 

of the truck is increased (a) from 36 km/h to 54 km/h, (b) from 

54 km/h to 72 km/h.

 13.54 The elevator E has a weight of 6600 lb when fully loaded and  is 

connected as shown to a counterweight W of weight of 2200 lb. 

Determine the power in hp delivered by the motor (a) when 

the elevator is moving down at a constant speed of 1 ft/s, 

(b) when it has an upward velocity of 1 ft/s and a deceleration 

of 0.18 ft/s2.

E

W

C

M

Fig. P13.54
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13.2 Conservation of Energy 827

13.2  CONSERVATION OF 
ENERGY

The principle of work and energy is useful for solving many different 

types of engineering problems. However, in many engineering  applications, 

the total mechanical energy remains constant, although it may be 

 transformed from one form into another. This is known as the principle 

of conservation of energy. To formulate this principle, we must first define 

a quantity known as potential energy. (Some of the material in this section 

was considered in Sec. 10.2B.)

13.2A Potential Energy
Let’s consider again a body of weight W that moves along a curved path 

from a point A1 of elevation y1 to a point A2 of elevation y2 (Fig. 13.4). 

Recall from Sec. 13.1A that the work done by the force of gravity W
during this displacement is

U1y2 5 2(Wy2 2 Wy1) 5 Wy1 2 Wy2 (13.4)

That is, we obtain the work done by W by subtracting the value of the 

function Wy corresponding to the second position of the body from its value 

corresponding to the first position. The work of W is independent of the 

actual path followed; it depends only upon the initial and final values of 

the function Wy. This function is called the potential energy of the body 

with respect to the force of gravity W and is denoted by Vg. We have

Gravitational potential 
energy on earth

 U1y2 5 (Vg)1 2 (Vg)2    where Vg 5 Wy (13.16)

where y is measured from an arbitrary horizontal datum where the  potential 

energy is zero by definition. Note that if (Vg)2 . (Vg)1, that is, if the 
potential energy increases during the displacement (as in the case  considered 

here), the work U1y2 is negative. On the other hand, if the work of W is 

positive, the potential energy decreases. Therefore, the potential energy Vg 

of the body provides a measure of the work that can be done by its weight 

W. Also note that the change in potential energy—not the actual value of 

Vg—is involved in formula (13.16). For this reason, the level, or datum, 

from which we measure the elevation y can be chosen arbitrarily. Finally, 

note that potential energy is expressed in the same units as work, i.e., in 

joules we use if SI units and in ft?lb or in?lb if we use U.S. customary units.

This expression for the potential energy of a body with respect to 

gravity is valid only as long as we can assume the weight W of the body 

remains constant, i.e., as long as the displacements of the body are small 

compared with the radius of the earth. In the case of a space vehicle, how-

ever, we need to take into consideration the variation of the force of gravity 

with the distance r from the center of the earth. Using the expression obtained 

in Sec. 13.1A for the work of a gravitational force, we have (Fig. 13.6)

 U1y2 5
GMm

r2

2
GMm

r1

 (13.7)

U1y2 5 (VgVV )1 2 (VgVV )2    where VgVV 5 Wy

A2

A

A1

y2

y1

dy

y

W

Fig. 13.4 (repeated)

O

A2

A1

r2

r1
θ

dr

F

–F

M

r

A'

A
m

dθ

Fig. 13.6 (repeated)
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828 Kinetics of Particles: Energy and Momentum Methods

Therefore, we can obtain the work of the force of gravity by subtracting 

the value of the function 2GMm/r corresponding to the second position 

of the body from its value corresponding to the first position. Thus, the 

expression that we use for the potential energy Vg when the variation in 

the force of gravity cannot be neglected is

Gravitational potential 
energy in space

Vg 5 2
GMm

r
 (13.17)

Taking the first of the relations of Eq. (12.27) into account, we can write 

Vg in the alternative form

Vg 5 2
WR2

r
 (13.179)

where R is the radius of the earth and W is the value of the weight of the 

body at the surface of the earth. When using either of the relations in 

Eqs. (13.17) or (13.179) to express Vg, the distance r should, of course, 

be measured from the center of the earth.† Note that Vg is always negative 

and that it approaches zero for very large values of r.

Consider now a body attached to a spring and moving from a 

position A1, corresponding to a deflection x1 of the spring, to a position A2, 

corresponding to a deflection x2 of the spring (Fig. 13.5). Recall from 

Sec. 13.1A that the work of the force F exerted by the spring on the body is

 U1y2 5
1
2kx2

1 2
1
2kx2

2 (13.6)

That is, we obtain the work of the elastic force by subtracting the value 

of the function 
1
2kx2 corresponding to the second position of the body from 

its value corresponding to the first position. This function is denoted by 

Ve and is called the potential energy of the body with respect to the 

elastic force F. We have

Elastic potential 
energy

 U1y2 5 (Ve)1 2 (Ve)2  with Ve 5
1
2kx2 (13.18)

where x 5 Lstretched 2 Lunstretched, or the deflection of the spring from its 

undeformed position. Note that, during the displacement from A1 to A2, 

the work of the force F exerted by the spring on the body is negative and 

that the potential energy Ve increases. We can use formula (13.18) even 

when the spring is rotated about its fixed end (Fig. 13.10a). The work of 

the elastic force depends only upon the initial and final deflections of the 

spring (Fig. 13.10b).

We can use the concept of potential energy when forces other than 

gravity forces and elastic forces are involved. Indeed, it remains valid as 

long as the work of the force considered is independent of the path  followed 

by its point of application, as this point moves from a given position A1 to 

a given position A2. Such forces are said to be conservative forces or 
path-independent forces. We next consider their general properties.

VgVV 5 2
GMGG mMM

r

U1y2 5 (VeVV )1 2 (VeVV )2 with VeVV 5
1
2kx2

†The expressions for Vg in Eqs. (13.17) and (13.179) are valid only when r $ R; that is, 

when the body considered is above the surface of the earth. 

A0

A1

Spring undeformed

B

B

B

F

A

A2

x1

x

x2

Fig. 13.5 (repeated)
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13.2 Conservation of Energy 829

*13.2B Conservative Forces
As indicated in the preceding section, a force F acting on a particle A is 

said to be conservative if its work U1y2 is independent of the path 
 followed by the particle A as it moves from A1 to A2 (Fig. 13.11a). We 

then have

U1y2 5 2(V(x2, y2, z2) 2V(x1, y1, z1)) 5 V(x1, y1, z1) 2V(x2, y2, z2) (13.19)

or for short,

 U1y2 5 V1 2 V2 (13.199)

The function V(x, y, z) is called the potential energy, or potential function, 

of F.

Note that if A2 is chosen to coincide with A1––that is, if the particle 

describes a closed path (Fig. 13.11b)––we have V1 5 V2 and the work is 

zero. Thus for any conservative force F, we can write

 $ F?dr 5 0 (13.20)

where the circle on the integral sign indicates that the path is closed.

Let us now apply Eq. (13.19) between two neighboring points 

A(x, y, z) and A9(x 1 dx, y 1 dy, z 1 dz). The elementary work dU 

 corresponding to the displacement dr from A to A9 is

dU 5 V(x, y, z) 2 V(x 1 dx, y 1 dy, z 1 dz)

or

 dU 5 2dV(x, y, z) (13.21)

Thus, the elementary work of a conservative force is an exact differential.

U1y2 5 2(V(VV x2, y2, z2) 2V(VV x1, y1, z1)) 5 V(VV x1, y1, z1) 2V(VV x2, y2, z2)

$ F?dr 5 0

dU 5 2dV(VV x, y, z)

Fig. 13.10 (a) The equation for potential energy of a spring force is valid if the spring 
stretches when rotated about a fixed end; (b) the work of the elastic force depends only 
on the initial and final deflections of the spring.

Undeformed length

(a) (b)

O

A1 A2

x1

x2

F = kx

(Ve)1 =     kx1 21
2

(Ve)2 =     kx2 21
2

x

F

x2

x1

–U1     2

Fig. 13.11 (a) The work of a conservative 
force acting on a particle is independent of 
the path of the particle; (b) if the particle 
travels a closed path, the work of a 
conservative force is zero.

(a)

(b)

x

y

z

O

x

y

z

O

F

F

A(x, y, z)

A2(x2, y2, z2)

A1(x1, y1, z1)

A(x, y, z)

A1(x1, y1, z1)
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830 Kinetics of Particles: Energy and Momentum Methods

If we substitute the expression obtained in Eq. 13.10 for dU in 

Eq. (13.21) and recall the definition of the differential of a function of 

several variables, we have

Fx dx 1 Fy 
 dy 1 Fz dz 5 2a 0V

0x
 dx 1

0V
0y

 dy 1
0V
0z

 dzb
from which it follows that

Fx 5 2
0V
0x

   Fy 5 2
0V
0y

   Fz 5 2
0V
0z

 (13.22)

It is clear that the components of F must be functions of the coordinates x, y, 

and z. Thus, a necessary condition for a conservative force is that it 

depends only upon the position of its point of application. The relations 

in Eq. (13.22) can be expressed more concisely if we write

F 5 Fx 
i 1 Fyj 1 Fzk 5 2a 0V

0x
  i 1

0V
0y

j 1
0V
0z

kb
The vector in parentheses is known as the gradient of the scalar function V and 

is denoted by grad V. We thus have for any conservative force

F 5 2grad V (13.23)

The relations in Eqs. (13.19) to (13.23) are satisfied by any conser-

vative force. It can also be shown that if a force F satisfies one of these 

relations, F must be a conservative force.

13.2C  The Principle of Conservation 
of Energy

We saw in the preceding two sections that we can express the work of a 

conservative force, such as the weight of a particle or the force exerted 

by a spring, as a change in potential energy. When a particle moves under 

the action of conservative forces, the principle of work and energy stated 

in Sec. 13.B can be expressed in a modified form. Substituting for U1y2 

from Eq. (13.199) into Eq. (13.10), we have

V1 2 V2 5 T2 2 T1

or

Conservation 
of energy T1 1 V1 5 T2 1 V2 (13.24)

Formula (13.24) indicates that when a particle moves under the action of 

conservative forces, the sum of the kinetic energy and of the potential 
energy of the particle remains constant. The sum T 1 V is called the 

total mechanical energy of the particle and is denoted by E. So far, we 

have discussed two types of potential energy: gravitational potential 

energy, Vg, and elastic potential energy, Ve. Therefore, another way to 

write Eq. (13.24) is

T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

(13.249)

FxF 5 2
0V
0x

  FyFF 5 2
0V
0y

   FzF 5 2
0V
0z

F 5 2grad V

T1TT  1 V1VV 5 T2TT  1 V2VV
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13.2 Conservation of Energy 831

Consider, for example, the pendulum analyzed in Sec. 13.1C that is 

released with no velocity from A1 and allowed to swing in a vertical plane 

(Fig. 13.12). Measuring the potential energy from the level of A2, that is, 

placing our datum at A2, we have at A1

T1 5 0  V1 5 Wl  T1 1 V1 5 Wl

Recalling that at A2 the speed of the pendulum is v2 5 22gl, we have

T2 5
1
2mv2

2 5
1

2
 

W
g

 (2gl) 5 Wl  V2 5 0

T2 1 V2 5 Wl

Thus, we can check that the total mechanical energy E 5 T 1 V of the 

pendulum is the same at A1 and A2. Whereas the energy is entirely potential 

at A1, it becomes entirely kinetic at A2, and as the pendulum keeps 

swinging to the right past A2, the kinetic energy is transformed back into 

potential energy. At A3, T3 5 0 and V3 5 Wl.
Because the total mechanical energy of the pendulum remains 

constant and its potential energy depends only upon its elevation, the 

kinetic energy of the pendulum must have the same value at any two 

points located at the same height. Thus, the speed of the pendulum is the 

same at A and at A9 (Fig. 13.12). We can extend this result to the case of 

a particle moving along any given path, regardless of the shape of the 

path, as long as the only forces acting on the particle are its weight and 

the normal reaction of the path. The particle of Fig. 13.13, for example, 

which slides in a vertical plane along a frictionless track, has the same 

speed at A, A9, and A0.

The weight of a particle and the force exerted by a spring are 

conservative forces, but friction forces are nonconservative, or path-
dependent, forces. In other words, the work of a friction force cannot be 
expressed as a change in potential energy. The work of a friction force 

depends upon the path followed by its point of application; and whereas 

the work U1y2 defined by Eq. (13.19) is positive or negative according to 

the sense of motion, the work of a friction force, as we noted in Sec. 13.1C, 

is always negative. It follows that when a mechanical system involves 

friction, its total mechanical energy does not remain constant but decreases. 

The energy of the system, however, is not lost; it is transformed into heat, 

and the sum of the mechanical energy and of the thermal energy of the 

system remains constant.

Other forms of energy also can be involved in a system. For instance, 

a generator converts mechanical energy into electrical energy; a gasoline 

engine converts chemical energy into mechanical energy; a nuclear reactor 

converts mass into thermal energy. If all forms of energy are considered, 

the energy of any system can be considered as constant, and the principle 

of conservation of energy remains valid under all conditions.

If we express the work done by non-conservative forces as UNC
1y2, 

we can express Eq. (13.2) as

 T1 1 Vg1
1 Ve1

1 UNC
1y2 5 T2 1 Vg2

1 Ve2
 (13.240)

Note that if UNC
1y2 is zero, then the expression reduces to the conservation 

of energy equation of Eq. (13.249).

Fig. 13.12 The motion of a pendulum is 
easily analyzed using conservation of energy.

A1

A2

A3

A
A'

Datum

l

Fig. 13.13 A particle moving along a 
frictionless track has the same speed every 
time it passes the same elevation.

Start

v

v

v

A A' A"

Photo 13.2 The potential energy of the 
roller coaster car is converted into kinetic 
energy as it descends the track. 
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832 Kinetics of Particles: Energy and Momentum Methods

13.2D   Application to Space Mechanics: 
Motion Under a Conse rvative 
Central Force 

We saw in Sec. 12.2B that when a particle P moves under a central force 

F, the angular momentum HO of the particle about the center of force O 

is constant. If the force F is also conservative, there exists a potential 

energy V associated with F, and the total energy E 5 T 1 V of the 

particle is constant. Thus, when a particle moves under a conservative 

central force, we can use both the principle of conservation of angular 

momentum and the principle of conservation of energy to study its 

motion.

Consider, for example, a space vehicle of mass m moving under the 

earth’s gravitational force. Let us assume that it begins its free flight at 

point P0 at a distance r0 from the center of the earth with a velocity v0 

forming an angle f0 with the radius vector OP0 (Fig. 13.14). Let P be a 

point of the trajectory described by the vehicle; we denote by r the distance 

from O to P, by v the velocity of the vehicle at P, and by f the angle 

formed by v and the radius vector OP. Applying the principle of 

conservation of angular momentum about O between P0 and P (Sec. 12.2B), 

we have

 r0mv0 sin f0 5 rmv sin f (13.25)

Recalling the expression in Eq. (13.17) for the potential energy due to a 

gravitational force, we apply the principle of conservation of energy 

between P0 and P, obtaining

T0 1 V0 5 T 1 V

 
1
2mv2

0 2
GMm

r0

5
1
2mv2 2

GMm
r

 (13.26)

where M is the mass of the earth.

We can solve Eq. (13.26) for the magnitude v of the velocity of the 

vehicle at P when we know the distance r from O to P. Then we can use 

Eq. (13.25) to determine the angle f that the velocity forms with the 

radius vector OP.

We can also use Eqs. (13.25) and (13.26) to determine the maximum 

and minimum values of r in the case of a satellite launched from P0 in a 

direction forming an angle f0 with the vertical OP0 (Fig. 13.15). We 

obtain the desired values of r by making f 5 90° in Eq. (13.25) and 

eliminating v between Eqs. (13.25) and (13.26).

Note that applying the principles of conservation of energy and of 

conservation of angular momentum leads to a more fundamental formula-

tion of the problems of space mechanics than does the method indicated 

in Sec. 12.3B. It also results in much simpler computations in all cases 

involving oblique launchings. Although you must use the method of 

Sec. 12.3B when the actual trajectory or the periodic time of a space 

vehicle is to be determined, the calculations will be simplified if you first 

use the conservation principles to compute the maximum and minimum 

values of the radius vector r.

Fig. 13.14 A space vehicle moving from P0 
to P under the earth’s gravitational force.

O

r

P

v

f

f0

P0

v0

r0

Fig. 13.15 A space vehicle launched from 
point P0 into an orbit around the earth.

A

A'

90°

90°

rmax

rmin

O

r0

P0

f0

vmin

vmax

v0

Photo 13.3 Once in orbit, Earth satellites 
move under the action of gravity, which acts 
as a central force.
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13.2 Conservation of Energy 833

Sample Problem 13.8

A 20-lb collar slides without friction along a vertical rod as shown. The 

spring attached to the collar has an undeformed length of 4 in. and a spring 

constant of 3 lb/in. If the collar is released from rest in position 1, 

determine its velocity after it has moved 6 in. to position 2.

STRATEGY: You are given two positions and want to determine the 

velocity of the collar. No non-conservative forces are involved, so use the 

conservation of energy.

MODELING: For your system, choose the collar and the spring. You 

can treat the collar as a particle. 

ANALYSIS: Conservation of Energy. Applying the principle of 

conservation of energy between positions 1 and 2 gives

 T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

 (1)

You need to determine the kinetic and potential energy at these positions.

Position 1. Potential Energy. The elongation of the linear spring 

(Fig. 1) is

x1 5 8 in. 2 4 in. 5 4 in.

This gives 

Ve1
5

1
2kx2

1 5
1
2(3 lb/in.)(4 in.)2 5 24 in?lb 5 2 ft?lb

Choosing the datum as shown, you have Vg1
5 0.

Kinetic Energy. Since the velocity at position 1 is zero, T1 5 0.

Position 2. Potential Energy. The elongation of the spring is

x2 5 10 in. 2 4 in. 5 6 in.

so you have

 Ve2
5

1
2kx2

2 5 
1
2(3 lb/in.)(6 in.)2 5 54 in?lb 5 4.5 ft?lb

 Vg2
5 Wy2 5 (20 lb)(26 in.) 5 2120 in?lb 5 210 ft?lb

Kinetic Energy.

T2 5
1
2mv2

2 5
1

2
 

20

32.2
 v2

2 5 0.311v2
2

Conservation of Energy. Substituting into Eq. (1) gives 

 T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

0 1 0 1 2 ft?lb 5 0.31 1v2
2 1 (210 ft?lb) 1 (4.5 ft?lb)

 v2 5 64.91 ft/s

v2 5 4.91 ft/sw b

REFLECT and THINK: If you had not included the spring in your 

system, you would have needed to treat it as an external force; therefore, 

you would have needed to determine the work. Similarly, if there was 

friction acting on the collar, you would have needed to use the more 

general work–energy principle to solve this problem. It turns out that the 

work done by friction is not very easy to calculate because the normal 

force depends on the spring force. 

1

2

6 in.

8 in.

1

2

6 in.

Datum8 in.

20 lb

20 lb

10 in.
v2

v1 = 0

Fig. 1 The system in position 1 
and position 2.
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834 Kinetics of Particles: Energy and Momentum Methods

Sample Problem 13.9

A 2.5-lb collar is attached to a spring and slides along a smooth circular 

rod in a vertical plane. The spring has an undeformed length of 4 in. and 

a spring constant k. The collar is at rest at point C and is given a slight 

push to the right. Knowing that the maximum velocity of the collar is 

achieved as it passes through point A, determine (a) the spring constant k, 

(b) the force exerted by the rod on the collar at point A. 

STRATEGY: Since you have two positions and are given information 

about the speed, use the conservation of energy. To find the force, you 

need to use Newton’s second law.

MODELING: For the conservation of energy portion of the problem, 

model the collar as a particle and use it and the spring as your system. 

When using Newton’s second law, use the collar as your system.

ANALYSIS: Conservation of Energy. Position 1 is when the 

collar is at point C, and position 2 is when it is at point A (Fig. 1).

Applying conservation of energy between positions 1 and 2 gives 

 T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

 (1)

Position 1.  Because the system starts from rest, T1 5 0, and since the 

spring has an unstretched length of 4 in., you know Ve1
5 0. Putting the 

datum at A gives.

Vg1
5 12.5 lb2 17/12 ft2 5 1.4583 ft?lb

Position 2. From geometry, the distance from the pin to A is 

2(3 in.)2 1 (7 in.)2 5 7.616 in. Therefore, the elongation of the linear 

spring (Fig. 1) is x2 5 7.616 in. 2 4 in. 5 3.616 in. 5 0.3013 ft. You 

know Vg2
5 0 because the datum is at position 2. You also know

Ve2 
5

1
2 kx2

2 5
1

2
 k10.3013 ft22 5 0.04539k

T2  5
1
2 mv2

2 5
1

2
 a 2.5 lb

32.2 ft/s2
bv2

2 5 0.03882v2
2

Substituting these expressions into Eq. (1) gives

 0 1 1.4585 1 0 5 0.03882v2
2 1 0 1 0.04539k (2)

You have two unknowns in this equation, so you need another equation. 

In the problem statement, you are also given that the collar has a maxi-

mum velocity at point A. Therefore, the tangential acceleration must be 

zero at A, and you should use Newton’s second law to get additional 

equations. The system now includes only the collar; the spring applies an 

external force to the system. A free-body diagram and kinetic diagram for 

the collar at position 2 are shown in Fig. 2. Applying Newton’s second 

law in the t-direction gives

1xoFt 5 0 5 kx2 sin θ 2 W   or   k(0.3013 ft)(3/7.652) 2 2 lb 5 0

Solving for k,

k 5 21.06 lb/ft b

Ak

B

C

O

3 in

7 in

A

B

C

O

3 in

Position 1

Position 2Datum

7 in

Fig. 1 The system in the two positions 
of interest.

t

n

=
W

N

Fs

θ

m r
ν2

2

Fig. 2 Free-body diagram 
and kinetic diagram for the 
collar at point A.
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13.2 Conservation of Energy 835

Force Exerted by the Rod: Substituting this value of k into Eq. (2) 

gives v2 5 3.597 ft/s. Applying Newton’s second law in the n-direction 

gives 

z
1  oFn 5 m 

v2
2

r
     kx2 cos θ 2 N 5

mv2
2

r

Solving for N and substituting in values provides

N 5 kx2 cosθ 2
mv2

2

r
 5 121.06 lb/ft2 10.3013 ft2 17/7.6162

 2
(2.5 lb/32.2 ft/s2)(3.597 ft/s2)

(7/12 ft)

 N 5 4.11 lb b

REFLECT and THINK: When the collar is pushed to the right, its speed 

increases until it reaches point A, and then it begins to decrease. The 

minimum speed occurs when the collar is at B, since the only forces are 

in the normal direction; that is, no forces act in the tangential direction. 

Therefore, the acceleration in the tangential direction is zero, indicating a 

minimum speed. 

Sample Problem 13.10

A 0.5-lb pellet is pushed against the spring at A and released from rest. 

It moves 4 ft along a rough horizontal surface until it reaches a smooth 

loop. The coefficient of kinetic friction along the rough horizontal surface 

is μk 5 0.3, and the spring is initially compressed 0.25 ft. Determine the 

minimum spring constant k for which the pellet will travel around BCDE 

and always remain in contact with the loop.

STRATEGY: You are given two positions and a non-conservative force 

is present, so use the work-energy principle. Also, for the pellet to remain 

in contact with the loop, the force N exerted on the pellet by the loop 

must be equal to or greater than zero. Therefore, you also need to use 

Newton’s second law. 

MODELING: Choose the pellet as your system and model it as a 

 particle. A free-body diagram and kinetic diagram for the pellet when it 

is at point D are shown in Fig. 1. 

ANALYSIS: 

Newton’s Second Law. Applying Newton’s second law in the 

 normal direction and setting N 5 0 gives you

1woFn 5 man:     W 5 man    mg 5 man    an 5 g

an 5
v2

D

r
:  v2

D 5 ran 5 rg 5 (2 ft)(32.2 ft/s2) 5 64.4 ft2/s2

k

smooth rough

EC

D

B

A

2 ft

4 ft

=
manW

t

n

Fig. 1 Free-body 
diagram and kinetic 
diagram for the pellet 
at point D.
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836 Kinetics of Particles: Energy and Momentum Methods

This is the minimum speed of the pellet at D in order for it to remain in 

contact with the path. 

Work–Energy. Choose the system to be the pellet and the spring. 

Apply the principle of work–energy between positions 1 and 2 (Fig. 2)

 T1 1 Vg1
1 Ve1

1 UNC
1y2 5 T2 1 Vg2

1 Ve2
 (1)

You need to determine the kinetic and potential energy at positions 1 and 

2 and the work done by friction.

Position 1. Potential Energy. The elastic potential energy is

Ve1
5

1
2 
kx2 5

1
2 
1k2 10.25 ft22 5 0.03125k

Choosing the datum at A, you have Vg1
5 0.

Kinetic Energy. Since the pellet is released from rest, vA 5 0 and T1 5 0.

Position 2. Potential Energy. The spring is now undeformed; thus 

Ve2
5 0. Since the pellet is 4 ft above the datum, you have

Vg2
5 Wy2 5 (0.5 lb)(4 ft) 5  2 ft?lb

Kinetic Energy. Using the value of v2
D obtained above, you have

T2 5
1
2 
mv2

D 5
1

2
 

0.5  lb

32 .2  ft/s2
 (64.4  ft2/s2) 5 0.5 ft?lb

Work. Since the normal force is equal to the weight on a horizontal 

surface, you find the work that friction does to be

UNC
1y2 5 2μk Nd 5 20.3(0.5 lb)(4 ft) 5 20.6 ft?lb

Work–Energy. Substituting these values into Eq. (1) gives you

T1 1 Vg1
1 Ve1

1 UNC
1y2 5 T2 1 Vg2

1 Ve2

0 1 0 1 0.3125k 2 0.6 ft?lb 5 0.5 ft?lb 1 2 ft?lb 1 0

You can solve this for k.

k 5 99.2 lb/ft b

REFLECT and THINK: A common misconception in problems like this 

is assuming that the speed of the particle is zero at the top of the loop, 

rather than that the normal force is equal to or greater than zero. If the 

pellet had a speed of zero at the top, it would clearly fall straight down, 

which is impossible. 

vD

vA = 0

EC

D

B A

Position 2

Datum
Position 1

4 ft

Fig. 2 The system at the positions 
of interest.

Sample Problem 13.11

A sphere of mass m 5 0.6 kg is attached to an elastic cord of 

constant k 5 100 N/m, which is undeformed when the sphere is located 

at the origin O. The sphere may slide without friction on the horizontal 

surface and in the position shown its velocity vA has a magnitude of 

20 m/s. Determine (a) the maximum and minimum distances from the 

sphere to the origin O, (b) the corresponding values of its speed.

vA

60°
A

O

0.5 m
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13.2 Conservation of Energy 837

STRATEGY: The force exerted by the cord on the sphere passes through 

the fixed point O, so use conservation of angular momentum. Also, you 

are interested in the speed at two locations, and no non-conservative forces 

act on the sphere. You can therefore use conservation of energy.

MODELING: Choose the sphere, which can be modeled as a particle, 

as your system.

ANALYSIS: 

Conservation of Angular Momentum About O. At point B, 

where the distance from O is maximum (Fig. 1), the velocity of the sphere 

is perpendicular to OB and the angular momentum is rmmvm. A similar 

property holds at point C, where the distance from O is minimum. 

 Expressing conservation of angular momentum between A and B, you have

 rAmvA sin 60° 5 rmmvm

 (0.5 m)(0.6 kg)(20 m/s) sin 60° 5 rm(0.6 kg)vm

 vm 5
8.66

rm
 (1)

You have one equation and two unknowns, vm and rm. Therefore, you need 

to use conservation of energy to get a second equation.

Conservation of Energy.

At Point A.    TA 5
1
2 mv2

A  5
1
2(0.6 kg)(20 m/s)2 5 120 J

  VA 5
1
2 kr2

A  5
1
2(100 N/m)(0.5 m)2 5 12.5 J

At Point B.    TB 5
1
2 mv2

m 5
1
2(0.6 kg)v2

m 5 0.3v2
m

  VB 5
1
2 kr2

m  5
1
2(100 N/m)r2

m 5 50r2
m

Apply the principle of conservation of energy between points A and B: 

 TA 1 VA 5 TB 1 VB

 120 1 12.5 5 0.3v2
m 1 50r2

m (2)

a. Maximum and Minimum Values of Distance. Substituting 

for vm from Eq. (1) into Eq. (2) and solving for r 2m, you obtain

r2
m 5 2.468 or 0.1824  rm 5 1.571 m, r9m 5 0.427 m b

b. Corresponding Values of Speed. Substituting the values 

obtained for rm and r9m into Eq. (1), you have

  vm 5
8.66

1.571
 vm 5 5.51 m/s b 

  v9m 5
8.66

0.427
 v9m 5 20.3 m/s b

REFLECT and THINK: This problem is similar to problems dealing 

with space mechanics; instead of the gravitational central force acting on 

an orbiting body, you have the spring force acting on the sphere. It can 

be shown that the path of the sphere is an ellipse with center O.

B
C

O

vm

rmr'm

rA
v'm

vA

60°
90°

90°

A

Fig. 1 The particle at 
locations A, B, and C.
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838 Kinetics of Particles: Energy and Momentum Methods

Sample Problem 13.12

A satellite is launched from an altitude of 500 km in a direction parallel 

to the surface of the earth with a velocity of 36 900 km/h. Determine 

(a) the maximum altitude reached by the satellite, (b) the maximum allow-

able error in the direction of launching if the satellite is to go into orbit 

and come no closer than 200 km to the surface of the earth.

STRATEGY: Since the only force acting on the satellite is the force of 

gravity, which is a central force, and you are interested in two positions 

(the position of the satellite at launch and at its maximum altitude), you 

can use conservation of angular momentum and conservation of energy.

MODELING: Choose the satellite as your system and model it as a 

particle. 

ANALYSIS:

a. Maximum Altitude.  Denote the point of the orbit farthest from 

the earth by A9 and the corresponding distance from the center of the earth 

by r1 (Fig. 1). Since the satellite is in free flight between A and A9, you 

can apply the principle of conservation of energy as

 TA 1 VA 5 TA9 1 VA9

 
1
2mv2

0 2
GMm

r0

5
1
2mv2

1 2
GMm

r1

 (1)

r0

r1

v1

A
R

A'

v0

O

Fig. 1 The system in the two 
positions of interest.

Now apply the principle of conservation of angular momentum of the 

satellite about O. Considering points A and A9, you have

r0mv0 5 r1mv1 v1 5 v0

r0

r1

(2)

Substitute this expression for v1 into Eq. (1), divide each term by the 

mass m, and rearrange the terms. The result is

1
2v

2
0 a1 2

r2
0

r2
1

b 5
GM
r0

a1 2
r0

r1

b 1 1
r0

r1

5
2GM

r0v
2
0

(3)

Recall that the radius of the earth is R 5 6370 km. This gives you

 r0 5 6370 km 1 500 km 5 6870 km 5 6.87 3 106 m

 v0 5 36 900 km/h 5 (36.9 3 106 m)y(3.6 3 103 s) 5 10.25 3 103 m/s

 GM 5 gR2 5 (9.81 m/s2)(6.37 3 106 m)2 5 398 3 1012 m3/s2

Maximum altitude

Earth

500 km

36 900 km/h
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13.2 Conservation of Energy 839

Substituting these values into Eq. (3), you obtain r1 5 66.8 3 106 m.

Maximum altitude 5 66.8 3 106 m 2 6.37 3 106 m 5 60.4 3 106 m 5 

60 400 km b

b. Allowable Error in Direction of Launch. The satellite is 

launched from P0 in a direction forming an angle f0 with the vertical OP0 

(Fig. 2). You obtain the value of f0 corresponding to rmin 5 6370 km 1 

200 km 5 6570 km by applying the principles of conservation of energy 

and of conservation of angular momentum between P0 and A:

 
1
2mv2

0 2
GMm

r0

5
1
2mv2

max 2
GMm
rmin

 (4)

 r0mv0 sin f0 5 rminmvmax (5)

r0

P0
f0

f = 90°
rmin

vmax

A

A'

v0

O

Fig. 2 Two locations used 
to determine maximum 
allowable error in direction.

Solving (5) for vmax and then substituting for vmax into (4), you can solve 

(4) for sin f0. Finally, using the values of v0 and GM computed in part a 

and noting that r0/rmin 5 6870/6570 5 1.0457, you find

 sin f0 5 0.9801  f0 5 90° 6 11.5°   Allowable error 5 611.5° b

REFLECT and THINK: Space probes and other long-distance vehicles 

are designed with small rockets to allow for mid-course corrections. 

Satellites launched from the Space Station usually do not need this kind 

of fine-tuning.
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In this section you learned that when the work done by a force F acting on a 

particle A is independent of the path followed by the particle as it moves from a given 

position A1 to a given position A2 (Fig. 13.11a), then we can define a function V, called 

potential energy, for the force F. Such forces are said to be conservative forces, and 

you can write

 U1y2 5 2(V(x2, y2, z2) 2 V(x1, y1, z1)) 5 V(x1, y1, z1) 2 V(x2, y2, z2) (13.19)

or for short,

 U1y2 5 V1 2 V2 (13.199)

The work is negative when the change in potential energy is positive, i.e., when 

V2 . V1.

Substituting this expression into the equation for work and energy, you can write

 T1 1 V1 5 T2 1 V2 (13.24)

or

 T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2 

(13.249)

This equation states that when a particle moves under the action of a conservative 

force, the sum of the kinetic and potential energies of the particle remains con-
stant. We expanded this equation for cases when there are non-conservative forces 

present:

 T1 1 Vg1
1 Ve1

1 UNC
1y2 5 T2 1 Vg2

1 Ve2 
(13.240)

Your solutions of problems using the above formulas will consist of the following 

steps.

1. Determine whether all the forces involved are conservative. If some of the 

forces are not conservative––for example, if friction is involved––you must use the 

second equation (13.240), since the work done by such forces depends upon the path 

followed by the particle and a potential function does not exist for these non-

conservative forces. You can then determine the work done by non-conservative forces 

as:

UNC
1y2 5 #

2

1

F NC?ds

2. Determine the kinetic energy T 5 1
2mv2 at each end of the path.

SOLVING PROBLEMS 
ON YOUR OWN
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3. Compute the potential energy for all the forces involved at each end of the 
path. Recall the following expressions for potential energy derived in this section.

 a. The potential energy of a weight W close to the surface of Earth and at a 

height y above a given datum:

 Vg 5 Wy (13.16)

b. The potential energy of a mass m located at a distance r from the center 
of the earth, large enough so that the variation of the force of gravity must be taken 

into account:

Vg 5 2
GMm

r
 (13.17)

where the distance r is measured from the center of the earth and Vg is equal to zero 

at r 5 `.

c. The potential energy of a body with respect to an elastic force F 5 kx:

Ve 5
1
2kx2 (13.18)

where the distance x is the deflection of the elastic spring measured from its undeformed
position and k is the spring constant. Note that Ve depends only upon the deflection 

x and not upon the path of the body attached to the spring. Also, Ve is always positive, 

whether the spring is compressed or elongated.

4. Substitute your expressions for the non-conservative work and the kinetic and 
potential energies into Eq. (13.240). You will be able to solve this equation for one 

unknown––for example, for a velocity [Sample Prob. 13.8]. If more than one unknown 

is involved, you will have to search for another condition or equation, such as  Newton’s 

second law [Sample Prob. 13.10], the maximum speed [Sample Prob. 13.9], minimum 

speed [Sample Prob. 13.10], or the minimum potential energy of the particle. For 

problems involving a central force, you can obtain a second equation by using 

 conservation of angular momentum [Sample Prob. 13.11]. This is especially useful in 

space mechanics applications [Sec. 13.2D].
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CONCEPT QUESTIONS

13.CQ2 Two small balls A and B with masses 2m and m, respectively, are 

released from rest at a height h above the ground. Neglecting air 

resistance, which of the following statements is true when the two 

balls hit the ground?

a. The kinetic energy of A is the same as the kinetic energy of B.
b. The kinetic energy of A is half the kinetic energy of B.

   c. The kinetic energy of A is twice the kinetic energy of B.
   d. The kinetic energy of A is four times the kinetic energy of B.

 13.CQ3 A small block A is released from rest and slides down the friction-

less ramp to the loop. The maximum height h of the loop is the same 

as the initial height of the block. Will A make it completely around 

the loop without losing contact with the track?

   a. Yes

   b. No

   c. Need more information

END-OF-SECTION PROBLEMS

 13.55 A force P is slowly applied to a plate that is attached to two springs 

and causes a deflection x0. In each of the two cases shown, derive 

an expression for the constant ke, in terms of k1 and k2, of the single 

spring equivalent to the given system, that is, of the single spring 

which will undergo the same deflection x0 when subjected to the 

same force P.

k1 k2

(a) (b)

k1

k2

x0

P P

x0

Fig. P13.55

 13.56 A loaded railroad car of mass m is rolling at a constant velocity v0

when it couples with a massless bumper system. Determine the 

maximum deflection of the bumper assuming the two springs are 

(a) in series (as shown), (b) in parallel.

v0

k1 k2

Fig. P13.56

Problems

h

B
A

2m
m

Fig. P13.CQ2

h

A

Fig. P13.CQ3
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 13.57 A 750-g collar can slide along the horizontal rod shown. It is attached 

to an elastic cord with an undeformed length of 300 mm and a spring 

constant of 150 N/m. Knowing that the collar is released from rest 

at A and neglecting friction, determine the speed of the collar (a) at B, 

(b) at E.

 13.58 A 4-lb collar can slide without friction along a horizontal rod and is 

in equilibrium at A when it is pushed 1 in. to the right and released 

from rest. The springs are undeformed when the collar is at A and 

the constant of each spring is 2800 lb/in. Determine the maximum 

velocity of the collar.

8 in.

6 in.

B

A

Ck = 2800 lb/in.

8 in.

Fig. P13.58 and P13.59

 13.59 A 4-lb collar can slide without friction along a horizontal rod and is 

released from rest at A. The undeformed lengths of springs BA and 

CA are 10 in. and 9 in., respectively, and the constant of each spring 

is 2800 lb/in. Determine the velocity of the collar when it has moved 

1 in. to the right.

 13.60 A 500-g collar can slide without friction on the curved rod BC in a 

horizontal plane. Knowing that the undeformed length of the spring 

is 80 mm and that k 5 400 kN/m, determine (a) the velocity that 

the collar should be given at A to reach B with zero velocity, (b) the 

velocity of the collar when it eventually reaches C.

 13.61 For the adapted shuffleboard device in Prob 13.28, you decide to 

utilize an elastic cord instead of a compression spring to propel the 

puck forward. When the cord is stretched directly between points A 

and B, the tension is 20 N. The 425-gram puck is placed in the center 

and pulled back through a distance of 400 mm; a force of 100 N is 

required to hold it at this location. Knowing that the coefficient of 

friction is 0.3, determine how far the puck will travel.

100 N

300 mm

C

A

B

C9

300 mm

400 mm

Fig. P13.61

A

B

C

D

F

E

y

x

z

350 mm

200 mm

400 mm

500 mm

Fig. P13.57

A

B

C

150 mm

k
100 mm

200 mm

Fig. P13.60
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 13.62 An elastic cable is to be designed for bungee jumping from a tower 

130 ft high. The specifications call for the cable to be 85 ft long when 

unstretched, and to stretch to a total length of 100 ft when a 600-lb 

weight is attached to it and dropped from the tower. Determine 

(a) the required spring constant k of the cable, (b) how close to the 

ground a 186-lb man will come if he uses this cable to jump from 

the tower.

 13.63 It is shown in mechanics of materials that the stiffness of an elastic 

cable is k 5 AE/L, where A is the cross-sectional area of the cable, 

E is the modulus of elasticity, and L is the length of the cable. A 

winch is lowering a 4000-lb piece of machinery using a constant 

speed of 3 ft/s when the winch suddenly stops. Knowing that the 

steel cable has a diameter of 0.4 in., E 5 29 3 106 lb/in2, and when 

the winch stops L 5 30 ft, determine the maximum downward dis-

placement of the piece of machinery from the point it was when the 

winch stopped.

3 ft/s

30 ft

Fig. P13.63

 13.64 A 2-kg collar is attached to a spring and slides without friction in a 

vertical plane along the curved rod ABC. The spring is undeformed 

when the collar is at C and its constant is 600 N/m. If the collar is 

released at A with no initial velocity, determine its velocity (a) as it 

passes through B, (b) as it reaches C.

B

OC A

200 mm

150 mm 250 mm

Fig. P13.64

 13.65 A 500-g collar can slide without friction along the semicircular rod 

BCD. The spring is of constant 320 N/m and its undeformed length 

is 200 mm. Knowing that the collar is released from rest at B, 

determine (a) the speed of the collar as it passes through C, (b) the 

force exerted by the rod on the collar at C.

Fig. P13.62

Fig. P13.65

x

y

z

C

B

A

D

75 mm

r = 150 mm

300 mm
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 13.66 A thin circular rod is supported in a vertical plane by a bracket at A. 

Attached to the bracket and loosely wound around the rod is a spring 

of constant k 5 3 lb/ft and undeformed length equal to the arc of 

circle AB. An 8-oz collar C, not attached to the spring, can slide 

without friction along the rod. Knowing that the collar is released 

from rest at an angle θ with the vertical, determine 

(a) the smallest value of θ for which the collar will pass through D 

and reach point A, (b) the velocity of the collar as it reaches point A.

 13.67 Cornhole is a game that requires you to toss beanbags through a hole 

in a wooden board. People with limited arm mobility often have dif-

ficulty enjoying this favorite tailgating activity. An adapted launching 

device attaches to a wheelchair so that points O and A are fixed. The 

device mimics an underhand throw by utilizing an elastic band to 

power the arm OC, which rotates about pin O. The elastic cord has 

an unstretched length of 1 ft and is attached to the fixed point A and 

to point B on the arm. The combined weight of the beanbag and holder 

at C is 4 lbs, and you can neglect the weight of the rod OB. Knowing 

that the starting position is 30° from the horizontal, as shown in the 

figure, determine the spring constant if the velocity of the bean bag 

is 31 ft/s when the bag is released at an angle of θ 5 45°.

 13.68 A spring is used to stop a 50-kg package that is moving down a 20° 

incline. The spring has a constant k 5 30 kN/m and is held by cables 

so that it is initially compressed 50 mm. Knowing that the velocity 

of the package is 2 m/s when it is 8 m from the spring and neglect-

ing friction, determine the maximum additional deformation of the 

spring in bringing the package to rest.

8 m

20°

Cable

2 m/s

50 kg

Fig. P13.68

 13.69 Solve Prob. 13.68 assuming the kinetic coefficient of friction between 

the package and the incline is 0.2.

 13.70 A section of track for a roller coaster consists of two circular arcs 

AB and CD joined by a straight portion BC. The radius of AB is 

27 m and the radius of CD is 72 m. The car and its occupants, of 

total mass 250 kg, reach point A with practically no velocity and 

then drop freely along the track. Determine the normal force exerted 

by the track on the car as the car reaches point B. Ignore air resis-

tance and rolling resistance.

 13.71 A section of track for a roller coaster consists of two circular arcs 

AB and CD joined by a straight portion BC. The radius of AB is 27 m 

and the radius of CD is 72 m. The car and its occupants, of total 

mass 250 kg, reach point A with practically no velocity and then drop 

freely along the track. Determine the maximum and minimum values 

of the normal force exerted by the track on the car as the car travels 

from A to D. Ignore air resistance and rolling resistance.

Fig. P13.66

A

BC

D

O

q

12 in.

AO

B2

C2

C1

B1

2 ft

1 ft

2 ft

30° θ

Fig. P13.67

27 m

18 m

B

C

D

A

r = 72 m40°

Fig. P13.70 and P13.71
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 13.72 A 1-lb collar is attached to a spring and slides without friction along 

a circular rod in a vertical plane. The spring has an undeformed length 

of 5 in. and a constant k 5 10 lb/ft. Knowing that the collar is released 

from being held at A, determine the speed of the collar and the normal 

force between the collar and the rod as the collar passes through B.

 13.73 A 10-lb collar is attached to a spring and slides without friction along 

a fixed rod in a vertical plane. The spring has an undeformed length 

of 14 in. and a constant k 5 4 lb/in. Knowing that the collar is 

released from rest in the position shown, determine the force exerted 

by the rod on the collar at (a) point A, (b) point B. Both these points 

are on the curved portion of the rod.

A

B

14 in.

10 lb

14 in.

14 in.

14 in.

k = 4 lb/in.

Fig. P13.73

 13.74 An 8-oz package is projected upward with a velocity v0 by a spring at 

A; it moves around a frictionless loop and is deposited at C. For each 

of the two loops shown, determine (a) the smallest velocity v0 for which 

the package will reach C, (b) the corresponding force exerted by the 

package on the loop just before the package leaves the loop at C.

r = 1.5 ft
B

A

v0

7.5 ft

r = 1.5 ft

CC

B

A

v0

7.5 ft

Fig. P13.74 and P13.75

 13.75 If the package of Prob. 13.74 is not to hit the horizontal surface at C 

with a speed greater than 10 ft/s, (a) show that this requirement can 

be satisfied only by the second loop, (b) determine the largest allow-

able initial velocity v0 when the second loop is used.

A

B

C O
5 in.

7 in.

Fig. P13.72
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 13.76 A small package of weight W is projected into a vertical return loop at 

A with a velocity v0. The package travels without friction along a circle 

of radius r and is deposited on a horizontal surface at C. For each of 

the two loops shown, determine (a) the smallest velocity v0 for which 

the package will reach the horizontal surface at C, (b) the corresponding 

force exerted by the loop on the package as it passes point B.

B

C C

r

A (1) (2)

v0

B
r

A

v0

Fig. P13.76

 13.77 The 1-kg ball at A is suspended by an inextensible cord and given an 

initial horizontal velocity of 5 m/s. If l 5 0.6 m and xB 5 0, determine 

yB so that the ball will enter the basket.

l

yB

A

xB

v0

θ

Fig. P13.77

 13.78 The pendulum shown is released from rest at A and swings through 

90° before the cord touches the fixed peg B. Determine the smallest 

value of a for which the pendulum bob will describe a circle about 

the peg.

A

B

l

a

Fig. P13.78
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 *13.79 Prove that a force F(x, y, z) is conservative if, and only if, the 

 following relations are satisfied:

0Fx

0y
5
0Fy

0x
  

0Fy

0z
5
0Fz

0y
  

0Fz

0x
5
0Fx

0z

 13.80 The force F 5 (yzi 1 zxj 1 xyk)/xyz acts on the particle P(x, y, z)

which moves in space. (a) Using the relation derived in Prob. 13.79, 

show that this force is a conservative force. (b) Determine the potential 

function associated with F.

 *13.81 A force F acts on a particle P(x, y) which moves in the xy plane. 

Determine whether F is a conservative force and compute the 

work of F when P describes the path ABCA knowing that 

(a) F 5 (kx 1 y)i, 1 (kx 1 y)j, (b) F 5 (kx 1 y)i 1 (x 1 ky)j.

 *13.82 The potential function associated with a force P in space is known 

to be V(x, y, z) 5 2(x2 1 y2 1 z2)1/2. (a) Determine the x, y, and z 

components of P. (b) Calculate the work done by P from O to D 
by integrating along the path OABD, and show that it is equal to 

the negative of the change in potential from O to D.

 *13.83 (a) Calculate the work done from D to O by the force P of 

Prob. 13.82 by integrating along the diagonal of the cube. (b) Using 

the result obtained and the answer to part b of Prob. 13.82, verify 

that the work done by a conservative force around the closed path 

OABDO is zero. 

 *13.84 The force F 5 (xi 1 yj 1 zk)/(x2 1 y2 1 z2)3/2 acts on the particle 
P(x, y, z) which moves in space. (a) Using the relations derived in 

Prob. 13.79, prove that F is a conservative force. (b) Determine the 

potential function V(x, y, z) associated with F.

 13.85 (a) Determine the kinetic energy per unit mass that a missile must have 

after being fired from the surface of the earth if it is to reach an infinite 

distance from the earth. (b) What is the initial velocity of the missile 

(called the escape velocity)? Give your answers in SI units and show 

that the answer to part b is independent of the firing angle.

 13.86 A satellite describes an elliptic orbit of minimum altitude 606 km 

above the surface of the earth. The semimajor and semiminor axes 

are 17 440 km and 13 950 km, respectively. Knowing that the speed 

of the satellite at point C is 4.78 km/s, determine (a) the speed at 

point A, the perigee, (b) the speed at point B, the apogee.

 13.87 While describing a circular orbit 200 mi above the earth, a space 

vehicle launches a 6000-lb communications satellite. Determine 

(a) the additional energy required to place the satellite in a geosyn-

chronous orbit at an altitude of 22,000 mi above the surface of the 

earth, (b) the energy required to place the satellite in the same orbit 

by launching it from the surface of the earth, excluding the energy 

needed to overcome air resistance. (A geosynchronous orbit is a 

circular orbit in which the satellite appears stationary with respect 

to the ground.)

 13.88 How much energy per pound should be imparted to a satellite in 

order to place it in a circular orbit at an altitude of (a) 400 mi, 

(b) 4000 mi?

BA

C

EF

a

y

x

z

D

O

a

a

Fig. P13.82

Fig. P13.86

13 950 km

17 440 km 17 440 km

606 km
R = 6370 km

B

C

A

C

A

y

a

B

a
x

Fig. P13.81
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 13.89 Knowing that the velocity of an experimental space probe fired from 

the earth has a magnitude vA 5 32.5 Mm/h at point A, determine the 

speed of the probe as it passes through point B.

 13.90 A spacecraft is describing a circular orbit at an altitude of 1500 km 

above the surface of the earth. As it passes through point A, its speed 

is reduced by 40 percent and it enters an elliptic crash trajectory with 

the apogee at point A. Neglecting air resistance, determine the speed 

of the spacecraft when it reaches the earth’s surface at point B.

 13.91 Observations show that a celestial body traveling at 1.2 3 106 mi/h 

appears to be describing about point B a circle of radius equal to 

60 light years. Point B is suspected of being a very dense concentration 

of mass called a black hole. Determine the ratio MB/MS of the mass at 

B to the mass of the sun. (The mass of the sun is 330,000 times the 

mass of the earth, and a light year is the distance traveled by light in 1 

year at 186,300 mi/s.)

 13.92 (a) Show that, by setting r 5 R 1 y in the right-hand member of 

Eq. (13.179) and expanding that member in a power series in y/R,

the expression in Eq. (13.16) for the potential energy Vg due to 

gravity is a first-order approximation for the expression given in 

Eq. (13.179). (b) Using the same expansion, derive a second-order 

approximation for Vg.

 13.93 Collar A has a mass of 3 kg and is attached to a spring of constant 

1200 N/m and of undeformed length equal to 0.5 m. The system is set 

in motion with r 5 0.3 m, vθ 5 2 m/s, and vr 5 0. Neglecting  the 

mass of the rod and the effect of friction, determine the radial and 

transverse components of the velocity of the collar when r 5 0.6 m.

1 m

r A
B

C

D

O

vθ

vr

Fig. P13.93 and P13.94

 13.94 Collar A has a mass of 3 kg and is attached to a spring of constant 

1200 N/m and of undeformed length equal to 0.5 m. The system is 

set in motion with r 5 0.3 m, vθ 5 2 m/s, and vr 5 0. Neglecting 

the mass of the rod and the effect of friction, determine 

(a) the maximum distance between the origin and the collar, 

(b) the corresponding speed. (Hint: Solve the equation obtained for 

r by trial and error.)

 13.95 A governor is designed so that the valve of negligible mass at D will 

open once a vertical force greater than 20 lbs is exerted on it. In 

initial testing of the device, the two 1-lb masses are at x 5 1 in. and 

are prevented from sliding along the rod by stops. Each mass is 

connected to the valve by 10 lb/in. springs that are both unstretched 

at x 5 1 in. The governor rotates so that v1 5 30 ft/s when the stops 

are removed. When the valve opens, determine the position and 

velocity of the masses.

1500 km

B

A

R = 6370 km

Fig. P13.90

A

B

R = 6370 km

hA = 4300 km

vA

vB

hB = 12 700 km

Fig. P13.89

x

BA

O

v1

v1

x

k 4 in.k

D

Fig. P13.95
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 13.96 A 1.5-lb ball that can slide on a horizontal frictionless surface is 

attached to a fixed point O by means of an elastic cord of constant 

k 5 1 lb/in. and undeformed length 2 ft. The ball is placed at point A, 

3 ft from O, and given an initial velocity v0 perpendicular to OA. 

Determine (a) the smallest allowable value of the initial speed v0 if the 

cord is not to become slack, (b) the closest distance d that the ball will 

come to point O if it is given half the initial speed found in part a.

 13.97 A 1.5-lb ball that can slide on a horizontal frictionless surface 

is attached to a fixed point O by means of an elastic cord of constant 

k 5 1 lb/in. and undeformed length 2 ft. The ball is placed at point A, 

3 ft from O, and given an initial velocity v0 perpendicular to OA, 

allowing the ball to come within a distance d 5 9 in. of point O after 

the cord has become slack. Determine (a) the initial speed v0 of the 

ball, (b) its maximum speed.

 13.98 Using the principles of conservation of energy and conservation of 

angular momentum, solve part a of Sample Prob. 12.14.

 13.99 Solve Sample Prob. 13.11, assuming that the elastic cord is replaced 

by a central force F with a magnitude of (80/r2) N directed toward O.

 13.100 A spacecraft is describing an elliptic orbit of minimum altitude 

hA 5 2400 km and maximum altitude hB 5 9600 km above the sur-

face of the earth. Determine the speed of the spacecraft at A.

 13.101 While describing a circular orbit, 185 mi above the surface of the 

earth, a space shuttle ejects at point A an inertial upper stage (IUS) 

carrying a communications satellite to be placed in a geosynchro-

nous orbit (see Prob. 13.87) at an altitude of 22,230 mi above the 

surface of the earth. Determine (a) the velocity of the IUS relative 

to the shuttle after its engine has been fired at A, (b) the increase in 

velocity required at B to place the satellite in its final orbit.

O 185 mi

22,230 mi
R = 3960 mi

AB

Fig. P13.101

 13.102 A spacecraft approaching the planet Saturn reaches point A with a 

velocity vA of magnitude 68.8 3 103 ft/s. It is to be placed in an 

elliptic orbit about Saturn so that it will be able to periodically exam-

ine Tethys, one of Saturn’s moons. Tethys is in a circular orbit of 

radius 183 3 103 mi about the center of Saturn, traveling at a speed 

of 37.2 3 103 ft/s. Determine (a) the decrease in speed required by 

the spacecraft at A to achieve the desired orbit, (b) the speed of the 

spacecraft when it reaches the orbit of Tethys at B.

1 ft

2 ft

O

A

d

v

v0

Fig. P13.96 and P13.97

vA

A B

115 × 103 mi 183 × 103 mi

Saturn

Tethys

Fig. P13.102

hA

A BO

vA

vB

6370 km

hB

Fig. P13.100
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 13.103 A spacecraft traveling along a parabolic path toward the planet  Jupiter 

is expected to reach point A with a velocity vA of magnitude 26.9 km/s. 

Its engines will then be fired to slow it down, placing it into an elliptic 

orbit which will bring it to within 100 3 103 km of Jupiter. Determine 

the decrease in speed Dv at point A which will place the spacecraft into 

the required orbit. The mass of Jupiter is 319 times the mass of the earth.

 13.104 As a first approximation to the analysis of a space flight from the earth 

to Mars, it is assumed that the orbits of the earth and Mars are circular 

and coplanar. The mean distances from the sun to the earth and to Mars 

are 149.6 3 106 km and 227.8 3 106 km, respectively. To place the 

spacecraft into an elliptical transfer orbit at point A, its speed is 

increased over a short interval of time to vA, which is faster than the 

earth’s orbital speed. When the spacecraft reaches point B on the ellipti-

cal transfer orbit, its speed vB is increased to the orbital speed of Mars. 

Knowing that the mass of the sun is 332.8 3 103 times the mass of 

the earth, determine the increase in velocity required (a) at A, (b) at B.

Transfer
orbit

Orbit
of Mars

BA
Sun

Orbit
of earth

Fig. P13.104

 13.105 The optimal way of transferring a space vehicle from an inner 

circular orbit to an outer coplanar circular orbit is to fire its 

engines as it passes through A to increase its speed and place it 

in an elliptic transfer orbit. Another increase in speed as it passes 

through B will place it in the desired circular orbit. For a vehicle 

in a circular orbit about the earth at an altitude h1 5 200 mi, which 

is to be transferred to a circular orbit at an altitude h2 5 500 mi, 

determine (a) the required increases in speed at A and at B, (b) the 

total energy per unit mass required to  execute the transfer.

BA O

6370 km

h1 h2

Fig. P13.105

vA

A B

350 × 103 km 100 × 103 km

Jupiter

Fig. P13.103
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 13.106 During a flyby of the earth, the velocity of a spacecraft is 10.4 km/s 

as it reaches its minimum altitude of 990 km above the surface at 

point A. At point B the spacecraft is observed to have an altitude of 

8350 km. Determine (a) the magnitude of the velocity at point B, 

(b) the angle fB.

990 km

6370 km

8350 km

B

fB

A

Fig. P13.106

 13.107 A space platform is in a circular orbit about the earth at an altitude 

of 300 km. As the platform passes through A, a rocket carrying a 

communications satellite is launched from the platform with a 

relative velocity of magnitude 3.44 km/s in a direction tangent to the 

orbit of the platform. This was intended to place the rocket in an 

elliptic transfer orbit bringing it to point B, where the rocket would 

again be fired to place the satellite in a geosynchronous orbit of 

radius 42 140 km. After launching, it was discovered that the relative 

velocity imparted to the rocket was too large. Determine the angle γ 

at which the rocket will cross the intended orbit at point C.

 13.108 A satellite is projected into space with a velocity v0 at a distance r0 

from the center of the earth by the last stage of its launching rocket. 

The velocity v0 was designed to send the satellite into a circular orbit 

of radius r0. However, owing to a malfunction of control, the satellite 

is not projected horizontally but at an angle α with the horizontal 

and, as a result, is propelled into an elliptic orbit. Determine the 

maximum and minimum values of the distance from the center of 

the earth to the satellite.

a

rmin

r0

v0

rmax

r0

Fig. P13.108

 13.109 A space vehicle is to rendezvous with an orbiting laboratory that 

circles the earth at a constant altitude of 360 km. The vehicle has 

reached an altitude of 60 km when its engine is shut off, and its 

velocity v0 forms an angle f0 5 50° with the vertical OB at that 

time. What magnitude should v0 have if the vehicle’s trajectory is to 

be tangent at A to the orbit of the laboratory?

Fig. P13.107

300 km

Intended
trajectory

Actual
trajectory

AB

C

R = 6370 km
42 140 km

γ

360 km

A

B
O

R = 6370 km

v0

f0

Fig. P13.109
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 13.110 A space vehicle is in a circular orbit at an altitude of 225 mi above 

the earth. To return to earth, it decreases its speed as it passes through 

A by firing its engine for a short interval of time in a direction 

opposite to the direction of its motion. Knowing that the velocity of 

the space vehicle should form an angle fB 5 60° with the vertical 

as it reaches point B at an altitude of 40 mi, determine (a) the 

required speed of the vehicle as it leaves its circular orbit at A, (b) its 

speed at point B.

  *13.111 In Prob. 13.110, the speed of the space vehicle was decreased as it 

passed through A by firing its engine in a direction opposite to the 

direction of motion. An alternative strategy for taking the space vehi-

cle out of its circular orbit would be to turn it around so that its engine 

would point away from the earth and then give it an incremental 

velocity DvA toward the center O of the earth. This would likely 

require a smaller expenditure of energy when firing the engine at A, 

but might result in too fast a descent at B. Assuming this strategy is 

used with only 50 percent of the energy expenditure used in 

Prob. 13.110, determine the resulting values of fB and vB.

 13.112 Show that the values vA and vP of the speed of an earth satellite at 

the apogee A and the perigee P of an elliptic orbit are defined by 

the relations

 v2
A 5

2GM

rA 1 rP
 
rP

rA
  v2

P 5
2GM

rA 1 rP
 
rA

rP

  where M is the mass of the earth, and rA and rP represent, respec-

tively, the maximum and minimum distances of the orbit to the 

center of the earth.

 13.113 Show that the total energy E of an earth satellite of mass m describing 

an elliptic orbit is E 5 2GMm/(rA 1 rP), where M is the mass of the 

earth, and rA and rP represent, respectively, the maximum and minimum 

distances of the orbit to the center of the earth. (Recall that the gravi-

tational potential energy of a satellite was defined as being zero at an 

infinite distance from the earth.)

  *13.114 A space probe describes a circular orbit of radius nR with a velocity 

v0 about a planet of radius R and center O. Show that (a) in order for 

the probe to leave its orbit and hit the planet at an angle θ with the 

vertical, its velocity must be reduced to αv0, where

  α 5 sin θ 

B

2(n 2 1)

n2 2 sin2 θ

  (b) the probe will not hit the planet if α is larger than 12/(1 1 n).

 13.115 A missile is fired from the ground with an initial velocity v0 forming 

an angle f0 with the vertical. If the missile is to reach a maximum 

altitude equal to αR, where R is the radius of the earth, (a) show that 

the required angle f0 is defined by the relation

sin f0 5 (1 1 α) 
B

1 2
 α

1 1 α
 avesc

v0

b2

  where vesc is the escape velocity, (b) determine the range of allowable 

values of v0.

225 mi

A

BO

R = 3960 mi

vB

fB

Fig. P13.110

PA O

vA

vP

rA rP

Fig. P13.112 and P13.113
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 13.116 A spacecraft of mass m describes a circular orbit of radius r1 around 

the earth. (a) Show that the additional energy DE that must be 

imparted to the spacecraft to transfer it to a circular orbit of larger 

radius r2 is

DE 5
GMm(r2 2 r1)

2r1r2

  where M is the mass of the earth. (b) Further show that if the transfer 

from one circular orbit to the other is executed by placing the space-

craft on a transitional semielliptic path AB, the amounts of energy 

DEA and DEB which must be imparted at A and B are, respectively, 

proportional to r2 and r1:

DEA 5
r2

r1 1 r2

 DE  DEB 5
r1

r1 1 r2

 DE

  *13.117 Using the answers obtained in Prob. 13.108, show that the intended 

circular orbit and the resulting elliptic orbit intersect at the ends of 

the minor axis of the elliptic orbit.

  *13.118 (a) Express in terms of rmin and vmax the angular momentum per unit 

mass, h, and the total energy per unit mass, E/m, of a space vehicle 

moving under the gravitational attraction of a planet of mass M 

(Fig. 13.15). (b) Eliminating vmax between the equations obtained, 

derive the formula

1

rmin

5
GM

h2
 c 1 1

B
1 1

2E
m

 a h

GM
b2 d  

  (c) Show that the eccentricity £ of the trajectory of the vehicle can 

be expressed as

e 5
B

1 1
2E
m

 a h

GM
b2

  (d ) Further show that the trajectory of the vehicle is a hyperbola, an 

ellipse, or a parabola, depending on whether E is positive, negative, 

or zero.

Fig. P13.116

BA
O

r1 r2
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13.3 Impulse and Momentum 855

13.3 IMPULSE AND MOMENTUM
We now consider a third basic method for the solution of problems dealing 

with the motion of particles. This method is based on the principle of 

impulse and momentum and can be used to solve problems involving 

force, mass, velocity, and time. It is of particular interest in the solution 

of problems involving impulsive motion and problems involving impacts 

(Secs. 13.3B and 13.4).

13.3A  Principle of Impulse and 
Momentum

Consider a particle of mass m acted upon by a force F. As we saw in 

Sec. 12.1B, we can express Newton’s second law in the form

 F 5
d

dt
 (mv) (13.27)

where mv is the linear momentum of the particle. Multiplying both sides 

of Eq. (13.27) by dt and integrating from a time t1 to a time t2, we have

 F dt 5 d(mv)

#
t2

t1

F dt 5 mv2 2 mv1

Moving mv1 to the left side of this equation gives us

mv1 1 #
t2

t1

 

F dt 5 mv2 (13.28)

The integral in Eq. (13.28) is a vector known as the linear impulse, or 

simply the impulse, of the force F during the interval of time considered. 

Resolving F into rectangular components, we have

 Imp1y2 5 #
t2

t1

 

F dt

  5 i#
t2

t1

 

Fx dt 1 j#
t2

t1

 

Fy dt 1 k#
t2

t1

 

Fz dt (13.29)

Note that the components of the impulse of force F are, respectively, equal 

to the areas under the curves obtained by plotting the components Fx , Fy, 

and Fz against t (Fig. 13.16). In the case of a force F of constant magni-

tude and direction, the impulse is represented by the vector F(t2 2 t1), 

which has the same direction as F.

If we use SI units, the magnitude of the impulse of a force is 

expressed in N?s. However, recalling the definition of the newton, we have

N?s 5 (kg?m/s2)?s 5 kg?m/s

which is the unit obtained in Sec. 12.1C for the linear momentum of a 

particle. This verifies that Eq. (13.28) is dimensionally correct. If we use 

U.S. customary units, the impulse of a force is expressed in lb?s, which is 

also the unit obtained in Sec. 12.1C for the linear momentum of a particle.

Photo 13.4 This impact test between an F-4 
Phantom and a rigid reinforced target was 
to determine the impact force as a function 
of time.
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856 Kinetics of Particles: Energy and Momentum Methods

Equation (13.28) states that when a particle is acted upon by a 

force F during a given time interval, we can obtain the final momentum 
mv2 of the particle by adding vectorially its initial momentum mv1 and 
the impulse of the force F during the time interval considered. This can 

be expressed as:

Principle of impulse 
and momentum

mv1 1 Imp1y2 5 mv2 (13.30)

Figure 13.17 is a pictorial representation of this principle and is called an 

impulse-momentum diagram. To obtain an analytic solution, it is thus 

necessary to replace Eq. (13.30) with the corresponding component 

equations. Note that whereas kinetic energy and work are scalar quantities, 

momentum and impulse are vector quantities.

 (mvx)1 1 #
t2

t1

 

Fx dt 5 (mvx)2

  (mvy)1 1 #
t2

t1

 

Fy dt 5 (mvy)2 (13.31)

 (mvz)1 1 #
t2

t1

 

Fz dt 5 (mvz)2

When several forces act on a particle, we must consider the impulse 

of each of the forces. We have

 mv1 1 oImp1y2 5 mv2 (13.32)

Again, this equation represents a relation between vector quantities; in the 

actual solution of a problem, it should be replaced by the corresponding 

component equations.

When a problem involves two or more particles, we can consider 

each particle separately and write Eq. (13.32) for each particle. We can 

also add vectorially the momenta of all the particles and the impulses of 

all the forces involved. We then have

 omv1 1 oImp1y2 5 omv2 (13.33)

Since the forces of action and reaction exerted by the particles on each 

other form pairs of equal and opposite forces, and since the time interval 

from t1 to t2 is common to all of the forces involved, the impulses of the 

forces of action and reaction cancel out. Thus, we need consider only the 

impulses of the external forces.†

mv1 1 Imp1y2 5 mv2

mv1 1 oImp1y2 5 mv2

O

Fz

t1 t2 t

O

Fy

t1 t2 t

O

Fx

t1 t2 t

Fig. 13.16 Components of the impulse of a 
force F acting from times t1 to t2.

mv1

mv2

=+

t2

t1

Imp 1    2 =     F dt�

Fig. 13.17 Impulse-momentum diagram. 
Initial momentum plus impulse of a force F 
equals final momentum. 

†Note the difference between this statement and the corresponding statement in Sect. 13.1C 

regarding the work of the forces of action and reaction between several particles. Although 

the sum of the impulses of these forces is always zero, the sum of their work is zero only 

under special circumstances, e.g., when the particles involved are connected by inextensible 

cords or links and thus are constrained to move through equal distances. 
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13.3 Impulse and Momentum 857

If no external force is exerted on the particles or, more generally, if 

the sum of the external forces is zero, the second term in Eq. (13.33) 

vanishes and the equation reduces to

Conservation of 
linear momentum

omv1 5 omv2 (13.34)

For two particles A and B, this is

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.349)

where v9A and v9B represent the velocities of the bodies at the second time. 
This equation says that the total momentum of the particles is conserved. 

Consider, for example, two boats with masses of mA and mB, initially at 

rest, that are being pulled together (Fig. 13.18). If we neglect the resistance 

of the water, the only external forces acting on the boats are their weights 

and the buoyant forces exerted on them. Since these forces are balanced, 

we have

 omv1 5 omv2

 0 5 mAv9A 1 mBv9B

where v9A and v9B represent the velocities of the boats after a finite interval 

of time. This equation indicates that the boats move in opposite directions 

(toward each other) with velocities inversely proportional to their 

masses.†

omv1 5 omv2

=
mAvA = 0 mBvB = 0

mAv'A mBv'B

Fig. 13.18 Neglecting the resistance of the water, linear momentum is 
conserved for two boats being pulled together.

†We use blue equals signs in Fig. 13.18 and throughout the remainder of this chapter to 

indicate that two systems of vectors are equipollent; i.e., that they have the same resultant 

and moment resultant (cf. Sec. 3.4B). We continue to use red equals signs to indicate that 

two systems of vectors are equivalent; i.e., they have the same effect. We will discuss this 

and the concept of the conservation of momentum for a system of particles in greater detail 

in Chap. 14.

13.3B Impulsive Motion
A force acting on a particle during a very short time interval but large 

enough to produce a definite change in momentum is called an impulsive 
force. The resulting motion is called an impulsive motion. For example, 

when a baseball is struck, the contact between bat and ball takes place 

during a very short time interval Dt. But the average value of the force Favg

exerted by the bat on the ball is very large, and the resulting impulse Favg

Dt is large enough to change the sense of motion of the ball (Fig. 13.19). mv1 mv2 =+ FΔ t

WΔ t ≈ 0

Fig. 13.19 When an impulsive force 
(i.e., a large force that acts over a short time) 
acts on a system, we can often neglect 
non-impulsive forces, such as weight.
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858 Kinetics of Particles: Energy and Momentum Methods

 When impulsive forces act on a particle, Eq. (13.32) becomes

Impulse-momentum principle 
for impulsive motion

mv1 1 oFavg Dt 5 mv2 (13.35)

We can neglect any force that is not an impulsive force because the 

corresponding impulse FavgDt is very small. Non-impulsive forces include 

the weight of the body, the force exerted by a spring, or any other force 

that is known to be small compared with an impulsive force. Unknown 

reactions may or may not be impulsive; their impulses therefore should 

be included in Eq. (13.35) as long as they have not been proved negligible. 

For example, we may neglect the impulse of the weight of the baseball 

considered previously. If we analyze the motion of the bat, we can neglect 

the impulse of the weight of the bat. The impulses of the reactions of the 

player’s hands on the bat, however, should be included; these impulses 

are not negligible if the ball is incorrectly hit.

Note that the method of impulse and momentum is particularly 

effective in analyzing the impulsive motion of a particle, since it involves 

only the initial and final velocities of the particle and the impulses of the 

forces exerted on the particle. The direct application of Newton’s second 

law, on the other hand, would require determining the forces as functions 

of time and integrating the equations of motion over the time interval Dt.
In the case of the impulsive motion of several particles, we can use 

Eq. (13.33). It reduces to

omv1 1 o Favg Dt 5 omv2 (13.36)

where the second term involves only impulsive, external forces. If all of 

the external forces acting on the various particles are non-impulsive, the 

second term in Eq. (13.36) vanishes, and this equation reduces to Eq. (13.34):

omv1 5 omv2 (13.34)

As before, for two particles, this reduces to 

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.349)

In other words, the total momentum of the particles is conserved. This 

situation occurs, for example, when two freely moving particles collide with 

one another. We should note, however, that although the total momentum 

of the particles is conserved, their total energy is generally not conserved. 

Problems involving the collision or impact of two particles are discussed 

in detail in Sec. 13.4.

mv1 1 oFavg Dt 5 mv2
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13.3 Impulse and Momentum 859

Sample Problem 13.13

An automobile weighing 4000 lb is moving down a 5° incline at a speed 

of 60 mi/h when the brakes are applied, causing a constant total braking 

force (applied by the road on the tires) of 1500 lb. Determine the time 

required for the automobile to come to a stop.

STRATEGY: Since you are given velocities at two different times, use 

the principle of impulse and momentum. 

MODELING: Choose the automobile to be your system and assume 

you can model it as a particle. The impulse-momentum diagram for this 

system is shown in Fig. 1.

5°

=+

Wt

Ft

Nt

mv1
mv2 = 0

x

y

Fig. 1 Impulse-momentum diagram for the car.

ANALYSIS: The general impulse-momentum principle is

 mv1 1 oImp1y2 5 mv2

This is a vector equation, and since the impulsive force is constant, the 

impulse is simply equal to the force multiplied by its time duration. You 

can obtain scalar equations by using Fig. 1. In the direction down the 

incline, you get

 1R components:  mv1 1 (W sin 5°)t 2 Ft 5 0

 (4000/32.2)(88 ft/s) 1 (4000 sin 5°)t 2 1500t 5 0 t 5 9.49 s b

REFLECT and THINK: You could use Newton’s second law to solve 

this problem. First, you would determine the car’s deceleration, separate 

variables, and then integrate a 5 dv/dt to relate the velocity, deceleration, 

and time. You could not use conservation of energy to solve this problem, 

because this principle does not involve time. 

5°

Sample Problem 13.14

In order to determine the weight of a freight train of 40 identical boxcars, 

an engineer attaches a dynamometer between the train and the locomotive. 

The train starts from rest, travels over a straight, level track, and reaches 

a speed of 30 mi/h after three minutes. During this time interval, the 

average reading of the dynamometer is 120 tons. Knowing that the effective 

coefficient of friction in the system is 0.03 and air resistance is negligible, 

determine (a) the weight of the train (in tons), (b) the coupling force 

between boxcars A and B.
(continued)
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860 Kinetics of Particles: Energy and Momentum Methods

STRATEGY: This problem could be solved using Newton’s second law 

and kinematic relationships, but since you are given velocities at two times 

and asked to find the force, you can also use impulse and momentum. 

MODELING: Choose the system to be the 40 boxcars behind the 

engine. An impulse-momentum diagram for this system is shown in Fig. 1, 

where F is the dynamometer force. 

y

x

Wt

Nt

Ft

mv2

μkNt

+
mv1 = 0

=

Fig. 1 Impulse-momentum diagram for the 40 boxcars.

ANALYSIS: Apply the principle of impulse and momentum

mv1 1 oImp1y2 5 mv2

You can obtain scalar equations by using Fig. 1 and looking at the x and 

y directions.

1xy components: Nt 2 Wt 5 0    N 5 W
y
1  x components: 0 1 Ft 2 μk Nt 5 mv2

0 1 (120 ton)(2000 lb/ton)(180 s) 2 0.03(W)(180 s)

 5 a W

32.2 ft/s2
b130 mi/h2 a 1 h

3600 s
ba5280 ft

mi
b

Solving for W, you obtain 

W 5 6.384 3 106 lb 5 3190 tons b

Coupling Force Between Cars A and B. You need to define a new 

system where the force of interest is an external force. Therefore, choose car 

A to be your system and define FA as the coupling force between cars A and 

B. The impulse-momentum diagram for this system is shown in Fig. 2.

y

x

WAt

NAt

FtFAt

mAv2

μkNt

+
mv1 = 0

=

Fig. 2 Impulse-momentum diagram for car A.

Dynamometer

AB vv+ x
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13.3 Impulse and Momentum 861

Since all the cars weigh the same amount, the weight of A is WA 5 W/40 

5 159,600 lb. Applying impulse-momentum in the y-direction gives you 

NA 5 WA. Considering the x-direction,

y
1  x components: 0 1 Ft 2 μk NA t 2 FAt 5 mAv2

Substituting in numbers and solving for FA gives 

FA 5 117.0 tons b

REFLECT and THINK: Rather than using A as your system, you could 

have chosen the remaining 39 cars to be your system. In this case, you 

would find 

 0 2 μk N39 t 1 FAt 5 m39v2

where N39 and m39 are the normal force and the mass, respectively, for the 

remaining 39 cars. The answer, as you would expect, is the same.

Sample Problem 13.15

A hammer and punch is used by a surgeon when inserting a hip implant. 

To better understand this process, an instrumented implant is inserted into 

a fixed replicate femur. The upward resisting force from the replicate 

femur on the hip implant can be neglected during the impact, and the 

impact force from the punch can be approximated by a half sine wave. 

Determine the speed of the 0.3-kg implant immediately after impact.

STRATEGY: Since you are relating force, time, and velocities, you 

should use the principle of impulse and momentum.

MODELING: Choose the system to be the implant. An impulse-

momentum diagram for this system is shown in Fig. 1. The resisting force 

is left off Fig.1 since it is assumed to be negligible.

Fig. 1 Impulse-momentum diagram for the implant.

y

x

mv2

WΔt ≈ 0

+mv1 = 0 =

� F(t)dt
t

0

(continued)2

35

F (kN)

t (ms)
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862 Kinetics of Particles: Energy and Momentum Methods

Sample Problem 13.16

A 4-oz baseball is pitched with a velocity of 80 ft/s toward a batter. After 

the ball is hit by the bat B, it has a velocity of 120 ft/s in the direction 

shown. If the bat and ball are in contact for 0.015 s, determine the average 

impulsive force exerted on the ball during the impact.

STRATEGY: This situation features an impact, and therefore impulsive 

forces, so apply the principle of impulse and momentum to the ball.

MODELING: Choose the ball as your system and treat it as a particle. 

The impulse-momentum diagram for this system is shown in Fig. 1. Because 

the weight of the ball is a non-impulsive force that is typically much smaller 

than the impulsive force, you can neglect it.

40°

B

120 ft /s

80 ft /s

ANALYSIS: Apply the principle of impulse and momentum

mv1 1 oImp1y2 5 mv2

You can obtain scalar equations by looking at the vertical components.

w1 y components: 0 1 #
t

0

F(t)dt 5 mv2 (1)

where

#
t

0

F1t2dt 5 #
0.002

0

35 000 sina 2π

0.004
 tbdt 5 235 000 

0.004

2π
 cosa 2π

0.004
 tb0.002

0

 5 45.56 N?s

Substituting this into Eq. (1) and solving for v2 gives

v2 5

#
t

0

F(t)dt

m
5

45.36 N?s

0.3 kg

v2 5 148.5 m/s b

REFLECT and THINK: This problem is similar to Sample Prob. 13.5, 

where the drop-hammer pile driver hits the pile, then the hammer and pile 

move down, and the earth resists the motion. In that problem, you analyzed 

the motion after the impact; in this problem, you are analyzing the motion 

during the impact. In reality, you would need to do some experimental 

measurements to determine if the resisting force really is negligible during 

the impact. If you knew the force relationship of the femur on the implant, 

you could solve this as a two-part problem to first find the velocity of the 

implant immediately after the impact using impulse and momentum, and 

then determine how far the implant moves down into the femur using work 

and energy. 
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13.3 Impulse and Momentum 863

ANALYSIS: Apply the principle of impulse and momentum

 mv1 1 oImp1y2 5 mv2

Applying this in the x and y directions gives

y
1  x components: 2mv1 1 Fx Dt 5 mv2 cos 40°

2

4
16

32.2
 (80 ft/s) 1 Fx(0.015 s) 5

4
16

32.2
 (120 ft/s) cos 40°

 Fx 5 189.0 lb

1xy components:  0 1 FyDt 5 mv2 sin 40°

 Fy(0.015 s) 5

4
16

32.2
 (120 ft/s) sin 40°

 Fy 5 139.9 lb

From its components Fx and Fy you can determine the magnitude and 

direction of the average impulsive force F as

F 5 97.5 lb a 24.2° b

REFLECT and THINK: In this problem, we neglected the impulse due 

to the weight. This would have had a magnitude of (4/16 lb)(0.015 s) 

5 0.00288 lb?s. This indeed is much smaller than the impulse exerted on 

the ball by the bat, which is (97.4 lb)(0.015 s) 5 1.463 lb?s.

Sample Problem 13.17

A 10-kg package drops from a chute into a 25-kg cart with a velocity of 

3 m/s. The cart is initially at rest and can roll freely. Determine (a) the 

final velocity of the cart, (b) the impulse exerted by the cart on the 

package, (c) the fraction of the initial energy lost in the impact.

STRATEGY: Since you have an impact, and therefore impulsive forces, 

use the principle of impulse and momentum.

MODELING: Choose the package and the cart to be your system, and 

assume that both can be treated as particles. The impulse-momentum diagram 

for this system is shown in Fig. 1. Note that a vertical impulse occurs between 

the cart and the ground, because the cart is constrained to move horizontally.

ANALYSIS: Apply the principle of impulse and momentum

mv1 1 oImp1y2 5 mv2

30° + =
mPv1

(mP + mC)v2

R Δ t

x

y

Fig.  Impulse-momentum diagram for the system.

30°
3 m/s

(continued)

40°+ =mv1

mv2

Fx Δ t

Fy Δ t

x

y

Fig. 1 Impulse-momentum diagram for 
the ball.
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864 Kinetics of Particles: Energy and Momentum Methods

a.  Package and Cart. Applying this principle in the x-direction gives 

y
1  x components: mP v1 cos 30° 1 0 5 (mP 1 mC)v2

 (10 kg)(3 m/s) cos 30° 5 (10 kg 1 25 kg)v2

 v2 5 0.742 m/sy b 

In Fig. 1, the force between the package and the cart is not shown because 

it is internal to the defined system. To determine this force, you need a 

new system; that is, just the package by itself. The impulse-momentum 

diagram for the package alone is shown in Fig. 2.

Fx Δ t

Fy Δ t

30°

+
mPv1

mPv2
= x

y

Fig. 2 Impulse-momentum diagram for the package.

b. Impulse-Momentum Principle: Package. The package moves 

in both x and y directions, so write the conservation of momentum equation 

for each component of the motion.

y
1   x components: 2mv1 1 Fx Dt 5 mv2 cos 40°

 (10 kg)(3 m/s) cos 30° 1 Fx Dt 5 (10 kg)(0.742 m/s)

 Fx Dt 5 218.56 N?s

1xy components: 2mP v1 sin 30° 1 Fy Dt 5 0

 2(10 kg)(3 m/s) sin 30° 1 Fy Dt 5 0

 Fy Dt 5 115 N?s

The impulse exerted on the package is

F Dt 5 23.9 N?s b 38.9° b

c. Fraction of Energy Lost. The initial and final energies are

 T1 5
1
2 mP v2

1 5
1
2(10 kg)(3 m/s)2 5 45 J

 T2 5
1
2(mP 1 mC)v2

2 5
1
2(10 kg 1 25 kg)(0.742 m/s)2 5 9.63 J

The fraction of energy lost is 
T1 2 T2

T1

5
45 J 2 9.63 J

45 J 

5 0.786 b

REFLECT and THINK: Except in the purely theoretical case of a 

“perfectly elastic” collision, mechanical energy is never conserved in a 

collision between two objects, even though linear momentum may be 

conserved. Note that, in this problem, momentum was conserved in the x 

direction but was not conserved in the y direction because of the vertical 

impulse on the wheels of the cart. Whenever you deal with an impact, you 

need to use impulse-momentum methods.
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865 865

In this section, we integrated Newton’s second law to derive the principle of impulse 
and momentum for a particle. Recalling that we defined the linear momentum of 

a particle as the product of its mass m and its velocity v [Sec. 12.1B], we have

mv1 1 oImp1y2 5 mv2 (13.32)

This equation states that we can obtain the linear momentum mv2 of a particle at 

time t2 by adding its linear momentum mv1 at time t1 to the impulses of the forces 

exerted on the particle during the time interval t1 to t2. For computing purposes, we 

can express the momenta and impulses in terms of their rectangular components and 

replace Eq. (13.32) by the equivalent scalar equations. The units of momentum and 

impulse are N?s in the SI system of units and lb?s in U.S. customary units. To solve 

problems using this equation you can follow these steps.

1. Draw an impulse-momentum diagram showing the particle, its momentum at t1

and at t2, and the impulses of the forces exerted on the particle during the time interval 

t1 to t2.

2. Calculate the impulse of each force, expressing it in terms of its rectangular 

components if more than one direction is involved. You may encounter the following 

cases:

 a. The time interval is finite and the force is constant.

Imp1y2 5 F(t2 2 t1)

b. The time interval is finite and the force is a function of t.

Imp1y2 5 #
t2

t1

 

F(t) dt

 c. The time interval is very small and the force is very large. The force is 

called an impulsive force, and its impulse over the time interval t2 2 t1 5 Dt is

Imp1y2 5 Favg Dt

Note that this impulse is assumed to be zero for a non-impulsive force such as the 

weight of a body, the force exerted by a spring, or any other force that is known to 

be small by comparison with the impulsive forces. However, we cannot assume 

unknown reactions are non-impulsive, and you should take their impulses into account.

3. Substitute the values obtained for the impulses into Eq. (13.32) or into the 

equivalent scalar equations. You will find that the forces and velocities in the problems 

of this section are contained in a plane. Therefore, you can write two scalar equations 

and solve these equations for two unknowns. These unknowns may be a time
[Sample Prob. 13.13], a force [Sample Prob. 13.14], a velocity [Sample Prob. 13.15], 

an average impulsive force [Sample Prob. 13.16], or an impulse [Sample Prob. 13.17]. 

SOLVING PROBLEMS 
ON YOUR OWN
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866

4. When several particles are involved, it is often necessary to draw a separate 

diagram for each particle showing the initial and final momentum of the particle as 

well as the impulses of the forces exerted on the particle.

a. It is usually convenient, however, to first consider a system that includes 

all of the particles. This system leads to 

omv1 1 oImp1y2 5 omv2 (13.33)

where you need to consider the impulses of only the forces external to the system. 

Therefore, the two equivalent scalar equations will not contain any of the impulses of 

the unknown internal forces.

 b. If the sum of the impulses of the external forces is zero, Eq. (13.33) 

reduces to

 omv1 5 omv2 (13.34)

or for two particles as

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.349)

which says that the total linear momentum of the particles is conserved. This occurs 

when the time interval is very short and the external forces are negligible compared 

to the impulsive forces. Keep in mind, however, that the total momentum may be 

conserved in one direction, but not in another [Sample Prob. 13.17].
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CONCEPT QUESTIONS

 13.CQ4 A large insect impacts the front windshield of a sports car traveling 

down a road. Which of the following statements is true during the 

collision?

   a.  The car exerts a greater force on the insect than the insect exerts 

on the car.

   b.  The insect exerts a greater force on the car than the car exerts on 

the insect.

   c.  The car exerts a force on the insect, but the insect does not exert 

a force on the car.

   d.  The car exerts the same force on the insect as the insect exerts 

on the car.

   e.  Neither exerts a force on the other; the insect gets smashed simply 

because it gets in the way of the car.

 13.CQ5 The expected damages associated with two types of perfectly plastic 

collisions are to be compared. In the first case, two  identical cars 

traveling at the same speed impact each other head-on. In the second 

case, the car impacts a massive concrete wall. In which case would 

you expect the car to be more damaged?

   a. Case 1

   b. Case 2

   c. The same damage in each case

IMPULSE-MOMENTUM DIAGRAM PRACTICE PROBLEMS

 13.F1 The initial velocity of the block in position A is 30 ft/s. The 

coefficient of kinetic friction between the block and the plane is 

μk 5 0.30. Draw the impulse-momentum diagram that can be used 

to determine the time it takes for the block to reach B with zero 

velocity, if θ 5 20°.

 13.F2 A 4-lb collar which can slide on a frictionless vertical rod is acted 

upon by a force P which varies in magnitude as shown. Knowing 

that the collar is initially at rest, draw the impulse-momentum 

diagram that can be used to determine its velocity at t 5 3 s.

P

4 lb

P (lb)

t (s)

10

21 30

Fig. P13.F2

Problems

Case 1

Case 2

vA

vA vA

Fig. P13.CQ5

A

B
vA

v = 0

q

Fig. P13.F1
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 13.F3 The 15-kg suitcase A has been propped up against one end of a 

40-kg luggage carrier B and is prevented from sliding down by other 

luggage. When the luggage is unloaded and the last heavy trunk is 

removed from the carrier, the suitcase is free to slide down, causing 

the 40-kg carrier to move to the left with a velocity vB of magnitude 

0.8 m/s. Neglecting friction, draw the impulse-momentum diagrams 

that can be used to determine (a) the velocity of A as it rolls on the 

carrier, (b) the velocity of the carrier after the suitcase hits the right 

side of the carrier without bouncing back.

4 in.

16 in.
B

vB

vA/B
A

AG
G

Fig. P13.F3

13.F4 Car A was traveling west at a speed of 15 m/s and car B was traveling 

north at an unknown speed when they slammed into each other at 

an intersection. Upon investigation it was found that after the crash 

the two cars got stuck and skidded off at an angle of 50° north of 

east. Knowing the masses of A and B are mA and mB, respectively, 

draw the impulse-momentum diagram that can be used to determine 

the velocity of B before impact.

B

v'

vB

A
vA

50°

Fig. P13.F4

 13.F5 Two identical spheres A and B, each of mass m, are attached to an 

inextensible inelastic cord of length L and are resting at a distance 

a from each other on a frictionless horizontal surface. Sphere B is 

given a velocity v0 in a direction perpendicular to line AB and moves 

it without friction until it reaches B9 where the cord becomes taut. 

Draw the impulse-momentum diagram that can be used to determine 
the magnitude of the velocity of each sphere immediately after the 

cord has become taut.

END-OF-SECTION PROBLEMS

 13.119 A 35 000-Mg ocean liner has an initial velocity of 4 km/h. Neglecting 

the frictional resistance of the water, determine the time required to 

bring the liner to rest by using a single tugboat that exerts a constant 

force of 150 kN.

B'

B

L

A

v0

a

Fig. P13.F5
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 13.120 A 2500-lb automobile is moving at a speed of 60 mi/h when the 

brakes are fully applied, causing all four wheels to skid. Determine 

the time required to stop the automobile (a) on dry pavement 

(μk 5 0.75), (b) on an icy road (μk 5 0.10).

 13.121 A sailboat weighing 980 lb with its occupants is running downwind 

at 8 mi/h when its spinnaker is raised to increase its speed. Determine 

the net force provided by the spinnaker over the 10-s interval that 

it takes for the boat to reach a speed of 12 mi/h.

 13.122 A truck is hauling a 300-kg log out of a ditch using a winch attached 

to the back of the truck. Knowing the winch applies a constant force 

of 2500 N and the coefficient of kinetic friction between the ground 

and the log is 0.45, determine the time for the log to reach a speed 

of 0.5 m/s.

20°

Fig. P13.122

 13.123 The coefficients of friction between the load and the flatbed trailer 

shown are μs 5 0.40 and μk 5 0.35. Knowing that the speed of the 

rig is 55 mi/h, determine the shortest time in which the rig can be 

brought to a stop if the load is not to shift.

Fig. P13.123

 13.124 Steep safety ramps are built beside mountain highways to enable 

vehicles with defective brakes to stop. A 10-ton truck enters a 158

ramp at a high speed v0 5 108 ft/s and travels for 6 s before its speed 

is reduced to 36 ft/s. Assuming constant deceleration, determine 

(a) the magnitude of the braking force, (b) the additional time required 

for the truck to stop. Neglect air resistance and rolling resistance.

 13.125 Baggage on the floor of the baggage car of a high-speed train is not 

prevented from moving other than by friction. The train is traveling 

down a 5-percent grade when it decreases its speed at a constant 

rate from 120 mi/h to 60 mi/h in a time interval of 12 s. Determine 

the smallest allowable value of the coefficient of static friction 

between a trunk and the floor of the baggage car if the trunk is not 

to slide.

v

Fig. P13.121

CROSS COUNTRY MOVERS

v0

15°

Fig. P13.124
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 13.126 The 18 000-kg F-35B uses thrust vectoring to allow it to take off 

vertically. In one maneuver, the pilot reaches the top of her static 

hover at 200 m. The combined thrust and lift force on the airplane 

applied at the end of the static hover can be expressed as F 5

(44t 1 2500t2)i 1 (250t2 1 t 1 176 580)j, where F and t are 

expressed in newtons and seconds, respectively. Determine (a) how 

long it will take the airplane to reach a cruising speed of 

1000 km/hr (cruising speed is defined to be in the x-direction only), 

(b) the altitude of the plane at this time.

Fig. P13.126

 13.127 A truck is traveling down a road with a 4-percent grade at a speed 

of 60 mi/h when its brakes are applied to slow it down to 20 mi/h. 

An antiskid braking system limits the braking force to a value at 

which the wheels of the truck are just about to slide. Knowing that 

the coefficient of static friction between the road and the wheels is 

0.60, determine the shortest time needed for the truck to slow 

down.

 13.128 In anticipation of a long 6° upgrade, a bus driver accelerates at a 

constant rate from 80 km/h to 100 km/h in 8 s while still on a level 

section of the highway. Knowing that the speed of the bus is 

100 km/h as it begins to climb the grade at time t 5 0 and that the 

driver does not change the setting of the throttle or shift gears, 

determine (a) the speed of the bus when t 5 10 s, (b) the time when 

the speed is 60 km/h.

 13.129 A light train made of two cars travels at 45 mi/h. Car A weighs 18 

tons, and car B weighs 13 tons. When the brakes are applied, a 

constant braking force of 4300 lb is applied to each car. Determine 

(a) the time required for the train to stop after the brakes are applied, 

(b) the force in the coupling between the cars while the train is 

slowing down.

 13.130 Solve Problem 13.129, assuming that a constant braking force of 

4300 lb is applied to car B but that the brakes on car A are not 

applied.

Fig. P13.129

45 mi/h

18 tons 13 tonsA B
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13.131 A tractor-trailer rig with a 2000-kg tractor, a 4500-kg trailer, and a 

3600-kg trailer is traveling on a level road at 90 km/h. The brakes 

on the rear trailer fail, and the antiskid system of the tractor and 

front trailer provide the largest possible force that will not cause the 

wheels to slide. Knowing that the coefficient of static friction is 

0.75, determine (a) the shortest time for the rig to a come to a stop, 

(b) the force in the coupling between the two trailers during that 

time. Assume that the force exerted by the coupling on each of the 

two trailers is horizontal.

 13.132 The system shown is at rest when a constant 150-N force is applied 

to collar B. Neglecting the effect of friction, determine (a) the time 

at which the velocity of collar B will be 2.5 m/s to the left, (b) the 

corresponding tension in the cable.

150 N

B

8 kg

A3 kg

C

Fig. P13.132

 13.133 An 8-kg cylinder C rests on a 4-kg platform A supported by a cord 

that passes over the pulleys D and E and is attached to a 4-kg block 

B. Knowing that the system is released from rest, determine (a) the 

velocity of block B after 0.8 s, (b) the force exerted by the cylinder 

on the platform.

 13.134 An estimate of the expected load on over-the-shoulder seat belts is 

to be made before designing prototype belts that will be evaluated 

in automobile crash tests. Assuming that an automobile traveling at 

45 mi/h is brought to a stop in 110 ms, determine (a) the average 

impulsive force exerted by a 200-lb man on the belt, (b) the maximum 

force Fm exerted on the belt if the force-time diagram has the 

shape shown.

1100

F (lb)

Fm

t (ms)

Fig. P13.134

2000 kg

4500 kg 3600 kg

90 km/h

Fig. P13.131

B

4 kg

A

C8 kg

D E

4 kg

Fig. P13.133
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 13.135 A 60-g model rocket is fired vertically. The engine applies a thrust 

P which varies in magnitude as shown. Neglecting air resistance and 

the change in mass of the rocket, determine (a) the maximum speed 

of the rocket as it goes up, (b) the time for the rocket to reach its 

maximum elevation.

P (N)

13

P
5

0.2 0.3 0.8 t(s)

Fig. P13.135

 13.136 A simplified model consisting of a single straight line is to be 

obtained for the variation of pressure inside the 10-mm-diameter bar-

rel of a rifle as a 20-g bullet is fired. Knowing that it takes 1.6 ms 

for the bullet to travel the length of the barrel and that the velocity 

of the bullet upon exit is 700 m/s, determine the value of p0.

 13.137 A crash test is performed between an SUV A and a 2500-lb compact 

car B. The compact car is stationary before the impact and has its 

brakes applied. A transducer measures the force during the impact, 

and the force P varies as shown. Knowing that the coefficients of 

friction between the tires and road are μs 5 0.9 and μk 5 0.7, 

determine (a) the time at which the compact car will start moving, 

(b) the maximum speed of the car, (c) the time at which the car will 

come to a stop.

A
B

t (s)

P (lb)

0.1 0.2

30,000 lb

Fig. P13.137 and P13.138

 13.138 A crash test is performed between a 4500 lb SUV A and a compact 

car B. A transducer measures the force during the impact, and the 

force P varies as shown. Knowing that the SUV is travelling 30 mph 

when it hits the car, determine the speed of the SUV immediately 

after the impact.

1.60

p (MPa)

t (ms)

p0

Fig. P13.136
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13.139 A baseball player catching a ball can soften the impact by pulling 

his hand back. Assuming that a 5-oz ball reaches his glove at 

90 mi/h and that the player pulls his hand back during the impact 

at an average speed of 30 ft/s over a distance of 6 in., bringing the 

ball to a stop, determine the average impulsive force exerted on the 

player’s hand.

13.140 A 1.62-oz golf ball is hit with a golf club and leaves it with a 

velo c ity of 100 mi/h. We assume that for 0 # t # t0, where t0 is 

the duration of the impact, the magnitude F of the force exerted 

on the ball can be expressed as F 5 Fm sin (πt/t0). Knowing that 

t0 5 0.5 ms, determine the maximum value Fm of the force exerted 

on the ball.

 13.141 The triple jump is a track-and-field event in which an athlete gets a 

running start and tries to leap as far as he can with a hop, step, and 

jump. Shown in the figure is the initial hop of the athlete. Assuming 

that he approaches the takeoff line from the left with a horizontal 

velocity of 10 m/s, remains in contact with the ground for 0.18 s, and 

takes off at a 50° angle with a velocity of 12 m/s, determine the vertical 

component of the average impulsive force exerted by the ground on 

his foot. Give your answer in terms of the weight W of the athlete.

 13.142 The last segment of the triple jump track-and-field event is the jump, 

in which the athlete makes a final leap, landing in a sand-filled pit. 

Assuming that the velocity of a 80-kg athlete just before landing is 

9 m/s at an angle of 35° with the horizontal and that the athlete 

comes to a complete stop in 0.22 s after landing, determine the 

horizontal component of the average impulsive force exerted on his 

feet during landing.

 13.143 The design for a new cementless hip implant is to be studied using 

an instrumented implant and a fixed simulated femur. Assuming the 

punch applies an average force of 2 kN over a time of 2 ms to the 

200-g implant, determine (a) the velocity of the implant immediately 

after impact, (b) the average resistance of the implant to penetration 

if the implant moves 1 mm before coming to rest.

Fig. P13.143

6 in.

90 mi/h

Fig. P13.139

10 m/s

12 m/s

Take-
off line

50°

Fig. P13.141

9 m/s 35°

Landing pit

Fig. P13.142
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 13.144 A 28-g steel-jacketed bullet is fired with a velocity of 650 m/s toward 

a steel plate and ricochets along path CD with a velocity of 500 m/s. 

Knowing that the bullet leaves a 50-mm scratch on the surface of 

the plate and assuming that it has an average speed of 600 m/s while 

in contact with the plate, determine the magnitude and direction of 

the impulsive force exerted by the plate on the bullet.

 13.145 A 25-ton railroad car moving at 2.5 mi/h is to be coupled to a 50-ton 

car that is at rest with locked wheels (μk 5 0.30). Determine (a) the 

velocity of both cars after the coupling is completed, 

(b) the time it takes for both cars to come to rest.

50 ton

25 ton

2.5 mi/h

Fig. P13.145

 13.146 At an intersection, car B was traveling south and car A was traveling 

30° north of east when they slammed into each other. Upon 

investigation it was found that after the crash the two cars got stuck 

and skidded off at an angle of 10° north of east. Each driver 

claimed that he was going at the speed limit of 50 km/h and that 

he tried to slow down but couldn’t avoid the crash because the other 

driver was going a lot faster. Knowing that the masses of cars A
and B were 1500 kg and 1200 kg, respectively, determine (a) which 

car was going faster, (b) the speed of the faster of the two cars if 

the slower car was traveling at the speed limit.

 13.147 The 650-kg hammer of a drop-hammer pile driver falls from a 

height of 1.2 m onto the top of a 140-kg pile, driving it 110 mm into 

the ground. Assuming perfectly plastic impact (e 5 0), determine 

the average resistance of the ground to penetration.

 13.148 A small rivet connecting two pieces of sheet metal is being clinched 

by hammering. Determine the impulse exerted on the rivet and the 

energy absorbed by the rivet under each blow, knowing that the head 

of the hammer has a weight of 1.5 lb and that it strikes the rivet 

with a velocity of 20 ft/s. Assume that the hammer does not rebound 

and that the anvil is supported by springs and (a) has an infinite 

mass (rigid support), (b) has a weight of 9 lb.

20 ft/s

Fig. P13.148

10°20°

50 mm
A

B C
D

Fig. P13.144

A

B

30°

10°
v

vA

vB

N

Fig. P13.146

1.2 m

140 kg

650 kg

Fig. P13.147
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 13.149 Bullet B weighs 0.5 oz and blocks A and C both weigh 3 lb. The 

coefficient of friction between the blocks and the plane is μk 5 0.25. 

Initially the bullet is moving at v0 and blocks A and C are at rest 

(Fig. 1). After the bullet passes through A it becomes embedded in 

block C and all three objects come to stop in the positions shown 

(Fig. 2). Determine the initial speed of the bullet v0.

A

6 in. (1)

(2)

4 in.

C

C
Bv0

B
A

Fig. P13.149

13.150 A 180-lb man and a 120-lb woman stand at opposite ends of a 

300-lb boat, ready to dive, each with a 16-ft/s velocity relative to 

the boat. Determine the velocity of the boat after they have both 

dived, if (a) the woman dives first, (b) the man dives first.

Fig. P13.150

 13.151 A 75-g ball is projected from a height of 1.6 m with a horizontal 

velocity of 2 m/s and bounces from a 400-g smooth plate supported 

by springs. Knowing that the height of the rebound is 0.6 m, 

determine (a) the velocity of the plate immediately after the impact, 

(b) the energy lost due to the impact.

1.6 m

75 g

0.6 m

2 m/s

400 g

Fig. P13.151
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 13.152 A ballistic pendulum is used to measure the speed of high-speed 

projectiles. A 6-g bullet A is fired into a 1-kg wood block B
suspended by a cord with a length of l 5 2.2 m. The block then 

swings through a maximum angle of θ 5 60°. Determine (a) the 

initial speed of the bullet v0, (b) the impulse imparted by the bullet 

on the block, (c) the force on the cord immediately after the impact.

v0

l

O

θ

B

B

Fig. P13.152

 13.153 A 1-oz bullet is traveling with a velocity of 1400 ft/s when it impacts 

and becomes embedded in a 5-lb wooden block. The block can move 

vertically without friction. Determine (a) the velocity of the bullet and 

block immediately after the impact, (b) the horizontal and vertical 

components of the impulse exerted by the block on the bullet.

 13.154 In order to test the resistance of a chain to impact, the chain is suspended 

from a 240-lb rigid beam supported by two columns. A rod attached 

to the last link is then hit by a 60-lb block dropped from a 5-ft height. 

Determine the initial impulse exerted on the chain and the energy 

absorbed by the chain, assuming that the block does not rebound from 

the rod and that the columns supporting the beam are (a) perfectly 

rigid, (b) equivalent to two perfectly elastic springs.

5 ft

Fig. P13.154

m

30°

M

v0

Fig. P13.153
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13.4 Impacts 877

13.4 IMPACTS
A collision between two bodies that occurs in a very small interval of 

time, and during which the two bodies exert relatively large forces on each 

other, is called an impact. The common normal to the surfaces in contact 

during the impact is called the line of impact. If the mass centers of the 

two colliding bodies are located on this line, the impact is called a central 
impact. Otherwise, the impact is said to be eccentric. Our present study 

is limited to the central impact of two particles. In Chapter 17, we consider 

the analysis of the eccentric impact of two rigid bodies.

If the velocities of the two particles are directed along the line of 

impact, the impact is said to be a direct impact (Fig. 13.20a). If either 

or both particles move along a line other than the line of impact, the 

impact is said to be an oblique impact (Fig. 13.20b).

Fig. 13.20 Central impacts can be (a) direct (or ”head-on”) or (b) oblique.

vA vA

vB

vB

Line of

im
pact Line of

im
pact

(a) Direct central impact (b) Oblique central impact

A

B

B

A

13.4A Direct Central Impact
Consider two particles A and B with mass mA and mB that are moving in 

the same straight line and to the right with known velocities vA and vB

(Fig. 13.21a). If vA is larger than vB, particle A eventually strikes particle B. 

Under the impact, the two particles deform, and at the end of the period 

of deformation, they have the same velocity u (Fig. 13.21b). A period of 

restitution then takes place. At the end of this period, depending upon 

the magnitude of the impact forces and upon the materials involved, the 

two particles either have regained their original shape or will stay 

permanently deformed. Our purpose here is to determine the velocities v9A
and v9B of the particles at the end of the period of restitution (Fig. 13.21c).

Considering first the two particles as a single system, we note that 

there is no impulsive, external force. Thus, the total linear momentum of 

the two particles is conserved, and we have

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.349)

Since all of the velocities considered are directed along the same axis, we 

can replace this equation by the following relation involving only scalar 

components, as

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.37)

A positive value for any of the scalar quantities vA, vB, v9A, or v9B means 

that the corresponding vector is directed to the right; a  negative value 

indicates that the corresponding vector is directed to the left.

mAm vAv 1 mBvB 5 mAm v9A 1 mBv9B

Fig. 13.21 Every impact has three stages: 
(a) before the impact, (b) a maximum 
deformation when the particles have the 
same velocity, and (c) after the impact.

(a) Before impact

(c) After impact

(b) At maximum deformation

vA vB

u

v'A v'B

A B

A B

A B

x

x

x
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878 Kinetics of Particles: Energy and Momentum Methods

To obtain the velocities v9A and v9B, it is necessary to establish a 

second relation between the scalars v9A and v9B. For this purpose, let us now 

consider the motion of particle A during the period of  deformation and 

apply the principle of impulse and momentum. Since the only impulsive 

force acting on A during this period is the force P exerted by B 

(Fig. 13.22a), we have, again using scalar components,

 mAvA 2 e P dt 5 mAu (13.38)

where the integral extends over the period of deformation. Considering 

now the motion of A during the period of restitution and denoting the 

force exerted by B on A during this period by R (Fig. 13.22b), we have

 mAu 2 e R dt 5 mAv9A (13.39)

where the integral extends over the period of restitution.

Fig. 13.22 Impulse-momentum diagram for particle A during (a) the 
period of deformation, and (b) during the period of restoration.

A

A A

A

A

A

mAvA

mAv'A

mAu

mAu

=

=

+

+

(a) Period of deformation

(b) Period of restitution

P dt�

R dt�

In general, the force R exerted on A during the period of restitution 

differs from the force P exerted during the period of deformation, and the 

magnitude e R dt of its impulse is smaller than the magnitude e P dt of 

the impulse of P. The ratio of the magnitudes of the impulses, corresponding, 

respectively, to the period of restitution and to the period of deformation, 

is called the coefficient of restitution and is denoted by e. We have

 e 5
e  R dt

e  P dt
 (13.40)

The value of the coefficient e is always between 0 and 1. It depends to a 

large extent on the two materials involved, but it also varies considerably with 

the impact velocity and the shape and size of the two colliding bodies.

Solving Eqs. (13.38) and (13.39) for the two impulses and 

substituting into Eq. (13.40), we obtain

 e 5
u 2 vA9

vA 2 u
 (13.41)

A similar analysis of particle B leads to the relation

 e 5
v9B 2 u

u 2 vB
 (13.42)

Since the quotients in Eqs. (13.41) and (13.42) are equal, they are also 

equal to the quotient obtained by adding, respectively, their numerators 

and their denominators. We therefore have

e 5
(u 2 v9A) 1 (v9B 2 u)

(vA 2 u) 1 (u 2 vB)
5

v9B 2 v9A

vA 2 vB

and
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13.4 Impacts 879

Coefficient of 
restitution v9B 2 v9A 5 e(vA 2 vB) (13.43)

Since v9B – v9A represents the relative velocity of the two particles after 

impact and vA 2 vB represents their relative velocity before impact, 

formula (13.43) says: 

We can obtain the relative velocity of the two particles after impact 
by multiplying their relative velocity before impact by the coefficient 
of restitution. 

This property is used to determine experimentally the value of the 

coefficient of restitution of two given materials.

We can now obtain the velocities of the two particles after impact 

by solving Eqs. (13.37) and (13.43) simultaneously for v9A and v9B. Recall 

that the derivations of Eqs. (13.37) and (13.43) were based on the assump-

tion that particle B is located to the right of A and that both particles are 

initially moving to the right. If particle B is initially moving to the left, 

the scalar vB should be considered negative. The same sign convention 

holds for the velocities after impact: A positive sign for v9A indicates that 

particle A moves to the right after impact, and a negative sign indicates 

that it moves to the left.

Two particular cases of impact are of special interest.

 1. e 5 0, Perfectly Plastic Impact. When e 5 0, Eq. (13.43) yields 

v9B 5 v9A. There is no period of restitution, and both particles stay 

together after impact. Substituting v9B 5 v9A 5 v9 into Eq. (13.37), which 

expresses that the total momentum of the particles is conserved, we have

mAvA 1 mBvB 5 (mA 1 mB)v9 (13.44)

We can solve this equation for the common velocity v9 of the two 

particles after impact.

 2. e 5 1, Perfectly Elastic Impact. When e 5 1, Eq. (13.43) reduces to

 v9B 2 v9A 5 vA 2 vB (13.45)

  This equation says that the relative velocities before and after impact 

are equal. This means that the impulses received by each particle during 

the period of deformation and during the period of restitution are equal. 

We can obtain the velocities v9A and v9B by solving Eqs. (13.37) and 

(13.45) simultaneously.

It is worth noting that in the idealized case of a perfectly elastic 
impact, the total energy of the two particles, as well as their total 

momentum, is conserved. We can write Eqs. (13.37) and (13.45) as

 mA(vA 2 v9A) 5 mB(v9B 2 vB) (13.379)

 vA 1 v9A 5 vB 1 v9B (13.459)

Multiplying Eqs. (13.379) and (13.459) member by member, we have

mA(vA 2 v9A)(vA 1 v9A) 5 mB(v9B 2 vB)(v9B 1 vB)

mAv2
A 2 mA(v9A)2 5 mB(v9B)2 2 mBv2

B

Rearranging the terms in this equation and multiplying by 1/2, we obtain

 
1
2mAv2

A 1
1
2mBv2

B 5
1
2mA(v9A)2 1

1
2mB(v9B)2 (13.46)

This equation states that the kinetic energy of the particles is conserved. 

v9B 2 v9A 5 e(vAv 2 vB)

Photo 13.5 The height the tennis ball 
bounces decreases after each impact because 
it has a coefficient of restitution less than one 
and energy is lost with each bounce.
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880 Kinetics of Particles: Energy and Momentum Methods

Note, however, that in the general case of impact, i.e., when e is not 

equal to 1, the total energy of the particles is not conserved. This can 

be shown in any given case by comparing the kinetic energies before and 

after impact. The lost kinetic energy may be transformed into other forms 

of energy, such as heat, sound, generation of elastic waves within the two 

colliding bodies, or permanent deformation of the bodies.

13.4B Oblique Central Impact
Let us now consider the case when the velocities of the two colliding 

particles are not directed along the line of impact (Fig. 13.23). As mentioned 

earlier, the impact is said to be oblique. Since the velocities v9A and v9B of 

the particles after impact are unknown in direction as well as in magnitude, 

their determination requires the use of four independent equations.

We choose as coordinate axes the n axis along the line of impact 

(i.e., along the common normal to the surfaces in contact) and the t axis 

along their common tangent. In very special cases where we can assume 

that the particles are perfectly smooth and frictionless, we observe that 

the only impulses exerted on the particles during the impact are due to 

internal forces directed along the line of impact, i.e., along the n axis 

(Fig. 13.24). This leads to the following results.

 1. The component along the t axis of the momentum of each particle, 

considered separately, is conserved because no impulses act in the t 
direction; hence the t component of the velocity of each particle remains 

unchanged. We have

 (vA)t 5 (v9A)t  (vB)t 5 (v9B)t (13.47)

 2. The component along the n axis of the total momentum of the two 

particles is conserved because the two impulses are equal and opposite 

to one another. We have

 mA(vA)n 1 mB(vB)n 5 mA(v9A)n 1 mB(v9B)n (13.48)

 3. We obtain the component along the n axis of the relative velocity of the 

two particles after impact by multiplying the n component of their relative 

velocity before impact by the coefficient of restitution. Indeed, a derivation 

similar to that given in Sec. 13.4A for direct central impact yields

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (13.49)

We have thus obtained four independent equations that can be solved 

for the components of the velocities of A and B after impact. This method 

of solution is illustrated in Sample Prob. 13.20.

Fig. 13.23 In an oblique central impact, the 
velocities of the colliding particles are not 
directed along the line of impact.

A
v'A

v'B

vA

vB

Line of

im
pact

n
t

B

Photo 13.6 When pool balls strike each 
other there is a transfer of momentum.

Fig. 13.24 Impulse-momentum diagram for an oblique impact. By including the internal 
impulses as equal and opposite, you also have the impulse-momentum diagram for each 
individual object (just ignore the other object).
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13.4 Impacts 881

Our analysis of the oblique central impact of two particles has been 

based so far on the assumption that both particles move freely before and 

after the impact. Let us now examine the case when one or both of the 

colliding particles is constrained in its motion. Consider, for instance, the 

collision between block A, which is constrained to move on a horizontal 

surface, and ball B, which is free to move in the plane of the figure 

(Fig. 13.25). Assuming no friction between the block and the ball or between 

the block and the horizontal surface, we note that the impulses exerted on 

the system consist of the impulses of the internal forces F and 2F directed 

along the line of impact, i.e., along the n axis, and of the impulse of the 

external force Fext exerted by the horizontal surface on block A and directed 

along the vertical, as shown in the impulse-momentum diagram (Fig. 13.26).

Fig. 13.25 An impact between a block 
moving on a horizontal surface and a ball 
moving in the vertical plane is called a 
“constrained impact.”

n

t

B
A

v'B

v'A

vB

vA

n
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n
t
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n
t

BAmAvA

mBvB

mAv'A
mBv'B

=+
FΔ t

FextΔ t

–FΔ t

x

y

q

Fig. 13.26 Impulse-momentum diagram for a constrained impact between block A and ball B.

The velocities of block A and ball B immediately after the impact 

are represented by three unknowns: the magnitude of the velocity v9A of 

block A, which is known to be horizontal, and the magnitude and direction 

of the velocity v9B of ball B. We must therefore write three equations. We 

do this by using the impulse-momentum diagram and observing the 

following behavior.

 1. The component along the t axis of the momentum of ball B is conserved 

because no impulses act on the ball in the t direction; hence, the t 
component of the velocity of ball B remains unchanged. We have

 (vB)t 5 (v9B)t (13.50)

 2. The component along the horizontal x axis of the total momentum of 

block A and ball B is conserved because no external impulses act in the 

x-direction. We write this as

 mAvA 1 mB(vB)x 5 mAv9A 1 mB(v9B)x (13.51)

 3. We obtain the component along the n axis of the relative velocity of block A 

and ball B after impact by multiplying the n component of their relative 

velocity before impact by the coefficient of restitution. We again have

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (13.49)

Note, however, that in the case considered here, we cannot establish 

the validity of Eq. (13.49) through a mere extension of the derivation given 

in Sec. 13.4A for the direct central impact of two particles moving in a 

straight line. Indeed, these particles were not subjected to any external 

impulse, whereas block A in the present analysis is subjected to the 

impulse exerted by the horizontal surface. To prove that Eq. (13.49) is still 

valid, we first apply the principle of impulse and momentum to block A 
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882 Kinetics of Particles: Energy and Momentum Methods

over the period of deformation (Fig. 13.27). Considering only the horizontal 

components, we have

 mAvA 2 (e P dt) cos θ 5 mAu (13.52)

where the integral extends over the period of deformation and u represents 

the velocity of block A at the end of that period. Considering now the 

period of restitution, we have similarly

 mAu 2 (e R dt) cos θ 5 mAv9A (13.53)

where the integral extends over the period of restitution.

Recalling from Sec. 13.4A the definition of the coefficient of 

restitution, we have

 e 5
e R  dt

e P dt
 (13.40)

Solving Eqs. (13.52) and (13.53) for the integrals e P dt and e R dt and 

substituting into Eq. (13.40), we have, after reductions,

e 5
u 2 v9A

vA 2 u

Then multiplying all velocities by cos θ to obtain their projections on the 

line of impact gives

 e 5
un 2 (v9A)n

(vA)n 2 un
 (13.54)

Note that Eq. (13.54) is identical to Eq. (13.41) except for the subscripts 

n that we use here to indicate that we are considering velocity components 

along the line of impact. Since the motion of ball B is unconstrained, we 

can complete the proof of Eq. (13.49) in the same manner as the derivation 

of Eq. (13.43). Thus, we conclude that the relation in Eq. (13.49) between 

the components along the line of impact of the relative velocities of two 

colliding particles remains valid when one of the particles is constrained 

in its motion. The validity of this relation is easily extended to the case 

when both particles are constrained in their motion.

13.4C  Problems Involving Multiple 
Principles

You now have at your disposal three different methods for the solution of 

kinetics problems.

• The direct application of Newton’s second law, oF 5 ma. 

• The method of work and energy, T1 1 Vg1
1 Ve1

1 UNC
1y2 5

T2 1 Vg2
1 Ve2

, where UNC
1y2 is the work of external non-conservative 

forces such as friction. 

• The method of impulse and momentum, mv1 1 Imp1y2 5 mv2. 

n

mAvA =+
x

y

mAu
q

P dt�

Pext  dt�

Fig. 13.27 Impulse-momentum diagram for block A.
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13.4 Impacts 883

To derive maximum benefit from these three methods, you should be able 

to choose the method best suited for the solution of a given problem. You 

also should be prepared to solve problems that require you to use multiple 

principles.

You have already seen that the method of work and energy is in 

many cases more expeditious than the direct application of  Newton’s 

second law. As indicated in Sec. 13.1C, however, the method of work and 

energy has limitations, and it must sometimes be supplemented by the use 

of oF 5 ma. This is the case, for example, when you wish to determine 

an acceleration or a normal force.

For the solution of problems involving no impulsive forces, usually 

the equation oF 5 ma yields a solution just as fast as the method of 

impulse and momentum, and the method of work and energy (if it applies) 

is more rapid and more convenient. However, in problems involving 

impact, the method of impulse and momentum is the only practicable 

method. A solution based on the direct application of oF 5 ma would be 

unwieldy, and the method of work and energy cannot be used, because 

impact (unless perfectly elastic) involves a loss of mechanical energy.

Many problems involve only conservative forces except for a short 

impact phase during which impulsive forces act. The solution of such 

problems can be divided into several parts. The part corresponding to the 

impact phase calls for the use of the method of impulse and momentum 

and of the relation between relative velocities. The other parts usually can 

be solved by using the method of work and energy. If the problem involves 

the determination of a normal force, however, the use of oF 5 ma is 

necessary.

Consider, for example, a pendulum A, with a mass mA and a length l, 
that is released with no velocity from a position A1 (Fig. 13.28a). The 

pendulum swings freely in a vertical plane and hits a second pendulum B, 

with a mass mB and the same length l, that is initially at rest. After the 

impact (with coefficient of restitution e), pendulum B swings through an 

angle θ that we wish to determine.

The solution of the problem can be divided into three parts:

 1. Pendulum A Swings from A1 to A2. Use the principle of conservation 

of energy to determine the velocity (vA)2 of the pendulum at A2 

(Fig. 13.28b).

Fig. 13.28 Analyzing an impact between two pendulum bobs by conservation of energy and conservation 
of momentum.

(vA)1 = 0

(vB)2 = 0(vA)2 (vA)3 (vB)3

(a) (b) (d)

Conservation
of energy

Conservation
of energy

l

l l l l l l

l

A1

B1 A3 B3
A4

B4

A2 B2

Impact:
Conservation of momentum

Relative velocities

(c)

q

y4
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884 Kinetics of Particles: Energy and Momentum Methods

 2. Pendulum A Hits Pendulum B. Use the fact that the total momentum 

of the two pendulums is conserved, and use the relation between their 

relative velocities––that is, the coefficient of restitution––to determine 

the velocities (vA)3 and (vB)3 of the two pendulums after impact 

(Fig. 13.28c).

 3. Pendulum B Swings from B3 to B4. Apply the principle of conservation 

of energy to pendulum B to determine the maximum elevation y4 

reached by that pendulum (Fig. 13.28d). You can then determine the 

angle θ by trigonometry.

Note that if you need to determine the tensions in the cords holding 

the pendulums, the method of solution just described should be supple-

mented by the use of oF 5 ma. A summary of all the kinetics principles 

we have discussed so far and some clues as to when to apply them are 

shown in Fig. 13.29.

Fig. 13.29 The three kinetics principles using the SMART methodology.

Kinetics Principles

Define your system
Draw free-body diagram and kinetic
 diagram
Define your coordinate system  

Define your system
Draw free-body diagram to determine 
 non-conservative forces
Draw the system in two positions
Define your coordinate system  

ΣF = ma
Are there enough equations to solve
for the unknowns? If not, more
equations can come from new
systems, kinematics, or additional
information in the problem
statement.    

Are there enough equations to solve for
the unknowns? Additional equations
can come from kinematics, the
coefficient of restitution, new systems,
or additional information in the
problem statement.     

mv1 + Imp = mv2

Define your system
Draw impulse-momentum diagram
Define your coordinate system

Newton’s Second Law 
Use when:
- Relating forces and accelerations
- Want to find velocity or distance
 traveled  (found by integrating a(t), a(v),
 or a(s))  

Work-Energy
Use when:
- Relating velocities, distances, and
 sometimes forces
- Have two positions, usually have two
 velocities
- Given F= F(x)

Impulse-momentum
Use when:
- There is an impact or an impulsive force
- Want to relate forces, velocities and time
- Given F= F(t)

Does your answer seem reasonable?
Are the directions what you might
expect?  Have you accounted for all
normal, tangential, radial, and
transverse accelerations?    

S

M

A

R
T

Does your answer seem reasonable?
Did the system gain or lose kinetic
energy?  Did you account for any non-
conservative forces?   

Does your answer seem reasonable?
Remember, you always lose energy in
an impact (unless e = 1).    

Are there enough equations to solve for
the unknowns? Usually you only have
one system for work-energy. Additional
equations can come from kinematics, a
different principle, or additional
information in the problem statement.

T1 + V1 + U1→2

NC = T2 + V2
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13.4 Impacts 885

Sample Problem 13.18

A 20-Mg railroad car moving at a speed of 0.5 m/s to the right collides 

with a 35-Mg car at rest. After the collision, the 35-Mg car moves to the 

right at a speed of 0.3 m/s. Determine the coefficient of restitution between 

the two cars.

STRATEGY: Since there is an impact and no external impulses, use the 

conservation of linear momentum. You will also need to use the equation 

for the coefficient of restitution. 

MODELING: Choose your system to be both railroad cars and model 

them as particles. The impulse-momentum diagram for this system is 

shown in Fig. 1. There are no external impulses acting on this system.

Fig. 1 Velocities and linear momenta of the cars before and after impact.

=
vA = 0.5 m /s vB = 0

mBvBmAvA mBv'BmAv'A

v'B = 0.3 m /sv'A

20 Mg 35 Mg 20 Mg 35 Mg

ANALYSIS: The total momentum of the two cars is conserved, so 

mAvA 1 mBvB 5 mAv9A 1 mBv9B

Substituting in the known values gives

(20 Mg)(10.5 m/s) 1 (35 Mg)(0) 5 (20 Mg)v9A 1 (35 Mg)(10.3 m/s)

v9A 5 20.025 m/s    v9A 5 0.025 m/s z

You can obtain the coefficient of restitution from its definition as

e 5
v9B 2 v9A

vA 2 vB
5

10.3 2 (20.025)

10.5 2 0
5

0.325

0.5

e 5 0.65 b

REFLECT and THINK: The railroad cars are constrained to move 

along the track, so this is a one-dimensional direct central impact. The 

interaction forces are large, but they last for only a very short time. 

Mechanical energy is lost during this impact, so you could not have used 

the conservation of energy.
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886 Kinetics of Particles: Energy and Momentum Methods

Sample Problem 13.19

A ball is thrown against a frictionless, vertical wall. Immediately before the 

ball strikes the wall, its velocity has a magnitude of v and forms an angle of 

30° with the horizontal. Knowing that e 5 0.90, determine the magnitude 

and direction of the velocity of the ball as it rebounds from the wall.

STRATEGY: An impact occurs, and you are given the coefficient of 

restitution, so use conservation of momentum and the definition of the 

coefficient of restitution. 

MODELING: Choose your system to be the ball, and model it as a particle. 

The impulse-momentum diagram for this system is shown in Fig. 1.

Fig. 1 Impulse-momentum diagram for the ball.

mv

30°

=+

mv′t

RΔt
mv′n

t

n

ANALYSIS: Resolve the initial velocity of the ball into components 

perpendicular and parallel to the wall, as shown in Fig. 2. 

vn 5 v cos 30° 5 0.866v  vt 5 v sin 30° 5 0.500v

Motion Parallel to the Wall. Since the wall is frictionless, the 

impulse it exerts on the ball is perpendicular to the wall. Thus, the 

component of the momentum of the ball parallel to the wall is conserved. 

You have

v9t 5 vt 5 0.500v x

Motion Perpendicular to the Wall. Since the mass of the wall 

(and of the earth) is essentially infinite, writing an equation for conservation 

of the total momentum of the ball and wall would yield no useful 

information. However, using the equation for coefficient of restitution, you 

have

 0 2 v9n 5 e(vn 2 0)

 v9n 5 20.90(0.866v) 5 20.779v  v9n 5 0.779v z

Resultant Motion. Adding vectorially the components v9n and v9t 

(Fig. 3), you find

v9 5 0.926v b 32.7° b

REFLECT and THINK: Tests similar to this are done to make sure that 

sporting equipment––such as tennis balls, golf balls, and basketballs––are 

consistent and fall within certain specifications. Testing modern golf balls 

and clubs shows that the coefficient of restitution actually decreases with 

increasing club speed (from about 0.84 at a speed of 90 mph to about 

0.80 at club speeds of 130 mph).

Fig. 3 Finding the 
magnitude and direction for 
the final velocity.

v'

32.7°

0.500v

0.779v

30°

vn

vt

vn

vt

v

Fig. 2 Components of 
the initial velocity.
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13.4 Impacts 887

Sample Problem 13.20

The magnitudes and directions of the velocities of two identical friction-

less balls are shown before they strike each other. Assuming e 5 0.90, 

determine the magnitude and direction of the velocity of each ball after 

the impact.

STRATEGY: Since an impact occurs, use the principle of impulse and 

momentum. You also need the equation for the coefficient of restitution.

MODELING: Choose your system to be both balls. Assuming they are 

small and do not rotate, you can model them as particles. Figure 1 shows 

the normal and tangential directions; Fig. 2 shows the impulse-momentum 

diagram for this system. The impulsive forces that the balls exert on each 

other during the impact are directed along a line joining the centers of the 

balls (the line of impact). Therefore, it is best to resolve the velocities into 

components directed, respectively, along the line of impact and along the 

common tangent to the surfaces in contact. Thus,

 (vA)n 5 vA cos 30° 5 126.0 ft/s

 (vA)t 5 vA sin 30° 5 115.0 ft/s

 (vB)n 5 2vB cos 60° 5 220.0 ft/s

 (vB)t 5 vB sin 60° 5 134.6 ft/s 

ANALYSIS: 

Motion Along the Common Tangent. Considering only the t 
components, apply the principle of impulse and momentum to each ball 

separately. Since the impulsive forces are directed along the line of 

impact, the t component of the momentum, and hence the t component of 

the velocity of each ball, is unchanged. You have

(v9A)t 5 15.0 ft/s x  (v9B)t 5 34.6 ft/s x

Motion Along the Line of Impact. In the n direction, consider 

the two balls as a single system. By Newton’s third law, the internal 

impulses are, respectively, F Dt and 2F Dt, so they cancel. Thus, the total 

momentum of the balls is conserved as

 mA(vA)n 1 mB(vB)n 5 mA(v9A)n 1 mB(v9B)n

 m(26.0) 1 m(220.0) 5 m(v9A)n 1 m(v9B)n

 (v9A)n 1 (v9B)n 5 6.0 (1)

Using the equation for the coefficient of restitution relating the relative 

velocities, you have

(v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n]

You can now substitute the known quantities into this equation. It is 

important to use the signs correctly when substituting into this equation, 

e.g. (vB)n 5 220. This gives 

 (v9B)n 2 (v9A)n 5 (0.90)[26.0 2 (220.0)]

 (v9B)n 2 (v9A)n 5 41.4 (2)

B

m

30°

vA = 30 ft /s
vB = 40 ft /s

A

m

60°

t

n

B

m

30°

vA = 30 ft /s
vB = 40 ft /s

A

m

60°

Fig. 1 Initial velocities of A and 
B and the coordinate system to 
be used.

mA(vA)n

mA(vA)t

mB(vB)n

mB(vB)t

F Δt – F Δt

+
=

mA(v'A)n

mA(v'A)t

mB(v'B)n

mB(v'B)t

Fig. 2 Impulse-momentum 
diagram for the system.

(continued)
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888 Kinetics of Particles: Energy and Momentum Methods

Solving Eqs. (1) and (2) simultaneously yields

 (v9A)n 5 217.7        (v9B)n 5 123.7

 (v9A)n 5 17.7 ft/s z    (v9B)n 5 23.7 ft/s  y

Resultant Motion. Adding the velocity components of each ball 

vectorially (Fig. 3), you obtain

v9A 5 23.2 ft/s b 40.3°    v9B 5 41.9 ft/s a 55.6° b

REFLECT and THINK: Rather than choosing your system to be both 

balls, you could have applied impulse-momentum along the line of impact 

for each ball individually. This would have resulted in two equations and 

one additional unknown, FDt. To determine the impulsive force F, you 

would need to be given the time for the impact, Dt.

v'A = 23.2 ft /s

v'B = 41.9 ft /s

34.6

15.0

17.7 23.7

� = 55.6°� = 40.3°

Fig. 3 The velocity components 
can be resolved into their 
magnitudes and directions.

Sample Problem 13.21

Ball B is hanging from an inextensible cord BC. An identical ball A is 

released from rest when it is just touching the cord and acquires a velocity v0 

before striking ball B. Assuming a perfectly elastic impact (e 5 1) and no 

friction, determine the velocity of each ball immediately after impact.

STRATEGY: Since an impact occurs, use the impulse-momentum 

principle. You also need the equation for coefficient of restitution.

MODELING: You have several choices of systems in this problem. If 

you choose A as your system, you obtain the impulse-momentum diagram 

shown in Fig. 1. Choosing the system to be both balls results in the 

impulse-momentum diagram shown in Fig. 2.

A

B

m(v'A)n

m(v'A)t

F Δt 

+ =

2r
2r

sin q =

q = 30°

30°

= 0.5

n

r

r

mv0

q

A

n

t

A

t

A

Fig. 1 Impulse-momentum diagram for 
ball A.

B

C

A

A

v0
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13.4 Impacts 889

ANALYSIS: 

Impulse-Momentum Principle: Ball A. Applying the conservation 

of momentum of ball A along the common tangent to balls A and B 
(Fig. 1) gives 

 mvA 1 F Dt 5 mv9A

1R t components:   mv0 sin 30° 1 0 5 m(v9A)t

 (v9A)t 5 0.5v0 (1)

Impulse-Momentum Principle: Balls A and B. Since ball B is 

constrained to move in a circle with center C, its velocity vB after impact 

must be horizontal. Applying the conservation of momentum for a system 

containing both balls (Fig. 2) gives

 mvA 1 T Dt 5 mv9A 1 mv9B
 y1  x components:    0 5 m(v9A)t cos 30° 2 m(v9A)n sin 30° 2 mv9B

T Δt 

x
30°

m(v'A)n

m(v'A)t

+ =
mv0

A

B B B

A A

mv'B

Fig. 2 Impulse-momentum diagram for 
both balls.

This equation expresses the conservation of total momentum in the 

x  direction. Substituting for (v9A)t from Eq. (1) and re arranging terms, you 

have

 0.5(v9A)n 1 v9B 5 0.433v0 (2)

Relative Velocities Along the Line of Impact. Since e 5 1, the 

equation for the coefficient of restitution gives

 (v9B)n 2 (v9A)n 5 (vA)n 2 (vB)n

 v9B sin 30° 2 (v9A)n 5 v0 cos 30° 2 0

 0.5v9B 2 (v9A)n 5 0.866v0 (3)

It is important to note that the coefficient of restitution always uses the 

components of the velocities along the line of impact; that is, the 

n-direction. Solving Eqs. (2) and (3) simultaneously, you obtain

(v9A)n 5 20.520v0    v9B 5 0.693v0

v9B 5 0.693v0 z b

Recalling Eq. (1), draw a sketch (Fig. 3) and obtain by trigonometry

v9A 5 0.721v0    β 5 46.1°    α 5 46.1° 2 30° 5 16.1°

v9B 5 0.721v0 a 16.1° b

REFLECT and THINK: Since e 5 1, the impact between A and B is 

perfectly elastic. Therefore, rather than using the coefficient of restitution, 

you could have used the conservation of energy as your final equation.

30°
β

vB = 0

vA = v0

α

30°

A

B

n

30°
A

B

n

(v'A)n

(v'A)t
v'B

A

n

x

t

v'A

(v'A)t = 0.5v0

(v'A)n = 0.520v0

Fig. 3 Diagram to find the 
magnitude and direction for 
the final velocity of B.
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890 Kinetics of Particles: Energy and Momentum Methods

Sample Problem 13.22

A 30-kg block is dropped from a height of 2 m onto the 10-kg pan of a 

spring scale. The constant of the spring is k 5 20 kN/m. Assuming the 

impact to be perfectly plastic, determine the maximum deflection of the pan. 

STRATEGY: This problem has three distinct phases, as shown in Fig. 1. 

In phase 1, A falls (use the conservation of energy); in phase 2, A hits B 

(use the conservation of momentum); and in phase 3, A and B move down 

together (use the conservation of energy).

2 m

1 2 3 4

Conservation
of energy

Conservation
of energy

Impact: Total
momentum conserved

(vA)2

v3

v4 = 0

x3

(vB)1 = 0 (vB)2 = 0

(vA)1 = 0

h

No deformation
of spring )(Datum

for Vg = 0)(
x4

Fig. 1 Three phases of the motion.

MODELING: For each phase of the motion, define a different system. 

For phase 1, choose A as your system, and for phase 2, define your system 

as A and B together. For phase 3, your system is A, B, and the spring.

ANALYSIS:

Conservation of Energy A. Block A weighs

WA 5 (30 kg)(9.81 m/s2) 5 294 N.

Thus,

T1 5 1
2 mA(vA)2

1 5 0  V1 5 WAy 5 (294 N)(2 m) 5 588 J

 T2 5 
1
2 mA(vA)2

2 5 
1
2(30 kg)(vA)2

2  V2 5 0

T1 1 V1 5 T2 1 V2:  0 1 588 J 5 
1
2(30 kg)(vA)2

2 1 0

 (vA)2 5 16.26 m/s  (vA)2 5 6.26 m/sw

Impact: Conservation of Momentum for A and B. The impact 

is perfectly plastic, so e 5 0; the block and pan move together after the 

impact.

mA(vA)2 1 mB(vB)2 5 (mA 1 mB)v3

 (30 kg)(6.26 m/s) 1 0 5 (30 kg 1 10 kg)v3

v3 5 14.70 m/s  v3 5 4.70 m/sw

Conservation of Energy for A, B, and the Spring. Initially, the 

spring supports the weight WB of the pan; thus the initial deflection of the 

spring is

x3 5
WB

k
5

(10 kg)(9.81 m/s2)

20 3 103 N/m
5

98.1 N

20 3 103 N/m
5 4.91 3 1023 m

30 kg

10 kg 2 m

A

B
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13.4 Impacts 891

Denoting the total maximum deflection of the spring by x4, you have

T3 5 1
2(mA 1 mB)v2

3 5 1
2(30 kg 1 10 kg)(4.70 m/s)2 5 442 J

V3 5 Vg 1 Ve 5 0 1 
1
2 kx2

3 5 
1
2 (20 3 103)(4.91 3 1023)2 5 0.241 J

T4 5 0

V4 5 Vg 1 Ve 5 (WA 1 WB)(2h) 1 1
2kx2

4 5 2(392)h 1 1
2(20 3 103)x2

4

The displacement of the pan is h 5 x4 – x3, so the final result is

T3 1 V3 5 T4 1 V4:

442 1 0.241 5 0 2 392(x4 2 4.91 3 1023) 1 
1
2(20 3 103)x2

4

x4 5 0.230 m    h 5 x4 2 x3 5 0.230 m 2 4.91 3 1023 m

 h 5 0.225 m h 5 225 mm b

REFLECT and THINK: The spring constant for this scale is pretty 

large, but the block is fairly massive and is dropped from a height of 2 m. 

From this perspective, the deflection seems reasonable. 

Sample Problem 13.23

A 2-kg block A is pushed up against a spring, compressing it 

a distance x 5 0.1 m. The block is then released from rest and 

slides down the 20° incline until it strikes a 1-kg sphere B that 

is suspended by a 1-m inextensible rope. The spring constant 

k 5 800 N/m, the coefficient of friction between A and the 

ground is 0.2, block A slides from the unstretched length of 

the spring a distance d 5 1.5 m, and the coefficient of 

restitution between A and B is 0.8. When α 5 40°, determine 

(a) the speed of B, (b) the tension in the rope.

STRATEGY: A lot of things are going on in this problem, 

so you need to break the motion into steps.

 Step 1: Block A slides down the incline, so there are two posi-

tions. Therefore, use the work–energy principle between 

position 1 and position 2 to find the velocity of A just 

before it strikes ball B (Fig. 1).

 Step 2: Block A hits B, so an impact occurs. Therefore, use 

impulse-momentum and the equation for the coefficient 

of restitution.

 Step 3: Ball B is swinging up, so you have two positions (position 

2 and position 3 in Fig. 1). You are asked to find the speed 

at position 3, therefore, use the conservation of energy.

 Step 4: To find the tension when α 5 40°, use Newton’s second 

law with normal and tangential coordinates. 

(continued)

20°

L

B

k

�

dx

A

20°

Position 1

Position 2

Position 3

Datum

L

B

k

�

dx

A

Fig. 1 Three positions of interest for this problem.
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892 Kinetics of Particles: Energy and Momentum Methods

MODELING: Each step requires a different system. For Step 1, your 

system is A and the spring. For Step 2, it is A and B. Finally, for Steps 3 

and 4, it is B. We model A and B as particles and draw the appropriate 

figures in the analysis section.

ANALYSIS:

Step 1. Block Slides Down the Incline. The principle of work 

and energy between where the block is released to the point it strikes B 

is

 T1 1 Vg1
1 Ve1

1 UNC
1y2 5 T2 1 Vg2

1 Ve2
 (1)

Work. The only non-conservative force that does work is the friction 

force. A free-body diagram for A is shown in Fig. 2. Applying Newton’s 

second law gives 

1Q oFy 5 0:  N 2 mAg cos θ 5 0  or

N 5 mAg cos θ 5 (2 kg)(9.81 m/s2) cos 20° 5 18.437 N

and the friction force is

Ff 5 μk N 5 (0.2)(18.437 N) 5 3.687 N

So the work is

UNC
1y2 5 2Ff (x 1 d) 5 2(3.687 N)(1.6 m) 5 25.900 J

Position 1. Place your datum for Vg at the impact point near B (see 

Fig. 1). Calculate the initial energy as

T1 5 0,  Ve1
5

1
2 kx1

2 5
1

2
 18002 10.122 5 4.00 J

Vg1
 5 mAgh1 5 mAg(x 1 d)sin θ 5 (2)(9.81)(1.6) sin 20° 5 10.737 J

Position 2. The energy at position 2 is

T2 5
1
2 mAv2

A 5
1
2 (2)v2

A 5 1.000v2
A  V2 5 0

Substituting into Eq. (1) gives 0 1 10.737 J 1 4.00 J 2 5.900 J 5 1.00 v2
A 

1 0. Solving for vA gives vA 5 2.973 m/s.

Step 2. Impact. The impulse-momentum diagram for A and B is  

shown in Fig. 3.

mAvA

20°

=+

y

t

x

n

mAv′A

mBv′B20°RΔt

−RΔt

FΔt

Fig. 3 Impulse-momentum diagram for A and B.

Ff

θ

=
Fs

mAg

ma

N

y

x

Fig. 2 Free-body diagram and kinetic 
diagram for block A.

bee87342_ch13_795-914.indd   892bee87342_ch13_795-914.indd   892 11/26/14   12:17 PM11/26/14   12:17 PM

UPLOADED BY AHMAD T JUNDI



13.4 Impacts 893

Note that two coordinate systems are defined: n defines the line of impact 

between the block and ball and y is in the direction of the impulsive force 

of the rope. Since no impulsive forces act in the horizontal direction, apply 

impulse-momentum in the x direction. Thus,

y
1  x components: mAvA cos θ 1 0 5 mAvA9 cos θ 1 mBv9B (2)

Coefficient of Restitution.

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] or vB cosθ 2 v9A 5 evA (3)

In Eqs. (2) and (3) you can solve for two unknowns, v9A and v9B. This gives

v9A 5 1.0382 m/s

v9B 5 3.6356 m/s

Step 3. Sphere B Rises. The tension does no work, so use the 

conservation of energy for B between positions 2 and 3. Again, define the 

datum as shown in Fig 1.

 T2 1 Vg2
1 Ve2

5 T3 1 Vg3
1 Ve3

 (4)

Position 2.

T2 5
1

2
 mB(v9B)2, Vg2

5 0, Ve2
5 0

Position 3. 

T3 5
1

2
 mB v3

2, Vg3
5 mB 

gL 11 2 cos α2,Ve3
5 0

Substituting these into Eq. (4) and solving for vB3
 gives

vB3
5 2.94 m/s b

Step 4. Tension in the Rope. A free-body diagram and kinetic 

diagram for the sphere at position 3 are shown in Fig. 4. Applying 

Newton’s second law in the normal direction gives

1a oFn 5 mB an:    T 2 mB 
g cos α 5 mB 

an 5 mB 

v2
B3

L

Solving for T, you find

T 5 16.14 N b

REFLECT and THINK: You cannot use work–energy from position 1 

to position 3 because a loss of energy occurs when A hits B. If the 

coefficient of friction had been larger, say μk 5 0.4, you would find that 

after the impact, B has a speed of 2.10 m/s. Plugging this into Eq. (4) 

gives an imaginary number for the speed at α 5 40°, meaning sphere B 

does not reach this angle.

=
t

n mBan
mBat

mBg

T α

Fig. 4
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894894

T his section deals with the impact of two smooth bodies, i.e., with a collision 

occurring in a very small interval of time. You solved several impact problems 

by noting that the total momentum of the two bodies is conserved and by expressing 

the relationship between the relative velocities of the two bodies before and after 

impact.

1. As a first step in your solution, you should select and draw two coordinate axes: 

the t axis, which is tangent to the surfaces of contact of the two colliding bodies; and 

the n axis, which is normal to the surfaces of contact and defines the line of impact. 

In all of the problems in this section, the line of impact passes through the mass 

centers of the colliding bodies, and the impact is referred to as a central impact.

2. Next draw an impulse-momentum diagram showing the momenta of the bodies 

before impact, the impulses exerted on the bodies during impact, and the final momenta 

of the bodies after impact (Fig. 13.24). Then observe whether the impact is a direct 
central impact or an oblique central impact.

3. Direct central impact [Sample Prob. 13.18]. This occurs when the velocities of 

bodies A and B are both directed along the line of impact before impact (Fig. 13.20a).

a. Conservation of momentum. Since the impulsive forces are internal to the 

system, the total momentum of A and B is conserved as

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.37)

where vA and vB denote the velocities of bodies A and B before impact and v9A and v9B 

denote their velocities after impact.

 b. Coefficient of restitution. You can also write the relation between the 

relative velocities of the two bodies before and after impact as

 v9B 2 v9A 5 e(vA 2 vB) (13.43)

where e is the coefficient of restitution between the two bodies.

 Note that Eqs. (13.37) and (13.43) are scalar equations that you can solve for 

two unknowns. Also, be careful to adopt a consistent sign convention for all 

velocities.

4. Oblique central impact [Sample Prob. 13.20]. This occurs when one or both of 

the initial velocities of the two bodies is not directed along the line of impact 

(Fig. 13.20b). Again, these solution steps are only applicable to problems where the 

impulsive forces in the tangential direction are negligible (e.g., you would not use 

these to solve Prob. 13.146). To solve problems of this type, you should first resolve 
the momenta and impulses shown in your diagram into components along the t axis 

and the n axis.

SOLVING PROBLEMS 
ON YOUR OWN
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895 895

a. Conservation of momentum. Since the impulsive forces act along the line 

of impact, i.e., along the n axis, the component along the t axis of the momentum of 
each body is conserved. Therefore, for each body, you can write that the t components 

of its velocity before and after impact are equal. So,

(vA)t 5 (v9A)t    (vB)t 5 (v9B)t (13.47)

 Also, the component along the n axis of the total momentum of the system is 

conserved as

 mA(vA)n 1 mB(vB)n 5 mA(v9A)n 1 mB(v9B)n (13.48)

 b. Coefficient of restitution. The relation between the relative velocities of the 

two bodies before and after impact can be written in the n direction only. Hence,

 (v9B)n 2 (v9A)n 5 e[(vA)n 2(vB)n)] (13.49)

 You now have four equations that you can solve for four unknowns. Note that 

after finding all of the velocities, you can determine the impulse exerted by body A 

on body B by drawing an impulse-momentum diagram for B alone and equating 

components in the n direction.

 c. When the motion of one of the colliding bodies is constrained, you must 

include the impulses of the external forces in your diagram [Sample Probs. 13.21 and 

13.23]. You will then observe that some of the previous relations do not hold.  However, 

in the example shown in Fig. 13.26, the total momentum of the system is conserved 

in a direction perpendicular to the external impulse. Also note that, when a body A 

bounces off a fixed surface B, the only conservation of momentum equation that you 

can use is the first of Eq. (13.47) [Sample Prob. 13.19].

5. Remember that energy is lost during most impacts. The only exception is for 

perfectly elastic impacts (e 5 1), where energy is conserved. Thus, in the general 

case of impact where e , 1, mechanical energy is not conserved. Therefore, be careful 

not to apply the principle of conservation of energy through an impact situation. 

Instead, apply this principle separately to the motions preceding and following the 

impact [Sample Probs. 13.22 and 13.23].
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CONCEPT QUESTIONS

13.CQ6 A 5-kg ball A strikes a 1-kg ball B that is initially at rest. Is it pos-

sible that after the impact A is not moving and B has a speed of 5v?

   a. Yes

   b. No

   Explain your answer.

IMPULSE-MOMENTUM DIAGRAM PRACTICE PROBLEMS

 13.F6 A sphere with a speed v0 rebounds after striking a frictionless 

inclined plane as shown. Draw the impulse-momentum diagram that 

can be used to find the velocity of the sphere after the impact.

 13.F7 An 80-Mg railroad engine A coasting at 6.5 km/h strikes a 20-Mg 

flatcar C carrying a 30-Mg load B which can slide along the floor 

of the car (μk 5 0.25). The flatcar was at rest with its brakes 

released. Instead of A and C coupling as expected, it is observed 

that A rebounds with a speed of 2 km/h after the impact. Draw 

impulse-momentum diagrams that can be used to determine (a) the 

coefficient of restitution and the speed of the flatcar immediately 

after impact, (b) the time it takes the load to slide to a stop relative 

to the car.

A

B

C

20 Mg

30 Mg
6.5 km/h

Fig. P13.F7

 13.F8 Two frictionless balls strike each other as shown. The coefficient of 

restitution between the balls is e. Draw the impulse-momentum 

diagram that could be used to find the velocities of A and B after 

the impact.

 13.F9 A 10-kg ball A moving horizontally at 12 m/s strikes a 10-kg 

block B. The coefficient of restitution of the impact is 0.4 and the 

coefficient of kinetic friction between the block and the inclined 

surface is 0.5. Draw the impulse-momentum diagram that can be 

used to determine the speeds of A and B after the impact.

vA

A
B

q

q

Fig. P13.F9

Problems

A B

v

5vA B

Before After

Fig. P13.CQ6

v0

q

Fig. P13.F6

vA

vB

40°

25°
B

A

Fig. P13.F8
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 13.F10 Block A of mass mA strikes ball B of mass mB with a speed of vA 

as shown. Draw the impulse-momentum diagram that can be used 

to determine the speeds of A and B after the impact and the impulse 

during the impact.

END-OF-SECTION PROBLEMS

 13.155 The coefficient of restitution between the two collars is known to 

be 0.70. Determine (a) their velocities after impact, (b) the energy 

loss during impact.

A B

1 m/s

5 kg 3 kg

1.5 m/s

Fig. P13.155

 13.156 Collars A and B, of the same mass m, are moving toward each other 

with identical speeds as shown. Knowing that the coefficient of res-

titution between the collars is e, determine the energy lost in the 

impact as a function of m, e, and v.

 13.157 One of the requirements for tennis balls to be used in official com-

petition is that, when dropped onto a rigid surface from a height of 

100 in., the height of the first bounce of the ball must be in the range 

53 in. # h # 58 in. Determine the range of the coefficients of restitu-

tion of the tennis balls satisfying this requirement.

 13.158 Two disks sliding on a frictionless horizontal plane with opposite 

velocities of the same magnitude v0 hit each other squarely. Disk A 

is known to have a weight of 6 lb and is observed to have zero 

velocity after impact. Determine (a) the weight of disk B, knowing 

that the coefficient of restitution between the two disks is 0.5, 

(b) the range of possible values of the weight of disk B if the coef-

ficient of restitution between the two disks is unknown.

 13.159 To apply shock loading to an artillery shell, a 20-kg pendulum A is 

released from a known height and strikes impactor B at a known veloc-

ity v0. Impactor B then strikes the 1-kg artillery shell C.  Knowing the 

coefficient of restitution between all objects is e, determine the mass 

of B to maximize the impulse applied to the artillery shell C.

 13.160 Packages in an automobile parts supply house are transported to the 

loading dock by pushing them along on a roller track with very little 

friction. At the instant shown, packages B and C are at rest, and 

package A has a velocity of 2 m/s. Knowing that the coefficient of 

restitution between the packages is 0.3, determine (a) the velocity 

of package C after A hits B and B hits C, (b) the velocity of A after 

it hits B for the second time.

2 m/s

A B C

8 kg 4 kg 6 kg

Fig. P13.160

A B

v v

Fig. P13.156

A

A

B

B

v0 v0

v'

Fig. P13.158

v0

A
C

B

Fig. P13.159

vA

A

L

B

20°

Fig. P13.F10
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13.161 Three steel spheres of equal mass are suspended from the ceiling 

by cords of equal length that are spaced at a distance slightly 

greater than the diameter of the spheres. After being pulled back 

and released, sphere A hits sphere B, which then hits sphere C. 

Denoting the coefficient of restitution between the spheres by e and 

the velocity of A just before it hits B by v0, determine (a) the 

velocities of A and B immediately after the first collision, (b) the 

velocities of B and C immediately after the second collision. 

(c) Assuming now that n spheres are suspended from the ceiling and 

that the first sphere is pulled back and released as described here, 

determine the velocity of the last sphere after it is hit for the first 

time. (d) Use the result of part c to obtain the velocity of the last 

sphere when n 5 8 and e 5 0.9.

 13.162 At an amusement park there are 200-kg bumper cars A, B, and C that 

have riders with masses of 40 kg, 60 kg, and 35 kg,  respectively. Car 

A is moving to the right with a velocity vA 5 2 m/s and car C has a 

velocity vB 5 1.5 m/s to the left, but car B is initially at rest. The 

coefficient of restitution between each car is 0.8. Determine the final 

velocity of each car, after all impacts, assuming (a) cars A and C hit 

car B at the same time, (b) car A hits car B before car C does.

vA vC

A CB

Fig. P13.162 and P13.163

 13.163 At an amusement park there are 200-kg bumper cars A, B, and C 

that have riders with masses of 40 kg, 60 kg, and 35 kg, respectively. 

Car A is moving to the right with a velocity vA 5 2 m/s when it 

hits stationary car B. The coefficient of restitution between each car 

is 0.8. Determine the velocity of car C so that after car B collides 

with car C the velocity of car B is zero.

 13.164 Two identical billiard balls can move freely on a horizontal table. 

Ball A has a velocity v0 as shown and hits ball B, which is at rest, 

at a point C defined by θ 5 458. Knowing that the coefficient of 

restitution between the two balls is e 5 0.8 and assuming no friction, 

determine the velocity of each ball after impact.

A'q

B
A C

v0

Fig. P13.164

 13.165 Two identical pool balls with a 2.37-in. diameter may move freely 

on a pool table. Ball B is at rest, and ball A has an initial velocity 

of v 5 v0i. (a) Knowing that b 5 2 in. and e 5 0.7, determine the 

velocity of each ball after impact. (b) Show that if e 5 1, the final 

velocities of the balls form a right angle for all values of b.

A

A'

B Cv0

Fig. P13.161

x

y

v

b
A

B

Fig. P13.165
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 13.166 A 600-g ball A is moving with a velocity of magnitude 6 m/s when 

it is hit as shown by a 1-kg ball B that has a velocity of magnitude 

4 m/s. Knowing that the coefficient of restitution is 0.8 and assuming 

no friction, determine the velocity of each ball after impact.

13.167 Two identical hockey pucks are moving on a hockey rink at the same 

speed of 3 m/s and in perpendicular directions when they strike each 

other as shown. Assuming a coefficient of restitution e 5 0.9, 

determine the magnitude and direction of the velocity of each puck 

after impact.

 13.168 The coefficient of restitution is 0.9 between the two 60-mm-diameter 

billiard balls A and B. Ball A is moving in the direction shown with 

a velocity of 1 m/s when it strikes ball B, which is at rest. Knowing 

that after impact B is moving in the x direction, determine (a) the 

angle θ, (b) the velocity of B after impact.

A

B

x

y

vA

vB′

150 mm

250 mm

θ

Fig. P13.168

 13.169 A boy located at point A halfway between the center O of a

semicircular wall and the wall itself throws a ball at the wall in a 

direction forming an angle of 45° with OA. Knowing that after hitting 

the wall the ball rebounds in a direction parallel to OA, determine 

the coefficient of restitution between the ball and the wall.

 13.170 The Mars Pathfinder spacecraft used large airbags to cushion its 

impact with the planet’s surface when landing. Assuming the space-

craft had an impact velocity of 18.5 m/s at an angle of 458 with 

respect to the horizontal, the coefficient of restitution is 0.85 

and neglecting friction, determine (a) the height of the first 

bounce, (b) the length of the first bounce. (Acceleration of gravity 

on Mars 5 3.73 m/s2.)

45°

18.5 m/s

Fig. P13.170

50°

40°

A
B

vA = 6 m/s

vB = 4 m/s

Fig. P13.166

20°
A

vA

vB

Fig. P13.167

R
2

R

O
A

B

v

v�

45°

Fig. P13.169
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 13.171 A girl throws a ball at an inclined wall from a height of 3 ft, hitting 

the wall at A with a horizontal velocity v0 of magnitude 25 ft/s. 

Knowing that the coefficient of restitution between the ball and the 

wall is 0.9 and neglecting friction, determine the distance d from 

the foot of the wall to the point B where the ball will hit the ground 

after bouncing off the wall.

Fig. P13.171

C

A

B
3 ft 60°

d

v0

 13.172 Rockfalls can cause major damage to roads and infrastructure. To 

design mitigation bridges and barriers, engineers use the coefficient 

of restitution to model the behavior of the rocks. Rock A falls a 

distance of 20 m before striking an incline with a slope of α 5 40°. 

Knowing that the coefficient of restitution between rock A and the 

incline is 0.2, determine the velocity of the rock after the impact.

 13.173 From experimental tests, smaller boulders tend to have a greater 

coefficient of restitution than larger boulders. Rock A falls a distance 

of 20 meters before striking an incline with a slope of α 5 45°. 

Knowing that h 5 30 m and d 5 20 m, determine if a boulder will 

land on the road or beyond the road for a coefficient of restitution 

of (a) e 5 0.2, (b) e 5 0.1.

 13.174 Two cars of the same mass run head-on into each other at C. After 

the collision, the cars skid with their brakes locked and come to a 

stop in the positions shown in the lower part of the figure. Knowing 

that the speed of car A just before impact was 5 mi/h and that the 

coefficient of kinetic friction between the pavement and the tires of 

both cars is 0.30, determine (a) the speed of car B just before impact, 

(b) the effective coefficient of restitution between the two cars.

A

A B
C

C

vA vB

12 ft

3 ft

B

Fig. P13.174

h

d 

α

Fig. P13.172 and P13.173
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 13.175 A 1-kg block B is moving with a velocity v0 of magnitude v0 5 2 m/s 

as it hits the 0.5-kg sphere A, which is at rest and hanging from a 

cord attached at O. Knowing that μk 5 0.6 between the block and 

the horizontal surface and e 5 0.8 between the block and the sphere, 

determine after impact (a) the maximum height h reached by the 

sphere, (b) the distance x traveled by the block.

A
B

O

v0h

x

Fig. P13.175

 13.176 A 0.25-lb ball thrown with a horizontal velocity v0 strikes a 1.5-lb

plate attached to a vertical wall at a height of 36 in. above the ground. 

It is observed that after rebounding, the ball hits the ground at a 

distance of 24 in. from the wall when the plate is rigidly attached to 

the wall (Fig. 1) and at a distance of 10 in. when a foam-rubber mat 

is placed between the plate and the wall (Fig. 2). Determine 

(a) the coefficient of restitution e between the ball and the plate, 

(b) the initial velocity v0 of the ball.

v0

36 in.

1.5 lb

0.25 lb

v0

0.25 lb

10 in.24 in.

(1) (2)

1.5 lb

Fig. P13.176

 13.177 After having been pushed by an airline employee, an empty 40-kg 

luggage carrier A hits with a velocity of 5 m/s an identical carrier 

B containing a 15-kg suitcase equipped with rollers. The impact 

causes the suitcase to roll into the left wall of carrier B. Knowing 

that the coefficient of restitution between the two  carriers is 0.80 

and that the coefficient of restitution between the suitcase and the 

wall of carrier B is 0.30, determine (a) the velocity of carrier B after 

the suitcase hits its wall for the first time, (b) the total energy lost 

in that impact. Fig. P13.177

A B

C

5 m/s
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 13.178 Blocks A and B each weigh 0.8 lb and block C weighs 2.4 lb. The 

coefficient of friction between the blocks and the plane is μk 5 0.30. 

Initially block A is moving at a speed v0 5 15 ft/s and blocks B and 

C are at rest (Fig. 1). After A strikes B and B strikes C, all three 

blocks come to a stop in the positions shown (Fig. 2). Determine 

(a) the coefficients of restitution between A and B and between B 

and C, (b) the displacement x of block C.

A B C

A B C

v0

3 in. 3 in.

(1)

(2)

12 in.

3 in.

12 in.

12 in. x

Fig. P13.178

 13.179 A 5-kg sphere is dropped from a height of y 5 2 m to test newly 

designed spring floors used in gymnastics. The mass of the floor 

section is 10 kg, and the effective stiffness of the floor is 

k 5 120 kN/m. Knowing that the coefficient of restitution between 

the ball and the platform is 0.6, determine (a) the height h reached 

by the sphere after rebound, (b) the maximum force in the springs.

 13.180 A 5-kg sphere is dropped from a height of y 5 3 m to test a new 

spring floor used in gymnastics. The mass of floor section B is 12 kg, 

and the sphere bounces back upwards a distance of 44 mm. Knowing 

that the maximum deflection of the floor section is 33 mm from its 

equilibrium position, determine (a) the coefficient of restitution 

between the sphere and the floor, (b) the effective spring constant k
of the floor section.

 13.181 The three blocks shown are identical. Blocks B and C are at rest 

when block B is hit by block A, which is moving with a velocity vA

of 3 ft/s. After the impact, which is assumed to be perfectly plastic 

(e 5 0), the velocity of blocks A and B decreases due to friction, 

while block C picks up speed, until all three blocks are moving with 

the same velocity v. Knowing that the coefficient of kinetic friction 

between all surfaces is μk 5 0.20, determine (a) the time required 

for the three blocks to reach the same velocity, (b) the total distance 

traveled by each block during that time.

A B

C

A B

C

v

vA = 3 ft/s

Fig. P13.181

y

h

B

A

Fig. P13.179 and P13.180
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 13.182 Block A is released from rest and slides down the frictionless surface 

of B until it hits a bumper on the right end of B. Block A has a mass 

of 10 kg and object B has a mass of 30 kg and B can roll freely on 

the ground. Determine the velocities of A and B immediately after 

impact when (a) e 5 0, (b) e 5 0.7.

Fig. P13.182

0.2 m

B

A

 13.183 A 340-g ball B is hanging from an inextensible cord attached to a 

support C. A 170-g ball A strikes B with a velocity v0 with a 

magnitude of 1.5 m/s at an angle of 60° with the vertical. Assuming 

perfectly elastic impact (e 5 1) and no friction, determine the height 

h reached by ball B.

 13.184 A test machine that kicks soccer balls has a 5-lb simulated foot 

attached to the end of a 6-ft long pendulum arm of negligible mass. 

Knowing that the arm is released from the horizontal position and 

that the coefficient of restitution between the foot and the 1-lb ball 

is 0.8, determine the exit velocity of the ball (a) if the ball is station-

ary, (b) if the ball is struck when it is rolling towards the foot with 

a velocity of 10 ft/s.

 13.185 Ball B is hanging from an inextensible cord. An identical ball A is 

released from rest when it is just touching the cord and drops 

through the vertical distance hA 5 8 in. before striking ball B. 

Assuming e 5 0.9 and no friction, determine the resulting maximum 

vertical displacement hB of the ball B.

A

B

hA

hB

Fig. P13.185

 13.186 A 70-g ball B dropped from a height h0 5 1.5 m reaches a height 

h2 5 0.25 m after bouncing twice from identical 210-g plates. Plate 

A rests directly on hard ground, while plate C rests on a foam-

rubber mat. Determine (a) the coefficient of restitution between the 

ball and the plates, (b) the height h1 of the ball’s first bounce.

C

v0

A

60°

h
B

Fig. P13.183

A

B

C h2

h0
h1

Fig. P13.186

Fig. P13.184

6 ft

60°
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 13.187 A 2-kg sphere moving to the right with a velocity of 5 m/s strikes at 

A, which is on the surface of a 9-kg quarter cylinder that is initially 

at rest and in contact with a spring with a constant of 20 kN/m. The 

spring is held by cables, so it is initially compressed 50 mm. 

Neglecting friction and knowing that the coefficient of restitution is 

0.6, determine (a) the velocity of the sphere immediately after 

impact, (b) the maximum compressive force in the spring.

 13.188 When the rope is at an angle of α 5 30°, the 1-lb sphere A has a 

speed v0 5 4 ft/s. The coefficient of restitution between A and the 

2-lb wedge B is 0.7 and the length of rope l 5 2.6 ft. The spring 

constant has a value of 2 lb/in. and θ 5 20°. Determine (a) the 

velocities of A and B immediately after the impact, (b) the maximum 

deflection of the spring, assuming A does not strike B again before 

this point.

l

k

a

B
A

q
v0

Fig. P13.188 and P13.189

13.189 When the rope is at an angle of α 5 30°, the 1-kg sphere A has a 

speed v0 5 0.6 m/s. The coefficient of restitution between A and the 

2-kg wedge B is 0.8 and the length of rope l 5 0.9 m. The spring 

constant has a value of 1500 N/m and θ 5 20°. Determine (a) the 

velocities of A and B immediately after the impact, (b) the maximum 

deflection of the spring, assuming A does not strike B again before 

this point.

5 m/s
Cable

A

45°

Fig. P13.187
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Review and Summary
This chapter was devoted to presenting the method of work and energy and 

the method of impulse and momentum. In the first half of the chapter, we 

studied the method of work and energy and its application to the analysis of 

the motion of particles.

Work of a Force
We first considered a force F acting on a particle A and defined the work of 
F corresponding to the small displacement dr [Sec. 13.1] as the quantity

dU 5 F?dr (13.1)

or recalling the definition of the scalar product of two vectors, as

dU 5 F ds cos α  (13.19)

where α is the angle between F and dr (Fig. 13.30). We obtained the work 

of F during a finite displacement from A1 to A2, denoted by U1y2, by integrating 

Eq. (13.1) along the path described by the particle as

 U1y2 5 #
A2

A1

 F?dr (13.2)

For a force defined by its rectangular components, we wrote

 U1y2 5 #
A2

A1

 (Fx dx 1 Fy dy 1 Fz dz) (13.20)

Work of a Weight
We obtain the work of the weight W of a body as its center of gravity moves 

from the elevation y1 to y2 (Fig. 13.31) by substituting Fx 5 Fz 5 0 and 

Fy 5 2W into Eq. (13.20) and integrating. We found

 U1y2 5 2#
y2

y1

 W dy 5 Wy1 2 Wy2 (13.4)

A2

A

A1

y2

y1

dy

y

W

Fig. 13.31

A1

s1

s2

s

A2

F

O

A

dr
ds

a

Fig. 13.30
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Work of the Force Exerted by a Spring
The work of a force F exerted by a spring on a body A during a finite 

displacement of the body (Fig. 13.32) from A1 (x 5 x1) to A2 (x 5 x2) was 

obtained by 

 dU 5 2F dx 5 2kx dx

 U1y2 5 2#
x2

x1

 kx dx 5
1
2 kx2

1 2
1
2 kx2

2 (13.6)

The work of F is therefore positive when the spring is returning to its 

undeformed position.

A0

A1

Spring undeformed

B

B

B

F

A

A2

x1

x

x2

Fig. 13.32

Work of the Gravitational Force
We obtained the work of the gravitational force F exerted by a particle of 

mass M located at O on a particle of mass m as the latter moves from A1 to 

A2 (Fig. 13.33) by recalling from Sec. 12.2C the expression for the magnitude 

of F and writing

U1y2 5 2#
r2

r1

 

GMm

r 2
 dr 5

GMm
r2

2
GMm

r1

 (13.7)

Fig. 13.33

O

A2

A1

r2

r1
θ

dr

F

–F

M

r

A'

A
m

dθ
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Kinetic Energy of a Particle
We defined the kinetic energy of a particle of mass m moving with a 

velocity v [Sec. 13.1B] as the scalar quantity

 T 5
1
2 
mv2 (13.9)

Principle of Work and Energy
From Newton’s second law, we derived the principle of work and energy, 

which states that we can obtain the kinetic energy of a particle at A2 by adding 

its kinetic energy at A1 to the work done during the displacement from A1 to 

A2 by the force F exerted on the particle as

 T1 1 U1y2 5 T2 (13.11)

Method of Work and Energy
The method of work and energy simplifies the solution of many problems 

dealing with forces, displacements, and velocities, since it does not require 

the determination of accelerations [Sec. 13.1C]. We also note that it involves 

only scalar quantities, and we do not need to consider forces that do no work 

[Sample Probs. 13.1 and 13.4]. However, this method should be supplemented 

by the direct application of Newton’s second law to determine a force normal 

to the path of the particle [Sample Prob. 13.6].

Power and Mechanical Efficiency
The power developed by a machine and its mechanical efficiency were discussed 

in Sec. 13.1D. We defined power as the time rate at which work is done by

Power 5
dU

dt
5 F?v (13.12, 13.13)

where F is the force exerted on the particle and v is the velocity of the particle 

[Sample Prob. 13.7]. The mechanical efficiency, denoted by η, was expressed 

as

 h 5
power output

power input
 (13.15)

Conservative Force and Potential Energy
When the work of a force F is independent of the path followed [Secs. 13.2A 

and 13.2B], the force F is said to be a conservative force, and its work is 

equal to minus the change in the potential energy V associated with F

 U1y2 5 V1 2 V2 (13.199)

We obtained the following expressions for the potential energy associated with 

each of the forces considered earlier.

Force of gravity (weight):

 Vg 5 Wy (13.16)

Gravitational force:

 Vg 5 2
GMm

r
 (13.17)

Elastic force exerted by a spring:

 Ve 5
1
2 kx2 (13.18)
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Principle of Conservation of Energy
Substituting for U1y2 from Eq. (13.199) into Eq. (13.11) and rearranging the 

terms [Sec. 13.2C], we obtained

 T1 1 V1 5 T2 1 V2 (13.24)

or

 T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

 (13.249)

This is the principle of conservation of energy, which states that, when a 

particle moves under the action of conservative forces, the sum of its kinetic 

and potential energies remains constant. The application of this principle 

facilitates the solution of problems involving only conservative forces 

[Sample Probs. 13.8 and 13.9].

Alternative Expression for the Principle of Work 
and Energy
Rather than finding the work due to all external forces, you can write an 

alternative expression for the work-energy principle such that

 T1 1 Vg1
1 Ve1

1 UNC
1y2 5 T2 1 Vg2

1 Ve2
 (13.240)

where UNC
1y2 is the work  of external non-conservative forces such as friction 

[Sample Prob. 13.10].

Motion Under a Gravitational Force
Recalling from Sec. 12.2B that when a particle moves under a central force 

F its angular momentum about the center of force O remains constant, we 

observed [Sec. 13.D] that, if the central force F is also conservative, the 

principles of conservation of angular momentum and of conservation of 

energy can be used jointly to analyze the motion of the particle 

[Sample Prob. 13.11]. Since the gravitational force exerted by the earth on a 

space vehicle is both central and conservative, this approach was used to study 

the motion of such vehicles [Sample Prob. 13.12] and was found particularly 

effective in the case of an oblique launching. Considering the initial position 

P0 and an arbitrary position P of the vehicle (Fig. 13.34), we have

(HO)0 5 HO: r0mv0 sin f0 5 rmv sin f (13.25)

T0 1 V0 5 T 1 V:  
1
2 mv2

0 2
GMm

r0

5
1
2 mv2 2

GMm
r

 (13.26)

where m is the mass of the vehicle and M the mass of the earth.

Principle of Impulse and Momentum for a Particle
The second half of this chapter was devoted to the method of impulse and 

momentum and to its application to the solution of various types of problems 

involving the motion of particles.

 We defined the linear momentum of a particle [Sec. 13.3A] as the 

product mv of the mass m of the particle and its velocity v. From Newton’s 

second law, F 5 ma, we derived the relation

 mv1 1 #
t2

t1

 

F dt 5 mv2 (13.28)

O

r

P

v

f

f0

P0

v0

r0

Fig. 13.34
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where mv1 and mv2 represent the momentum of the particle at a time t1 and 

a time t2, respectively, and where the integral defines the linear impulse of 
the force F during the corresponding time interval. Therefore, we have

 mv1 1 Imp1y2 5 mv2 (13.30)

which expresses the principle of impulse and momentum for a particle.

 When the particle considered is subjected to several forces, we need to 

use the sum of the impulses of these forces; we have

 mv1 1 oImp1y2 5 mv2 (13.32)

 Since Eqs. (13.30) and (13.32) involve vector quantities, it is necessary 

to consider their x and y components separately when applying them to the 

solution of a given problem [Sample Probs. 13.13 through 13.15].

Impulsive Motion
The method of impulse and momentum is particularly effective in the study 

of the impulsive motion of a particle, when very large forces, called impulsive 
forces, are applied for a very short interval of time Dt, since this method 

involves the impulses FavgDt of the forces, rather than the forces themselves 

[Sec. 13.3B]. Assuming that all non-impulsive forces (e.g., weight) are 

negligible, we wrote

 mv1 1 oFavgDt 5 mv2 (13.35)

In the case of the impulsive motion of several particles, we had

 omv1 1 oFavgDt 5 omv2 (13.36)

where the second term involves only impulsive, external forces 

[Sample Probs. 13.16 and 13.17].

 In the particular case when the sum of the impulses of the external 

forces is zero, Eq. (13.36) reduces to omv1 5 omv2; that is, the total momen-

tum of the particles is conserved. For two particles, this reduces to 

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.349)

Direct Central Impact
In Sec. 13.4, we considered the central impact of two colliding bodies. In 

the case of a direct central impact [Sec. 13.4A], the two colliding bodies A 

and B were moving along the line of impact with velocities vA and vB, 

respectively (Fig. 13.35). Two equations could be used to determine their 

velocities v9A and v9B after the impact. The first expressed conservation of the 

total momentum of the two bodies as

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.37)

where a positive sign indicates that the corresponding velocity is directed to 

the right. The second equation, called the coefficient of restitution equation, 

related the relative velocities of the two bodies before and after the impact as

 v9B 2 v9A 5 e(vA 2 vB) (13.43)

The constant e is known as the coefficient of restitution; its value lies between 

0 and 1 and depends in a large measure on the materials involved. When e 5 0, 

the impact is said to be perfectly plastic; when e 5 1, it is said to be perfectly 
elastic. Eq. (13.43) is only valid for direct central impact. [Sample Prob. 13.18].

vA

vB

Line of

im
pact

B

A

Fig. 13.35
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Oblique Central Impact
In the case of an oblique central impact [Sec. 13.4B], the velocities of the 

two colliding smooth bodies before and after the impact were resolved into 

n components along the line of impact and t components along the common 

tangent to the surfaces in contact (Fig. 13.36). We observed that the t  component 

of the velocity of each body remained unchanged, while the n components 

satisfied equations similar to Eqs. (13.37) and (13.43) [Sample Probs. 13.19 

and 13.20]. We showed that, although this method was developed for bodies 

moving freely before and after the impact, it could be extended to the case 

when one or both of the colliding bodies is constrained in its motion [Sample 

Prob. 13.21]. When the velocities are not along the line of impact, the 

coefficient of restitution equation uses the normal component,

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (13.49)

A
v'A

v'B

vA

vB

Line of

im
pact

n
t

B

Fig. 13.36

Using the Three Fundamental Methods 
of Kinetic Analysis
In Sec. 13.4C, we discussed the relative advantages of the three fundamental 

methods presented in this chapter and the preceding one, namely, Newton’s 

second law, work and energy, and impulse and momentum. We noted that 

we can combine the method of work and energy and the method of impulse 

and momentum to solve problems involving a short impact phase during 

which impulsive forces must be taken into consideration [Sample Probs. 13.22 

and 13.23].
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Review Problems
13.190 A 32,000-lb airplane lands on an aircraft carrier and is caught by an 

arresting cable. The cable is inextensible and is paid out at A and B 
from mechanisms located below deck and consisting of pistons 

moving in long oil-filled cylinders. Knowing that the piston-cylinder 

system maintains a constant tension of 85 kips in the cable during the 

entire landing, determine the landing speed of the airplane if it travels 

a distance d 5 95 ft after being caught by the cable.

A

B

C

d

35 ft

35 ft

Fig. P13.190

13.191 A 2-oz pellet shot vertically from a spring-loaded pistol on the 

surface of the earth rises to a height of 300 ft. The same pellet shot 

from the same pistol on the surface of the moon rises to a height of 

1900 ft. Determine the energy dissipated by aerodynamic drag when 

the pellet is shot on the surface of the earth. (The acceleration of 

gravity on the surface of the moon is 0.165 times that on the surface 

of the earth.)

13.192 A satellite describes an elliptic orbit about a planet of mass M. The 

minimum and maximum values of the distance r from the satellite 

to the center of the planet are, respectively, r0 and r1. Use the prin-

ciples of conservation of energy and conservation of angular momen-

tum to derive the relation

1

r0

1
1

r1

5
2GM

h2

where h is the angular momentum per unit mass of the satellite and 

G is the constant of gravitation.

 13.193 A 60-g steel sphere attached to a 200-mm cord can swing about 

point O in a vertical plane. It is subjected to its own weight and 

to a force F exerted by a small magnet embedded in the ground. 

The magnitude of that force expressed in newtons is F 5 3000/r2, 

where r is the distance from the magnet to the sphere expressed 

in millimeters. Knowing that the sphere is released from rest at A, 

determine its speed as it passes through point B.

A B
O

r1r0

v0

Fig. P13.192

200 mm

B

O

100 mm
12 mm

A

Fig. P13.193
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13.194 A 50-lb sphere A with a radius of 4.5 in. is moving with a velocity 

of magnitude v0 5 6 ft/s. Sphere A strikes a 4.6-lb sphere B that has 

a radius of 2 in., is hanging from an inextensible cord, and is initially 

at rest. Knowing that sphere B swings to a maximum height of 

h 5 0.75 ft, determine the coefficient of restitution between the two 

spheres.

 13.195 A 300-g block is released from rest after a spring of constant 

k 5 600 N/m has been compressed 160 mm. Determine the force 

exerted by the loop ABCD on the block as the block passes through 

(a) point A, (b) point B, (c) point C. Assume no friction.

CA

B

D

800 mm

Fig. P13.195

 13.196 A kicking-simulation attachment goes on the front of a wheelchair, 

allowing athletes with mobility impairments to play soccer. The 

athletes load up the spring shown through a ratchet mechanism that 

pulls the 2-kg “foot” back to the position 1. They then release the 

“foot” to impact the 0.45-kg soccer ball that is rolling towards 

the “foot” with a speed of 2 m/s at an angle θ 5 30°, as shown in 

the figure. The impact occurs with a coefficient of restitution 

e 5 0.75 when the foot is at position 2, where the springs are 

unstretched. Knowing that the effective friction coefficient during 

rolling is μk 5 0.1, determine (a) the necessary spring coefficient 

to make the ball roll 30 m, (b) the direction the ball will travel after 

it is kicked.

 13.197 A 300-g collar A is released from rest, slides down a frictionless rod, 

and strikes a 900-g collar B that is at rest and supported by a spring 

of constant 500 N/m. Knowing that the coefficient of restitution 

between the two collars is 0.9, determine (a) the maximum distance 

collar A moves up the rod after impact, (b) the maximum distance 

collar B moves down the rod after impact.

k = 500 N/m
B

30°
900 g

1.2 m

300 g

A

Fig. P13.197

4.5 in
2 inB h

A
v0

Fig. P13.194 

k k

1

2

400
mm

300 mm

300 mm

θ

Fig. P13.196

bee87342_ch13_795-914.indd   912bee87342_ch13_795-914.indd   912 11/26/14   12:18 PM11/26/14   12:18 PM

UPLOADED BY AHMAD T JUNDI



913

13.198 Blocks A and B are connected by a cord which passes over pulleys 

and through a collar C. The system is released from rest when 

x 5 1.7 m. As block A rises, it strikes collar C with perfectly plastic 

impact (e 5 0). After impact, the two blocks and the collar keep 

moving until they come to a stop and reverse their motion. As A
and C move down, C hits the ledge and blocks A and B keep moving 

until they come to another stop. Determine (a) the velocity of the 

blocks and collar immediately after A hits C, (b) the distance the 

blocks and collar move after the impact before coming to a stop, 

(c) the value of x at the end of one complete cycle.

 13.199 A 2-kg ball B is traveling horizontally at 10 m/s when it strikes 2-kg 

ball A. Ball A is initially at rest and is attached to a spring with 

constant 100 N/m and an unstretched length of 1.2 m. Knowing the 

coefficient of restitution between A and B is 0.8 and friction between 

all surfaces is negligible, determine the normal force between A and 

the ground when it is at the bottom of the hill.

1.2 m
3 m/s

40°

0.4 m

0.7 m
k

A

B

Fig. P13.199

 13.200 A 2-kg block A is pushed up against a spring compressing it a 

distance x. The block is then released from rest and slides down the 

20° incline until it strikes a 1-kg sphere B which is suspended from 

a 1-m inextensible rope. The spring constant k 5 800 N/m, the 

coefficient of friction between A and the ground is 0.2, the distance 

A slides from the unstretched length of the spring d 5 1.5 m, and 

the coefficient of restitution between A and B is 0.8. Knowing the 

tension in the rope is 20 N when α 5 30°, determine the initial 

compression x of the spring.

20°

L

B

k

�

dx

A

Fig. P13.200

A

C

x

3 kg
6 kg

5 kg

B

Fig. P13.198
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*13.201 The 2-lb ball at A is suspended by an inextensible cord and given 

an initial horizontal velocity of v0. If l 5 2 ft, xB 5 0.3 ft, and

yB 5 0.4 ft, determine the initial velocity v0 so that the ball will 

enter the basket. (Hint: Use a computer to solve the resulting set of 

equations.)

l

yB

A

xB

v0

θ

Fig. P13.201
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The thrust for this XR-5M15 prototype engine is produced by gas 

particles being ejected at a high velocity. The determination of 

the forces on the test stand is based on the analysis of the motion 

of a variable system of particles, i.e., the motion of a large 

number of air particles considered together rather than separately.

Systems of Particles

14
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916 Systems of Particles

Introduction

 14.1 APPLYING NEWTON’S 
SECOND LAW AND 
MOMENTUM PRINCIPLES 
TO SYSTEMS OF 
PARTICLES

14.1A Newton’s Second Law for a 
System of Particles

14.1B Linear and Angular 
Momentum of a System of 
Particles

14.1C Motion of the Mass Center of 
a System of Particles

14.1D Angular Momentum of a 
System of Particles About its 
Mass Center

14.1E Conservation of Momentum 
for a System of Particles

 14.2 ENERGY AND MOMENTUM 
METHODS FOR A SYSTEM 
OF PARTICLES

14.2A Kinetic Energy of a System of 
Particles

14.2B Work-Energy Principle and 
Conservation of Energy for a 
System of Particles

14.2C Impulse-Momentum Principle 
and Conservation of 
Momentum for a System of 
Particles

 14.3 VARIABLE SYSTEMS OF 
PARTICLES

14.3A Steady Stream of Particles
14.3B Systems Gaining or Losing 

Mass

Objectives
• Apply Newton’s second law to a system of particles.

• Calculate the linear momentum and the angular 
momentum about a point of a system of particles.

• Describe the motion of the center of mass of a 
system of particles.

• Determine the kinetic energy of a system of particles.

• Analyze the motion of a system of particles by using 
the principle of work and energy and the principle of 
impulse and momentum.

• Analyze the motion of steady streams of particles

• Analyze systems of particles gaining or losing mass.

Introduction
In this chapter, you will study the motion of systems of particles; that is, 

the motion of a large number of particles considered together. In the first 

part of the chapter, we examine systems consisting of well-defined 

particles, like a set of billiard balls or a projectile that fragments into 

pieces. In the second part, we consider the motion of variable systems; 

these are systems that are continually gaining or losing particles or doing 

both at the same time. This could describe the motion of a stream of water 

or of a rocket during launch.

We start by applying Newton’s second law to each particle of the 

system. We show that the external forces acting on the various particles 

form a system equipollent to the system of miai for the various particles. 

In other words, both systems have the same resultant and the same moment 

resultant about any given point. We further show that the resultant and 

moment resultant of the external forces are equal, respectively, to the rate 

of change of the total linear momentum and to the rate of change of the 

total angular momentum of the particles of the system.

We then define the mass center of a system of particles and describe 

the motion of that point, along with an analysis of the motion of the par-

ticles about their mass center. We discuss the conditions under which the 

linear momentum and the angular momentum of a system of particles are 

conserved and apply these results to the solution of various problems.

In Sec. 14.2, we apply the work–energy principle to a system of 

particles, and then we apply the impulse–momentum principle. We use 

these ideas to solve several problems of practical interest.

Note that although the derivations given in the first part of this 

chapter are carried out for a system of independent particles, they remain 

valid when the particles of the system are rigidly connected, i.e., when 

they form a rigid body. In fact, these results form the foundation of our 

discussion of the kinetics of rigid bodies in Chaps. 16 through 18.

In Sec. 14.3, we consider steady streams of particles, such as a 

stream of water diverted by a fixed vane or the flow of air through a 
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14.1 Applying Newton’s Second Law and Momentum Principles to Systems of Particles 917

jet engine. We show how to determine the force exerted by the stream on 

the vane and the thrust developed by the engine. Finally, we analyze 

systems that gain mass by continually absorbing particles or lose mass by 

continually expelling particles. Among the various practical applications of 

this analysis is the determination of the thrust developed by a rocket 

engine.

14.1  APPLYING NEWTON’S 
SECOND LAW AND 
MOMENTUM PRINCIPLES 
TO SYSTEMS OF PARTICLES

In statics, we studied the effects of forces on particles and on rigid bodies 

in equilibrium. However, when you consider particles in motion, the 

situation of particles acting together but not forming a rigid body occurs 

in several important and practical applications. We analyze this kind of 

problem by applying Newton’s laws to the system. The results are an 

interesting middle ground between the dynamics of particles and the 

dynamics of rigid bodies, which we will study next.

14.1A  Newton’s Second Law for a 
System of Particles

In order to derive the equations of motion for a system of n particles, let 

us begin by writing Newton’s second law for each individual particle of 

the system. Consider the particle Pi, where 1 # i # n. Let mi be the mass 

of Pi and let ai be its acceleration with respect to the newtonian frame of 

reference Oxyz. The force exerted on Pi by another particle Pj of the 

system (Fig. 14.1), called an internal force, is denoted by fij. The resultant 

of the internal forces exerted on Pi by all the other particles of the system

is thus On

j51

 

fij (where fii has no meaning and is assumed to be equal to

zero). On the other hand, denoting the resultant of all the external forces 

acting on Pi by Fi, we write Newton’s second law for the particle Pi as

 Fi 1 On

j51

fij 5 miai (14.1)

Denoting the position vector of Pi by ri and taking the moments about O 

of the various terms in Eq. (14.1), we also have

 ri 3 Fi 1 On

j51

(ri 3 fij) 5 ri 3 miai (14.2)

Repeating this procedure for each particle Pi of the system, we 

obtain n equations of the type in Eq. (14.1) and n equations of the type 

in Eq. (14.2), where i takes successively the values 1, 2, . . . , n. Thus, 

these equations state that the external forces Fi and the internal forces fij

acting on the various particles form a system equivalent to the system of 

=

x

y

z

x

y

z

OO

Pj

Pi
Pi

Fi

ri rif ij

mia i

Fig. 14.1 Newton’s second law for the ith 
particle in a system of particles.
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918 Systems of Particles

the miai terms (i.e., one system may be replaced by the other) (Fig. 14.2).

Before proceeding further with our derivation, let us examine the 

internal forces fij. These forces occur in pairs as fij, fji, where fij represents 

the force exerted by the particle Pj on the particle Pi and fji represents the 

force exerted by Pi on Pj (see Fig. 14.2). Now, according to Newton’s third 

law (Sec. 6.1), as extended by Newton’s law of gravitation to particles 

acting at a distance (Sec. 12.2C), the forces fij and fji are equal and opposite 

and have the same line of action. Their sum is therefore fij 1 fji 5 0, and 

the sum of their moments about O is

ri 3 fij 1 rj 3 fji 5 ri 3 (fij 1 fji) 1 (rj – ri) 3 fji 5 0

since the vectors rj – ri and fji in the last term are collinear. Adding all of 

the internal forces of the system and summing their moments about O, 

we obtain the equations

 On

i51
On

j51

fij 5 0    On

i51
On

j51

(ri 3 fij) 5 0 (14.3)

These equations state that the resultant and the moment resultant of the 

internal forces of the system are zero.

Returning now to the n equations (14.1), where i 5 1, 2, . . . , n, 

we sum their left-hand sides and sum their right-hand sides. Taking into 

account the first of Eqs. (14.3), we obtain

 On

i51

Fi 5 On

i51

miai (14.4)

Proceeding similarly with Eq. (14.2) and taking into account the second 

of Eqs. (14.3), we have

 On

i51

(ri 3 Fi) 5 On

i51

(ri 3 miai) (14.5)

Equations (14.4) and (14.5) express the fact that the system of the 

On

i51

Fi 5 On

i51

miai

On

i51

(ri 3 Fi) 5 On

i51

(ri 3 miai)

=

x

y

z

x

y

z

OO

Pi

Pj

Pi

Fi

Fj

riri

rj

f ji

f i j

mia i

Fig. 14.2 The sum of internal forces equals zero, and the 
sum of external forces equals the sum of the mass times 
acceleration for every particle in the system.
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14.1 Applying Newton’s Second Law and Momentum Principles to Systems of Particles 919

external forces Fi and the system of miai have the same resultant and the 

same moment resultant. Referring to the definition given in Statics 

Sec. 3.4B for two equipollent systems of vectors, we can therefore state 

that the system of the external forces acting on the particles and the 
system of the miai terms of the particles are equipollent (Fig. 14.3). 

Figure 14.3 basically shows that a free-body diagram for a system of 

particles is equal to its kinetic diagram.

Equations (14.3) state that the system of internal forces fij is 

equipollent to zero. Note, however, that it does not follow that the 

internal forces have no effect on the individual particles under 

consideration. Indeed, the gravitational forces that the sun and the 

planets exert on one another are internal to the solar system and are 

equipollent to zero. Yet these forces are responsible for the motion of 

the planets about the sun.

Similarly, it does not follow from Eqs. (14.4) and (14.5) that two 

systems of external forces that have the same resultant and that the same 

moment resultant will have the same effect on a given system of particles. 

Clearly, the systems shown in Figs. 14.4a and 14.4b have the same resul-

tant and the same moment resultant; yet the first system accelerates par-

ticle A and leaves particle B unaffected, whereas the second system 

accelerates B and does not affect A. It is important to recall that when we 

stated in Sec. 3.4B that two equipollent systems of forces acting on a rigid 

body are also equivalent, we specifically noted that this property could 

not be extended to a system of forces acting on a set of independent 

particles such as those considered in this chapter.

In order to avoid any confusion, we use blue equals signs to connect 

equipollent systems of vectors, such as those shown in Figs. 14.3 and 14.4. 

These signs indicate that the two systems of vectors have the same 

resultant and the same moment resultant. We continue to use red equals 

signs to indicate that two systems of vectors are equivalent, i.e., that one 

system can actually be replaced by the other (Fig. 14.2).

14.1B  Linear and Angular Momentum 
of a System of Particles

We can express Eqs. (14.4) and (14.5) in a more condensed form by 

introducing the linear and the angular momentum of the system of 

x x

y y

z z

OO

P2

P3F1

F2

P1

P3
m3a3

m2a2

m1a1

P2

P1

=

Fig. 14.3 The free-body diagram for a system of particles is 
equal to the kinetic diagram for a system of particles.

=
B B

AA

(a)

(b)

F

F

Fig. 14.4 (a) A system of resultant force and 
moment applied to particle A is not 
equivalent to (b) the same force and moment 
applied to particle B.
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920 Systems of Particles

particles. We define the linear momentum L of the system of particles as 

the sum of the linear momenta of the various particles of the system 

(Sec. 12.1B). Then we have

Linear momentum, 
system of particles

 L 5 On

i51

mivi (14.6)

Defining the angular momentum HO about O of the system of particles in 

a similar way (Sec. 12.2A) gives us

Angular momentum, 
system of particles

 HO 5 On

i51

(ri 3 mivi) (14.7)

Differentiating both sides of Eqs. (14.6) and (14.7) with respect to 

t, we have

L
.

5 On

i51

miv
.

i 5 On

i51

miai (14.8)

and

 H
.

O 5 On

i51

(r
.

i 3 mivi) 1 On

i51

(ri 3 miv
.

i)

 5 On

i51

(vi 3 mivi) 1 On

i51

(ri 3 miai)

Because the vectors vi and mivi are collinear, this last equation reduces to

H
.

O 5On

i51

(ri 3 miai) (14.9)

Note that the right-hand sides of Eqs. (14.8) and (14.9) are identical 

to the right-hand sides of Eqs. (14.4) and (14.5), respectively. It follows 

that the left-hand sides of these equations are also equal. Recall that the 

left-hand side of Eq. (14.5) represents the sum of the moments MO about 

O of the external forces acting on the particles of the system. So, omitting 

the subscript i from the sums, we have

 ©F 5 L
.

 (14.10)

 ©MO 5 H
.

O (14.11)

These equations state:

The resultant and the moment resultant about the fixed point O of 
the external forces are equal to the rates of change of the linear 
momentum and of the angular momentum about O, respectively, of 
the system of particles.

L 5 On

i51

mivi

HO 5 On

i51

(ri 3 mivi)

©F 5 L
.

©MO 5 H
.

O
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14.1 Applying Newton’s Second Law and Momentum Principles to Systems of Particles 921

14.1C  Motion of the Mass Center
of a System of Particles

We can write Eq. (14.10) in an alternative form by considering the mass 
center of the system of particles. The mass center of the system is the 

point G defined by the position vector r, which satisfies the relation

mr 5On

i51

miri (14.12)

where m represents the total mass m 5 On

i51

 

mi 
 of the particles. Resolving the

position vectors r and ri into rectangular components, we obtain the following 

three scalar equations, which we can use to determine the coordinates x, y, z
of the mass center:

mx 5On

i51

mixi    my 5On

i51

miyi     mz 5On

i51

mizi  (14.129)

Since mig represents the weight of the particle Pi, and mg is the total 

weight of the particles, G is also the center of gravity of the system of 

particles. However, in order to avoid any confusion, we refer to G as the 

mass center of the system of particles when we are discussing properties 

associated with the mass of the particles, and as the center of gravity of 

the system when we consider properties associated with the weight of the 

particles. Particles located outside the gravitational field of the earth, for 

example, have a mass but no weight. We can then properly refer to their 

mass center, but obviously not to their center of gravity.†

Differentiating both members of Eq. (14.12) with respect to t, we 

obtain

mr
.

5 On
i51

mir
.

i

or

 mv 5On

i51

mivi (14.13)

where v represents the velocity of the mass center G of the system of 

particles. But the right-hand side of Eq. (14.13) is, by definition, the linear 

momentum L of the system [see Eq. (14.6)]. We therefore have

 L 5 mv (14.14)

and, differentiating both members with respect to t,

L
.

5 ma (14.15)

mr 5On

i51

miri

†We should also point out that the mass center and the center of gravity of a system of 

particles do not exactly coincide, since the weights of the particles are directed toward the 

center of the earth and thus do not truly form a system of parallel forces. For particles on 

the earth, this difference is extremely small.
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922 Systems of Particles

where a represents the acceleration of the mass center G. Substituting for 

L
.

 from Eq. (14.15) into Eq. (14.10), we obtain

oF 5 ma (14.16)

which defines the motion of the mass center G of the system of particles.

Note that Eq. (14.16) is identical to the equation we would obtain 

for a particle of mass m equal to the total mass of the particles of the 

system, acted upon by all the external forces. We therefore state: 

The mass center of a system of particles moves as if the entire mass 
of the system and all of the external forces were concentrated at 
that point.

This principle is best illustrated by the motion of an exploding pro-

jectile. We know that if air resistance is neglected, we can assume that a 

projectile will travel along a parabolic path. After it has exploded, the 

mass center G of the fragments of the projectile will continue to travel 

along the same path. Indeed, point G must move as if the mass and the 

weight of all fragments were concentrated at G; it must therefore move 

as if the projectile had not exploded.

Also note that the preceding derivation does not involve the moments 

of the external forces. Therefore, it would be wrong to assume that the 

external forces are equipollent to a vector ma attached at the mass center 

G. In general, this is not the case since, as you will see next, the sum of 

the moments about G of the external forces is not in general equal to zero.

14.1D  Angular Momentum of a System 
of Particles About Its Mass 
Center

In some applications (for example, in analyzing the motion of a rigid 

body), it is convenient to consider the motion of the particles of the system 

with respect to a centroidal frame of reference Gx9y9z9 that translates with 

respect to the newtonian frame of reference Oxyz (Fig. 14.5). Although a 

centroidal frame is not, in general, a Newtonian frame of reference, we 

will show that the fundamental relation in Eq. (14.11) holds when the 

frame Oxyz is replaced by Gx9y9z9.

Let’s denote the position vector and the velocity of the particle Pi

relative to the moving frame of reference Gx9y9z9 by r9i and v9i , respectively. 

We then define the angular momentum H9G of the system of particles 

about the mass center G as

 H9G 5On

i51

(r9i 3 miv9i) (14.17)

We now differentiate both members of Eq. (14.17) with respect to t. This 

operation is similar to that performed earlier on Eq. (14.7), so we can 

write immediately

H
.

9G 5On

i51

(r9i 3 mia9i) (14.18)

oF 5 ma

Fig. 14.5 A centroidal frame of reference 
Gx9y9z9 moving in translation with respect to 
a newtonian frame of reference Oxyz.

x

y

z

O

G x'

y'

z'

Pi
r'i

miv'i
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14.1 Applying Newton’s Second Law and Momentum Principles to Systems of Particles 923

where a9i denotes the acceleration of Pi relative to the moving frame of 

reference. Referring to Sec. 11.4D, we have

ai 5 a 1 a9i

where ai and a denote, respectively, the accelerations of Pi and G relative 

to the frame Oxyz. Solving for a9i and substituting into Eq. (14.18), we 

have

H
.

9G 5On

i51

(r9i 3 miai) 2 aOn

i51

mir9ib 3 a (14.19)

However, by Eq. (14.12), the second sum in Eq. (14.19) is equal to mr¿
and thus to zero, since the position vector r¿ of G relative to the frame 

Gx9y9z9 is clearly zero. On the other hand, since ai represents the 

acceleration of Pi relative to a newtonian frame, we can use Eq. (14.1) 

and replace miai by the sum of the internal forces fij and of the resultant 

Fi of the external forces acting on Pi. But a reasoning similar to that used 

in Sec. 14.1A shows that the moment resultant about G of the internal 

forces fij of the entire system is zero. The first sum in Eq. (14.19) therefore 

reduces to the resultant moment about G of the external forces acting on 

the particles of the system, and we have

 oMG 5 H
.

9G (14.20)

This equation states:

The resultant moment about G of the external forces is equal to the 
rate of change of the angular momentum about G of the system of 
particles.

Note that in Eq. (14.17) we defined the angular momentum H9G as 

the sum of the moments about G of the momenta of the particles miv9i in 
their motion relative to the centroidal frame of reference Gx9y9z9. We may 

sometimes want to compute the sum HG of the moments about G of the 

momenta of the particles mivi in their absolute motion, i.e., in their motion 

as observed from the newtonian frame of reference Oxyz (Fig. 14.6):

 HG 5On

i51

(r9i 3 mivi) (14.21)

Remarkably, the angular momenta H9G and HG are identically equal. This 

can be verified by referring to Sec. 11.4D and writing

 vi 5 v 1 v9i (14.22)

Substituting for vi from Eq. (14.22) into Eq. (14.21), we have

HG 5 aOn

i51

mir9ib 3 v 1On

i51

(r9i 3 miv9i)

But, as observed earlier, the first sum is equal to zero. Thus, HG reduces 

to the second sum, which by definition is equal to H9G.†

oMG 5 H
.

9G

x

y

z

O

G x'

y'

z'

Pi
r'i

miv'i
mivi

Fig. 14.6 The linear momentum of 
particle Pi with respect to the centroidal 
frame (miv9i ) and with respect to a newtonian 
frame (mivi).

†Note that this property is peculiar to the centroidal frame Gx9y9z9 and does not, in general, 

hold for other frames of reference (see Prob. 14.29).
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924 Systems of Particles

Taking advantage of the property we have just established, we 

simplify our notation by dropping the prime (9) from Eq. (14.20) and 

writing

 oMG 5 H
.

G (14.23)

Here we can compute the angular momentum HG by taking the moments 

about G of the momenta of the particles with respect to either the 

Newtonian frame Oxyz or the centroidal frame Gx9y9z9:

HG 5On

i51

(r9i 3 mivi) 5On

i51

(r9i 3 miv9i) (14.24)

14.1E  Conservation of Momentum
for a System of Particles

If no external force acts on the particles of a system, the left-hand sides 

of Eqs. (14.10) and (14.11) are equal to zero. These equations then reduce 

to L
.

5 0 and H
.

  O 5 0. We conclude that

 L 5 constant HO 5 constant (14.25)

These equations state that the linear momentum of the system of particles 

and its angular momentum about the fixed point O are conserved.

In some applications, such as problems involving central forces, the 

moment about a fixed point O of each of the external forces can be zero 

without any of the forces being zero. In such cases, the second of 

Eqs. (14.25) still holds; the angular momentum of the system of particles 

about O is conserved.

We can also apply the concept of conservation of momentum to the 

analysis of the motion of the mass center G of a system of particles and 

to the analysis of the motion of the system about G. For example, if the 

sum of the external forces is zero, the first of Eqs. (14.25) applies. 

Recalling Eq. (14.14), we have

v 5 constant (14.26)

This equation says that the mass center G of the system moves in a straight 

line and at a constant speed. On the other hand, if the sum of the moments 

about G of the external forces is zero, it follows from Eq. (14.23) that the 

angular momentum of the system about its mass center is conserved:

HO 5 constant (14.27)

oMG 5 H
.

G

HG 5On

i51

(r9i 3 mivi) 5On

i51

(r9i 3 miv9i)

L 5 constant

Photo 14.1 No external impulsive forces act 
on a fireworks as it explodes, so linear and 
angular momenta of the system are 
conserved. 

HO 5 constant
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14.1 Applying Newton’s Second Law and Momentum Principles to Systems of Particles 925

Sample Problem 14.1

A 200-kg space vehicle passes through the origin of a newtonian reference 

frame Oxyz at time t = 0 with velocity v0 5 (150 m/s)i relative to the 

frame. Following the detonation of explosive charges, the vehicle separates 

into three parts A, B, and C, each with a mass of 100 kg, 60 kg, and 

40 kg, respectively. Knowing that at t 5 2.5 s, the positions of parts A 

and B are observed to be A(555, –180, 240) and B(255, 0, –120), where 

the coordinates are expressed in meters. Determine the position of part C 

at that time.

STRATEGY: There are no external forces, so the linear momentum of 

the system is conserved. Use kinematics to relate the motion of the center 

of mass of the spacecraft and the rectangular coordinates of its position. 

MODELING and ANALYSIS: The system is the space vehicle. After 

the explosion, the system is composed of all three parts: A, B, and C. The 

mass center G of the system moves with the constant velocity 

v0 5 (150 m/s)i. At t 5 2.5 s, its position is

r 5 v0t 5 (150 m/s)i(2.5 s) 5 (375 m)i

Recalling Eq. (14.12), you have

 mr 5 mArA 1 mBrB 1 mCrC 

(200 kg)(375 m)i 5 (100 kg)[(555 m)i 2 (180 m)j 1 (240 m)k]

1 (60 kg)[(255 m)i 2 (120 m)k] 1 (40 kg)rC

rC 5 (105 m)i 1 (450 m)j 2 (420 m)k b

REFLECT and THINK: This kind of calculation can serve as a model 

for any situation involving fragmentation of a projectile with no external 

forces present.

Sample Problem 14.2

A 20-lb projectile is moving with a velocity of 100 ft/s when it explodes 

into two fragments A and B, weighing 5 lb and 15 lb, respectively. Know-

ing that immediately after the explosion, fragments A and B travel in 

directions defined respectively by θA 5 45° and θB 5 30°, determine the 

velocity of each fragment.

STRATEGY: There are no external forces, so apply the conservation of 

linear momentum to the system.

vA

vB

v0 = 100 ft/s
 A

 B
20 lb

5 lb A

B
15 lb

q

q

(continued)
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926 Systems of Particles

MODELING and ANALYSIS: The system is the projectile. After the 

explosion, the system is composed of the two fragments. The impulse-

momentum diagram for this system is shown in Fig. 1. There are no 

external impulses acting on this system, so linear momentum is conserved 

and:

mAvA 1 mBvB 5 mv0

(5yg)vA 1 (15yg)vB 5 (20yg)v0

Applying this equation in the x and y directions gives you two scalar 

equations. Thus,

y
1  x components: 5vA cos 45° 1 15vB cos 30° 5 20(100)

1xy components:  5vA sin 45° 2 15vB sin 30° 5 0

Solving the two equations for vA and vB simultaneously gives

vA 5 207 ft/s  vB 5 97.6 ft/s

 vA 5 207 ft/s a 45°  vB 5 97.6 ft/s c 30° b

REFLECT and THINK: As you might have predicted, the less massive 

fragment winds up with a larger magnitude of velocity and departs the 

original trajectory at a larger angle.

mv0

mAvA

mBvB

45°

30°=

y

x

Fig. 1 Impulse-momentum 
diagram for the projectile.

Sample Problem 14.3

A system consists of three particles A, B, and C, with masses mA 5 1 kg, 

mB 5 2 kg, and mC 5 3 kg. The velocities of the particles expressed in 

m/s are, respectively, vA 5 3i 2 2j 1 4k, vB 5 4i 1 3j, and vC 5 2i 1 

5j 2 3k. Determine (a) the angular momentum HO of the system about 

O, (b) the position vector r of the mass center G of the system, (c) the 

angular momentum HG of the system about G.

STRATEGY: You have a system of particles, so use the definitions of 

angular momentum and center of mass.

MODELING: Choose the three particles as your system.

ANALYSIS: The linear momentum of each particle expressed in kg?m/s 

is

 mAvA 5 3i 2 2j 1 4k

 mBvB 5 8i 1 6j

mCvC 5 6i 1 15j 2 9k

The position vectors (in meters) are

rA 5 3j 1 k  rB 5 3i 1 2.5k  rC 5 4i 1 2j 1 k

B

C

O
x

y

A

z

vA

vB

vC

3 m

1 m

1 m

1.5 m

3m

4 m

2 m
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14.1 Applying Newton’s Second Law and Momentum Principles to Systems of Particles 927

a. Angular Momentum About O. Using the definition of angular 

momentum about O (in kg?m2/s) you find

 HO 5 rA 3 (mAvA) 1 rB 3 (mBvB) 1 rC 3 (mCvC)

 5 †
i j k
0 3 1

3 22 4

† 1 †
i j k
3 0 2.5

8 6 0

† 1 †
i j k
4 2 1

6 15 29

†

 5 (14i 1 3j 2 9k) 1 (215i 1 20j 1 18k) 1 (233i 1 42j 1 48k)

 5 34i 1 65j 1 57k

HO 5 2(34 kg?m2/s)i 1 (65 kg?m2/s)j 1 (57 kg?m2/s)k b

b. Mass Center. Using the definition of mass center, you find

(mA 1 mB 1 mC)r 5 mArA 1 mBrB 1 mCrC

6 r 5 (1)(3j 1 k) 1 (2)(3i 1 2.5k) 1 (3)(4i 1 2j 1 k)

 r 5 3i 1 1.5j 1 1.5k

r 5 (3.00 m)i 1 (1.500 m)j 1 (1.500 m)k b

c. Angular Momentum About G. The angular momentum of the 

system about G is

HG 5 r9A 3 mAvA 1 r9B 3 mBvB 1 r9C 3 mCvC

where r9A, r9B, and r9C are the position vectors from the particles to the center 

of mass; that is

r9A 5 rA 2 r 523i 1 1.5j 2 0.5k

 r9B 5 rB 2 r 521.5j 1 k

 r9C 5 rC 2 r 5 i 1 0.5j 2 0.5k

Therefore, you can calculate the angular momentum as

 HG 5 r9A 3 mAvA 1 r9B 3 mBvB 1 r9C 3 mCvC

5 †
i j k

23 1.5 20.5

3 22 4

† 1 †
i j k
0 21.5 1

8 6 0

† 1 †
i j k
4 0.5 20.5

6 15 29

†

 5 (5i 1 10.5j 1 1.5k) 1 (26i 1 8j 1 12k) 1 (3i 1 6j 1 12k)

 5 2i 1 24.5j 1 25.5k

HG 5 (2.00 kg?m2/s)i 1 (24.5 kg?m2/s)j 1 (25.5 kg?m2/s)k b

REFLECT and THINK: You should be able to verify that the answers 

to this problem satisfy the equations given in Prob. 14.27; that is, 

HO 5 r 3 mv 1 HG. Because no impulses act on the system, the linear 

momentum of the overall system is constant; the location of the center of 

mass of the system, however, changes with time.
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928928

T his chapter dealt with the motion of systems of particles where the motion of a 

large number of particles is considered together, rather than separately. In this first 

section, you learned to compute the linear momentum and the angular momentum 

of a system of particles. We defined the linear momentum L of a system of particles 

as the sum of the linear momenta of the particles, and we defined the angular momentum 

HO of the system as the sum of the angular momenta of the particles about O:

 L 5 On

i51

mivi  HO 5 On

i51

(ri 3 mivi) (14.6, 14.7)

In this section, you will be asked to solve several problems of practical interest, either 

by observing that the linear momentum of a system of particles is conserved or by 

considering the motion of the mass center of a system of particles.

1. Conservation of the linear momentum of a system of particles. This occurs 

when the resultant of the external forces acting on the particles of the system is zero. 

You may encounter such a situation in the following types of problems.

a. Problems involving the rectilinear motion of objects, such as colliding 

automobiles and railroad cars. After you have checked that the resultant of the external 

forces is zero, equate the algebraic sums of the initial momenta and final momenta 

to obtain an equation that you can solve for one unknown.

 b. Problems involving the two-dimensional or three-dimensional motion of 

objects, such as exploding shells or colliding aircraft, automobiles, or billiard balls. After 

you have checked that the resultant of the external forces is zero, add the initial momenta 

of the objects vectorially, add their final momenta vectorially, and equate the two sums to 

obtain a vector equation expressing that the linear momentum of the system is conserved.

 In the case of two-dimensional motion, you can replace this equation with two scalar 

equations that you can solve for two unknowns. In the case of three-dimensional motion, 

you can replace the equation with three scalar equations that you can solve for three unknowns.

2. Motion of the mass center of a system of particles. You saw in Sec. 14.1C that 

the mass center of a system of particles moves as if the entire mass of the system and 
all of the external forces were concentrated at that point.
 a. In the case of a body exploding while in motion, it follows that the mass center 

of the resulting fragments moves as the body itself would have moved if the explosion 

had not occurred. You can solve problems of this type by writing the equation of motion 

of the mass center of the system in vector form and expressing the position vector of the 

mass center in terms of the position vectors of the various fragments [Eq. (14.12) and 

Sample Prob. 14.1]. You can then rewrite the vector equation as two or three scalar 

equations and solve the equations for an equivalent number of unknowns.

 b. In the case of the collision of several moving bodies, it follows that the motion 

of the mass center of the various bodies is unaffected by the collision. You can solve problems 

of this type by writing the equation of motion of the mass center of the system in vector 

form and expressing its position vector before and after the collision in terms of the position 

vectors of the relevant bodies [Eq. (14.12)]. You can then rewrite the vector equation as two 

or three scalar equations and solve these equations for an equivalent number of unknowns.

SOLVING PROBLEMS 
ON YOUR OWN
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929

14.1 A 30-g bullet is fired with a horizontal velocity of 450 m/s and 

becomes embedded in block B, which has a mass of 3 kg. After the 

impact, block B slides on 30-kg carrier C until it impacts the end of 

the carrier. Knowing the impact between B and C is perfectly plastic 

and the coefficient of kinetic friction between B and C is 0.2, 

determine (a) the velocity of the bullet and B after the first impact, 

(b) the final velocity of the carrier.

14.2 Two identical 1350-kg automobiles A and B are at rest with their 

brakes released when B is struck by a 5400-kg truck C that is 

moving to the left at 8 km/h. A second collision then occurs when 

B strikes A. Assuming the first collision is perfectly plastic and the 

second collision is perfectly elastic, determine the velocities of the 

three vehicles just after the second collision.

A

C

8 km/h

B

Fig. P14.2

 14.3 An airline employee tosses two suitcases with weights of 30 lb and 

40 lb, respectively, onto a 50-lb baggage carrier in rapid succession. 

Knowing that the carrier is initially at rest and that the employee 

imparts a 9-ft/s horizontal velocity to the 30-lb suitcase and a 6-ft/s 

horizontal velocity to the 40-lb suitcase, determine the final velocity 

of the baggage carrier if the first suitcase tossed onto the carrier is 

(a) the 30-lb suitcase, (b) the 40-lb suitcase.

 14.4 A bullet is fired with a horizontal velocity of 1500 ft/s through a 

6-lb block A and becomes embedded in a 4.95-lb block B. Knowing 

that blocks A and B start moving with velocities of 5 ft/s and 9 ft/s, 

respectively, determine (a) the weight of the bullet, (b) its velocity 

as it travels from block A to block B.

A B1500 ft/s

6 lb 4.95 lb

Fig. P14.4

Problems

Fig. P14.1

v0
BC

0.5 m

Fig. P14.3
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930

14.5 Two swimmers A and B, of weight 190 lb and 125 lb, respectively, 

are at diagonally opposite corners of a floating raft when they 

realize that the raft has broken away from its anchor. Swimmer A 
immediately starts walking toward B at a speed of 2 ft/s relative to 

the raft. Knowing that the raft weighs 300 lb, determine (a) the 

speed of the raft if B does not move, (b) the speed with which B 
must walk toward A if the raft is not to move.

 14.6 A 180-lb man and a 120-lb woman stand side by side at the same 

end of a 300-lb boat, ready to dive, each with a 16-ft/s velocity 

relative to the boat. Determine the velocity of the boat after they have 

both dived, if (a) the woman dives first, (b) the man dives first.

Fig. P14.6

 14.7 A 40-Mg boxcar A is moving in a railroad switchyard with a velocity 

of 9 km/h toward cars B and C, which are both at rest with their 

brakes off at a short distance from each other. Car B is a 25-Mg 

flatcar supporting a 30-Mg container, and car C is a 35-Mg boxcar. 

As the cars hit each other they get automatically and tightly coupled. 

Determine the velocity of car A immediately after each of the two 

couplings, assuming that the container (a) does not slide on the 

flatcar, (b) slides after the first coupling but hits a stop before the 

second coupling occurs, (c) slides and hits the stop only after 

the second coupling has occurred.

9 km/h

A C
B

Fig. P14.7

 14.8 Two identical cars A and B are at rest on a loading dock with brakes 

released. Car C, of a slightly different style but of the same weight, 

has been pushed by dockworkers and hits car B with a velocity of 

1.5 m/s. Knowing that the coefficient of restitution is 0.8 between B 
and C and 0.5 between A and B, determine the velocity of each car 

after all collisions have taken place.

Fig. P14.8

CBA

1.5 m/s

A

B

Fig. P14.5
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 14.9 A 20-kg base satellite deploys three sub-satellites, each which has 

its own thrust capabilities, to perform research on tether propulsion. 

The masses of sub-satellites A, B, and C are 4 kg, 6 kg, and 8 kg, 

respectively, and their velocities expressed in m/s are given by 

vA 5 4i 2 2j 1 2k, vB 5 i 1 4j, vC 5 2i 1 2j 1 4k. At the instant 

shown, what is the angular momentum HO of the system about the 

base satellite?

 14.10 For the satellite system of Prob. 14.9, assuming that the velocity of 

the base satellite is zero, determine (a) the position vector r of the 

mass center G of the system, (b) the linear momentum L of the 

system, (c) the angular momentum HG of the system about G. Also, 

verify that the answers to this problem and to Prob. 14.9 satisfy the 

equation given in Prob. 14.27.

 14.11 A system consists of three identical 19.32-lb particles A, B, and C. 

The velocities of the particles are, respectively, vA 5 vA j, vB 5 vBi,
and vC 5 vCk. Knowing that the angular momentum of the system 

about O expressed in ft?lb?s is HO 5 21.2k, determine (a) the 

velocities of the particles, (b) the angular momentum of the system 

about its mass center G.

C

A

y

x
z

B

vC

vB

vA

O2 ft

2 ft
3 ft1 ft

4 ft

Fig. P14.11 and P14.12

 14.12 A system consists of three identical 19.32-lb particles A, B, and C. 

The velocities of the particles are, respectively, vA 5 vA j, vB 5 vBi,
and vC 5 vCk, and the magnitude of the linear momentum L of the 

system is 9 lb?s. Knowing that HG 5 HO, where HG is the angular 

momentum of the system about its mass center G and HO is the angu-

lar momentum of the system about O, determine (a) the velocities of 

the particles, (b) the angular momentum of the system about O.

14.13 A system consists of three particles A, B, and C. We know that 

mA 5 3 kg, mB 5 2 kg, and mC 5 4 kg and that the velocities of 

the particles expressed in m/s are, respectively, vA 5 4i 1 2j 1 2k, 

vB 5 4i 1 3j, and vC 5 22i 1 4j 1 2k. Determine the angular 

momentum HO of the system about O.

 14.14 For the system of particles of Prob. 14.13, determine (a) the position 

vector r of the mass center G of the system, (b) the linear momentum 

mv of the system, (c) the angular momentum HG of the system about 

G. Also verify that the answers to this problem and to Problem 14.13 

satisfy the equation given in Prob. 14.27.

B

C

O

xz

30 m

35 m

25 m

40 m

15 m

y

A

O

vA

vC

vB

Fig. P14.9 and P14.10

Fig. P14.13

B

C

O

xz

3 m

3 m

2.4 m

3.6 m

1.2 m

y

A

vA

vC

vB
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 14.15 A 13-kg projectile is passing through the origin O with a velocity 

v0 5 (35 m/s)i when it explodes into two fragments A and B, of mass 

5 kg and 8 kg, respectively. Knowing that 3 s later the position of 

fragment A is (90 m, 7 m, 214 m), determine the position of fragment 

B at the same instant. Assume ay 5 2g 5 29.81 m/s2 and neglect 

air resistance.

 14.16 A 300-kg space vehicle traveling with a velocity v0 5 (360 m/s)i 
passes through the origin O at t 5 0. Explosive charges then separate 

the vehicle into three parts A, B, and C, with mass, respectively, 

150 kg, 100 kg, and 50 kg. Knowing that at t 5 4 s, the positions of 

parts A and B are observed to be A (1170 m, 2290 m, –585 m) and 

B (1975 m, 365 m, 800 m), determine the corresponding position of 

part C. Neglect the effect of gravity.

 14.17 A 2-kg model rocket is launched vertically and reaches an  altitude 

of 70 m with a speed of 30 m/s at the end of powered flight, time 

t 5 0. As the rocket approaches its maximum altitude it explodes 

into two parts of masses mA 5 0.7 kg and mB 5 1.3 kg. Part A
is observed to strike the ground 80 m west of the launch point at 

t 5 6 s. Determine the position of part B at that time.

30 m/s

70 m

A

80 m

Fig. P14.17

 14.18 An 18-kg cannonball and a 12-kg cannonball are chained together 

and fired horizontally with a velocity of 165 m/s from the top of 

a 15-m wall. The chain breaks during the flight of the cannon-

balls and the 12-kg cannonball strikes the ground at t 5 1.5 s, 

at a distance of 240 m from the foot of the wall, and 7 m to the 

right of the line of fire. Determine the position of the other can-

nonball at that instant. Neglect the resistance of the air.

O

165 m/s

15 m
x

y

z
240 m

7 m

Fig. P14.18
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 14.19 and 14.20 Car A was traveling east at high speed when it collided 

at point O with car B, which was traveling north at 45 mi/h. Car C, 

which was traveling west at 60 mi/h, was 32 ft east and 

10 ft north of point O at the time of the collision. Because the pave-

ment was wet, the driver of car C could not prevent his car from 

sliding into the other two cars, and the three cars, stuck together, 

kept sliding until they hit the utility pole P. Knowing that the 

weights of cars A, B, and C are, respectively, 3000 lb, 2600 lb, and 

2400 lb, and neglecting the forces exerted on the cars by the wet 

pavement, solve the problems indicated.

 14.19  Knowing that the speed of car A was 75 mi/h and that the 

time elapsed from the first collision to the stop at P was 

2.4 s, determine the coordinates of the utility pole P.
 14.20  Knowing that the coordinates of the utility pole are 

xp 5 46 ft and yp 5 59 ft, determine (a) the time elapsed 

from the first collision to the stop at P, (b) the speed of car A.

A

C

O

N

x

y

vA

60 mi/h

xP

B

45 
mi/h

yP

P

Fig. P14.19 and P14.20

 14.21 An expert archer demonstrates his ability by hitting tennis balls 

thrown by an assistant. A 2-oz tennis ball has a velocity of 

(32 ft/s)i 2 (7 ft/s)j and is 33 ft above the ground when it is hit by 

a 1.2-oz arrow traveling with a velocity of (165 ft/s)j 1 (230 ft/s)k
where j is directed upwards. Determine the position P where the 

ball and arrow will hit the ground, relative to point O located 

directly under the point of impact.

14.22 Two spheres, each of mass m, can slide freely on a frictionless, 

horizontal surface. Sphere A is moving at a speed v0 5 16 ft/s when 

it strikes sphere B, which is at rest, and the impact causes sphere B 

to break into two pieces, each of mass my2. Knowing that 0.7 s after 

the collision one piece reaches point C and 0.9 s after the collision 

the other piece reaches point D, determine (a) the velocity of 

sphere A after the collision, (b) the angle θ and the speeds of the 

two pieces after the collision.

A B

C

D
6.3 ft

30°v0

q

C

D

Fig. P14.22
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14.23 In a game of pool, ball A is moving with a velocity v0 when it strikes 

balls B and C which are at rest and aligned as shown. Knowing that 

after the collision the three balls move in the directions indicated and 

that v0 5 12 ft/s and vC 5 6.29 ft/s, determine the magnitude of the 

velocity of (a) ball A, (b) ball B.

 14.24 A 6-kg shell moving with a velocity v0 5 (12 m/s)i 2 (9 m/s)j 2
(360 m/s)k explodes at point D into three fragments A, B,

and  C of mass, respectively, 3 kg, 2 kg, and 1 kg. Knowing that 

the fragments hit the vertical wall at the points indicated, 

determine the speed of each fragment immediately after the 

explosion. Assume that elevation changes due to gravity may be 

neglected.

y

A

B

C

O

D

1.5 m

4 m

4 m

z
x

3 m

2 m

Fig. P14.24 and P14.25

 14.25 A 6-kg shell moving with a velocity v0 5 (12 m/s)i 2 (9 m/s)j 2
(360 m/s)k explodes at point D into three fragments A, B, 
and C of mass, respectively, 2 kg, 1 kg, and 3 kg. Knowing that 

the fragments hit the vertical wall at the points indicated, 

determine the speed of each fragment immediately after the 

explosion. Assume that elevation changes due to gravity may be 

neglected.

A
B

C

vC

4.3°

vB
37.4°

30°

vA

v0

45°

Fig. P14.23
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 14.26 In a scattering experiment, an alpha particle A is projected with the 

velocity u0 5 2(600 m/s)i 1 (750 m/s)j 2 (800 m/s)k into a stream 

of oxygen nuclei moving with a common velocity v0 5 (600 m/s)j. After 

colliding successively with the nuclei B and C, particle A is observed 

to move along the path defined by the points A1 (280, 240, 120) 

and A2 (360, 320, 160), while nuclei B and C are observed to move 

along paths defined, respectively, by B1 (147, 220, 130) and B2 (114, 

290, 120), and by C1 (240, 232, 90) and C2 (240, 280, 75). All paths 

are along straight lines and all coordinates are expressed in 

millimeters. Knowing that the mass of an oxygen nucleus is four 

times that of an alpha particle, determine the speed of each of the 

three particles after the collisions.

 14.27 Derive the relation

HO 5 r 3 mv 1 HG

  between the angular momenta HO and HG defined in Eqs. (14.7) and 

(14.24), respectively. The vectors r and v define, respectively, the 

position and velocity of the mass center G of the system of particles 

relative to the newtonian frame of reference Oxyz, and m represents 

the total mass of the system.

 14.28 Show that Eq. (14.23) may be derived directly from Eq. (14.11) by 

substituting for HO the expression given in Prob. 14.27.

 14.29 Consider the frame of reference Ax9y9z9 in translation with respect to 

the newtonian frame of reference Oxyz. We define the angular 

momentum H9A of a system of n particles about A as the sum

 H9A 5On

i51

r9i 3 mi 
v9i  (1)

  of the moments about A of the momenta mivi9 of the particles in their 

motion relative to the frame Ax9y9z9. Denoting by HA the sum

HA 5On

i51

r9i 3 mi 
vi

  of the moments about A of the momenta mivi of the particles in their 

motion relative to the newtonian frame Oxyz, show that HA 5 H9A at 

a given instant if, and only if, one of the following conditions is 

satisfied at that instant: (a) A has zero velocity with respect to the 

frame Oxyz, (b) A coincides with the mass center G of the system, 

(c) the velocity vA relative to Oxyz is directed along the line AG.

 14.30 Show that the relation oMA 5 H
.

9A, where H9A is defined by Eq. (1) 

of Prob. 14.29 and where oMA represents the sum of the moments 

about A of the external forces acting on the system of particles, is 

valid if, and only if, one of the following conditions is satisfied: 

(a) the frame Ax9y9z9 is itself a newtonian frame of reference, 

(b) A coincides with the mass center G, (c) the acceleration aA of A 

relative to Oxyz is directed along the line AG.

x

z

O A

Q

C

B

A1

A 0
B0

A2

B1

B2

C1

C2

vB vA

vC

v0

v0

u 0

y

Fig. P14.26

x

z

O

y

x'

z'

A

y'

Pi

miv'i

mivi

r i'

Fig. P14.29 

bee87342_ch14_915-976.indd   935bee87342_ch14_915-976.indd   935 11/26/14   1:23 PM11/26/14   1:23 PM

UPLOADED BY AHMAD T JUNDI



936 Systems of Particles

14.2  ENERGY AND MOMENTUM 
METHODS FOR A SYSTEM 
OF PARTICLES

Solving problems involving a system of particles is often made easier by 

applying energy and momentum methods, just as it was as for a single 

particle in Chapter 13. Definitions of terms and statements of the work–

energy and impulse-momentum principles are very similar to the single-

particle versions, especially when you take into account the mass center 

of the particles.

14.2A  Kinetic Energy of a System 
of Particles

We define the kinetic energy T of a system of particles as the sum of the 

kinetic energies of the various particles of the system. Referring to 

Sec. 13.1B, we have

Kinetic energy, 
system of particles

 T 5
1

2
On

i51

miv
2
i  (14.28)

Using a Centroidal Frame of Reference. It is often convenient 

when computing the kinetic energy of a system comprised of a large 

number of particles (as in the case of a rigid body) to consider the motion 

of the mass center G of the system and the motion of the system relative 

to a moving frame attached to G separately.

Let Pi be a particle of the system, vi be its velocity relative to the 

newtonian frame of reference Oxyz, and v9i be its velocity relative to the 

moving frame Gx9y9z9 that is in translation with respect to Oxyz (Fig. 14.7). 

Recall from Sec. 14.1D that

vi 5 v 1 v9i   (14.22)

where v denotes the velocity of the mass center G relative to the newtonian 

frame Oxyz. Observing that v2
i is equal to the scalar product vi?vi, we can 

express the kinetic energy T of the system relative to the newtonian frame 

Oxyz as 

T 5
1

2
On

i51
 mi 

v2
i 5

1

2
On

i51

(mivi?vi)

or, substituting for vi from Eq. (14.22),

 T 5
1

2
On

i51

[mi(v 1 v9i) ? (v 1 v9i)]

 5
1

2
 aOn

i51

mib v 
2 1 v ? On

i51

miv9i 1
1

2
 On

i51

miv92
i

T 5
1

2
On

i51

miv
2
i

v'i

vi

⎯v

⎯v

x

y

z

O

G x'

y'

z'

Pi

Fig. 14.7 A centroidal frame of reference 
Gx9y9z9 moving in translation with velocity 
v– with respect to a newtonian reference 
frame Oxyz.
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14.2 Energy and Momentum Methods for a System of Particles 937

In this equation, the first sum represents the total mass m of the system. 

Recalling Eq. (14.13), we note that the second sum is equal to mv9 and 

thus to zero, since v9, which represents the velocity of G relative to the 

frame Gx9y9z9, is clearly zero. We therefore have

 T 5
1
2 mv 

2 1
1

2
On

i51

mi 
v92

i  (14.29)

This equation states that we can obtain the kinetic energy T of a system 

of particles by adding the kinetic energy of the mass center G and the 
kinetic energy of the system in its motion relative to the frame Gx9y9z9.

14.2B  Work-Energy Principle and 
Conservation of Energy for a 
System of Particles

We can apply the principle of work and energy to each particle Pi of a 

system of particles, obtaining for each particle Pi

(T1)i 1 (U1y2)i 5 (T2)i

where (U1y2)i represents the work done by the internal forces fij and the 

resultant external force Fi acting on Pi. Adding the kinetic energies of the 

various particles of the system and considering the work of all the forces 

involved, we obtain an expression for the entire system as

Work-energy principle, 
system of particles

 T1 1 U1y2 5 T2 (14.30)

The quantities T1 and T2 now represent the kinetic energy of the entire 

system and can be computed from either Eq. (14.28) or Eq. (14.29). The 

quantity U1y2 represents the work of all the forces acting on the particles 

of the system. Note that although the internal forces fij and fji are equal 

and opposite, the work of these forces does not, in general, cancel out, 

since the particles Pi and Pj on which they act generally undergo different 

displacements. Therefore, in computing U1y2, we must consider the 
work of the internal forces fij as well as the work of the external forces 
Fi. An alternative way of writing Eq. (14.30) is

 T1 1 Vg1
1 Ve1

1 UNC
1y2 5 T2 1 Vg2

1 Ve2
 (14.309)

where Vg is the gravitational potential energy of the system, Ve is the elastic 

potential energy, and UNC
1y2 is the work due to non-conservative forces. 

If all of the forces acting on the particles of the system are conserva-

tive, we can replace Eq. (14.30) by

Conservation of energy, 
system of particles

T1 1 V1 5 T2 1 V2 (14.31)

where V represents the potential energy associated with the internal and 

external forces acting on the particles of the system.

T 5
1
2 mv 2 1

1

2
On

i51

miv92
i

T1T 1 U1y2 5 T2TT

T1TT 1 V1VV 5 T2TT 1 V2VV
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938 Systems of Particles

14.2C  Impulse-Momentum Principle 
and Conservation of Momentum 
for a System of Particles

Integrating Eqs. (14.10) and (14.11) with respect to t from t1 to t2, we have

  O #
t2

t1

 

F dt 5 L
2

2 L
1

 (14.32)

 O #
t2

t1

 
MO dt 5 (HO)2 2 (HO)1 (14.33)

From the definition of the linear impulse of a force given in Sec. 13.3A, 

the integrals in Eq. (14.32) represent the linear impulses of the external 

forces acting on the particles of the system. In a similar way, we shall 

refer to the integrals in Eq. (14.33) as the angular impulses about O of 

the external forces. Thus, Eq. (14.32) states that the sum of the linear 

impulses of the external forces acting on the system is equal to the change 

in linear momentum of the system. Similarly, Eq. (14.33) says that the 

sum of the angular impulses about O of the external forces is equal to the 

change in angular momentum about O of the system.

To clarify the physical significance of Eqs. (14.32) and (14.33), we 

rearrange the terms in these equations, obtaining

  L1 1O #
t2

t1

 

F dt 5 L2  (14.34)

  (HO)1 1 O #
t2

t1

 

MO dt 5 (HO)2 (14.35)

In parts a and c of Fig. 14.8, we have sketched the momenta of the 

particles of the system at times t1 and t2, respectively. In part b, we show 

terms equal to the sum of the linear impulses of the external forces and 

the sum of the angular impulses about O of the external forces. 

L1 1O #
t2

t
##

1

F dt 5 L2

(HO)1 1 O #
t2

t
##

1

MO dt 5 (HO)2

Photo 14.2 When a golf ball is hit out of 
a sand trap, some of the momentum of the 
club is transferred to the golf ball and any 
sand that is hit.

x

y

O x

y

O x

y

O

(a)

+ =
(mAvA)1

(mBvB)1

(mCvC)1

(mAvA)2
(mBvB)2

(mCvC)2

(b) (c)

∑     F dt
t2

t1

∑     MO dt
t2

t1

∫

∫
Fig. 14.8 The impulse–momentum diagram for a system of particles contains (a) momenta of 
particles at time t1; (b) impulses of the external forces and moments about O; (c) momenta of 
the particles at time t2.
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14.2 Energy and Momentum Methods for a System of Particles 939

For simplicity, we have assumed the particles move in the plane of the 

figure, but the present discussion remains valid in the case of particles 

moving in space. Recall from Eq. (14.6) that L, by definition, is the 

resultant of the momenta mivi. Then Eq. (14.34) says that the resultant of 

the vectors shown in parts a and b of Fig. 14.8 is equal to the resultant 

of the vectors shown in part c. Recalling from Eq. (14.7) that HO is the 

angular momentum, we note that Eq. (14.35) similarly says that the 

angular momentum of the vectors in parts a added to the angular impulses 

in part b of Fig. 14.8 is equal to the angular momentum of the vectors in 

part c. Together, Eqs. (14.34) and (14.35) state:

The momenta of the particles at time t1 and the impulses of the 
external forces from t1 to t2 form a system of vectors equipollent to 
the system of the momenta of the particles at time t2. 

This is indicated in Fig. 14.8 by the use of blue plus and equal signs.

If no external force acts on the particles of the system, the integrals 

in Eqs. (14.34) and (14.35) are zero, and these equations yield

Conservation of linear and 
angular momentum

 L1 5 L2 (14.36)

 (HO)1 5 (HO)2 (14.37)

We thus check the result obtained in Sec. 14.1E: If no external force acts 

on the particles of a system, the linear momentum and the angular 

momentum about O of the system of particles are conserved. The system 

of the initial momenta is equipollent to the system of the final momenta, 

and it follows that the angular momentum of the system of particles about 

any fixed point is conserved.

L1 5 L2

(HO)1 5 (HO)2
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940 Systems of Particles

Sample Problem 14.4

For the 200-kg space vehicle of Sample Prob. 14.1, it is known that at 

t 5 2.5 s, the velocity of part A is vA 5 (270 m/s)i 2 (120 m/s)j 1 

(160 m/s)k, and the velocity of part B is parallel to the xz plane. Determine 

(a) the velocity of part C, (b) the energy gained during the detonation.

STRATEGY: Since there are no external forces, use the conservation of 

linear momentum. Although it is not immediately apparent, you will also 

need to use the conservation of angular momentum to solve this problem. 

MODELING and ANALYSIS: Choose the space vehicle as your 

system. After the explosion, the system is composed of three parts: A, B, 

and C. Figure 1 shows the momenta of the system before and after the 

explosion. From the conservation of linear momentum, you have

L1 5 L2: mv0 5 mAvA 1 mBvB 1 mCvC (1)

From conservation of angular momentum about point O you have

(HO)1 5 (HO)2: 0 5 rA 3 mAvA 1 rB 3 mBvB 1 rC 3 mCvC (2)

Recall from Sample Prob. 14.1 that v0 5 (150 m/s)i and

mA 5 100 kg  mB 5 60 kg  mC 5 40 kg

 rA 5 (555 m)i 2 (180 m)j 1 (240 m)k
 rB 5 (255 m)i 2 (120 m)k
 rC 5 (105 m)i 1 (450 m)j 2 (420 m)k

Then, using the information given in the statement of this problem, rewrite 

Eqs. (1) and (2) as

200(150i) 5 100(270i 2 120j 1 160k) 1 60[(vB)xi 1 (vB)zk]

 1 40[(vC)xi 1 (vC)yj 1 (vC)zk] (19)

0 5 100 †
i

555

270

 

j
2180

2120

  

k
240

160

† 1 60 † i
255

(vB)x

  
j
0

0

  
k

2120

(vB)z

†

1 40 †
i

105

(vC)x

  
j

450

(vC)y

  
k

2420

(vC)z

†  (29)

Equate the coefficient of j in Eq. (19) and the coefficients of i and k in 

Eq. (29). After reductions, you obtain the three scalar equations of

 (vC)y 2 300 5 0

 450(vC)z 1 420(vC)y 5 0

105(vC)y 2 450(vC)x 2 45 000 5 0

which yield, respectively,

(vC)y 5 300  (vC)z 5 2280  (vC)x 5 230

The velocity of part C is thus

 vC 5 2(30 m/s)i 1 (300 m/s)j 2 (280 m/s)k b

x

y

z

O

x

y

z

O

A

B C

mAvA

mBvB

mCvC

mv0

=

Fig. 1 Impulse-momentum 
diagram for the system.
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14.2 Energy and momentum methods for a system of particles 941

Equating the coefficients of the i and k terms on each side of Eq. (19) and 

solving for the unknown components of the velocity of B gives 

(vB)x 5 70 m/s       (vB)z 5 280 m/s  

So 

vA 5  2(270 m/s)2 1 (2120 m/s)2 1 (160 m/s)2 5 336.0 m/s

vB 5 2(70 m/s)2 1 (0)2 1 (280 m/s)2 5 106.3 m/s

vC 5 2(230 m/s)2 1 (300)2 1 (2280 m/s)2 5 411.5 m/s

The initial kinetic energy is 

T1 5
1
2 mv2

0 5
1

2
 (200 kg)(150 m/s)2 5 2250  kJ

The fi nal kinetic energy is

T2 5
1
2 mAv2

A 1
1
2 mAv2

A 1
1
2 mAv2

A

 5
1

2
 1100 kg21336.0 m/s22 1

1

2
 160 kg21106.3 m/s22 1

1

2
 140 kg21411.5 m/s22

 5 9370 kJ

So

 DT 5 T2 2 T1 5 9370 kJ 2  2250 kJ DT 5 7120 kJ b

REFLECT and THINK: The negative signs for (vC)x and (vC)z indicate 

that the velocity is not directed as shown in Fig. 1. We also notice that 

the directions of the components of vC are opposite to those of vA. Given 

the lack of external forces, it seems reasonable to expect a more symmetric 

spread of velocities in all directions. You should also notice that the 

explosion added a lot of energy to the system.

Sample Problem 14.5

Ball B, with a mass of mB, is suspended from a cord with a length l 
attached to cart A, with a mass of mA, that can roll freely on a frictionless 

horizontal track. If the ball is given an initial horizontal velocity v0 while 

the cart is at rest, determine (a) the velocity of B as it reaches its maximum 

elevation, (b) the maximum vertical distance h through which B will rise. 

(Assume v2
0 , 2gl.)

STRATEGY: You are asked about the velocity of the system at two 

different positions, so use the principle of work and energy for the cart–

ball system. You will also use the impulse-momentum principle, since 

momentum is conserved in the x-direction.

(continued)

A

B
v0
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942 Systems of Particles

MODELING and ANALYSIS: For your system, choose the ball and 

the cart and model them as particles.

Velocities.

Position 1:   (vA)1 5 0   (vB)1 5 v0 (1)

Position 2: When ball B reaches its maximum elevation, its velocity 

(vB/A)2 relative to its support A is zero (Fig. 1). Thus, at that instant, its 

absolute velocity is

 (vB)2 5 (vA)2 1 (vB/A)2 5 (vA)2 (2)

Impulse–Momentum Principle. The external impulses consist of 

WAt, WBt, and Rt, where R is the reaction of the track on the cart. Recall-

ing Eqs. (1) and (2), draw the impulse–momentum diagram (Fig. 2) and 

write

omv1 1 oExt Imp1y2 5 omv2

y
1  x components: mBv0 5 (mA 1 mB)(vA)2

This expresses that the linear momentum of the system is conserved in 

the horizontal direction. Solving for (vA)2, you have

 (vA)2 5
mB

mA 1 mB
 v0 

 
   (vB)2 5 (vA)2 5

mB

mA 1 mB
 v0 y  b

Conservation of Energy. The system is shown in Fig. 3 in the two 

positions. Define your datum at the location of B in position 1 (although 

you could also choose to place it at A). You can now calculate the kinetic 

and potential energies in the two positions:

Position 1. Potential Energy: V1 5 mAgl
 Kinetic Energy:  T1 5

1
2 mB  

v2
0

Position 2. Potential Energy: V2 5 mAgl 1 mBgh
 Kinetic Energy:   T2 5

1
2(mA 1 mB)(vA)2

2 

Substituting these into the conservation of energy gives

T1 1 V1 5 T2 1 V2:  1
2 mBv2

0 1 mAgl 5
1
2(mA 1 mB)(vA)2

2 1 mAgl 1 mBgh

Solving for h, you have

h 5
v2

0

2g
2

mA 1 mB

mB
 
(vA)2

2

2g

or substituting (vA)2 from above, you have

h 5
v2

0

2g
2

mB

mA 1 mB
 

v2
0

2g
  h 5

mA

mA 1 mB
 
v2

0

2g
 b

REFLECT and THINK: Recalling that v2
0 , 2gl, it follows from the 

last equation that h , l; this verifies that B stays below A, as assumed in 

the solution. For mA .. mB, the answers reduce to (vB)2 5 (vA)2 5 0 and 
h 5 v2

0/2g; B oscillates as a simple pendulum with A fixed. For 

mA ,, mB, they reduce to (vB)2 5 (vA)2 5 v0 and h 5 0; A and B move 

with the same constant velocity v0.

Position 1 Position 2

(vA)1 = 0

(vB)1 = v0
(vB)2 = (vA)2

(vB/A)2 = 0

(vA)2A

B

A

B

Fig. 1 Velocity vectors at the two 
positions.

mA(vA)2

mB(vA)2

mBv0

+ =

WAt

WBt

Rt

AAA

B
BB

Fig. 2 Impulse–momentum diagram for 
the system.

A

(vB)2 = (vA)2
v0

(vA)2

Datum
h

Position 1 Position 2

B

A

B

l

Fig. 3 The system drawn in position 1 
and position 2.
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14.2 Energy and momentum methods for a system of particles 943

Sample Problem 14.6

In a game of billiards, ball A is given an initial velocity v0 with a magnitude 

of v0 5 10 ft/s along line DA parallel to the axis of the table. It hits ball B 

and then ball C, which are both at rest. Balls A and C hit the sides of the 

table squarely at points A9 and C9, respectively, and B hits the side obliquely 

at B9. Assuming frictionless surfaces and perfectly elastic impacts, determine 

the velocities vA, vB, and vC with which the balls hit the sides of the table. 

(Remark: In this sample problem and in several of the problems that follow, 

we assume the billiard balls are particles moving freely in a horizontal 

plane, rather than the rolling and sliding spheres they actually are.)

STRATEGY: Since there are no externally applied forces, use the 

conservation of linear and angular momentum. Because you are told that 

the impacts are perfectly elastic, you can also use the conservation of 

energy (but note that in general, energy is lost in an impact).

MODELING and ANALYSIS: Choose the system to be all three 

billiard balls and model them as particles.

Conservation of Momentum. There is no external force, so the 

initial momentum mv0 is equipollent to the system of momenta after the 

two collisions (and before any of the balls hit the sides of the table). 

Referring to Fig. 1, you have

y
1  x components: m(10 ft/s) 5 m(vB)x 1 mvC (1)
 1xy components: 0 5 mvA 2 m(vB)y  (2)
 1l moments about O: 2(2 ft)m(10 ft/s) 5 (8 ft)mvA

 2(7 ft)m(vB)y 2 (3 ft)mvC (3)

Solving the three equations for vA, (vB)x, and (vB)y in terms of vC gives 

 vA 5 (vB)y 5 3vC 2 20  (vB)x 5 10 2 vC (4)

Conservation of Energy. The surfaces are frictionless and the 

impacts are perfectly elastic, so the initial kinetic energy 
1
2 
mv2

0 is equal to 

the final kinetic energy of the system:

1
2 mv2

0 5
1
2 mv2

A 1
1
2 mv2

B 1
1
2 mv2

C 

 v2
A 1 (vB)2

x 1 (vB)2
y 1 v2

C 5 (10 ft/s)2  (5)

Substituting for vA, (vB)x, and (vB)y from Eq. (4) into Eq. (5), you have

2(3vC 2 20)2 1 (10 2 vC)2 1 v2
C 5 100

 20v2
C 2 260vC 1 800 5 0

Solving for vC, you find vC 5 5 ft/s and vC 5 8 ft/s. Since only the second 

root yields a positive value for vA after substitution into Eqs. (4), then 

vC 5 8 ft/s and

 vA 5 (vB)y 5 3(8) 2 20 5 4 ft/s  (vB)x 5 10 2 8 5 2 ft/s

 vA 5 4 ft/sx  vB 5 4.47 ft/s c 63.4°  vC 5 8 ft/sy b

REFLECT and THINK: In a real situation, energy would not be 

conserved, and you would need to know the coefficient of restitution 

between the balls to solve this problem. We also neglected friction and 

the rotation of the balls in our analysis, which is often a poor assumption 

in pool or billiards. We discuss rigid-body impacts in Chapter 17.

vB

vA

v0

vC

A'

B'

C'
A

B
CD

2 ft8 ft

7 ft

3 ft

3 ft2 ft

Fig. 1 Impulse–momentum diagram 
for the system.

O

8 ft

7 ft

3 ft

mvC

mvA

m (vB)y 
m (vB)x 

B C

A

mv0 = m (10 ft/s) 
A

x

y

O

D

2 ft

=
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944944

In Sec. 14.1, we defined the linear momentum and the angular momentum of a 

system of particles. In this section, we defined the kinetic energy T of a system 

of particles as

T 5
1

2
On

i51

miv
2
i   (14.28)

The solutions of the problems in Sec. 14.1 were based on the conservation of linear 

momentum of a system of particles or on the observation of the motion of the mass 

center of a system of particles. In this section, you will solve problems involving the 

following concepts.

1. Computation of the kinetic energy lost in collisions. You can compute the 

kinetic energy T1 of the system of particles before the collisions and its kinetic energy 

T2 after the collisions from Eq. (14.28) and subtract one from the other. Keep in mind 

that although linear momentum and angular momentum are vector quantities, kinetic 

energy is a scalar quantity.

2. Conservation of linear momentum and conservation of energy. As you saw in 

Sec. 14.1, when the resultant of the external forces acting on a system of particles is 

zero, the linear momentum of the system is conserved. In problems involving two-

dimensional motion, expressing that the initial linear momentum and the final linear 

momentum of the system are equipollent yields two algebraic equations. Equating the 

initial total energy of the system of particles (including potential energy as well as 

kinetic energy) to its final total energy yields an additional equation. Thus, you can 

write three equations that you can solve for three unknowns [Sample Prob. 14.6]. Note 

that if the resultant of the external forces is not zero but has a fixed direction, the 

component of the linear momentum in a direction perpendicular to the resultant is 

still conserved; the number of equations that you can use is then reduced to two 

[Sample Prob. 14.5].

3. Conservation of linear and angu lar momentum. When no external forces act 

on a system of particles, both the linear momentum of the system and its angular 

momentum about some arbitrary point are conserved. In the case of three-dimensional 

motion, this enables you to write as many as six equations, although you may need 

to solve only some of them to obtain the desired answers [Sample Prob. 14.4]. In the 

case of two-dimensional motion, you will be able to write three equations that you 

can solve for three unknowns.

4. Conservation of linear and angular momentum and conservation of energy. In 

the case of the two-dimensional motion of a system of particles that is not subjected 

to any external forces, you can obtain two algebraic equations by expressing that the 

linear momentum of the system is conserved; one equation by writing that the angular 

momentum of the system about some arbitrary point is conserved; and a fourth 

equation by expressing that the total energy of the system is conserved. These equations 

can be solved for four unknowns.

SOLVING PROBLEMS 
ON YOUR OWN
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945

 14.31 Determine the energy lost due to friction and the impacts for 

Prob. 14.1.

 14.32 Assuming that the airline employee of Prob. 14.3 first tosses the 

30-lb suitcase on the baggage carrier, determine the energy lost (a) as 

the first suitcase hits the carrier, (b) as the second suitcase hits the 

carrier.

 14.33 In Prob. 14.6, determine the work done by the woman and by the man 

as each dives from the boat, assuming that the woman dives first.

14.34 Determine the energy lost as a result of the series of collisions 

described in Prob. 14.8.

 14.35 Two automobiles A and B, of mass mA and mB, respectively, are 

traveling in opposite directions when they collide head on. The impact 

is assumed perfectly plastic, and it is further assumed that the energy 

absorbed by each automobile is equal to its loss of kinetic energy with 

respect to a moving frame of reference attached to the mass center of 

the two-vehicle system. Denoting by EA and EB, respectively, the 

energy absorbed by automobile A and by automobile B, (a) show that 

EA/EB 5 mB/mA, that is, the amount of energy absorbed by each vehicle 

is inversely proportional to its mass, (b) compute EA and EB, knowing 

that mA 5 1600 kg and mB 5 900 kg and that the speeds of A and B 
are, respectively, 90 km/h and 60 km/h.

A B

vA vB

Fig. P14.35

 14.36 It is assumed that each of the two automobiles involved in the colli-

sion described in Prob. 14.35 had been designed to safely withstand 

a test in which it crashed into a solid, immovable wall at the 

speed v0. The severity of the collision of Prob. 14.35 may then be 

measured for each vehicle by the ratio of the energy it absorbed in 

the collision to the energy it absorbed in the test. On that basis, show 

that the collision described in Prob. 14.35 is (mA/mB)2 times more 

severe for automobile B than for auto mobile A.

 14.37 Solve Sample Problem 14.5, assuming that cart A is given an initial 

horizontal velocity v0 while ball B is at rest.

 14.38 Two hemispheres are held together by a cord which maintains a spring 

under compression (the spring is not attached to the hemispheres). The 

potential energy of the compressed spring is 120 J and the assembly 

has an initial velocity v0 of magnitude v0 5 8 m/s. Knowing that the 

cord is severed when θ 5 30°, causing the hemispheres to fly apart, 

determine the resulting velocity of each hemisphere.

Problems

A

B

v0

2.5 kg

1.5 kg

q

Fig. P14.38

bee87342_ch14_915-976.indd   945bee87342_ch14_915-976.indd   945 11/26/14   1:24 PM11/26/14   1:24 PM

UPLOADED BY AHMAD T JUNDI



946

 14.39 A 15-lb block B starts from rest and slides on the 25-lb wedge A, 

which is supported by a horizontal surface. Neglecting friction, 

determine (a) the velocity of B relative to A after it has slid 3 ft 

down the inclined surface of the wedge, (b) the corresponding 

velocity of A.

 14.40 A 40-lb block B is suspended from a 6-ft cord attached to a 60-lb 

cart A, which may roll freely on a frictionless, horizontal track. If 

the system is released from rest in the position shown, determine 

the velocities of A and B as B passes directly under A.

 14.41 and 14.42 In a game of pool, ball A is moving with a velocity v0 

with a magnitude of v0 5 15 ft/s when it strikes balls B and C, which 

are at rest and aligned as shown. Knowing that after the collision the 

three balls move in the directions indicated and assuming frictionless 

surfaces and perfectly elastic impact (that is, conservation of energy), 

determine the magnitudes of the velocities vA, vB, and vC.

A B
C

30°

30°
30°

vB

v0

vC

vA

Fig. P14.41

vA

vC

v0
vB

C

BA

60°

60°

45°

Fig. P14.42

 14.43 Three spheres, each with a mass of m, can slide freely on a 

frictionless, horizontal surface. Spheres A and B are attached to an 

inextensible, inelastic cord with a length l and are at rest in the 

position shown when sphere B is struck squarely by sphere C, which 

is moving with a velocity v0. Knowing that the cord is taut when 

sphere B is struck by sphere C and assuming perfectly elastic impact 

between B and C, and thus the conservation of energy for the entire 

system, determine the velocity of each sphere immediately after 

impact.

 14.44 In a game of pool, ball A is moving with the velocity v0 5 v0i when 

it strikes balls B and C, which are at rest side by side. Assuming 

frictionless surfaces and perfectly elastic impact (i.e., conservation 

of energy), determine the final velocity of each ball, assuming that 

the path of A is (a) perfectly centered and that A strikes B and C 
simultaneously, (b) not perfectly centered and that A strikes B 
slightly before it strikes C.

 14.45 The 2-kg sub-satellite B has an initial velocity vB 5 (3 m/s)j. It is 

connected to the 20-kg base-satellite A by a 500-m space tether. 

Determine the velocity of the base satellite and sub-satellite 

immediately after the tether becomes taut (assuming no rebound).

30°
A

B

Fig. P14.39

B

A

60 lb

40 lb

25°

Fig. P14.40

A

B

v0

l

l/3

C

Fig. P14.43

A

C

Bv0

Fig. P14.44

A
300 m

vB

Fig. P14.45
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947

  14.46 A 900-lb space vehicle traveling with a velocity v0 5 (1500 ft/s)k 

passes through the origin O. Explosive charges then separate the 

vehicle into three parts A, B, and C, with masses of 150 lb, 300 lb, 

and 450 lb, respectively. Knowing that shortly thereafter the  positions 

of the three parts are, respectively, A(250, 250, 2250), B(600, 1300, 

3200), and C(2475, 2950, 1900), where the coordinates are expressed 

in feet, that the velocity of B is vB 5 (500 ft/s)i 1 (1100 ft/s)j 1 

(2100 ft/s)k, and that the x component of the velocity of C is 

2400 ft/s, determine the velocity of part A.

 14.47 Four small disks A, B, C, and D can slide freely on a frictionless 

horizontal surface. Disks B, C, and D are connected by light rods and 

are at rest in the position shown when disk B is struck squarely by 

disk A which is moving to the right with a velocity 

v0 5 (38.5 ft/s)i. The weights of the disks are WA 5 WB 5 WC 5 15 

lb, and WD 5 30 lb. Knowing that the velocities of the disks immediately 

after the impact are vA 5 vB 5 (8.25 ft/s)i, vC 5 vCi, and vD 5 vDi, 
determine (a) the speeds vC and vD, (b) the fraction of the initial kinetic 

energy of the system which is dissipated during the  collision.

 14.48 In the scattering experiment of Prob. 14.26, it is known that the 

alpha particle is projected from A0(300, 0, 300) and that it collides 

with the oxygen nucleus C at Q(240, 200, 100), where all coordinates 

are expressed in millimeters. Determine the coordinates of point B0 
where the original path of nucleus B intersects the zx plane. 

(Hint: Express that the angular momentum of the three particles 

about Q is conserved.)

 14.49 Three identical small spheres, each of weight 2 lb, can slide freely 

on a horizontal frictionless surface. Spheres B and C are connected 

by a light rod and are at rest in the position shown when sphere B
is struck squarely by sphere A which is moving to the right with a 

velocity v0 5 (8 ft/s)i. Knowing that θ 5 458 and that the velocities 

of spheres A and B immediately after the impact are vA 5 0 and 

vB 5 (6 ft/s)i 1 (vB)y j, determine (vB)y and the velocity of C
immediately after impact.

C

BA
x

y

1.5 ft

v0
q

Fig. P14.49

14.50 Three small spheres A, B, and C, each of mass m, are connected to 

a small ring D of negligible mass by means of three inextensible, 

inelastic cords of length l. The spheres can slide freely on a frictionless 

horizontal surface and are rotating initially at a speed v0 about 

ring D which is at rest. Suddenly the cord CD breaks. After the other 

two cords have again become taut, determine (a) the speed of ring 

D, (b) the relative speed at which spheres A and B rotate about D, 

(c) the fraction of the original energy of spheres A and B that is 

dissipated when cords AD and BD again became taut.

C

BA
x

D

3 ft

v0

3 ft

Fig. P14.47

A

DD C

O

BB

x

y

300°v00

v00

v0

1200°

Fig. P14.50
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 14.51 In a game of billiards, ball A is given an initial velocity v0 along 

the longitudinal axis of the table. It hits ball B and then ball C, 

which are both at rest. Balls A and C are observed to hit the sides 

of the table squarely at A9 and C9, respectively, and ball B is 
observed to hit the side obliquely at B9. Knowing that v0 5 4 m/s, 

vA 5 1.92 m/s, and a 5 1.65 m, determine (a) the velocities vB and 

vC of balls B and C, (b) the point C9 where ball C hits the side of 

the table. Assume frictionless surfaces and perfectly elastic impacts 

(i.e., conservation of energy).

 14.52 For the game of billiards of Prob. 14.51, it is now assumed that 

v0 5 5 m/s, vC 5 3.2 m/s, and c 5 1.22 m. Determine (a) the 

velocities vA and vB of balls A and B, (b) the point A9 where ball A 
hits the side of the table.

 14.53 Two small disks A and B, of mass 3 kg and 1.5 kg, respectively, may 

slide on a horizontal, frictionless surface. They are connected by a 

cord, 600 mm long, and spin counterclockwise about their mass 

center G at the rate of 10 rad/s. At t 5 0, the coordinates of G are 

x0 5 0, y0 5 2 m, and its velocity v0 5 (1.2 m/s)i 1 (0.96 m/s)j. 
Shortly thereafter the cord breaks; disk A is then observed to move 

along a path parallel to the y axis and disk B along a path which 

intersects the x axis at a distance b 5 7.5 m from O. Determine 

(a) the velocities of A and B after the cord breaks, (b) the distance 

a from the y axis to the path of A.

a

y

A
A

G

B

O

B

vB

v0

y0

vA

B'

b
x

Fig. P14.53 and P14.54

 14.54 Two small disks A and B, of mass 2 kg and 1 kg, respectively, may 

slide on a horizontal and frictionless surface. They are connected by 

a cord of negligible mass and spin about their mass center G. At t 5 0, 

G is moving with the velocity v0 and its coordinates are 

x0 5 0, y0 5 1.89 m. Shortly thereafter, the cord breaks and disk A is 

observed to move with a velocity vA 5 (5 m/s)j in a straight line and 

at a distance a 5 2.56 m from the y axis, while B moves with a veloc-

ity vB 5 (7.2 m/s)i 2 (4.6 m/s)j along a path intersecting the x axis at 

a distance b 5 7.48 m from the origin O. Determine (a) the initial 

velocity v0 of the mass center G of the two disks, (b) the length of the 

cord initially connecting the two disks, (c) the rate in rad/s at which 

the disks were spinning about G.

c

a A'

A

B

C

v0

vA

vB

vC

0.75 m

0.75 m

1.8 m 1.2 m

C'

B'

Fig. P14.51
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 14.55 Three small identical spheres A, B, and C, which can slide on a 

horizontal, frictionless surface, are attached to three 9-in.-long 

strings, which are tied to a ring G. Initially the spheres rotate clock-

wise about the ring with a relative velocity of 2.6 ft/s and the ring 

moves along the x axis with a velocity v0 5 (1.3 ft/s)i. Suddenly the 

ring breaks and the three spheres move freely in the xy plane with 

A and B following paths parallel to the y axis at a distance 

a 5 1.0 ft from each other and C following a path parallel to the 

x axis. Determine (a) the velocity of each sphere, (b) the distance d.

vA

vB

vC

v0

y

x

120°

120°

GB

C

A

A

B

C

da

Fig. P14.55 and P14.56

14.56 Three small identical spheres A, B, and C, which can slide on a 

horizontal, frictionless surface, are attached to three strings of 

length l which are tied to a ring G. Initially the spheres rotate 

clockwise about the ring which moves along the x axis with a 

velocity v0. Suddenly the ring breaks and the three spheres move 

freely in the xy plane. Knowing that vA 5 (3.5 ft/s)j, vC 5 (6.0 ft/s)i, 
a 5 16 in., and d 5 9 in., determine (a) the initial velocity of the 

ring, (b) the length l of the strings, (c) the rate in rad/s at which the 

spheres were rotating about G.
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950 Systems of Particles

*14.3  VARIABLE SYSTEMS 
OF PARTICLES

All of the systems considered so far consisted of well-defined particles. 

These systems did not gain or lose any particles during their motion. In a 

large number of engineering applications, however, it is necessary to consider 

variable systems of particles, i.e., systems that are continually gaining or 

losing particles, or doing both at the same time. Consider, for example, a 

hydraulic turbine. Its analysis involves determining the forces exerted by a 

stream of water on rotating blades, and the particles of water in contact with 

the blades form an ever-changing system that continually acquires and loses 

particles. Rockets furnish another example of variable systems, since their 

propulsion depends upon the continual ejection of fuel particles.

To analyze variable systems of particles, we must find a way to reduce 

the analysis to that of an auxiliary constant system. We indicate the procedure 

to follow in Secs. 14.3A and 14.3B for two broad categories of applications: 

a steady stream of particles and a system that is gaining or losing mass.

*14.3A Steady Stream of Particles
Consider a steady stream of particles, such as a stream of water diverted 

by a fixed vane or a flow of air through a duct or through a blower. In 

order to determine the resultant of the forces exerted on the particles in 

contact with the vane, duct, or blower, we isolate these particles and define 

them to be a system S (Fig. 14.9). Note that S is a variable system of 

particles, since it continually gains particles flowing in and loses an equal 

number of particles flowing out. Therefore, the kinetics principles that we 

have established so far do not apply directly to S.

However, we can easily define an auxiliary system of particles that 

does remain constant for a short interval of time Δt. Consider at time t the 

system S plus the particles that will enter S during the interval of time Δt
(Fig. 14.10a). Next, consider at time t 1 Δt the system S plus the particles 

S

Fig. 14.9 A system of particles in a steady 
stream.

S SS
A

B

A

B∑mivi ∑mivi

(Δm)vA

(Δm)vB

(a) (b) (c)

∑F Δt

∑M Δt

+ =

Fig. 14.10 The impulse–momentum diagram for a stream of particles 
contains (a) momenta of particles entering and in the system S plus 
(b) impulses during the time interval Dt, and (c) momenta of the particles 
in and leaving the system.
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*14.3 Variable Systems of Particles  951

that have left S during the interval Dt (Fig. 14.10c). Clearly, the same particles 
are involved in both cases, and we can apply the principle of impulse and 

momentum to those particles. Since the total mass m of the system S remains 

constant, the particles entering the system and those leaving the system in 

the time Dt must have the same mass Dm. Suppose we denote the velocities 

of the particles entering S at A and leaving S at B by vA and vB, respectively. 

Then we can represent the momentum of the particles entering S by (Dm)vA 

(Fig. 14.10a) and the momentum of the particles leaving S by (Dm)vB 

(Fig. 14.10c). We also represent the momenta mivi of the particles forming 

S and the impulses of the forces exerted on S by appropriate vectors. Then 

we indicate by blue plus and equals signs that the system of the momenta 

and impulses in parts a and b of Fig. 14.10 is equipollent to the system of 

the momenta in part c of the same figure.

The resultant omivi of the momenta of the particles of S is found 

on both sides of the equals sign and thus can be omitted. We conclude:

The system formed by the momentum (Dm)vA of the particles 
entering S in the time Dt and the impulses of the forces exerted on 
S during that time is equipollent to the momentum (Dm)vB of the 
particles leaving S in the same time Dt. 

Mathematically, we have

 (Dm)vA 1 ©F Dt 5 (Dm)vB (14.38)

We can obtain a similar equation by taking the moments of the vectors 

involved (see Sample Prob. 14.7). Dividing all terms of Eq. (14.38) by Dt 
and letting Dt approach zero, we obtain at the limit

 ©F 5
dm

dt
(vB 2 vA) (14.39)

where vB 2 vA represents the difference between the vector vB and the 

vector vA.

If we use SI units, dm/dt is expressed in kg/s and the velocities in 

m/s; we check that both sides of Eq. (14.39) are expressed in the same 

units (newtons). If we use U.S. customary units, dm/dt must be expressed 

in slugs/s and the velocities in ft/s; we check again that both sides of the 

equation are expressed in the same units (pounds).†

We can use this principle to analyze a large number of engineering 

applications. Let’s look at some of the more common of these applications.

Fluid Stream Diverted by a Vane. If the vane is fixed, we can 

apply directly the method of analysis given here to find the force F exerted 

by the vane on the stream. Note that F is the only force we need to 

consider, because the pressure in the stream is constant (atmospheric 

pressure). The force exerted by the stream on the vane is equal and 

opposite to F.

†It is often convenient to express the mass rate of flow dm/dt as the product ρQ, where ρ is 

the density of the stream (mass per unit volume) and Q is its volume rate of flow (volume 

per unit time). If you use SI units, ρ is in kg/m3 (for instance, ρ 5 1000 kg/m3 for water) 

and Q is in m3/s. However, if you use U.S. customary units, ρ generally has to be computed 

from the corresponding specific weight γ (weight per unit volume), ρ 5 γ/g. Since γ is 

expressed in lb/ft3 (for instance, γ 5 62.4 lb/ft3 for water), we obtain ρ in slug/ft3. The 

volume rate of flow Q is expressed in ft3/s.

bee87342_ch14_915-976.indd   951bee87342_ch14_915-976.indd   951 11/26/14   1:24 PM11/26/14   1:24 PM

UPLOADED BY AHMAD T JUNDI



952 Systems of Particles

If the vane moves with a constant velocity, the stream is not steady. 

However, it will appear steady to an observer moving with the vane. We 

should therefore choose a system of axes moving with the vane. Since this 

system of axes is not accelerated, we can still use Eq. (14.38), but we 

must replace vA and vB by the relative velocities of the stream with respect 

to the vane (see Sample Prob. 14.8).

Fluid Flowing Through a Pipe. We can determine the force 

exerted by the fluid on a pipe transition, such as a bend or a 

contraction, by considering the system of particles S in contact with 

the transition. Since, in general, the pressure in the flow will vary, we 

should also consider the forces exerted on S by the adjoining portions 

of the fluid.

Jet Engine. In a jet engine, air enters the front of the engine with no 

velocity and leaves through the rear with a high velocity. The energy 

required to accelerate the air particles is obtained by burning fuel. The 

mass of the burned fuel in the exhaust gases is usually small enough 

compared with the mass of the air flowing through the engine that it can 

be neglected. Thus, the analysis of a jet engine reduces to that of an 

airstream. We can consider this stream as a steady stream if we measure 

all velocities with respect to the airplane. We assume, therefore, that 

the airstream enters the engine with a velocity v of magnitude equal to 

the speed of the airplane and leaves with a velocity u equal to the relative 

velocity of the exhaust gases (Fig. 14.11a). Since the intake and exhaust 

pressures are nearly atmospheric, the only external force we need to 

v u

Slipstream

S
S

vBvA    0≈

(a) Jet plane (b) Fan (c) Helicopter

Fig. 14.11 Applications of a steady stream of particles.

bee87342_ch14_915-976.indd   952bee87342_ch14_915-976.indd   952 11/26/14   1:24 PM11/26/14   1:24 PM

UPLOADED BY AHMAD T JUNDI



*14.3 Variable Systems of Particles  953

consider is the force exerted by the engine on the airstream. This force is 

equal and opposite to the thrust.†

Fan. Consider the system of particles S shown in Fig. 14.11b. We 

assume the velocity vA of the particles entering the system is equal to zero, 

and the velocity vB of the particles leaving the system is the velocity of 

the slipstream. We can obtain the rate of flow by multiplying vB by the 

cross-sectional area of the slipstream. Since the pressure all around S is 

atmospheric, the only external force acting on S is the thrust of the fan.

Helicopter. Determining the thrust created by the rotating blades of 

a hovering helicopter is similar to the determination of the thrust of a fan 

(Fig. 14.11c). We assume the velocity vA of the air particles as they 

approach the blades is zero, and we obtain the rate of flow by multiplying 

the magnitude of the velocity vB of the slipstream by its cross-sectional 

area.

*14.3B  Systems Gaining 
or Losing Mass

Let us now analyze a different type of variable system of particles; 

namely, a system that gains mass by continually absorbing particles or 

loses mass by continually expelling particles. Consider the system S 

shown in Fig. 14.12. Its mass, equal to m at the instant t, increases by 

Dm in the time interval Dt. In order to apply the principle of impulse 

and momentum to this system, we must consider at time t the system 

S plus the particles of mass Dm that S absorbs during the time interval 

Dt. The velocity of S at time t is denoted by v, the velocity of S at time 

t 1 Dt is denoted by v 1 Dv, and the absolute velocity of the particles 

absorbed is denoted by va. Applying the principle of impulse and momen-

tum, we have

 mv 1 (Dm)va 1 oF Dt 5 (m 1 Dm)(v 1 Dv)  (14.40)

Solving for the sum oF Dt of the impulses of the external forces acting 

on S (excluding the forces exerted by the particles being absorbed), we 

obtain

 oF Dt 5 mDv 1 Dm(v 2 va) 1 (Dm)(Dv) (14.41)

Now we introduce the relative velocity u with respect to S of the particles 

that are absorbed. We have u 5 va 2 v and note, since va , v, that the 

relative velocity u is directed to the left, as shown in Fig. 14.12. Neglecting 

the last term in Eq. (14.41), which is of the second order, we have

oF Dt 5 m Dv 2 (Dm)u

†Note that if the airplane is accelerating, we cannot use it as a newtonian frame of reference. 

However, we can obtain the same result for the thrust by using a reference frame at rest with 

respect to the atmosphere. In this frame, the air particles enter the engine with no velocity 

and leave it with a velocity of magnitude u – v.

(Δm)va

Δm

∑F Δt

va

S

S

S

m

mv

v

u = va – v

+

=
m + Δm

(m + Δm)(v + Δv)

Fig. 14.12 Impulse–momentum diagram for 
a system that gains mass.
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954 Systems of Particles

Now we divide through by Δt and let Δt approach zero. In the limit we 

obtain†

 ©F 5 m 

dv
dt

2
dm

dt
 u  (14.42)

Rearranging terms and recalling that dv/dt 5 a, where a is the acceleration 

of the system S, we have

 ©F 1
dm

dt
 u 5 ma (14.43)

This equation states that the action on S of the particles being absorbed 

is equivalent to a thrust

 P 5
dm

dt
 u (14.44)

that tends to slow down the motion of S, since the relative velocity u of 

the particles is directed to the left. If we use SI units, dm/dt is 

expressed in kg/s, the relative velocity u is in m/s, and the 

corresponding thrust is in newtons. If we use U.S. customary units, 

dm/dt must be expressed in slug/s, u in ft/s, and the corresponding 

thrust in pounds.

We can also use these equations to determine the motion of a 

system S losing mass. In this case, the rate of change of mass is negative, 

and the action on S of the particles being expelled is equivalent to a thrust 

in the direction of 2u; that is, in the direction opposite to that in which 

the particles are being expelled. A rocket represents a typical case of a 

system continually losing mass (see Sample Prob. 14.9).

†When the absolute velocity va of the particles absorbed is zero, u = –v and formula (14.42) 

becomes

oF 5
d

dt
 1mv2

Comparing this formula with Eq. (12.3) of Sec. 12.1B, we see that this is Newton’s second 

law applied to a system gaining mass, provided that the particles absorbed are initially at 
rest. We can also apply it to a system losing mass, provided that the velocity of the particles 
expelled is zero with respect to the chosen frame of reference. 

Photo 14.3 As booster rockets are fired, the 
gas particles they eject provide the thrust 
required for liftoff.
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*14.3 Variable Systems of Particles  955

Sample Problem 14.7

Grain falls from a hopper onto a chute CB at the rate of 240 lb/s. It hits 

the chute at A with a velocity of 20 ft/s and leaves at B with a velocity 

of 15 ft/s, forming an angle of 10° with the horizontal. Knowing that the 

combined weight of the chute and of the grain it supports is a force W 

with a magnitude of 600 lb applied at G, determine the reaction at the 

roller support B and the components of the reaction at the hinge C.

STRATEGY: Since we have a steady stream of particles, apply the 

principle of impulse and momentum for the time interval Dt.

MODELING: Choose a system that consists of the chute, the grain it 

supports, and the amount of grain that hits the chute in the interval Dt. 
The impulse-momentum diagram for this system is shown in Fig. 1. Since 

the chute does not move, it has no momentum. Note that the sum omivi 

of the momenta of the particles supported by the chute is the same at t 
and t 1 Dt and thus can be omitted.

12 ft
12 ft7 ft

6 ft

(Δm)vA

3 ft

C
C

C

(Δm)vB

+ =Cx Δt

Cy Δt

W Δt B Δt

10

y

x

Fig. 1 Impulse–momentum diagram for the system.

ANALYSIS: You can use the impulse-momentum diagram to obtain 

scalar equations for the x and y directions and for moments about point C.

y
1   x components: Cx Dt 5 (Dm)vB cos 10° (1)
1xy components: 2(Dm)vA 1 Cy Dt 2 W Dt 1 B Dt

 5 2(Dm)vB sin 10° (2) 
1l moments about C:  23(Dm)vA 2 7(W Dt) 1 12(B Dt)
 5 6(Dm)vB cos 10° 2 12(Dm)vB sin 10° (3)

Using the given data, W 5 600 lb, vA 5 20 ft/s, vB 5 15 ft/s, and 

Dm/Dt 5 240/32.2 5 7.45 slug/s, and solving Eq. (3) for B and Eq. (1) 

for Cx, you obtain

12B 5 7(600) 1 3(7.45)(20) 1 6(7.45)(15)(cos 10° 2 2 sin 10°)

 12B 5 5075  B 5 423 lb B 5 423 lbx b 

 Cx 5 (7.45)(15) cos 10° 5 110.1 lb Cx 5 110.1 lb y b

Substituting for B and solving Eq. (2) for Cy, you end up with

Cy 5 600 2 423 1 (7.45)(20 2 15 sin 10°) 5 307 lb

Cy 5 307 lbx b

REFLECT and THINK: This kind of situation is common in factory and 

storage settings. Being able to determine the reactions is essential for designing 

a proper chute that will support the stream safely. We can compare this 

situation to the case when there is no mass flow, which results in reactions 

of By 5 350 lb, Cy 5 250 lb, and Cx 5 0 lb.

vB

vA

3 ft

12 ft
7 ft

10°

W

A
B

C

G6 ft
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956 Systems of Particles

Sample Problem 14.8

A nozzle discharges a stream of water of cross-sectional area A with a 

velocity vA. The stream is deflected by a single blade that moves to the 

right with a constant velocity V. Assuming that the water moves along the 

blade at constant speed, determine (a) the components of the force F 

exerted by the blade on the stream, (b) the velocity V for which maximum 

power is developed.

STRATEGY: Since you have a steady stream of particles, apply the 

principle of impulse and momentum.

MODELING: Choose the system to be the particles in contact with the 

blade and the particles striking the blade in the time Δt, and use a coordinate 

system that moves with the blade at a constant velocity V. The particles 

of water strike the blade with a relative velocity uA 5 vA 2 V and leave 

the blade with a relative velocity uB, as shown in Fig. 1. Since the particles 

move along the blade at a constant speed, the relative velocities uA and uB 

have the same magnitude u. Denoting the density of water by ρ, the mass 

of the particles striking the blade during the time interval Dt is Dm 5 Aρ 

(vA 2 V) Dt; an equal mass of particles leaves the blade during Dt. The 

impulse–momentum diagram for this system is shown in Fig. 2.

Fy Δ t

Fx Δ t

+ =
(Δm)uA

(Δm)uA

ΣmiviΣmivi

θ

y

x

Fig. 2 Impulse–momentum diagram for the system.

ANALYSIS:

a. Components of Force Exerted on Stream.  Recalling that 

uA and uB have the same magnitude u and omitting the momentum omivi 

that appears on both sides, applying the principle of impulse and momen-

tum gives you

y+ x components:   (Dm)u 2 Fx Dt 5 (Dm)u cos θ

1 xy components: 1Fy Dt 5 (Dm)u sin θ

Substituting Dm 5 Aρ (vA 2 V) Dt and u = vA – V, you obtain

Fx 5 Aρ(vA 2 V)2(1 2 cos θ)z  Fy 5 Aρ(vA 2 V)2 sin θx b

b. Velocity of Blade for Maximum Power. You can obtain the 

power by multiplying the velocity V of the blade by the component Fx of 

the force exerted by the stream on the blade.

Power 5 FxV 5 Aρ(vA 2 V)2(1 2 cos θ)V

vA

A

B

q

V

uB

uA =  vA –V
q

Fig. 1 Relative velocities 
of the water entering and 
leaving the blade.

bee87342_ch14_915-976.indd   956bee87342_ch14_915-976.indd   956 11/26/14   1:24 PM11/26/14   1:24 PM

UPLOADED BY AHMAD T JUNDI



*14.3 Variable Systems of Particles  957

Differentiating the power with respect to V and setting the derivative equal 

to zero, you have

d(power)

dV
5 Aρ(v2

A 2 4vAV 1 3V 2)(1 2 cos θ) 5 0

V 5 vA  V 5 
1
3vA  For maximum power V 5 

1
3vA y b

REFLECT and THINK: These results are valid only when a single 

blade deflects the stream. Different results appear when a series of blades 

deflects the stream, as in a Pelton-wheel turbine (see Prob. 14.81).

(continued)(continued)

Sample Problem 14.9

A rocket of initial mass m0 (including shell and fuel) is fired vertically at 

time t 5 0. The fuel is consumed at a constant rate q 5 dm/dt and is 

expelled at a constant speed u relative to the rocket. Derive an expression 

for the magnitude of the velocity of the rocket at time t, neglecting the 

resistance of the air.

STRATEGY: Since you have a system that is losing mass, apply the 

principle of impulse and momentum. This gives you an equation you can 

integrate to obtain the velocity.

MODELING: Choose the rocket shell and its fuel as your system. At 

time t, the mass of the rocket shell and remaining fuel is m 5 m0 2 qt, 
and the velocity is v. During the time interval Dt, a mass of fuel Dm 5 q Dt 
is expelled with a speed u relative to the rocket. The impulse–momentum 

diagram for this system is shown in Fig. 1, where ve is the absolute velocity 

of the expelled fuel.

+ =(m0 – qt)v (m0 – qt – qΔ t)(v+Δv)W Δt

Δmve

[Δmve = qΔ t(u – v)]

[W Δt = g(m0 – qt)Δt]

Fig. 1 Impulse–momentum diagram for the system.

v

(continued)
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958 Systems of Particles

ANALYSIS: Apply the principle of impulse and momentum between 

time t and time t 1 Dt to find

(m0 2 qt)v 2 g(m0 2 qt) Dt 5 (m0 2 qt 2 q Dt)(v 1 Dv) 2 q Dt(u 2 v)

Divide through by Δt and let Δt approach zero for

2g(m0 2 qt) 5 (m0 2 qt)
dv

dt
2 qu  

Separating variables and integrating from t 5 0, v 5 0 to t 5 t, v 5 v, 

you have

 dv 5 a qu

m0 2 qt
2 gb dt

#
v

0

 
dv 5 #

t

0

 
a qu

m0 2 qt
2 gb dt

 
 v 5 [2u ln (m0 2 qt) 2 gt]t

0  v 5 u ln 

m0

m0 2 qt
2 gt b

REFLECT and THINK: The mass remaining at time tf, after all of the 

fuel has been expended, is equal to the mass of the rocket shell 

ms 5 m0 2 qtf, and the maximum velocity attained by the rocket is 

vm 5 u ln (m0 /ms) 2 gtf. Assuming that the fuel is expelled in a relatively 

short period of time, the term gtf is small, and we have vm < u ln (m0 /ms). 

In order to escape the gravitational field of Earth, a rocket must reach a 

velocity of 11.18 km/s. Assuming u 5 2200 m/s and vm 5 11.18 km/s, 

we obtain m0 /ms 5 161. Thus, to project each kilogram of the rocket shell 

into space, it is necessary to consume more than 161 kg of fuel if we use 

a propellant yielding u 5 2200 m/s.
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959 959

T his section was devoted to the motion of variable systems of particles, i.e., 

systems that are continually gaining or losing particles or doing both at the same 

time. The problems you will be asked to solve will involve (1) steady streams of 
particles and (2) systems gaining or losing mass.

1. To solve problems involving a steady stream of particles [Sample Probs. 14.7 

and 14.8], consider a portion S of the stream and express mathematically that the 

system formed by the momentum of the particles entering S at A in the time Dt and 

that the impulses of the forces exerted on S during that time is equipollent to the 

momentum of the particles leaving S at B in the same time Dt (Fig. 14.10). Considering 

only the resultants of the vector systems involved, you can write the vector equation

(Dm)vA 1 ©F Dt 5 (Dm)vB (14.38)

You may also want to consider the angular momentum of the particle systems to 

obtain an additional equation [Sample Prob. 14.7]. However, many problems can be 

solved using Eq. (14.38) or the equation obtained by dividing all terms by Dt and 

letting Dt approach zero,

©F 5
dm

dt
(vB 2 vA) (14.39)

Here vB 2 vA represents a vector subtraction, and the mass rate of flow dm/dt can be 

expressed as the product ρQ of the density ρ of the stream (mass per unit volume) 

and the volume rate of flow Q (volume per unit time). In U.S. customary units, ρ is 

expressed as the ratio γ/g, where γ is the specific weight of the stream and g is the 

acceleration due to gravity.

Typical problems involving a steady stream of particles have been described in 

Sec. 14.3A. You may be asked to determine the following,

 a. Thrust caused by a diverted flow. Equation (14.39) is applicable, but you 

will get a better understanding of the problem if you use a solution based on Eq. (14.38).

 b. Reactions at supports of vanes or conveyor belts.  First draw a diagram 

showing on one side of the equals sign the momentum (Δm)vA of the particles impact-

ing the vane or belt in the time Δt, as well as the impulses of the loads and reactions 

at the supports during that time. On the other side, show the momentum (Δm)vB of 

the particles leaving the vane or belt in the time Δt [Sample Prob. 14.7]. Equating the 

x components, y components, and moments of the quantities on both sides of the 

equals sign will yield three scalar equations that you can solve for three unknowns.

 c. Thrust developed by a jet engine, a propeller, or a fan. In most cases, a 

single unknown is involved, and you can obtain that unknown by solving the scalar 

equation derived from Eq. (14.38) or Eq. (14.39).

SOLVING PROBLEMS 
ON YOUR OWN
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2. To solve problems involving systems gaining mass, consider the system S, which 

has a mass m and is moving with a velocity v at time t, and the particles of mass Dm 

with velocity va that S absorbs in the time interval Dt (Fig. 14.12). You will then 

express that the total momentum of S and of the particles absorbed, plus the impulse 

of the external forces exerted on S, are equipollent to the momentum of S at time 

t 1 Dt. Noting that the mass of S and its velocity at that time are, respectively, 

m 1 Dm and v 1 Dv, you will write the vector equation

 mv 1 (Dm)va 1 oF Dt 5 (m 1 Dm)(v 1 Dv) (14.40)

As we showed in Sec. 14.3B, if you introduce the relative velocity u 5 va 2 v of 

the particles being absorbed, you obtain the following expression for the resultant of 

the external forces applied to S as

 ©F 5 m 

dv
dt

2
dm

dt
 u (14.42)

Furthermore, the action on S of the particles being absorbed is equivalent to a thrust

 P 5
dm

dt
 u (14.44)

exerted in the direction of the relative velocity of the particles being absorbed.

Examples of systems gaining mass are conveyor belts, moving railroad cars being 

loaded with gravel or sand, and chains being pulled out of a pile.

3. To solve problems involving systems losing mass, such as rockets and rocket 

engines, you can use Eqs. (14.40) through (14.44)—provided that you give negative 

values to the increment of mass Dm and to the rate of change of mass dm/dt [Sample 

Prob. 14.9]. It follows that the thrust defined by Eq. (14.44) is exerted in a direction 

opposite to the direction of the relative velocity of the particles be ing ejected.
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961

 14.57 A stream of water with a density of ρ 5 1000 kg/m3 is discharged 

from a nozzle at the rate of 0.06 m3/s. Using Bernoulli’s equation, 

the gage pressure P in the pipe just upstream from the nozzle is 

P 5 0.5 ρ1v2
2 2 v2

12. Knowing the nozzle is held to the pipe by six 

flange bolts, determine the tension in each bolt, neglecting the initial 

tension caused by the tightening of the nuts.

Fig. P14.57

50 mm

v2v1
150 mm

 14.58 A jet ski is placed in a channel and is tethered so that it is stationary. 

Water enters the jet ski with velocity v1 and exits with velocity v2. 

Knowing the inlet area is A1 and the exit area is A2, determine the 

tension in the tether.

v2

v1

q

Fig. P14.58

 14.59 The nozzle shown discharges a stream of water at a flow rate of 

Q 5 475 gal/min with a velocity v and a magnitude of 60 ft/s. The 

stream is split into two streams with equal flow rates by a wedge 

that is kept in a fixed position. Determine the components (drag 

and lift) of the force exerted by the stream on the wedge. (Note: 

1 ft3 5 7.48 gal.)

 14.60 The nozzle shown discharges a stream of water at a flow rate of 

Q 5 500 gal/min with a velocity v and a magnitude of 48 ft/s. The 

stream is split into two streams of equal flow rates by a wedge that 

is moving to the left at a constant speed of 12 ft/s. Determine the 

components (drag and lift) of the force exerted by the stream on the 

wedge. (Note: 1 ft3 5 7.48 gal.)

Problems

v
30°

45°

Fig. P14.59 and P14.60
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 14.61 A rotary power plow is used to remove snow from a level section 

of railroad track. The plow car is placed ahead of an engine that 

propels it at a constant speed of 20 km/h. The plow car clears 

160 Mg of snow per minute, projecting it in the direction shown 

with a velocity of 12 m/s relative to the plow car. Neglecting 

friction, determine (a) the force exerted by the engine on the plow 

car, (b) the lateral force exerted by the track on the plow.

 14.62 Tree limbs and branches are being fed at A at the rate of 5 kg/s into 

a shredder which spews the resulting wood chips at C with a velocity 

of 20 m/s. Determine the horizontal component of the force exerted 

by the shredder on the truck hitch at D.

A

B
D

C

vC

25°

Fig. P14.62

14.63 Sand falls from three hoppers onto a conveyor belt at a rate of 

90 lb/s for each hopper. The sand hits the belt with a vertical velocity 

v1 5 10 ft/s and is discharged at A with a horizontal velocity 

v2 5 13 ft/s. Knowing that the combined mass of the beam, belt 

system, and the sand it supports is 1300 lb with a mass center at G, 

determine the reaction at E.

2.5 ft

13 ft7 ft

5 ft5 ft5 ft5 ft

A

E F

G

v2

v1 v1 v1

B C D

Fig. P14.63

 14.64 The stream of water shown flows at a rate of 550 L/min and moves 

with a velocity of magnitude 18 m/s at both A and B. The vane is 

supported by a pin and bracket at C and by a load cell at D that can 

exert only a horizontal force. Neglecting the weight of the vane, 

determine the components of the reactions at C and D.

Fig. P14.61

y

x

60°

30°

z

A

125 mm

150 mm

40 mm

vA

vB

B

C

D 200 mm

40°

Fig. P14.64
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14.65 The nozzle shown discharges water at the rate of 40 ft3/min. Knowing 

that at both A and B the stream of water moves with a velocity of 

magnitude 75 ft/s and neglecting the weight of the vane, determine 

the components of the reactions at C and D.

 14.66 A stream of water flowing at a rate of 1.2 m3/min and moving with 

a speed of 30 m/s at both A and B is deflected by a vane welded to 

a hinged plate. Knowing that the combined mass of the vane and 

plate is 20 kg with the mass center at point G, determine (a) the 

angle θ, (b) the reaction at C.

110 mm
A

C

G

B

vA

vB

θ 300 mm

30 mm

Fig. P14.66 and P14.67

 14.67 A stream of water flowing at a rate of 1.2 m3/min and moving with 

a speed of v at both A and B is deflected by a vane welded to a 

hinged plate. The combined mass of the vane and plate is 20 kg with 

the mass center at point G. Knowing that θ 5 45°, determine (a) the 

speed v of the flow, (b) the reaction at C.

 14.68 Coal is being discharged from a first conveyor belt at the rate of 

120 kg/s. It is received at A by a second belt that discharges it again 

at B. Knowing that v1 5 3 m/s and v2 5 4.25 m/s and that the second 

belt assembly and the coal it supports have a total mass of 472 kg, 

determine the components of the reactions at C and D.

0.545 m

0.75 m
2.25 m

2.4 m

1.2 m

1.2 m1.8 m

A

v1 v2

B

C

G

D

Fig. P14.68

 14.69 The total drag due to air friction on a jet airplane traveling at 900 km/h 

is 35 kN. Knowing that the exhaust velocity is 600 m/s relative to the 

airplane, determine the mass of air that must pass through the engine 

per second to maintain the speed of 900 km/h in level flight.

vA

vB

60°

15 in.

3 in.

20 in.

A

B

C

D

Fig. P14.65
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 14.70 While cruising in level flight at a speed of 600 mi/h, a jet plane 

scoops in air at the rate of 200 lb/s and discharges it with a velocity 

of 2100 ft/s relative to the airplane. Determine the total drag due to 

air friction on the airplane.

 14.71 In order to shorten the distance required for landing, a jet airplane 

is equipped with movable vanes that partially reverse the direction 

of the air discharged by each of its engines. Each engine scoops in 

the air at a rate of 120 kg/s and discharges it with a velocity of 

600 m/s relative to the engine. At an instant when the speed of the 

airplane is 270 km/h, determine the reverse thrust provided by each 

of the engines.

 14.72 The helicopter shown can produce a maximum downward air speed 

of 80 ft/s in a 30-ft-diameter slipstream. Knowing that the weight of 

the helicopter and its crew is 3500 lb and assuming 

γ 5 0.076 lb/ft3 for air, determine the maximum load that the heli-

copter can lift while hovering in midair.

30 ft

Fig. P14.72

 14.73 Prior to takeoff, the pilot of a 3000-kg twin-engine airplane tests the 

reversible-pitch propellers by increasing the reverse thrust with the 

brakes at point B locked. Knowing that point G is the center of 

gravity of the airplane, determine the velocity of the air in the two 

2.2-m-diameter slipstreams when the nose wheel A begins to lift off 

the ground. Assume ρ 5 1.21 kg/m3 and neglect the approach 

velocity of the air.

2.8 m
0.3 m

2.2 m

BA
1.6 m

G

Fig. P14.73

 14.74 The jet engine shown scoops in air at A at a rate of 200 lb/s 

and discharges it at B with a velocity of 2000 ft/s relative to the 

airplane. Determine the magnitude and line of action of the propul-

sive thrust developed by the engine when the speed of the airplane 

is (a) 300 mi/h, (b) 600 mi/h.

20°

20°

270 km/h

Fig. P14.71

A

B

12 ft

Fig. P14.74
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14.75 A jet airliner is cruising at a speed of 900 km/h with each of its 

three engines discharging air with a velocity of 800 m/s relative to 

the plane. Determine the speed of the airliner after it has lost the use 

of (a) one of its engines, (b) two of its engines. Assume that the drag 

due to air friction is proportional to the square of the speed and that 

the remaining engines keep operating at the same rate.

 14.76 A 16-Mg jet airplane maintains a constant speed of 774 km/h while 

climbing at an angle α 5 18°. The airplane scoops in air at a rate 

of 300 kg/s and discharges it with a velocity of 665 m/s relative to 

the airplane. If the pilot changes to a horizontal flight while 

maintaining the same engine setting, determine (a) the initial 

acceleration of the plane, (b) the maximum horizontal speed that will 

be attained. Assume that the drag due to air friction is proportional 

to the square of the speed.

 14.77 The propeller of a small airplane has a 2-m-diameter slipstream and 

produces a thrust of 3600 N when the airplane is at rest on the 

ground. Assuming ρ 5 1.225 kg/m3 for air, determine (a) the speed 

of the air in the slipstream, (b) the volume of air passing through 

the propeller per second, (c) the kinetic energy imparted per second 

to the air in the slipstream.

 14.78 The wind turbine generator shown has an output-power rating of 

1.5 MW for a wind speed of 36 km/h. For the given wind speed, 

determine (a) the kinetic energy of the air particles entering the 

82.5-m-diameter circle per second, (b) the efficiency of this energy 

conversion system. Assume ρ 5 1.21 kg/m3 for air.

 14.79 A wind turbine generator system having a diameter of 82.5 m 

produces 1.5 MW at a wind speed of 12 m/s. Determine the diameter 

of blade necessary to produce 10 MW of power assuming the 

efficiency is the same for both designs and ρ 5 1.21 kg/m3 for air.

 14.80 While cruising in level flight at a speed of 570 mi/h, a jet airplane 

scoops in air at a rate of 240 lb/s and discharges it with a velocity 

of 2200 ft/s relative to the airplane. Determine (a) the power actually 

used to propel the airplane, (b) the total power developed by the 

engine, (c) the mechanical efficiency of the airplane.

 14.81 In a Pelton-wheel turbine, a stream of water is deflected by a series 

of blades so that the rate at which water is deflected by the blades is 

equal to the rate at which water issues from the nozzle (Dm/Dt 5 

AρvA). Using the same notation as in Sample Prob. 14.8, (a) determine 

the velocity V of the blades for which maximum power is developed, 

(b) derive an expression for the maximum power, (c) derive an 

expression for the mechanical efficiency.

 14.82 A circular reentrant orifice (also called Borda’s mouthpiece) of diam-

eter D is placed at a depth h below the surface of a tank. Knowing 

that the speed of the issuing stream is v 5 12gh and assuming that 

the speed of approach v1 is zero, show that the diameter of the stream 

is d 5 D/12. (Hint: Consider the section of water indicated, and 

note that P is equal to the pressure at a depth h multiplied by the 

area of the orifice.)

Fig. P14.75

a

Fig. P14.76

82.5 m

Fig. P14.78 and P14.79

q
vA

V

Fig. P14.81

vD

d

h

P
1

2

Fig. P14.82
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 14.83 A railroad car with length L and mass m0 when empty is moving 

freely on a horizontal track while being loaded with sand from a 

stationary chute at a rate dm/dt 5 q. Knowing that the car was 

approaching the chute at a speed v0, determine (a) the mass of the 

car and its load after the car has cleared the chute, (b) the speed of 

the car at that time.

Fig. P14.83

 *14.84 The depth of water flowing in a rectangular channel of width b at a 

speed v1 and a depth d1 increases to a depth d2 at a hydraulic jump. 
Express the rate of flow Q in terms of b, d1, and d2.

v1

v2

d1

d 2

Fig. P14.84

 *14.85 Determine the rate of flow in the channel of Prob. 14.84, knowing 

that b 5 12 ft, d1 5 4 ft, and d2 5 5 ft.

 14.86 A chain of length l and mass m lies in a pile on the floor. If its end 

A is raised vertically at a constant speed v, express in terms of the 

length y of chain that is off the floor at any given instant (a) the 

magnitude of the force P applied to A, (b) the reaction of the floor.

 14.87 Solve Prob. 14.86, assuming that the chain is being lowered to the 

floor at a constant speed v.

 14.88 The ends of a chain lie in piles at A and C. When released from rest at 

time t 5 0, the chain moves over the pulley at B, which has a negligible 

mass. Denoting by L the length of chain connecting the two piles and 

neglecting friction, determine the speed v of the chain at time t.

A

B

C

v

h

Fig. P14.88

A

y

P

Fig. P14.86
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 14.89 A toy car is propelled by water that squirts from an internal tank at 

a constant 6 ft/s relative to the car. The weight of the empty car is 

0.4 lb and it holds 2 lb of water. Neglecting other tangential forces, 

determine the top speed of the car.

20°

Fig. P14.89 and P14.90

 14.90 A toy car is propelled by water that squirts from an internal tank. 

The weight of the empty car is 0.4 lb and it holds 2 lb of water. 

Knowing the top speed of the car is 8 ft/s, determine the relative 

velocity of the water that is being ejected.

 14.91 The main propulsion system of a space shuttle consists of three 

identical rocket engines that provide a total thrust of 6 MN. Determine 

the rate at which the hydrogen-oxygen propellant is burned by each 

of the three engines, knowing that it is ejected with a relative velocity 

of 3750 m/s.

 14.92 The main propulsion system of a space shuttle consists of three 

identical rocket engines, each of which burns the hydrogen-oxygen 

propellant at the rate of 750 lb/s and ejects it with a relative velocity 

of 12,000 ft/s. Determine the total thrust provided by the three 

engines.

 14.93 A rocket sled burns fuel at the constant rate of 120 lb/s. The initial 

weight of the sled is 1800 lb, including 360 lb of fuel. Assume that 

the track is lubricated and the sled is aerodynamically designed so 

that air resistance and friction are negligible. (a) Derive a formula 

for the acceleration a of the sled as a function of time t and the 

exhaust velocity vex of the burned fuel relative to the sled. Plot 

the ratio a/vex versus time t for the range 0 , t , 4 s, and check the 

slope of the graph at t 5 0 and t 5 4 s using the formula for a. 

(b) Determine the ratio of the velocity vb of the sled at burnout to 

the exhaust velocity vex.

Fig. P14.93

Fig. P14.91 and P14.92
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 14.94 A space vehicle describing a circular orbit about the earth at a speed 

of 24 3 103 km/h releases at its front end a capsule that has a gross 

mass of 600 kg, including 400 kg of fuel. If the fuel is consumed 

at the rate of 18 kg/s and ejected with a relative velocity of 

3000 m/s, determine (a) the tangential acceleration of the capsule 

as its engine is fired, (b) the maximum speed attained by the capsule.

 14.95 A 540-kg spacecraft is mounted on top of a rocket with a mass of 

19 Mg, including 17.8 Mg of fuel. Knowing that the fuel is consumed 

at a rate of 225 kg/s and ejected with a relative velocity of 3600 m/s, 

determine the maximum speed imparted to the spacecraft if the 

rocket is fired vertically from the ground.

Fig. P14.95

A

B

Fig. P14.96

 14.96 The rocket used to launch the 540-kg spacecraft of Prob. 14.95 is 

redesigned to include two stages A and B, each of mass 9.5 Mg, 

including 8.9 Mg of fuel. The fuel is again consumed at a rate 

of 225 kg/s and ejected with a relative velocity of 3600 m/s. 

Knowing that when stage A expels its last particle of fuel, its 

casing is released and jettisoned, determine (a) the speed of the 

rocket at that instant, (b) the maximum speed imparted to the 

spacecraft.

 14.97 The weight of a spacecraft, including fuel, is 11,600 lb when the 

rocket engines are fired to increase its velocity by 360 ft/s. Knowing 

that 1000 lb of fuel is consumed, determine the relative velocity of 

the fuel ejected.

 14.98 The rocket engines of a spacecraft are fired to increase its velocity 

by 450 ft/s. Knowing that 1200 lb of fuel is ejected at a relative 

velocity of 5400 ft/s, determine the weight of the spacecraft after 

the firing.

 14.99 Determine the distance traveled by the spacecraft of Prob. 14.97 

during the rocket engine firing, knowing that its initial speed was 

7500 ft/s and the duration of the firing was 60 s.

Fig. P14.94

Fig. P14.97 and P14.98
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14.100 A rocket weighs 2600 lb, including 2200 lb of fuel, which is 

consumed at the rate of 25 lb/s and ejected with a relative velocity 

of 13,000 ft/s. Knowing that the rocket is fired vertically from the 

ground, determine (a) its acceleration as it is fired, (b) its acceleration 

as the last particle of fuel is being consumed, (c) the altitude at 

which all the fuel has been consumed, (d) the velocity of the rocket 

at that time.

 14.101 Determine the altitude reached by the spacecraft of Prob. 14.95 when 

all the fuel of its launching rocket has been consumed.

 14.102 For the spacecraft and the two-stage launching rocket of Prob. 14.96, 

determine the altitude at which (a) stage A of the rocket is released, 

(b) the fuel of both stages has been consumed.

 14.103 In a jet airplane, the kinetic energy imparted to the exhaust gases is 

wasted as far as propelling the airplane is concerned. The useful 

power is equal to the product of the force available to propel the 

airplane and the speed of the airplane. If v is the speed of the airplane 

and u is the relative speed of the expelled gases, show that the 

mechanical efficiency of the airplane is η 5 2v/(u 1 v). Explain why 

η 5 1 when u 5 v.

 14.104 In a rocket, the kinetic energy imparted to the consumed and ejected 

fuel is wasted as far as propelling the rocket is concerned. The useful 

power is equal to the product of the force available to propel the 

rocket and the speed of the rocket. If v is the speed of the rocket 

and u is the relative speed of the expelled fuel, show that the 

mechanical efficiency of the rocket is η 5 2uv/(u2 1 v2). Explain 

why η 5 1 when u 5 v.
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In this chapter, we analyzed the motion of systems of particles, i.e., the 

motion of a large number of particles considered together. In the first part of 

the chapter, we considered systems consisting of well-defined particles, 

whereas in the second part, we analyzed systems that are continually gaining 

or losing particles or doing both at the same time.

Newton’s Second Law for a System of Particles
We showed that the system of the external forces acting on the particles 
and the system of the miai terms of the particles are equipollent; i.e., both 

systems have the same resultant and the same moment resultant about O:

On

i51

Fi 5On

i51

miai  (14.4)

 On

i51

(ri 3 Fi) 5On

i51

(ri 3 miai) (14.5)

Linear and Angular Momentum of a System of 
Particles
We defined the linear momentum L and the angular momentum HO

 about 
point O of the system of particles [Sec. 14.1B] as

L 5On

i51

mivi         HO 5On

i51

(ri 3 mivi) (14.6, 14.7)

Then we showed that we can replace Eqs. (14.4) and (14.5) with the equations

oF 5 L
.          oMO 5 H

.
O (14.10, 14.11)

Together, these equations state that the sum of external forces is equal to the 
rate of change of the linear momentum, and the sum of the moments about 
O is equal to the rate of change of the angular momentum about O. 

Motion of the Mass Center of a System of Particles
In Sec. 14.1C, we defined the mass center of a system of particles as the 

point G whose position vector r satisfies the equation

 mr 5On

i51

miri (14.12)

where m represents the total mass m 5 On

i51

mi of the particles. Differentiating

both sides of Eq. (14.12) twice with respect to t, we obtained the relations

 L 5 mv    
?L 5 ma (14.14, 14.15)

where v and a represent, respectively, the velocity and the acceleration of the 

mass center G. Substituting for L̇ from Eq. (14.15) into Eq. (14.10), we obtained 

 oF 5 ma (14.16)

Review and Summary
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From this, we concluded that the mass center of a system of particles moves 
as if the entire mass of the system and all of the external forces were 
concentrated at that point [Sample Prob. 14.1].

Angular Momentum of a System of Particles about its 
Mass Center
In Sec. 14.1D, we considered the motion of the particles of a system with 

respect to a centroidal frame Gx9y9z9 attached to the mass center G of the 

system and in translation with respect to the newtonian frame Oxyz (Fig. 14.13). 

We defined the angular momentum of the system about its mass center G as 

the sum of the moments about G of the momenta mivi9 of the particles relative 

to the frame Gx9y9z9. We also noted that we can obtain the same earlier result 

by considering the moments about G of the momenta mivi of the particles in 

their absolute motion. We therefore wrote

 HG 5On
i51

(r9i 3 mivi) 5On

i51

(r9i 3 miv9i) (14.24)

and derived the relation

oMG 5 H? G (14.23)

This equation states that the resultant moment about G of the external 
forces is equal to the rate of change of the angular momentum about G 
of the system of particles. As you will see later, this relation is fundamental 

to the study of the motion of rigid bodies.

Conservation of Momentum
When no external force acts on a system of particles [Sec. 14.1E], it follows 

from Eqs. (14.10) and (14.11) that the linear momentum L and the angular 

momentum HO of the system are conserved [Sample Probs. 14.2 and 14.4]. 

In problems involving central forces, the angular momentum of the system 

about the center of force O is also conserved.

Kinetic Energy of a System of Particles
The kinetic energy T of a system of particles was defined as the sum of the 

kinetic energies of the particles [Sec. 14.2A]:

T 5
1

2
On
i51

miv
2
i  (14.28)

Using the centroidal frame of reference Gx9y9z9 of Fig. 14.13, we noted that 

we can also obtain the kinetic energy of the system by adding the kinetic 

energy 
1
2mv 

2 associated with the motion of the mass center G and the kinetic 

energy of the system relative to the frame Gx9y9z9. Thus,

 T 5
1
2mv 

2 1
1

2
On
i51

miv92
i  (14.29)

Principle of Work and Energy
We applied the principle of work and energy to a system of particles as well 

as to individual particles [Sec. 14.2B]. We have

T1 1 U1y2 5 T2 (14.30)

and noted that U1y2 represents the work of all of the forces acting on the 

particles of the system—internal as well as external.

Fig. 14.13

x

y

z

x'

y'

z'

O

G

Pi

miv'i

r'i
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Conservation of Energy
If all of the forces acting on the particles of a system are conservative, we 

can determine the potential energy V of the system and write

T1 1 V1 5 T2 1 V2 (14.31)

which expresses the principle of conservation of energy for a system of 

particles.

Principle of Impulse and Momentum
We saw in Sec. 14.2C that the principle of impulse and momentum for a 

system of particles can be expressed graphically, as shown in Fig. 14.14. The 

principle states that the momenta of the particles at time t1 and the impulses 

of the external forces from t1 to t2 form a system of vectors equipollent to the 

system of the momenta of the particles at time t2.

Fig. 14.14

x

y

O x

y

O x

y

O

(a)

+ =
(mAvA)1

(mBvB)1

(mCvC)1

(mAvA)2
(mBvB)2

(mCvC)2

(b) (c)

∑     F dt
t2

t1

∑     MO dt
t2

t1

∫

∫

 If no external force acts on the particles of the system, the systems of 

momenta shown in parts a and c of Fig. 14.14 are equipollent, and we have

 L1 5 L2  (HO)1 5 (HO)2 (14.36, 14.37)

Use of Conservation Principles in the Solution of 
Problems Involving Systems of Particles
We can solve many problems involving the motion of systems of particles by 

applying simultaneously the principle of impulse and momentum and the 

principle of conservation of energy [Sample Prob. 14.5] or by expressing that 

the linear momentum, angular momentum, and energy of the system are 

conserved [Sample Prob. 14.6].

Steady Stream of Particles
In the second part of the chapter, we considered variable systems of particles. 

First we considered a steady stream of particles, such as a stream of water 

diverted by a fixed vane or the flow of air through a jet engine [Sec. 14.3A]. 

We applied the principle of impulse and momentum to a system S of particles 

during a time interval Dt, including the particles that enter the system at A
during that time interval and those (of the same mass Dm) that leave the system 

at B. We concluded that the system formed by the momentum (Dm)vA of 
the particles entering S in the time Dt and the impulses of the forces 

bee87342_ch14_915-976.indd   972bee87342_ch14_915-976.indd   972 11/26/14   1:24 PM11/26/14   1:24 PM

UPLOADED BY AHMAD T JUNDI



973

exerted on S during that time is equipollent to the momentum (Dm)vB of 
the particles leaving S in the same time Dt (Fig. 14.15). Equating the

x components, y components, and moments about a fixed point of the vectors 

involved, we could obtain as many as three equations that you could solve for 

the desired unknowns [Sample Probs. 14.7 and 14.8]. From this result, we 

also derived the expression for the resultant oF of the forces exerted on S as

oF 5
dm

dt
(vB 2 vA)  (14.39)

where vB 2 vA represents the difference between the vectors vB and vA and 

dm/dt is the mass rate of flow of the stream (see footnote, page 951).

Systems Gaining or Losing Mass
We considered next a system of particles gaining mass by continually absorb-

ing particles or losing mass by continually expelling particles [Sec. 14.3B], 

as in the case of a rocket. We applied the principle of impulse and momentum 

to the system during a time interval Dt, being careful to include the particles 

gained or lost during that time interval [Sample Prob. 14.9]. We also noted 

that the action on a system S of the particles being absorbed by S was equiva-

lent to a thrust

 P 5
dm

dt
 u  (14.44)

where dm/dt is the rate at which mass is being absorbed and u is the velocity 

of the particles relative to S. In the case of particles being expelled by S, the 

rate dm/dt is negative, and the thrust P is exerted in a direction opposite to 

that in which the particles are being expelled.

S SS
A

B

A

B∑mivi ∑mivi

(Δm)vA

(Δm)vB

(a) (b) (c)

∑F Δt

∑M Δt

+ =

Fig. 14.15
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 14.105 Three identical cars are being unloaded from an automobile carrier. 

Cars B and C have just been unloaded and are at rest with their 

brakes off when car A leaves the unloading ramp with a velocity 

of 5.76 ft/s and hits car B, which hits car C. Car A then again hits 

car B. Knowing that the  velocity of car B is 5.04 ft/s after the first 

collision, 0.630 ft/s after the second collision, and 0.709 ft/s after 

the third collision, determine (a) the final velocities of cars A
and C, (b) the coefficient of restitution for each of the collisions.

A B C

v0

Fig. P14.105

14.106 A 30-g bullet is fired with a velocity of 480 m/s into block A, which 

has a mass of 5 kg. The coefficient of kinetic friction between block 

A and cart BC is 0.50. Knowing that the cart has a mass of 4 kg 

and can roll freely, determine (a) the final velocity of the cart and 

block, (b) the final position of the block on the cart.

 14.107 An 80-Mg railroad engine A coasting at 6.5 km/h strikes a 20-Mg 

flatcar C carrying a 30-Mg load B that can slide along the floor of 

the car (μk 5 0.25). Knowing that the car was at rest with its brakes 

released and that it automatically coupled with the engine upon 

impact, determine the velocity of the car (a) immediately after 

impact, (b) after the load has slid to a stop relative to the car.

A

B

C

20 Mg

30 Mg
6.5 km/h

Fig. P14.107

 14.108 In a game of pool, ball A is moving with a velocity v0 when it strikes 

balls B and C, which are at rest and aligned as shown. Knowing that 

after the collision the three balls move in the directions indicated and 

that v0 5 12 ft/s and vC 5 6.29 ft/s, determine the magnitude of the 

velocity of (a) ball A, (b) ball B.

 14.109 Mass C, which has a mass of 4 kg, is suspended from a cord attached 

to cart A, which has a mass of 5 kg and can roll freely on a friction-

less horizontal track. A 60-g bullet is fired with a speed v0 5 500 m/s and 

gets lodged in block C. Determine (a) the velocity of C as it reaches 

its maximum elevation, (b) the maximum vertical distance h through 

which C will rise.

Review Problems

B C

x

A

480 m/s

Fig. P14.106

vC

vBv0

A
B

C

49.3°

45°

30°

7.4°

vA

Fig. P14.108

C

20°
v0

B

A

Fig. P14.109
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975

14.110 A 15-lb block B is at rest and a spring of constant k 5 72 lb/in. is 

held compressed 3 in. by a cord. After 5-lb block A is placed against 

the end of the spring, the cord is cut causing A and B to move. 

Neglecting friction, determine the velocities of blocks A and B 

immediately after A leaves B.

k
6 in.

B

A

Fig. P14.110

 14.111 Car A of mass 1800 kg and car B of mass 1700 kg are at rest on a 

20-Mg flatcar which is also at rest. Cars A and B then accelerate and 

quickly reach constant speeds relative to the flatcar of 2.35 m/s and 

1.175 m/s, respectively, before decelerating to a stop at the opposite 

end of the flatcar. Neglecting friction and rolling resistance, determine 

the velocity of the flatcar when the cars are moving at constant speeds.

A B

Fig. P14.111

 14.112 The nozzle shown discharges water at the rate of 200 gal/min. 

Knowing that at both B and C the stream of water moves with a 

velocity of magnitude 100 ft/s, and neglecting the weight of the 

vane, determine the force-couple system that must be applied at A 

to hold the vane in place (1 ft3 5 7.48 gal).

 14.113 An airplane with a weight W and a total wing span b flies horizontally 

at a constant speed v. Use the airplane as a reference frame; that is, 

consider the airplane to be motionless and the air to flow past it with 

speed v. Suppose that a cylinder of air with diameter b is deflected 

downward by the wing (the cross section of the cylinder is the dashed 

circle in in the figure). Show that the angle through which the cylinder 

stream is deflected (called the downwash angle) is determined by the 

formula sin θ 5 4W/(πb2
ρv2), where ρ is the mass density of the air.

b

q
v

v

Fig. P14.113

40°6 in.3 in.

15 in.

vA

A B

C
vC

Fig. P14.112
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14.114 The final component of a conveyor system receives sand at a rate 

of 100 kg/s at A and discharges it at B. The sand is moving hori-

zontally at A and B with a velocity of magnitude vA 5 vB 5 4.5 m/s. 

Knowing that the combined weight of the component and of the 

sand it supports is W 5 4 kN, determine the reactions at C and D.

0.75 m

0.9 m

1.2 m1.8 m

A

C D

G

W

vB

vA

B

Fig. P14.114

14.115 A garden sprinkler has four rotating arms, each of which consists of two 

horizontal straight sections of pipe forming an angle of 120° with each 

other. Each arm discharges water at a rate of 20 L/min with a velocity 

of 18 m/s relative to the arm. Knowing that the friction between the 

moving and stationary parts of the sprinkler is equivalent to a couple 

of magnitude M 5 0.375 N?m, determine the constant rate at which 

the sprinkler rotates.

100 mm
150 mm

120°

Fig. P14.115

 14.116 A chain of length l and mass m falls through a small hole in a plate. 

Initially, when y is very small, the chain is at rest. In each case 

shown, determine (a) the acceleration of the first link A as a function 

of y, (b) the velocity of the chain as the last link passes through the 

hole. In case 1, assume that the individual links are at rest until they 

fall through the hole; in case 2, assume that at any instant all links 

have the same speed. Ignore the effect of friction.

A
y

A
y

(1) (2)

l – y

Fig. P14.116
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This huge crank belongs to a large diesel engine. In this chapter, 

you will learn to perform the kinematic analysis of rigid bodies 

that undergo translation, fixed axis rotation, and general 

plane motion.

Kinematics of 
Rigid Bodies

15
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978 Kinematics of Rigid Bodies

Introduction

 15.1 TRANSLATION AND 
FIXED-AXIS ROTATION

15.1A Translation
15.1B Rotation About a Fixed Axis
15.1C Equations Defining the 

Rotation of a Rigid Body 
About a Fixed Axis

 15.2 GENERAL PLANE 
MOTION: VELOCITY

15.2A Analyzing General Plane 
Motion

15.2B Absolute and Relative Velocity 
in Plane Motion

15.3 INSTANTANEOUS CENTER 
OF ROTATION

 15.4 GENERAL PLANE 
MOTION: ACCELERATION

15.4A Absolute and Relative 
Acceleration in Plane Motion

*15.4B Analysis of Plane Motion in 
Terms of a Parameter

 15.5 ANALYZING MOTION 
WITH RESPECT TO A 
ROTATING FRAME

15.5A Rate of Change of a Vector 
with Respect to a Rotating 
Frame

15.5B Plane Motion of a Particle 
Relative to a Rotating Frame

 *15.6 MOTION OF A RIGID 
BODY IN SPACE

15.6A Motion About a Fixed Point
15.6B General Motion

 *15.7 MOTION RELATIVE TO A 
MOVING REFERENCE 
FRAME

15.7A Three-Dimensional Motion of 
a Particle Relative to a 
Rotating Frame

15.7B General Three-Dimensional 
Motion

Objectives
• Describe the fi ve basic types of rigid body motion: 

translation, rotation about a fi xed axis, general plane 
motion, motion about a fi xed point, and general 
motion.

• Use angular kinematic relationships involving θ, v, and 
α to determine the angular motion of a rigid body. 

• Identify the directions of terms in the relative velocity 
and relative acceleration equations. 

• Calculate the linear velocity and acceleration of any 
point on a rigid body undergoing translation, fi xed 
axis rotation, or general plane motion.

• Solve planar rigid body kinematics problems using the 
relative velocity and relative acceleration equations.

• Determine the instantaneous center of rotation and 
use it to analyze the planar velocity kinematics of a 
rigid body. 

• When appropriate, defi ne a rotating coordinate frame 
and use it to solve planar and three-dimensional 
kinematics problems.

• Determine the angular velocity and angular 
acceleration of a body undergoing three-dimensional 
motion.

• Calculate the linear velocity and acceleration of any 
point on a rigid body undergoing three-dimensional 
motion.

Introduction
In this chapter, we consider the kinematics of rigid bodies. We will inves-

tigate the relations between the time, the positions, the velocities, and the 

accelerations of the various particles forming a rigid body. As you will 

see, the various types of rigid-body motion can be conveniently grouped 

as follows:

 1. Translation. A motion is said to be a translation if any straight line 

inside the body maintains the same orientation during the motion. In a 

translation, all of the particles forming the body move along parallel 

paths. If these paths are straight lines, the motion is called rectilinear 
translation (Fig. 15.1); if the paths are curved lines, the motion is 

called curvilinear translation (Fig. 15.2).

 2. Rotation About a Fixed Axis. In this motion, the particles forming the 

rigid body move in parallel planes along circles centered on the same 

fixed axis (Fig. 15.3). If this axis, called the axis of rotation, intersects 

the rigid body, the particles located on the axis have zero velocity and 

zero acceleration.
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Introduction 979

   Be careful not to confuse rotation with certain types of curvilinear 

translation. For example, the plate shown in Fig. 15.4a is in curvilinear 

translation, with all of its particles moving along parallel circles, 

whereas the plate shown in Fig. 15.4b is in rotation, with all of its 

particles moving along concentric circles. In the first case, any given 

straight line drawn on the plate maintains the same direction, whereas 

in the second case, the orientation of the plate changes throughout the 

rotation. Because each particle moves in a given plane, the rotation of 

a body about a fixed axis is said to be a plane motion.

A1

B1

A2

B2

Fig. 15.1 A rigid body in rectilinear 
translation.

A1

B1

A2

B2

Fig. 15.2 A rigid body in curvilinear 
translation.

Fig. 15.3 A rigid body 
rotating about a fixed axis.

A

B

Fig. 15.4 (a) In curvilinear motion, particles move along parallel circles, whereas (b) in 
fixed-axis rotation, particles move along concentric circles.

A1

A2

C1

C2

B1

B2

D1

D2

A1

A2

C1

C2

B1

B2

D1

D2

(a) Curvilinear translation (b) Rotation

O

 3. General Plane Motion. Many other types of plane motion can occur, 

i.e., motions in which all the particles of the body move in a single 

plane. Any plane motion that is neither a rotation nor a translation is 

referred to as general plane motion. Figure 15.5 shows two examples 

of general plane motion.

 4. Motion About a Fixed Point. The three-dimensional motion of a rigid 

body attached at a fixed point O, such as the motion of a top on a rough 

floor (Fig. 15.6), is known as motion about a fixed point.

 5. General Motion. Any motion of a rigid body that does not fall  in any 

of these categories is referred to as a general motion.

After a brief discussion of the motion of translation, we consider 

the rotation of a rigid body about a fixed axis. We define the angular velocity 

and the angular acceleration of a rigid body rotating about a fixed axis, 
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980 Kinematics of Rigid Bodies

and you will see how to express the velocity and acceleration of a given 

point of the body in terms of its position vector and the angular velocity 

and angular acceleration of the body.

Afterwards, we study the general plane motion of a rigid body and apply 

the results to the analysis of mechanisms such as gears, connecting rods, and 

pin-connected linkages. If we resolve the plane motion of a rigid body into a 

translation and a rotation, we can then express the velocity of a point B of the 

body as the sum of the velocity of a reference point A and of the velocity of 

B relative to a frame of reference translating with A (i.e., moving with A but 

not rotating). We use the same approach later in Sec. 15.4 to express the 

acceleration of B in terms of the acceleration of A and of the acceleration of 

B relative to a frame translating with A. We also present an alternative method 

for analyzing velocities in plane motion based on the concept of the instan-
taneous center of rotation, and we discuss still another method of analysis 

based on the use of parametric expressions for the coordinates of a given point.

The motion of a particle relative to a rotating frame of reference and 

the concept of Coriolis acceleration are discussed in Sec. 15.5. We apply 

the results to the analysis of the plane motion of mechanisms containing 

parts that slide on each other.

In the remainder of this chapter, we analyze the three-dimensional 

motion of a rigid body, specifically, the motion of a rigid body with a fixed 

point and the general motion of a rigid body. We use a fixed frame of 

reference or a frame of reference in translation to carry out this analysis, 

then we consider the motion of the body relative to a rotating frame or to 

a frame in general motion. Again, we use the concept of Coriolis acceleration.

15.1  TRANSLATION AND FIXED 
AXIS ROTATION

We noted in the introduction that we can resolve a general plane motion 

into a translation and a rotation. Thus, our first step is to formulate the 

mathematical descriptions of simple translations and rotations.

15.1A Translation
Consider a rigid body in translation (either rectilinear or curvilinear 

translation), and let A and B be any two of its particles (Fig. 15.7a). 

Denoting the position vectors of A and B with respect to a fixed frame of 

Fig. 15.6 The motion of a spinning top on a 
rough surface is an example of three-
dimensional motion about a fixed point.

O

(a) Rolling wheel (b) Sliding rod

Fig. 15.5 (a) A rolling wheel and (b) a sliding rod are common 
examples of general plane motion.
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15.1 Translation and Fixed Axis Rotations 981
y

x

z

O

A

B

(a)

rB

rB/A

rA

v

v

y

x

z

O

B

(b)

A

ay

x

z

O

B

(c)

a

A

Fig. 15.7 For a rigid body in translation: (a) the position vector between any two points is constant in magnitude and 
direction; (b) every point has the same velocity; (c) every point has the same acceleration.

reference by rA and rB, respectively, and the vector from A to B by rB/A, 

we have

 rB 5 rA 1 rB/A (15.1)

To obtain the relationship between the velocities of A and B, we differentiate 

this expression with respect to t. Note that, from the very definition of a 

translation, the vector rB/A must maintain a constant direction; its magnitude 

must also be constant, since A and B belong to the same rigid body. Thus, 

the derivative of rB/A is zero, and we have

 vB 5 vA (15.2)

Differentiating once more, we obtain the relationship between the 

accelerations of A and B as

 aB 5 aA (15.3)

Thus, when a rigid body is in translation, all the points of the 
body have the same velocity and the same acceleration at any given 
instant (Fig. 15.7b and c). In the case of curvilinear translation, the velocity 

and acceleration change in direction as well as in magnitude at every 

instant. In the case of rectilinear translation, all particles of the body move 

along parallel straight lines, and their velocity and acceleration keep the 

same direction during the entire motion.

15.1B Rotation About a Fixed Axis
Consider a rigid body that rotates about a fixed axis AA9. Let P be a point 

of the body and r be its position vector with respect to a fixed frame of 

reference. For convenience, let us assume that the frame is centered at 

point O on AA9 and that the z axis coincides with AA9 (Fig. 15.8). Let B
be the projection of P on AA9. Since P must remain at a constant distance 

from B, it describes a circle with a center B and radius r sin f, where f

denotes the angle formed by r and AA9.

vB 5 vAv

aB 5 aAa

Photo 15.1 The horizontal linkage of a 
locomotive undergoes curvilinear translation.

Fig. 15.8 For a rigid body in rotation about 
a fixed axis, each point of the body moves in 
a circular path centered on the axis.

A

x

z

y

O

A'

B

P
f

r

q
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982 Kinematics of Rigid Bodies

The position both of P and of the entire body is completely defined 

by the angle θ that the line BP forms with the zx plane. The angle θ is 

known as the angular coordinate of the body and is defined as positive 

when viewed as counterclockwise from A9. The angular coordinate is 

expressed in radians (rad) or, occasionally, in degrees (°) or revolutions 

(rev). Recall that

1 rev 5 2π rad 5 360°

Recall from Sec. 11.4A that the velocity v 5 dr/dt of a particle P 

is a vector tangent to the path of P and with a magnitude of v 5 ds/dt. 
The length Ds of the arc described by P when the body rotates through 

Dθ is

Ds 5 (BP) Dθ 5 (r sin f) Dθ

Then dividing both members by Dt, we obtain in the limit, as Dt approaches 

zero, 

 v 5
ds

dt
5 rθ

.
 sin ϕ (15.4)

where θ
.
 denotes the time derivative of θ. (Note that the angle θ depends 

on the position of P within the body, but the rate of change θ
.
 is itself 

independent of P.) We conclude that the velocity v of P is a vector 

perpendicular to the plane containing AA9 and r, and of magnitude v 

defined by Eq. (15.4). But this is precisely the result we would obtain if 

we drew a vector v 5 θ
.
k along AA9 and formed the vector product v 3 r 

(Fig. 15.9). We thus have

 v 5
dr
dt

5 v 3 r (15.5)

The vector

 v 5 vk 5 θ
.
k (15.6)

is directed along the axis of rotation. It is called the angular velocity of 

the body and is equal in magnitude to the rate of change θ
.
 of the angular 

coordinate. You can obtain the sense of the vector by using the right hand 

rule (Sec. 3.1E); using your right hand, curl your fingers in the direction 

of the angular velocity, and your thumb will point in the direction of the 

vector.†

Now we can determine the acceleration a of particle P. Differentiating 

Eq. (15.5) and recalling the rule for the differentiation of a vector product 

(Sec. 11.4B), we have

 a 5
dv
dt

5
d

dt
 (v 3 r)

 5
dv

dt
3 r 1 v 3

dr
dt

  5
dv

dt
3 r 1 v 3 v  (15.7)

v 5
dr
dt

5 v 3 r

Photo 15.2 For the central gear rotating 
about a fixed axis, the angular velocity and 
angular acceleration of that gear are vectors 
directed along the vertical axis of rotation.

†We will show in Sec. 15.6 the more general case of a rigid body, rotating simultaneously 

about axes having different directions, where angular velocities obey the parallelogram law 

of addition and thus are actually vector quantities. 

Fig. 15.9 For a rigid body in rotation about 
a fixed axis, the velocity of a particle is the 
vector product of the angular velocity of the 
body and the position vector of the particle.

O

A'

A

B

P
φ

r
k

i

j

v

ω = θk
•
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15.1 Translation and Fixed Axis Rotations 983

The vector dv/dt is denoted by α and is called the angular acceleration
of the body. Substituting for v from Eq. (15.5), we have

a 5 α 3 r 1 v 3 (v 3 r) (15.8)

Differentiating Eq. (15.6) and recalling that k is constant in magnitude 

and direction, we have

 α 5 αk 5 v
.
k 5 θ̈k (15.9)

Thus, the angular acceleration of a body rotating about a fixed axis is a 

vector directed along the axis of rotation and is equal in magnitude to the 

rate of change v
.
 of the angular velocity.

Returning to Eq. (15.8), we note that the acceleration of P is the 

sum of two vectors. The first vector is equal to the vector product α 3 r; it 

is tangent to the circle described by P and therefore represents the 

tangential component of the acceleration. The second vector is equal to 

the vector triple product v 3 (v 3 r) obtained by forming the vector 

product of v and v 3 r. Since v 3 r is tangent to the circle described 

by P, the vector triple product is directed toward the center B of the circle 

and therefore represents the normal component of the acceleration.

Rotation of a Representative Slab. We can express the rotation 

of a rigid body about a fixed axis by examining the motion of a 

representative slab in a reference plane perpendicular to the axis of 

rotation. We choose the xy plane as the reference plane and assume that 

it coincides with the plane of the figure with the z axis pointing out of 

the page (Fig. 15.10). Recalling from Eq. (15.6) that v 5 vk, we note 

that a positive value of the scalar v corresponds to a counterclockwise 

rotation of the representative slab, and a negative value corresponds to a 

clockwise rotation. Substituting vk for v in Eq. (15.5), we express the 

velocity of any given point P of the slab as

 v 5 vk 3 r (15.10)

Since the vectors k and r are mutually perpendicular, the magnitude of 

the velocity v is

 v 5 rv (15.109)

We can obtain its direction by rotating r through 90° in the sense of 

rotation of the slab.

If we substitute vk into Eq. (15.8), we obtain vk 3 (vk 3 r), which 

simplifies to 2v2r. This indicates that the direction of the normal 

acceleration is 2r, or toward the center of rotation, which is exactly what 

we expect. Using this expression and α 5 αk in Eq. (15.8), we obtain

 a 5 αk 3 r 2 v2r (15.11)

Resolving a into tangential and normal components (Fig. 15.11) gives

 at 5 αk 3 r  at 5 rα (15.119)

 an 5 2v2r an 5 rv2

a 5 α 3 r 1 v 3 (v 3 r)

v 5 vk 3 r

v 5 rv

a 5 αk 3 r 2 v2r

Fig. 15.10 For an object undergoing 
fixed-axis rotation, the velocity of a point P 
equals the vector product of the angular 
velocity vector and the position vector of P. 
A positive value of the scalar v corresponds 
to counterclockwise motion.

x

y

O

r
P

ω = ωk

v = ωk × r

Fig. 15.11 For an object undergoing 
fixed-axis rotation, the acceleration of a 
point P has a tangential component that 
depends on angular acceleration and a normal 
component that depends on angular velocity.

x

y

O

P

ω = ωk
α = αk

a t = αk × r

a n = – ω2r
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984 Kinematics of Rigid Bodies

The tangential component at points in the counterclockwise direction if 

the scalar α is positive and in the clockwise direction if α is negative. The 

normal component an always points in the direction opposite to that of r, 

that is, toward O.

15.1C  Equations Defining the Rotation 
of a Rigid Body About a Fixed 
Axis

The motion of a rigid body rotating about a fixed axis AA9 is said to be 

known when we can express its angular coordinate θ as a known function 

of t. In practice, however, we can seldom describe the rotation of a rigid 

body by a relation between θ and t. More often, the conditions of motion 

are specified by the angular acceleration of the body. For example, α may 

be given as a function of t, as a function of θ, or as a function of v. From 

the relations in Eqs. (15.6) and (15.9), we have

v 5
dθ

dt
 (15.12)

α 5
dv

dt
5

d2
θ

dt2
 (15.13)

or solving Eq. (15.12) for dt and substituting into Eq. (15.13), we have

α 5 v 

dv

dθ
 (15.14)

These equations are similar to those obtained in Chap. 11 for the rectilinear 

motion of a particle, so we can integrate them by following the procedures 

outlined in Sec. 11.1B.

Two particular cases of rotation occur frequently:

 1. Uniform Rotation. This case is characterized by the fact that the angular 

acceleration is zero, therefore the angular velocity is constant and the 

angular position is given by 

θ 5 θ0 1 vt

 2. Uniformly Accelerated Rotation. In this case, the angular acceleration 

is constant. We can derive the following formulas relating angular 

velocity, angular position, and time in a manner similar to that described 

in Sec. 11.2B. The similarity between the formulas derived here and 

those obtained for the rectilinear uniformly accelerated motion of a 

particle is apparent.

 v 5 v0 1 αt

θ 5 θ0 1 v0t 1 
1
2αt2 (15.16)

v2 5 v2
0 1 2α(θ 2 θ0)

We emphasize that you can use formula (15.15) only when α 5 0, and 

formulas (15.16) only when α 5 constant. In any other case, you need to 

use the general Eq. (15.12) through Eq. (15.14).

v 5
dθ

dt

α 5
dvdd

dt
5

d2dd θ

dt2

α 5 v
dvdd

dθ

Photo 15.3 If the lower roll has a constant 
angular velocity, the speed of the paper 
being wound onto it increases as the radius 
of the roll increases.
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15.1 Translation and Fixed Axis Rotations 985

Sample Problem 15.1

A driver starts his car with the door on the passenger’s side wide open 

(θ 5 0). As the car moves forward with constant acceleration, the 

angular acceleration of the door is α 5 2.5 cos θ, where α is in rad/s2. 

Determine the angular velocity of the door as it slams shut (θ 5 90°).

STRATEGY: You are given the angular acceleration as a function of 

θ, so use the kinematic relationships between angular acceleration, 

angular velocity, angular position, and time.

MODELING and ANALYSIS: Model the door as a rigid body. 

Using the basic kinematic relationship gives 

α 5
dv

dt
5 v 

dv

dθ
5 2.5 cos θ

Separating variables gives 

v dv 5 2.5 cos θ dθ

Integrating, using v 5 0 when θ 5 0, you have

#
v

0

v dv 5 #
θ

0

2.5 cos θ dθ

 
1

2
 v2 5 2.5 sin θ ` π/2

0

5 2.5

v 5 2.24 rad/s i b

REFLECT and THINK: If the angular acceleration of the door had 

been a constant 2.5 rad/s2, you would have found 
1
2 v2 5 2.5Zπ/2

0
 or 

v 5 2.80 rad/s. Since α 5 2.5 cos θ decreases as θ increases, it makes 

sense that the answer you found in this case is smaller than the case 

for constant angular acceleration.

A

B
θ

a

ω

Sample Problem 15.2

The assembly shown rotates about the rod AC. At the instant shown, 

the assembly has an angular velocity of 5 rad/s that is increasing 

with an angular acceleration of 25 rad/s2. Knowing that the y-com-

ponent of the velocity of corner D is negative at this instant in time, 

determine the velocity and acceleration of corner E.

STRATEGY: You are interested in determining the velocity and 

acceleration of a point on a body undergoing fixed-axis rotation, so 

use rigid body kinematics.

(continued)

E

B C

D

O

A

y

100 mm

200 mm

240 mm

130 mm
x

z
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986 Kinematics of Rigid Bodies

MODELING and ANALYSIS: Model the assembly as a rigid body. 

You can find the velocity and acceleration of E using

vE 5 v 3 rE/B (1)

 aE 5 α 3 rE/B 1 v 3 (v 3 rE/B) 5 α 3 rE/B 1 v 3 vE (2)

To use these equations, you need the angular velocity vector, the 

angular acceleration vector, and the position vector. The direction of 

the angular velocity and acceleration vectors are along the axis of 

rotation. Since the corner D is moving downward and using the right-

hand rule, you know v is in the direction shown in Fig. 1. Therefore, 

to write the angular velocity vector, you need a unit vector in this 

direction. You know that 

AB 5 (0.24 m)i 1 (0.07 m)j

so the unit vector from A to B is

lAB 5
10.24 m2i 1 10.07 m2j
210.24 m22 1 10.07 m22 5 0.960i 1 0.280j

Thus, the angular velocity and angular acceleration are

v 5 vlAB 5 15 rad/s2 10.960i 1 0.280j2 5 14.80 rad/s2i 1 11.40 rad/s2j
α 5 αlAB 5 125 rad/s2 10.960i 1 0.280j2 5 124.0 rad/s22i 1 17.00 rad/s22j
The position vector of E with respect to B is

rE/B 5 (20.20 m)j 1 (0.10 m)k

Substituting these expressions into Eqs. (1) and (2) gives

vE 5 v 3 rE/B 5 †
i j k

4.80 1.40 0

0 20.20 0.10

† 5 0.140i 2 0.480j 2 0.960k

vE 5 (0.140 m/s)i 2 (0.480 m/s)j 2 (0.960 m/s)k b

aE 5 α 3 rE/B 1 v 3 vE 5 †
i j k

24.0 7.00 0

0 20.20 0.10

†

 1 †
i j k

4.80 1.40 0

0.140 20.480 20.960

†

 5 0.70i 2 2.40j 2 4.80k 2 1.344i 1 4.608j 1 (22.304 2 0.196)k

aE 5 2(0.644 m/s2)i 1 (2.21 m/s2)j 2 (7.30 m/s2)k b

REFLECT and THINK: The first term of Eq. (2) represents the 

tangential acceleration of point E. The second term of Eq. (2) represents 

the normal acceleration of point E and points toward the bar AB. Note 

that you could have chosen any point along the axis of rotation to define 

your position vector.

E

B C

D

O

A

y

z

rE/B

ω

240 mm

100 mm

200 mm

x

Fig. 1 Direction of the angular velocity 
and the position vector to point E.

bee87342_ch15_977-1106.indd   986bee87342_ch15_977-1106.indd   986 11/26/14   4:47 PM11/26/14   4:47 PM

UPLOADED BY AHMAD T JUNDI



15.1 Translation and Fixed Axis Rotations 987

Sample Problem 15.3

Load B is connected to a double pulley by one of the two inextensible 

cables shown. The motion of the pulley is controlled by cable C, which 

has a constant acceleration of 9 in./s2 and an initial velocity of 12 in./s, 

both directed to the right. Determine (a) the number of revolutions exe-

cuted by the pulley in 2 s, (b) the velocity and change in position of the 

load B after 2 s, and (c) the acceleration of point D on the rim of the inner 

pulley at t 5 0.

STRATEGY: This is a case of uniformly accelerated rotation, so you 

can use the kinematic relationships between angular acceleration, angular 

velocity, angular position, and time. You also need to use the kinematic 

relationships for the velocity and acceleration of a point on an object 

undergoing fixed axis rotation.

MODELING and ANALYSIS: 

a. Motion of Pulley. You can model the pulley as a rigid body rotating 

about a fixed axis A. Since the cable is inextensible, the velocity of point D is 

equal to the velocity of point C (Fig. 1), and the tangential component of 

the acceleration of D is equal to the acceleration of C (Fig. 2).

(vD)0 5 (vC)0 5 12 in./s  y  (aD)t 5 aC 5 9 in./s2 y

The distance from D to the center of the pulley is 3 in., so you have

 (vD)0 5 rv0  12 in./s 5 (3 in.)v0  v0 5 4 rad/s i

 (aD)t 5 rα   9 in./s2 5 (3 in.)α   α 5 3 rad/s2
i

Using the equations of uniformly accelerated motion, for t 5 2 s you obtain

 v 5 v0 1 αt 5 4 rad/s 1 (3 rad/s2)(2 s) 5 10 rad/s

 v 5 10 rad/s i

θ 5 v0t 1 
1
2αt2 5 (4 rad/s)(2 s) 1 

1
2(3 rad/s2)(2 s)2 5 14 rad

 θ 5 14 rad i

Number of revolutions 5 (14 rad)a 1 rev

2π rad
b 5 2.23 rev b

b. Motion of Load B. The motion of load B is the same as a point 

on the outer rim of the double pulley. Using r 5 5 in., you have

 vB 5 rv 5 (5 in.)(10 rad/s) 5 50 in./s vB 5 50 in./sx b
 DyB 5 rθ 5 (5 in.)(14 rad) 5 70 in. DyB 5 70 in. upward b

c. Acceleration of Point D at t 5 0. The acceleration of point D 

has a tangential and a normal component (Fig. 2). The tangential 

component of the acceleration is 

(aD)t 5 aC 5 9 in./s2 
y

Since, at t 5 0, v0 5 4 rad/s, the normal component of the acceleration is

(aD)n 5 rDv2
0 5 (3 in.)(4 rad/s)2 5 48 in./s2  (aD)n 5 48 in./s2

w

A

B

CD

3 in.

5 in.

ω

vC

vD

vB

A

B

C

D

Fig. 1 The velocity of two point 
on an inextensible cable are 
equal.

ω

aB

aC

(aD)t
(aD)n

A

B

C
D

α

Fig. 2 Acceleration of B, C, 
and D.

(continued)
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988 Kinematics of Rigid Bodies

You can obtain the magnitude and direction of the total acceleration from 

Fig. 3.

 tan f 5 (48 in./s2)/(9 in./s2)  f 5 79.4°

 aD sin 79.4° 5 48 in./s2    aD 5 48.8 in./s2

aD 5 48.8 in./s2 c 79.4° b

REFLECT and THINK: A double pulley acts similarly to a system of 

gears; for every 3 inches that point C moves to the right, point B moves 

5 inches upward. This is also similar to how your bicycle works; the size 

ratio of the front chainring to the rear sprocket controls the rotation of the 

rear tire. 

aD

(aD)t = 9 in./s2

(aD)n = 48 in./s2

D

f

Fig. 3 Vector triangle for 
resolving the acceleration vector 
into a magnitude and direction.

Sample Problem 15.4

Two friction wheels A and B are both rotating freely at 300 rpm clockwise 

when they are brought into contact. After 6 s of slippage, during which 

each wheel has a constant angular acceleration, wheel A reaches a final 

angular velocity of 60 rpm clockwise. Determine the angular acceleration 

of each wheel during the period of slippage.

STRATEGY: You are not given any masses or forces, so you can use 

kinematics to solve this problem.

MODELING and ANALYSIS: Model each wheel as a rigid body.

Initial Data. The initial angular velocities of the wheels are (vA)0 5 

(vB)0 5 300 rpm 5 31.42 rad/s, both clockwise. After 6 s of slippage, 

the final angular velocity of A is vA 5 60 rpm 5 6.28 rad/s clockwise.

Wheel A. You are told the angular accelerations of the wheels are 

constant, so

vA 5 (vA)0 1 αAt:    6.28 rad/s 5 31.42 rad/s 1 αA(6 s)

 αA 5 24.19 rad/s2
 αA 5 4.19 rad/s2

l b

Wheel B. At t 5 6 s, the wheels stop slipping and the two points in 

contact have the same velocity (Fig. 1). Thus,

rAvA 5 rBvB

so

vB 5
rAvA

rB
5
1125 mm216.28 rad/s2

175 mm2 5 10.47 rad/s l

The angular acceleration of B is constant, so

vB 5 (vB)0 1 αBt:    210.47 rad/s 5 31.42 rad/s 1 αB(6 s)

αB 5 26.98 rad/s2

αB 5 6.98 rad/s2 
l b

REFLECT and THINK: The initial angular velocity of B is clockwise, 

and its final angular velocity is counterclockwise. There must be some 

time when this wheel has an angular velocity of zero and changes direction 

from rotating clockwise to rotating counterclockwise.

125 m
m

AB

P

75 m
m

rB
rA

P A

vP = rBωB = rAωA

Fig. 1 The wheels will stop 
slipping when the velocities 
of the points of contact are 
equal.
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989 989

In this section, we began the study of the motion of rigid bodies by considering two 

particular types of motion: translation and rotation about a fixed axis.

1. Rigid body in translation. At any given instant, all the points of a rigid body in 

translation have the same velocity and the same acceleration (Fig. 15.7).

2. Rigid body rotating about a fixed axis. The position of a rigid body rotating 

about a fixed axis is defined at any given instant by the angular position θ, which 

is usually measured in radians. Selecting the unit vector k along the fixed axis in such 

a way that the rotation of the body appears counterclockwise as seen from the tip of 

k, we define the angular velocity v and the angular acceleration α of the body as

 v 5 θ
.
k   α 5 θ̈k (15.6, 15.9)

In solving problems, keep in mind that the vectors v and α are both directed along 

the fixed axis of rotation and that their sense can be obtained by the right-hand rule 

[Sample Prob. 15.2].

 a. The velocity of a point P of a body rotating about a fixed axis is

 v 5 v 3 r (15.5)

where v is the angular velocity of the body and r is the position vector drawn from 

any point on the axis of rotation to point P (Fig. 15.9).

 b. The acceleration of point P of a body rotating about a fixed axis is

 a 5 α 3 r 1 v 3 (v 3 r) (15.8)

Since vector products are not commutative, be sure to write the vectors in the order 
shown when using either of the above two equations.

3. Rotation of a representative slab. In many problems, you will be able to reduce 

the analysis of the rotation of a three-dimensional body about a fixed axis to the case 

of the rotation of a representative slab in a plane perpendicular to the fixed axis. The 

z axis should be directed along the axis of rotation and point out of the page. Thus, 

the representative slab rotates in the xy plane about the origin O of the coordinate 

system (Fig. 15.10).

To solve problems of this type, you should do the following steps.

 a. Draw a diagram of the representative slab showing its dimensions, its 

angular velocity and angular acceleration, and the vectors representing the velocities 

and accelerations of the points of the slab.

SOLVING PROBLEMS 
ON YOUR OWN
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990

 b. Relate the rotation of the slab and the motion of points of the slab by 

writing 

v 5 rv (15.109)

at 5 ra   an 5 rv2 (15.119)

Remember that the velocity v and the component at of the acceleration of a point P
of the slab are tangent to the circular path described by P [Sample Probs. 15.3 and 

15.4]. You can find the directions of v and at by rotating the position vector r through 

90° in the sense indicated by v and α, respectively. The normal component an of the 

acceleration of P is always directed toward the axis of rotation.

4. Equations defining the rotation of a rigid body. Note the similarity between the 

equations defining the rotation of a rigid body about a fixed axis [Eqs. (15.12) through 

(15.16)] and those in Chap. 11 defining the rectilinear motion of a particle [Eqs. (11.1) 

through (11.8)]. All you have to do to obtain the new set of equations is to substitute θ, 

v, and α for x, v, and a, respectively, in the equations of Chap. 11 [Sample Prob. 15.1].
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991

CONCEPT QUESTIONS

 15.CQ1 A rectangular plate swings from arms of equal length as shown. 

What is the magnitude of the angular velocity of the plate? 

   a. 0 rad/s

   b. 1 rad/s

   c. 2 rad/s

   d. 3 rad/s

   e. Need to know the location of the center of gravity.

Fig. P15.CQ1

q q

1 rad/s2

2 rad/s
1 ft

 15.CQ2 Knowing that wheel A rotates with a constant angular velocity and 

that no slipping occurs between ring C and wheel A and wheel B, 

which of the following statements concerning the angular speeds of 

the three objects is true?

   a. va 5 vb

   b. va . vb

   c. va , vb

   d. va 5 vc

   e. The contact points between A and C have the same acceleration.

END-OF-SECTION PROBLEMS

 15.1 The brake drum is attached to a larger flywheel that is not shown. 

The motion of the brake drum is defined by the relation 

θ 5 36t 2 1.6t2, where θ is expressed in radians and t in seconds. 

Determine (a) the angular velocity at t 5 2 s, (b) the number of 

revolutions executed by the brake drum before coming to rest.

 15.2 The motion of an oscillating flywheel is defined by the relation 

θ 5 θ0e
23πt cos 4πt, where θ is expressed in radians and t in seconds. 

Knowing that θ0 5 0.5 rad, determine the angular coordinate, the 

angular velocity, and the angular acceleration of the flywheel when 

(a) t 5 0, (b) t 5 0.125 s. 

 15.3 The motion of an oscillating flywheel is defined by the relation 

θ 5 θ0e
27πt/6 sin 4πt, where θ is expressed in radians and t in 

seconds. Knowing that θ0 5 0.4 rad, determine the angular coordinate, 

the angular velocity, and the angular acceleration of the flywheel 

when (a) t 5 0.125 s, (b) t 5 `.

Problems

A

B

C

5 mm

24 mm

Fig. P15.CQ2

A

B

C

D

Fig. P15.1

Fig. P15.2 and P15.3
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 15.4 The rotor of a gas turbine is rotating at a speed of 6900 rpm when 

the turbine is shut down. It is observed that 4 min is required for the 

rotor to coast to rest. Assuming uniformly  accelerated motion, 

determine (a) the angular acceleration, (b) the number of revolutions 

that the rotor executes before  coming to rest.

 15.5 A small grinding wheel is attached to the shaft of an electric motor 

which has a rated speed of 3600 rpm. When the power is turned on, 

the unit reaches its rated speed in 5 s, and when the power is turned 

off, the unit coasts to rest in 70 s. Assuming uniformly accelerated 

motion, determine the number of revolutions that the motor executes 

(a) in reaching its rated speed, (b) in coasting to rest.

Fig. P15.5

 15.6 A connecting rod is supported by a knife-edge at point A. For small 

oscillations the angular acceleration of the connecting rod is  governed 

by the relation α 5 26θ where α is expressed in rad/s2 and θ in 

radians. Knowing that the connecting rod is released from rest when 

θ 5 208, determine (a) the maximum angular velocity, (b) the angu-

lar position when t 5 2 s.

 15.7 When studying whiplash resulting from rear-end collisions, the 

rotation of the head is of primary interest. An impact test was 

performed, and it was found that the angular acceleration of the head 

is defined by the relation α 5 700 cos θ 1 70 sin θ, where α is 

expressed in rad/s2 and θ in radians. Knowing that the head is initially 

at rest, determine the angular velocity of the head when θ 5 308. 

 15.8 The angular acceleration of an oscillating disk is defined by the 

relation α 5 2kθ, where alpha is expressed in rad/s2 and theta is 

expressed in radians. Determine (a) the value of k for which 

v 5 12 rad/s when θ 5 0 and θ 5 6 rad when v 5 0, (b) the angular 

velocity of the disk when θ 5 3 rad.

 15.9 The angular acceleration of a shaft is defined by the relation 

α 5 20.5v, where α is expressed in rad/s2 and v in rad/s. Knowing 

that at t 5 0 the angular velocity of the shaft is 30 rad/s, determine 

(a) the number of revolutions the shaft will execute before coming 

to rest, (b) the time required for the shaft to come to rest, (c) the 

time required for the angular velocity of the shaft to reduce to 

2 percent of its initial value.

 15.10 The bent rod ABCDE rotates about a line joining points A and E
with a constant angular velocity of 9 rad/s. Knowing that the rotation 

is clockwise as viewed from E, determine the velocity and accelera-

tion of corner C.

 15.11 In Prob. 15.10, determine the velocity and acceleration of corner B, 
assuming that the angular velocity is 9 rad/s and increases at the 

rate of 45 rad/s2.

Vertical

G

r

θ

O

Fig. P15.7

200 mm

250 mm

150 mm

150 mm

400 mm
x

z

y

A

B

C

D

E

Fig. P15.10

B

A

q

Fig. P15.6
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 15.12 The rectangular block shown rotates about the diagonal OA with a 

constant angular velocity of 6.76 rad/s. Knowing that the rotation is 

counterclockwise as viewed from A, determine the velocity and 

acceleration of point B at the instant shown.

 15.13 The rectangular block shown rotates about the diagonal OA with an 

angular velocity of 3.38 rad/s that is decreasing at the rate of 5.07 rad/s2. 

Knowing that the rotation is counterclockwise as viewed from A, 

determine the velocity and acceleration of point B at the instant shown.

 15.14 A circular plate of 120-mm radius is supported by two bearings A
and B as shown. The plate rotates about the rod joining A and B with 

a constant angular velocity of 26 rad/s. Knowing that, at the instant 

considered, the velocity of point C is directed to the right, determine 

the velocity and acceleration of point E.

C

B

A

E

y

z

x80 mm 120 mm

180 mm

D

Fig. P15.14

 15.15 In Prob. 15.14, determine the velocity and acceleration of point E, 

assuming that the angular velocity is 26 rad/s and increases at the 

rate of 65 rad/s2.

 15.16 The earth makes one complete revolution around the sun in 

365.24 days. Assuming that the orbit of the earth is circular and has 

a radius of 93,000,000 mi, determine the velocity and acceleration of 

the earth.

 15.17 The earth makes one complete revolution on its axis in 23 h 56 min. 

Knowing that the mean radius of the earth is 3960 mi, determine the 

linear velocity and acceleration of a point on the surface of the earth 

(a) at the equator, (b) at Philadelphia, latitude 40° north, (c) at the 

North Pole.

 15.18 A series of small machine components being moved by a conveyor 

belt pass over a 120-mm-radius idler pulley. At the instant shown, 

the velocity of point A is 300 mm/s to the left and its acceleration is 

180 mm/s2 to the right. Determine (a) the angular velocity and 

angular acceleration of the idler pulley, (b) the total acceleration 

of the machine component at B.

 15.19 A series of small machine components being moved by a conveyor 

belt pass over a 120-mm-radius idler pulley. At the instant shown, the 

angular velocity of the idler pulley is 4 rad/s clockwise. Determine 

the angular acceleration of the pulley for which the magnitude of the 

total acceleration of the machine component at B is 2400 mm/s2.

A

B

120 mm

Fig. P15.18 and P15.19

5 in.

12 in.

15.6 in.

15.6 in.

B

A

z

y

x

O

Fig. P15.12 and P15.13
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 15.20 The belt sander shown is initially at rest. If the driving drum B has 

a constant angular acceleration of 120 rad/s2 counterclockwise, 

determine the magnitude of the acceleration of the belt at point C
when (a) t 5 0.5 s, (b) t 5 2 s.

A BC

25 mm

25 mm

Fig. P15.20 and P15.21

 15.21 The rated speed of drum B of the belt sander shown is 2400 rpm. 

When the power is turned off, it is observed that the sander coasts 

from its rated speed to rest in 10 s. Assuming uniformly decelerated 

motion, determine the velocity and acceleration of point C of the 

belt, (a) immediately before the power is turned off, (b) 9 s later.

 15.22 The two pulleys shown may be operated with the V belt in any of 

three positions. If the angular acceleration of shaft A is 6 rad/s2 and 

if the system is initially at rest, determine the time required for 

shaft B to reach a speed of 400 rpm with the belt in each of the three 

positions.

 15.23 Three belts move over two pulleys without slipping in the speed 

reduction system shown. At the instant shown, the velocity of point 

A on the input belt is 2 ft/s to the right, decreasing at the rate of 

6 ft/s2. Determine, at this instant, (a) the velocity and acceleration 

of point C on the output belt, (b) the acceleration of point B on the 

output pulley.

 15.24 A gear reduction system consists of three gears A, B, and C. Knowing 

that gear A rotates clockwise with a constant angular velocity 

vA 5 600 rpm, determine (a) the angular velocities of gears B and 

C, (b) the accelerations of the points on gears B and C which are 

in contact.

A
B

4 in.2 in.

2 in.

6 in.

C

wwA

Fig. P15.24

 15.25 A belt is pulled to the right between cylinders A and B. Knowing 

that the speed of the belt is a constant 5 ft/s and no slippage occurs, 

determine (a) the angular velocities of A and B, (b) the accelerations 

of the points which are in contact with the belt.

A
4 in.

B

3 in.2 in.

4 in. 3 in. 2 in.

Fig. P15.22

B

A

4 in. 8 in.

C

Fig. P15.23

P

8 in.

4 in.

B

A

Fig. P15.25
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 15.26 Ring C has an inside radius of 55 mm and an outside radius of 

60 mm and is positioned between two wheels A and B, each of 24-mm 

outside radius. Knowing that wheel A rotates with a  constant angular 

velocity of 300 rpm and that no slipping occurs, determine (a) the 

angular velocity of ring C and of wheel B, (b) the acceleration of the 

points on A and B that are in contact with C.

A

B

C

5 mm

24 mm

Fig. P15.26

 15.27 Ring B has an inside radius r2 and hangs from the horizontal shaft 

A as shown. Shaft A rotates with a constant angular velocity of 

25 rad/s and no slipping occurs. Knowing that r1 5 12 mm, r2 5 

30 mm, and r3 5 40 mm, determine (a) the angular velocity of ring 

B, (b) the accelerations of the points of shaft A and ring B which 

are in contact, (c) the magnitude of the acceleration of point D.

 15.28 A plastic film moves over two drums. During a 4-s interval the speed 

of the tape is increased uniformly from v0 5 2 ft/s to v1 5 4 ft/s. 

Knowing that the tape does not slip on the drums, determine (a) the 

angular acceleration of drum B, (b) the number of revolutions executed 

by drum B during the 4-s interval.

v0v0

9 in.

15 in.A
B

Fig. P15.28

 15.29 Cylinder A is moving downward with a velocity of 3 m/s when the 

brake is suddenly applied to the drum. Knowing that the cylinder 

moves 6 m downward before coming to rest and assuming uniformly 

accelerated motion, determine (a) the angular acceleration of the 

drum, (b) the time required for the cylinder to come to rest.

 15.30 The system shown is held at rest by the brake-and-drum system 

shown. After the brake is partially released at t 5 0 it is observed 

that the cylinder moves 5 m in 4.5 s. Assuming uniformly accelerated 

motion, determine (a) the angular acceleration of the drum, (b) the 

angular velocity of the drum at t 5 3.5 s.

x

y

r2

r3

A

z

r1

B

D

Fig. P15.27

250 mm

A

Fig. P15.29 and P15.30
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996

 15.31 A load is to be raised 20 ft by the hoisting system shown. Assuming 

gear A is initially at rest, accelerates uniformly to a speed of 120 rpm 

in 5 s, and then maintains a constant speed of 120 rpm, determine 

(a) the number of revolutions executed by gear A in raising the load, 

(b) the time required to raise the load.

 15.32 A simple friction drive consists of two disks A and B. Initially, 

disk B has a clockwise angular velocity of 500 rpm, and disk A is at 

rest. It is known that disk B will coast to rest in 60 s. However, rather 

than waiting until both disks are at rest to bring them together, disk 

A is given a constant angular acceleration of 3 rad/s2 counterclockwise. 

Determine (a) at what time the disks can be brought together if they 

are not to slip, (b) the angular velocity of each disk as contact is made.

 15.33 Two friction wheels A and B are both rotating freely at 300 rpm 

counterclockwise when they are brought into contact. After 12 s of 

slippage, during which time each wheel has a constant angular accel-

eration, wheel B reaches a final angular velocity of 75 rpm counter-

clockwise. Determine (a) the angular acceleration of each wheel 

during the period of slippage, (b) the time at which the angular 

velocity of wheel A is equal to zero.

 15.34 Two friction disks A and B are to be brought into contact without 

slipping when the angular velocity of disk A is 240 rpm counter-

clockwise. Disk A starts from rest at time t 5 0 and is given a 

constant angular acceleration with a magnitude α. Disk B starts from 

rest at time t 5 2 s and is given a constant clockwise angular accel-

eration, also with a magnitude α. Determine (a) the required angular 

acceleration magnitude α, (b) the time at which the contact occurs.

 15.35 Two friction disks A and B are brought into contact when the angular 

velocity of disk A is 240 rpm counterclockwise and disk B is at rest. 

A period of slipping follows and disk B makes two revolutions 

before reaching its final angular velocity. Assuming that the angular 

acceleration of each disk is constant and inversely proportional to 

the cube of its radius, determine (a) the angular acceleration of each 

disk, (b) the time during which the disks slip.

 *15.36 Steel tape is being wound onto a spool that rotates with a constant 

angular velocity v0. Denoting by r the radius of the spool and tape 

at any given time and by b the thickness of the tape, derive an 

expression for the acceleration of the tape as it approaches the spool.

 *15.37 In a continuous printing process, paper is drawn into the presses at 

a constant speed v. Denoting by r the radius of the paper roll at any 

given time and by b the thickness of the paper, derive an expression 

for the angular acceleration of the paper roll.

b

r

v

w

a

Fig. P15.37

ba

ω0

Fig. P15.36

A

B

150 mm

200 mm

Fig. P15.34 and P15.35

A B

2.5 in. 3 in.

Fig. P15.32 and P15.33

3 in.

Load

A

18 in. 15 in.

B

Fig. P15.31
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15.2 General Plane Motion: Velocity 997

15.2  GENERAL PLANE MOTION: 
VELOCITY

As indicated in the chapter introduction, general plane motion describes 

a plane motion that is neither a pure translation nor a pure rotation. As 

you will presently see, however, a general plane motion can always be 
considered as the sum of a translation and a rotation.

15.2A  Analyzing General Plane Motion
As an example of general plane motion, consider a wheel rolling on a 

straight track (Fig. 15.12). Over some interval of time, two given points 

A and B will have moved, respectively, from A1 to A2 and from B1 to B2. 

However, we could obtain the same result through a translation that would 

bring A1 and B1 into A2 and B91 (the line AB remaining vertical), followed 

by a rotation about A, bringing B into B2. The original rolling motion 

differs from the combination of translation and rotation when these 

motions are taken in succession, but we can duplicate the original motion 

exactly using a combination of simultaneous translation and rotation.

Fig. 15.12 The general plane motion of a rolling wheel can be analyzed as a combination 
of translation plus a fixed-axis rotation.

= +

Plane motion = +Translation with A Rotation about A

A1 A1 A2
A2

A2

B1 B1
B'1

B'1

B2 B2

Another example of plane motion is shown in Fig. 15.13, which 

represents a rod whose ends slide along a horizontal and a vertical track. 

We can replace this motion using a horizontal translation and a rotation 

about A (Fig. 15.13a) or using a vertical translation and a rotation about 

B (Fig. 15.13b).

In the general case of plane motion, we consider a small displace-

ment that brings two particles A and B of a representative rigid body, 

respectively, from A1 and B1 into A2 and B2 (Fig. 15.14). We can divide 

this displacement into two parts: in one, the particles move into A2 and 

B91 while the line AB maintains the same direction; in the other, B moves 

into B2 while A remains fixed. The first part of the motion is clearly a 

translation, and the second part is clearly a rotation about A.

Recall from Sec. 11.4D the definition of the relative motion of a 

particle with respect to a moving frame of reference—as opposed to its 

absolute motion with respect to a fixed frame of reference. With that 

definition in mind, we can restate our results: Given two particles A and 

B of a rigid body in plane motion, the relative motion of B with respect 
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998 Kinematics of Rigid Bodies

to a frame attached to A and of fixed orientation is a rotation. To an 

observer moving with A but not rotating, particle B appears to describe 

an arc of a circle centered at A.

15.2B  Absolute and Relative Velocity 
in Plane Motion

We have just seen that any plane motion of a rigid body can be replaced 

by a translation of an arbitrary reference point A and a simultaneous 

rotation about A. We can obtain the absolute velocity vB of a particle B of 

the rigid body from the relative velocity formula derived in Sec. 11.4D, as

vB 5 vA 1 vB/A (15.17)

where the right-hand side represents a vector sum. The velocity vA cor-

responds to the translation of the rigid body with A, whereas the relative 

velocity vB/A is associated with the rotation of the rigid body about A and 

is measured with respect to axes centered at A and of fixed orientation 

(Fig. 15.15). Denoting the position vector of B relative to A by rB/A (which 

points from A to B) and the angular velocity of the rigid body with respect 

to axes of fixed orientation by vk, we have from Eqs. (15.10) and (15.109)

 vB/A 5 vk 3 rB/A  vB/A 5 rv (15.18)

vB 5 vAv 1 vB/B A//

Fig. 15.13 The general plane motion of this sliding rod can be analyzed as (a) a horizontal 
translation plus a fixed-axis rotation about A or (b) a vertical translation and a fixed-axis 
rotation about B. The results are the same either way.

A2A1
A2 A2A1

B1 B1

B2

B'1 B'1

B2

A2A1

A2A1

A'1

B1

B2

A'1

B2

B1

B2

= +

= +

Plane motion

Plane motion

=

=

Translation with A +

+

Rotation about A

Translation with B Rotation about B

(a)

(b)

Fig. 15.14 General plane motion is a 
combination of a translation plus a fixed-axis 
rotation. To an observer moving with A but 
not rotating, particle B appears to travel in a 
circle centered at A.

B'1

A1

A2

B1

B2
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15.2 General Plane Motion: Velocity 999

where r is the distance from A to B. Substituting for vB/A from Eq. (15.18) 

into Eq. (15.17), we also have

Relative velocity for two 
points on a rigid body

 vB 5 vA 1 vk 3 rB/A (15.179)

As an example, let us again consider rod AB of Fig. 15.13. Assuming 

that we know the velocity vA of end A, we propose to find the velocity vB 

of end B and the angular velocity v of the rod in terms of the velocity 

vA, the length l, and the angle θ. Choosing A as a reference point, the 

given motion is equivalent to a translation of A and a simultaneous rotation 

about A (Fig. 15.16). The absolute velocity of B therefore must be equal 

to the vector sum

 vB 5 vA 1 vB/A (15.17)

Note that although we know the direction of vB/A, its magnitude lv is 

unknown. However, this is compensated for by the fact that the direction 

of vB is known. We can therefore complete the vector diagram of 

Fig. 15.16. Solving for the magnitudes vB and v, we obtain

 vB 5 vA tan θ    v 5
vB/A

l
5

vA

l cos θ
 (15.19)

Alternatively, we can also solve this problem by using the vector 

relationship in Eq. (15.179). Recognizing that point A is constrained to 

vB 5 vAv 1 vk 3 rB/B A//

Fig. 15.15 A pictorial representation of the vector equation relating the velocity of two points on a rigid 
body undergoing general plane motion.

= +

Plane motion = Translation with A + Rotation about A

A

B

A

B B

vA

vA

vA

vB

vA
vB

x'

y'

wk

rB/A

vB/A

vB/A

vB = vA + vB/A

A
(fixed)

Photo 15.4 Planetary gear systems are used 
in applications requiring a large reduction 
ratio and a high torque-to-weight ratio. The 
small gears undergo general plane motion.

Plane motion = Translation with A + Rotation about A

= +

A
A

BBB

vA

vA

vAvA

vB

vB

vB/A

vB/A

vB = vA + vB/A

A (fixed)

lll
q

q

w

q
q

Fig. 15.16 Pictorial representation of Eq. (15.17) for a sliding rod.  The relative velocity vB/A is 
perpendicular to the line connecting A and B.
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1000 Kinematics of Rigid Bodies

move only in the x direction and B moves only in the y direction (assume 

it moves down), we can write

2vB j 5 vAi 1 vk 3(2l sin θi 1 l cos θj) 5 (vA 2 vl cos θ)i 2 vl sin θj

Equating components in the x direction, we obtain

vA 2 vl cos θ 5 0    v 5
vA

l cos θ

Equating components in the y direction, we obtain

vB 5 vl sin θ 5 a vA

l cos θ
b l sin θ 5 vA tan θ

These are the same results as we obtained in Eq. 15.19. We obtain the 

same result by using B as a point of reference. Resolving the given motion 

into a translation of B and a simultaneous rotation about B (Fig. 15.17), 

we have the equation

 vA 5 vB 1 vA/B 5 vB 1 vk 3 rA/B (15.20)

which is represented graphically in Fig. 15.17. Note that vA/B and vB/A have 

the same magnitude lv but opposite sense. The sense of the relative 

velocity depends, therefore, upon the point of reference that we have 

selected and should be carefully ascertained from the appropriate diagram 

(Fig. 15.16 or 15.17).

Fig. 15.17 Pictorial representation of Eq. (15.20) for a sliding rod. The relative velocity vA/B is 
perpendicular to the line connecting A and B.

Plane motion

A

B

vA

vB

vA

vA/B

l
θ=

= Translation with B

A

B

l

+ Rotation about B

+
vA/B

A

B (fixed)

l

ω

vA = vB + vA/B

vB

θ vB

θ

vB

Finally, observe that the angular velocity v of the rod in its rotation 

about B is the same as in its rotation about A. It is measured in both cases 

by the rate of change of the angle θ. This result is quite general; you 

should therefore bear in mind that 

The angular velocity v of a rigid body in plane motion is independent 
of the reference point.

Most mechanisms consist not of one but of several moving parts. 

When the various parts of a mechanism are connected by pins, we can 

analyze the mechanism by considering each part as a rigid body, keeping 

in mind that the points where two parts are connected must have the same 

absolute velocity (see Sample Probs. 15.7 and 15.8). We can use a similar 

analysis when gears are involved, since the teeth in contact also must have 

the same absolute velocity. However, when a mechanism contains parts 

that slide on each other, the relative velocity of the parts in contact must 

be taken into account (see Sec. 15.5).

bee87342_ch15_977-1106.indd   1000bee87342_ch15_977-1106.indd   1000 11/26/14   4:48 PM11/26/14   4:48 PM

UPLOADED BY AHMAD T JUNDI



15.2 General Plane Motion: Velocity 1001

Sample Problem 15.5

Collars A and B are pin-connected to bar ABD and can slide along 

fixed rods. Knowing that at the instant shown the velocity of A is 

0.9 m/s to the right, determine (a) the angular velocity of ABD, 

(b) the velocity of point D.

STRATEGY: Use the kinematic equation that relates the velocity 

of two points on the same rigid body. Because you know the 

directions of the velocities of points A and B, choose these two 

points to relate. 

MODELING and ANALYSIS: Model bar ABD as a rigid body. 

From kinematics you know

vB 5 vA 1 vB/A 5 vA 1 v 3 rB/A

Substituting in known values (Fig. 1) and assuming v 5 vk gives 

you

 vB cos 60°i 1 vB sin 60°j 5 (0.9)i 1

 vk 3 [(0.3 cos 30°)i 1 (0.3 sin 30°)j]

0.500vBi 1 0.866vB j 5 (0.9 2 0.15v)i 1 0.260vj

Equating components, 

i: 5 0.500vB 5 0.9 2 0.15v

 j: 5 0.866vB 5 0.260v

Solving these equations gives you vB 5 0.900 m/s and 

v 5 3.00 rad/s

v 5 3.00 rad/s l b

Velocity of D. The relationship between the velocities of A and 

D is

vD 5 vA 1 vD/A 5 vD 1 v 3 rD/A

Substituting in values from above gives

vD 5 (0.9)i 1 3.00k 3 [(0.6 cos 30°)i 1 (0.6 sin 30°)j]

 vD 5 (0.9 2 0.9)i 1 1.559j

vD 5 1.559 m/sx b

REFLECT and THINK: The velocity of point D is straight up 

at this instant in time, but as the bar continues to rotate counter-

clockwise, the direction of the velocity of D will continuously 

change.

60°
60°

A

B

D
300 mm

300 mm

60°
60°

A

B

D

rB/A

vB

vA

y

x

Fig. 1 Position vector and directions of the 
velocities of A and B.
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1002 Kinematics of Rigid Bodies

D

C

R

r2 = 100 mm

vA = 1.2 m/s

r1 = 150 mm

A

B

MODELING and ANALYSIS: 

a. Angular Velocity of the Gear. Since the gear rolls on the lower 

rack, its center A moves through a distance equal to the outer  circumference 

2πr1 for each full revolution of the gear. Noting that 1 rev 5 2π rad, and 

that when A moves to the right (xA . 0), the gear rotates clockwise 

(θ , 0), you have

xA

2πr1

5 2
θ

2π
      xA 5 2r1θ

Differentiating with respect to the time t and substituting the known values 

vA 5 1.2 m/s and r1 5 150 mm 5 0.150 m, you obtain

vA 5 2r1v  1.2 m/s 5 2(0.150 m)v  v 5 28 rad/s

v 5 vk 5 2(8 rad/s)k b

where k is a unit vector pointing out of the page.

b. Velocity of Upper Rack. The velocity of the upper rack is equal 

to the velocity of point B; you have

 vR 5 vB 5 vA 1 vB/A 5 vA 1 vk 3 rB/A

 5 (1.2 m/s)i 2 (8 rad/s)k 3 (0.100 m)j
 5 (1.2 m/s)i 1 (0.8 m/s)i 5 (2 m/s)i

vR 5 2 m/sy b

vA

vB

vC = 0

vD/A

vC/A

vAvA

vA

D

C

B

A =+ D

C

B

A
D

C

B

A

vB/A

(fixed)

ωω 

vA

vD

Translation + Rotation = Rolling Motion

y

x

Fig. 1 The gear motion can be modeled as a translation plus a rotation.

Sample Problem 15.6

The double gear shown rolls on the stationary lower rack; the velocity of 

its center A is 1.2 m/s directed to the right. Determine (a) the angular 

velocity of the gear, (b) the velocities of the upper rack R and of point D 

of the gear.

STRATEGY: The double gear is undergoing general motion, so use 

rigid body kinematics. Resolve the rolling motion into two component 

motions: a translation of point A and a rotation about the center A (Fig. 1). 
In the translation, all points of the gear move with the same velocity vA. 

In the rotation, each point P of the gear moves about A with a relative 

velocity vP/A 5 vk 3 rP/A, where rP/A is the position vector of P relative 

to A.
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15.2 General Plane Motion: Velocity 1003

Velocity of Point D. The velocity of point D has two components 

(Fig. 2):

 vD 5 vA 1 vD/A 5 vA 1 vk 3 rD/A

 5 (1.2 m/s)i 2 (8 rad/s)k 3 (20.150 m)i
 5 (1.2 m/s)i 1 (1.2 m/s)j

vD 5 1.697 m/s a 45° b

REFLECT and THINK: The principles involved in this problem are 

similar to those that you used in Sample Prob. 15.3, but in this problem, 

point A was free to translate. Point C, since it is in contact with the fixed 

lower rack, has a velocity of zero. Every point along diameter CAB has a 

velocity vector directed to the right (Fig. 1) and the magnitude of the 

velocity increases linearly as the distance from point C increases.

vD/A

vA

vD

Fig. 2 The two 
components of the 
velocity of D.

Sample Problem 15.7

In the engine system shown, the crank AB has a constant clockwise angular 

velocity of 2000 rpm. For the crank position shown, determine (a) the 

angular velocity of the connecting rod BD, (b) the velocity of the piston P.

STRATEGY: Connecting rod BD is undergoing general motion, so use 

rigid-body kinematics. Crank AB is undergoing fixed axis rotation, and 

piston P is translating. The motion of the piston is the same as the end D 

of the connecting rod. 

MODELING and ANALYSIS: 

Motion of Crank AB. The crank AB rotates about point A. Expressing 

vAB in rad/s and writing vB 5 rvAB, you have (Fig. 1)

vAB 5 a2000  

rev

min
b a1 min

60 s
b a2π rad

1 rev
b 5 209.4 rad/s

 vB 5 (AB)vAB 5 (3 in.)(209.4 rad/s) 5 628.3 in./s

 vB 5 628.3 in./s c 50°

Motion of Connecting Rod BD. Consider this as a general plane 

motion. Using the law of sines, compute the angle β between the con-

necting rod and the horizontal as

sin 408

8 in.
5

sin β

3 in.
    β 5 13.958

The velocity vD of point D where the rod is attached to the piston must 

be horizontal, while the velocity of point B is equal to the velocity vB 

obtained previously. Expressing the relation between the velocities vD, vB, 

and vD/B, you have

vD 5 vB 1 vD/B

r = 3 in.
l = 8 in.

40° b
P

D

A

G
B

wwAB

vB

3 in.

40°
50°

A

B

Fig. 1 Crank AB is 
undergoing fixed 
axis rotation.

(continued)
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1004 Kinematics of Rigid Bodies

This equation is shown pictorially in Fig. 2 where the motion of BD is 

resolved into a translation of B and a rotation about B. 

vB vD

vD/B
b = 13.95°wBD

76.05°

b

B

D
50° vB

B

D
50°

Plane motion = Translation + Rotation

B

l

(fixed)

D

vB

50°
+=

Fig. 2 The general plane motion of the connecting rod can be modelled as a 
translation plus a rotation.

Draw the vector diagram corresponding to this equation (Fig. 3). Recalling 

that β 5 13.95°, you can determine the angles of the triangle and write

vD

sin 53.958
5

vD/B

sin 508
5

628.3 in./s

sin 76.058

vD/B 5 495.9 in./s  vD/B 5 495.9 in./s a 76.05°

 vD 5 523.4 in./s 5 43.6 ft/s  vD 5 43.6 ft/s y

vP 5 vD 5 43.6 ft/sy b

Since vD/B 5 lvBD, you have

495.9 in./s 5 (8 in.)vBD  vBD 5 62.0 rad/s l b

REFLECT and THINK: Note that as the crank continues to move 

clockwise below the center line, the piston changes direction and starts to 

move to the left. Can you see what happens to the motion of the connecting 

rod at that point? You can also solve this problem using the vector 

relationship expressed in Eq. (15.179); this type of approach is shown in 

Sample Prob. 15.8. 

vD

vD/BvB = 628.3 in./s

50° 76.05°

53.95°

β = 13.95°

Fig. 3 Vector triangle showing the 
relationship between the velocities of 
B and D.

Sample Problem 15.8

In the position shown, bar AB has an angular velocity of 4 rad/s clockwise. 

Determine the angular velocity of bars BD and DE.

A

B D

E

200 mm
75 mm

250 mm

150 mm
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15.2 General Plane Motion: Velocity 1005

STRATEGY: The bars AB and DE are undergoing fixed-axis rotation, 

whereas bar BD is undergoing general plane motion. You will need to use 

rigid-body kinematics to analyze the motion.

MODELING and ANALYSIS: Model the bars as rigid bodies. The 

angular velocity of AB is given and is equal to vAB 5 2(4 rad/s)k. You 

can use vector algebra to relate the velocities of points B and D on bar 

BD after you find the velocities of B and D from the connecting bars. 

Position vectors are defined in Fig. 1.

Bar AB. (Rotation about A)

 vB 5 vAB 3 rB/A 5 (24k) 3 (20.25j) 5 2(1.00 m/s)i (1)

Bar ED. (Rotation about E) Assuming vDE is positive, you have

vD 5 vDEk 3 rD/E 5 vDE k 3 (20.075i 2 0.15j) 5 0.15vDE i 2 0.075vDE j (2)

Bar BD. (Translation with B and rotation about B.) 

 vD 5 vB 1 vD/B (3)

where you assume vBD is positive. The relative velocity is

 vD/B 5 vBDk 3 rD/B 5 vBDk 3 0.2i 5 0.2vBD j (4)

Substituting Eqs. (1), (2), and (4) into Eq. (3) gives

0.15 vDEi 2 0.075vDE j 5 21.00i 1 0.2vBD j

Equating components allows you to solve for the unknown angular 

velocities:

i: 0.15vDE 5 21.00,  vDE 5 26.667 rad/s vDE 5 6.67 rad/s i b

j: 20.075vDE 5 0.2vBD  vBD 5
210.0752 126.6672

0.2

vBD 5 2.50 rad/s l b

REFLECT and THINK: The vector algebra approach is very straight-

forward for problems like this. It makes sense that if AB is rotating clock-

wise, BD is rotating counterclockwise and DE is rotating clockwise. 

B D

A

E

rB/A = –0.25j
rD/E = –0.075i – 0.15j
rD/B = 0.2i

rD/B

rB/A rD/E

y

x

Fig. 1 Relative position 
vectors for points B and D.
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10061006

In this section, you learned how to analyze the velocity of bodies in general plane 
motion. You found that you can always consider a general plane motion to be the sum 

of the two motions you studied in the Sec. 15.1, namely, a translation and a rotation.

To solve a problem involving the velocity of a body in plane motion, you should take 

the following steps.

1. Whenever possible, determine the velocity of the points of the body where it 

is connected to another body whose motion is known [Sample Prob. 15.6]. That other 

body may be an arm or crank rotating with a given angular velocity [Sample Probs. 15.7 

and 15.8].

2. Next, draw a diagram to use in your solution (Figs. 15.15 and 15.16) if you are not 

using the vector algebra approach. This diagram consists of the following diagrams.

 a. Plane motion diagram: Draw a diagram of the body including all 

dimensions and showing those points for which you know or seek the velocity.

 b. Translation diagram: Select a reference point A for which you know the 

direction and/or the magnitude of the velocity vA, and draw a second diagram showing 

the body in translation with all of its points having the same velocity vA.

 c. Rotation diagram: Consider point A as a fixed point and draw a diagram 

showing the body in rotation about A. Show the angular velocity v 5 vk of the body 

and the relative velocities with respect to A of the other points, such as the velocity 

vB/A of B relative to A.

3. Write the relative velocity formula as

 vB 5 vA 1 vB/A (15.17)

or for plane motion as

 vB 5 vA 1 vk 3 rB/A (15.179)

You can solve this vector equation analytically by writing the corresponding scalar 

equations, or you can solve it by using a vector triangle (Fig. 15.16).

4. Use a different reference point to obtain an equivalent solution. For example, 

if you select point B as the reference point, the relative velocity of point A is

 vA 5 vB 1 vA/B 5 vB 1 vk 3 rA/B (15.20)

Note that the relative velocities vB/A and vA/B have the same magnitude but opposite 

sense. Relative velocities, therefore, depend upon the reference point that you select. 

The angular velocity, however, is independent of the choice of reference point.

5. Write additional relative velocity equations if you are analyzing a multi-body 
linkage. For problems such as the crankshaft-piston in Sample Prob. 15.7, you may 

have to write multiple relative velocity equations. In that problem, you can express 

the velocity of P with respect to B and then the velocity of B with respect to A. 

Generally, the ends of the linkages will have some type of constraint (e.g., the piston 

moving only in the x direction).

SOLVING PROBLEMS 
ON YOUR OWN
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CONCEPT QUESTIONS

 15.CQ3 The ball rolls without slipping on the fixed surface as shown. What 

is the direction of the velocity of point A?

a. y  b. Q  c. x  d. w  e. R
15.CQ4 Three uniform rods—ABC, DCE, and FGH—are connected as 

shown. Which of the following statements concerning the angular 

speed of the three objects is true?

a. vABC 5 vDCE 5 vFGH

   b. vDCE . vABC . vFGH

   c. vDCE , vABC , vFGH

   d. vABC . vDCE . vFGH

   e. vFGH 5 vDCE , vABC

A

B

D EC

F G H

Fig. P15.CQ4

END-OF-SECTION PROBLEMS

 15.38 An automobile travels to the right at a constant speed of 48 mi/h. If 

the diameter of a wheel is 22 in., determine the velocities of points 

B, C, D, and E on the rim of the wheel.

C

B
D

A E

30

22 in.

90

Fig. P15.38

 15.39 The motion of rod AB is guided by pins attached at A and B that 

slide in the slots shown. At the instant shown, θ 5 40° and the pin 

at B moves upward to the left with a constant velocity of 6 in./s. 

Determine (a) the angular velocity of the rod, (b) the velocity of the 

pin at end A.

Problems

A

w

Fig. P15.CQ3

A

B

θ 20 in.

15°

Fig. P15.39 
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15.40 A painter is halfway up a 10-m ladder when the bottom starts sliding 

out from under him. Knowing that point A has a velocity vA 5 2 m/s 

directed to the left when θ 5 60°, determine (a) the angular velocity 

of the ladder, (b) the velocity of the painter.

 15.41 Rod AB can slide freely along the floor and the inclined plane. At 

the instant shown, the velocity of end A is 1.4 m/s to the left. 

Determine (a) the angular velocity of the rod, (b) the velocity of end 

B of the rod.

125 mm

300 mm

500 mm

A

B

Fig. P15.41 and P15.42

 15.42 Rod AB can slide freely along the floor and the inclined plane. At 

the instant shown, the angular velocity of the rod is 4.2 rad/s 

counterclockwise. Determine (a) the velocity of end A of the rod, 

(b) the velocity of end B of the rod.

 15.43 Rod AB moves over a small wheel at C while end A moves to the 

right with a constant velocity of 25 in./s. At the instant shown, deter-

mine (a) the angular velocity of the rod, (b) the velocity of end B 
of the rod.

 15.44 The disk shown moves in the xy plane. Knowing that (vA)y 5 27 m/s, 

(vB)x 5 27.4 m/s, and (vC)x 5 21.4 m/s, determine (a) the angular 

velocity of the disk, (b) the velocity of point B.

B

O

600 mm
A Cx

y

vB = (vB)x i + (vB)y j

vA = (vA)x i
 + (vA)y j vC = (vC)x i + (vC)y j

Fig. P15.44 and P15.45

 15.45 The disk shown moves in the xy plane. Knowing that (vA)y 5 27 m/s, 

(vB)x 5 27.4 m/s, and (vC)x 5 21.4 m/s, detemine (a) the velocity 

of point O, (b) the point of the disk with zero velocity.

A
vA

B

θ

Fig. P15.40

A

B

C

7 in.

20 in.

10 in.

Fig. P15.43
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15.46 The plate shown moves in the xy plane. Knowing that (vA)x 5 250 mm/s, 

(vB)y 5 2450 mm/s, and (vC)x 5 2500 mm/s, determine (a) the angular 

velocity of the plate, (b) the velocity of point A.

150 mm
50 mm

150 mm

vB = (vB)x i + (vB)y j

vC = (vC)x i + (vC)y j

vA = (vA)x i + (vA)y j

A B

O C x

y

Fig. P15.46

15.47 Velocity sensors are placed on a satellite that is moving only in the 

xy plane. Knowing that at the instant shown the unidirectional sensors 

measure (vA)x 5 2 ft/s, (vB)x 5 20.333 ft/s, and (vC)y 5 22 ft/s, determine 

(a) the angular velocity of the satellite, (b) the velocity of point B.

C
x

y

A

B

6 ft
2 ft

2 ft

4 ft

Fig. P15.47

 15.48 In the planetary gear system shown, the radius of gears A, B, C, and 

D is a and the radius of the outer gear E is 3a. Knowing that the 

angular velocity of gear A is vA clockwise and that the outer gear E 

is stationary, determine (a) the angular velocity of each planetary gear, 

(b) the angular velocity of the spider connecting the planetary gears.

 15.49 In the planetary gear system shown, the radius of gears A, B, C, and 

D is 30 mm and the radius of the outer gear E is 90 mm. Knowing 

that gear E has an angular velocity of 180 rpm clockwise and that the 

central gear A has an angular velocity of 240 rpm clockwise, deter-

mine (a) the angular velocity of each planetary gear, (b) the angular 

velocity of the spider connecting the planetary gears.

15.50 Arm AB rotates with an angular velocity of 20 rad/s counterclockwise. 

Knowing that the outer gear C is stationary, determine (a) the angular 

velocity of gear B, (b) the velocity of the gear tooth located at point D.

120 mm

50 mm

C

B

D

A

Fig. P15.50

A

B

C

D

E

Fig. P15.48 and P15.49
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15.51 In the simplified sketch of a ball bearing shown, the diameter of the 

inner race A is 60 mm and the diameter of each ball is 12 mm. The 

outer race B is stationary while the inner race has an angular velocity 

of 3600 rpm. Determine (a) the speed of the center of each ball, 

(b) the angular velocity of each ball, (c) the number of times per 

minute each ball describes a complete circle.

15.52 A simplified gear system for a mechanical watch is shown. Knowing 

that gear A has a constant angular velocity of 1 rev/h and gear C
has a constant angular velocity of 1 rpm, determine (a) the radius r, 
(b) the magnitudes of the accelerations of the points on gear B that 

are in contact with gears A and C.

0.36 in.r

r

A

B

C

0.6 in.

Fig. P15.52

 15.53 and 15.54 Arm ACB rotates about point C with an angular 

velocity of 40 rad/s counterclockwise. Two friction disks A and B 
are pinned at their centers to arm ACB as shown. Knowing that the 

disks roll without slipping at surfaces of contact, determine the 

angular velocity of (a) disk A, (b) disk B.

AB

Fig. P15.51

BA
C

D

1.2 in. 0.9 in.

0.6 in. 1.5 in.

2.4 in.

Fig. P15.53

D

C
BA

0.6 in.

1.5 in.

2.4 in.

1.8 in.0.3 in.

Fig. P15.54
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15.55 Knowing that at the instant shown the velocity of collar A is 

900 mm/s to the left, determine (a) the angular velocity of rod ADB, 

(b) the velocity of point B.

15.56 Knowing that at the instant shown the angular velocity of rod DE
is 2.4 rad/s clockwise, determine (a) the velocity of collar A, 

(b) the velocity of point B.

15.57 Knowing that the disk has a constant angular velocity of 15 rad/s 

clockwise, determine the angular velocity of bar BD and the velocity 

of collar D when (a) θ 5 0, (b) θ 5 90°, (c) θ 5 180°.

 15.58 The disk has a constant angular velocity of 20 rad/s clockwise. 

(a) Determine the two values of the angle θ for which the velocity 

of collar D is zero. (b) For each of these values of θ, determine the 

corresponding value of the angular velocity of bar BD.

 15.59 The test rig shown was developed to perform fatigue testing on 

fitness trampolines. A motor drives the 9-in.-radius flywheel AB, 
which is pinned at its center point A, in a counterclockwise direction. 

The flywheel is attached to slider CD by the 18-in. connecting rod 

BC. Knowing that the “feet” at D should hit the trampoline twice 

every second, at the instant when θ 5 0°, determine (a) the angular 

velocity of the connecting rod BC, (b) the velocity of D, (c) the 

velocity of midpoint CB.

θA

D

B

C

Fig. P15.59

 15.60 In the eccentric shown, a disk of 2-in. radius revolves about shaft O 
that is located 0.5 in. from the center A of the disk. The distance 

between the center A of the disk and the pin at B is 8 in. Knowing 

that the angular velocity of the disk is 900 rpm clockwise, determine 

the velocity of the block when θ 5 30°.

A

D

B

E

150 mm

80 mm

60 mm
120 mm

Fig. P15.55 and P15.56

B
A

D

q

2.8 in.

10 in.

Fig. P15.57 and P15.58

2 in.

O
A

B
θ

8 in.in.1
2

Fig. P15.60
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15.61 In the engine system shown, l 5 160 mm and b 5 60 mm. Knowing 

that the crank AB rotates with a constant angular velocity of 1000 rpm 

clockwise, determine the velocity of the piston P and the angular 

velocity of the connecting rod when (a) θ 5 0, (b) θ 5 90°.

 15.62 In the engine system shown, l 5 160 mm and b 5 60 mm. Knowing 

that crank AB rotates with a constant angular velocity of 1000 rpm 

clockwise, determine the velocity of the piston P and the angular 

velocity of the connecting rod when θ 5 60°.

 15.63 Knowing that at the instant shown the angular velocity of rod AB 
is 15 rad/s clockwise, determine (a) the angular velocity of rod BD, 
(b) the velocity of the midpoint of rod BD.

A

B

D
E

0.2 m

0.2 m

0.25 m

0.6 m

Fig. P15.63

 15.64 In the position shown, bar AB has an angular velocity of 4 rad/s 

clockwise. Determine the angular velocity of bars BD and DE.

 15.65 Linkage DBEF is part of a windshield wiper mechanism, where 

points O, F, and D are fixed pin connections. At the position shown, 

θ 5 30° and link EB is horizontal. Knowing that link EF has a 

counterclockwise angular velocity of 4 rad/s at the instant shown, 

determine the angular velocity of links EB and DB.

85 mm 30 mm20 mm F

E

A

O
B

D
θ

β

Fig. P15.65

P

D

A
B

l

θ

b

Fig. P15.61 and P15.62

200 mm

175 mm
100 mm

75 mm

A

B

D

E

Fig. P15.64
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15.66 Roberts linkage is named after Richard Roberts (1789–1864) and 

can be used to draw a close approximation to a straight line by 

locating a pen at point F. The distance AB is the same as BF, DF, 
and DE. Knowing that the angular velocity of bar AB is 5 rad/s 

clockwise in the position shown, determine (a) the angular velocity 

of bar DE, (b) the velocity of point F. 

 15.67 Roberts linkage is named after Richard Roberts (1789–1864) and 

can be used to draw a close approximation to a straight line by 

locating a pen at point F. The distance AB is the same as BF, DF, 
and DE. Knowing that the angular velocity of plate BDF is 2 rad/s 

counterclockwise when θ 5 90°, determine (a) the angular velocities 

of bars AB and DE, (b) the velocity of point F. When θ 5 90°, 

point F may be assumed to coincide with point E, with negligible 

error in the velocity analysis.

 15.68 In the position shown, bar DE has a constant angular velocity of 

10 rad/s clockwise. Knowing that h 5 500 mm, determine (a) the 

angular velocity of bar FBD, (b) the velocity of point F.

A

B

D

E

100 mm

F

300 mm
100 mm

200 mm

120 mm

h 

Fig. P15.68 and P15.69

 15.69 In the position shown, bar DE has a constant angular velocity of 

10 rad/s clockwise. Determine (a) the distance h for which the velocity 

of point F is vertical, (b) the corresponding velocity of point F.

 15.70 Both 6-in.-radius wheels roll without slipping on the horizontal 

surface. Knowing that the distance AD is 5 in., the distance BE is 

4 in., and D has a velocity of 6 in./s to the right, determine the 

velocity of point E.

6 in. 6 in.

14 in.

D
B

A

E

Fig. P15.70

A

B D

EF

q

12 in.

3 in.

12 in.

3 in.

6 in.

12 in.

Fig. P15.66 and P15.67
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15.71 The 80-mm-radius wheel shown rolls to the left with a velocity of 

900 mm/s. Knowing that the distance AD is 50 mm, determine the 

velocity of the collar and the angular velocity of rod AB when 

(a) β 5 0, (b) β 5 90°.

A

B

250 mm
D80 mm

β

160 mm

Fig. P15.71

 *15.72 For the gearing shown, derive an expression for the angular velocity 

vC of gear C and show that vC is independent of the radius of gear 

B. Assume that point A is fixed and denote the angular velocities of 

rod ABC and gear A by vABC and vA, respectively.

A

B

C

rA

rB

rC

Fig. P15.72
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15.3 Instantaneous Center of Rotation  1015

15.3  INSTANTANEOUS CENTER 
OF ROTATION 

Consider the general plane motion of a rigid body. We will show that, at 

any given instant, the velocities of the various particles of the rigid body 

are the same as if the body were rotating about an axis perpendicular to 

the plane of the body, called the instantaneous axis of rotation. This axis 

intersects the plane of the rigid body at a point C, called the instantaneous 
center of rotation of the body or the instantaneous center of zero 
velocity. This gives us an alternative method for solving problems 

involving the velocities of points on an object in plane motion, and it is 

sometimes simpler than using the equations in Sec. 15.2.

Recall that we can always replace the plane motion of a rigid body 

by a translation defined by the motion of an arbitrary reference point A
and by a rotation about A. As far as the velocities are concerned, the 

translation is characterized by the velocity vA of the reference point A and 

the rotation is characterized by the angular velocity v of the body (which 

is independent of the choice of A). Thus, the velocity vA of point A and 

the angular velocity v of the rigid body define completely the velocities 

of all the other particles of the body (Fig. 15.18a). 

vA vA

A A

C

(a) (b)

r = vA/ω

ω

ω

Fig. 15.18 As far as velocities are concerned, at every 
instant in time the rigid body seems to rotate about a point 
called the instantaneous center C.

Now let us assume that vA and v are known and that they are both 

different from zero. (If vA 5 0, point A is itself the instantaneous center 

of rotation, and if v 5 0, you have rigid body translation where all of 

the particles have the same velocity vA.) We could obtain these velocities 

by letting the rigid body rotate with the angular velocity v about a 

point C located on the perpendicular to vA at a distance r 5 vA/v from 

A, as shown in Fig. 15.18b. We check that the velocity of A would be 

perpendicular to AC and that its magnitude would be rv 5 (vA/v)v 5 vA. 
Thus, the velocities of all the other particles of the body are the same 

as originally defined. Therefore, as far as the velocities are concerned, 
the rigid body seems to rotate about the instantaneous center C at the 

instant considered.

Photo 15.5 If the tires of this car are rolling 
without sliding, the instantaneous center of 
rotation of each tire is the point of contact 
between the road and the tire.
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1016 Kinematics of Rigid Bodies

We can define the position of the instantaneous center in two other 

ways. If we know the directions of the velocities of two particles A and 

B of the rigid body and if they are different, we can obtain the instantaneous 

center C by drawing the perpendicular to vA through A and the perpendicular 

to vB through B. The point C is where these two lines intersect (Fig. 15.19a). 

If the velocities vA and vB of two particles A and B are perpendicular to 

line AB and we know their magnitudes, we can find the instantaneous 

center by intersecting line AB with the line joining the ends of the 

vectors vA and vB (Fig. 15.19b). Note that if vA and vB were parallel in 

Fig. 15.19a or if vA and vB had the same magnitude in Fig. 15.19b, the 

instantaneous center C would be at an infinite distance and v would be 

zero; all points of the rigid body would have the same velocity.

To see how we can use the concept of the instantaneous center of 

rotation, let us consider again the sliding rod of Sec. 15.2. Drawing the 

perpendicular to vA through A and the perpendicular to vB through B 

(Fig. 15.20), we obtain the instantaneous center C. At the instant 

C C

A

(a) (b)

A

B B

vAvA

vB
vB

Fig. 15.19 Locating the instantaneous center of rotation C 
(a) when you know the directions of the velocities of two points; 
(b) when the velocities of two points are perpendicular to line AB.

θ

ω

A

B
C

l
vB

vA

Fig. 15.20 Instantaneous center of rotation C 
for the sliding rod AB.
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15.3 Instantaneous Center of Rotation  1017

considered, the velocities of all the particles of the rod are thus the same 

as if the rod rotated about C. Now, if we know the magnitude vA of the 

velocity of A, we can obtain the magnitude v of the angular velocity of 

the rod from

v 5
vA

AC
5

vA

l cos θ

Then we obtain the magnitude of the velocity of B as

vB 5 (BC)v 5 l sin θ 

vA

l cos θ
5 vA tan θ

Note that we used only absolute velocities in the computation.

The instantaneous center of a body in plane motion can be located 

either on the body or outside the body. If it is located on the rigid body, 

the particle C coinciding with the instantaneous center at a given instant 

t must have zero velocity at that instant. However, the instantaneous 

center of rotation is valid only at a given instant. Thus, particle C of the 

rigid body that coincides with the instantaneous center at time t gener-

ally does not coincide with the instantaneous center at time t 1 Dt. Its 

velocity is zero at time t, but it will probably be different from zero at 

time t 1 Dt. This means, in general, that particle C does not have zero 
acceleration and, therefore, that the accelerations of the various particles 

of the rigid body cannot be determined as if the body were rotating 

about C.
As the motion of the rigid body proceeds, the instantaneous center 

moves in space. However, we just pointed out that the position of the 

instantaneous center on the body keeps changing. Thus, the instantaneous 

center describes one curve in space, called the space centrode, and 

another curve on the rigid body, called the body centrode (Fig. 15.21). It 

can be shown that at any instant, these two curves are tangent at C and 

that as the rigid body moves, the body centrode appears to roll on the 

space centrode.

Fig. 15.21 The space centrode and the body 
centrode are tangent to each other.

C

Body
centrode

Space
centrode
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1018 Kinematics of Rigid Bodies

Sample Problem 15.9

Solve Sample Prob. 15.6 using the method of the instantaneous center of 

rotation.

STRATEGY: You know the velocity direction of two points on the same 

rigid body, so you can find an instantaneous center of rotation. Since the 

gear rolls on the stationary lower rack, the point of contact C of the gear 

with the rack has no velocity; point C is therefore the instantaneous center 

of rotation.

MODELING and ANALYSIS: 

a. Angular Velocity of the Gear. You can calculate the angular 

velocity directly from the data in Fig. 1.

 vA 5 rAv    1.2 m/s 5 (0.150 m) v

v 5 8 rad/s i b

b. Velocities. As far as velocities are concerned, all points of the gear 

seem to rotate about the instantaneous center.

Velocity of Upper Rack. Recalling that vR 5 vB, you have

 vR 5 vB 5 rBv   vR 5 (0.250 m)(8 rad/s) 5 2 m/s

vR 5 2 m/s y b

Velocity of Point D. Since rD 5 (0.150 m)22 5 0.2121 m, you 

obtain

vD 5 rDv   vD 5 (0.2121 m)(8 rad/s) 5 1.697 m/s

vD 5 1.697 m/s a 45° b

REFLECT and THINK: The results are the same as in Sample Prob. 15.6, as 

you would expect, but it took much less computation to get them.

D A

vB

C

vA

rD

45°

B
vD

45°
rA = 150 mm

rB = 250 mm

Fig. 1 Distances from the 
instantaneous center of rotation to A, 
B, and D.

Sample Problem 15.10

Solve Sample Prob. 15.7 using the method of the instantaneous center of 

rotation.

STRATEGY: You know the velocity of point B from the motion of the 

crank (see Sample Prob. 15.7), and you know the direction of the velocity 

of point D. Therefore, you can find an instantaneous center of rotation.

MODELING and ANALYSIS: 

Motion of Crank AB. Referring to Sample Prob. 15.7, you obtain 

the velocity of point B; vB 5 628.3 in./s c 50°.

D

C

R

r2 = 100 mm

vA = 1.2 m/s

r1 = 150 mm

A

B

r = 3 in.
l = 8 in.

40° b
P

D

A

G
B
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15.3 Instantaneous Center of Rotation  1019

Motion of the Connecting Rod BD. First locate the instantaneous 

center C by drawing lines perpendicular to the absolute velocities vB and 

vD (Fig. 1). Recalling from Sample Prob. 15.7 that β 5 13.95° and that 

BD 5 8 in., solve the triangle BCD.

γB 5 40° 1 β 5 53.95°   γD 5 90° 2 β 5 76.05°

BC

sin 76.058
5

CD

sin 53.958
5

8 in.

sin 508

BC 5 10.14 in.  CD 5 8.44 in.

Since the connecting rod BD seems to rotate about point C, you have

 vB 5 (BC)vBD

628.3 in./s 5 (10.14 in.)vBD

vBD 5 62.0 rad/s l b

vD 5 (CD)vBD 5 (8.44 in.)(62.0 rad/s)

 5 523 in./s 5 43.6 ft/s

vP 5 vD 5 43.6 ft/sy b

REFLECT and THINK: Often, the hardest part of solving a problem 

using the instantaneous center of rotation is the geometry. Remembering 

how to use the law of sines or the law of cosines is often helpful. 

vB vDb

B

D
A

C

b

40°

40°

40°

50°

90°
90°

�B
�D

Fig. 1 Instantaneous center of 
rotation for bar BD.

Sample Problem 15.11

Two 20-in. rods AB and DE are connected as shown. Point D is the 

midpoint of rod AB, and at the instant shown, rod DE is horizontal. 

Knowing that the velocity of point A is 1 ft/s downward, determine (a) the 

angular velocity of rod DE, (b) the velocity of point E.

A

B

D E

30° 30°

STRATEGY: You know the directions of several points on these objects, 

so you can use instantaneous centers of rotation to solve this problem. 

(continued)
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1020 Kinematics of Rigid Bodies

MODELING and ANALYSIS: Locate the instantaneous center of 

rotation C of bar AB as the intersection of line AC perpendicular to vA and 

line BC perpendicular to vB (Fig. 1). Knowing the location of C, you can 

determine the direction of the velocity of D. From this direction, and the 

direction of E, you can find the instantaneous center, I, for bar DE (Fig. 1).

A

B

D E

I

C

30°

30°

30°
30°

30°

30°
20 in.

10 in.

10 in.

20 cos 30° in.

vA

vD vB

vE

Fig. 1 The instantaneous centers of rotation 
for bar AB and DE are C and I, respectively.

a. Angular velocity of DE. From geometry, rA/C 5 (20 cos 30°) in., so

vAB 5
vA

rA/C
5

12 in./s

20 cos 30° in.
5 0.6928 rad/s l

Now you can find vD since rD/C 5 10 in.

vD 5 vABrD/C 5 (0.6928 rad/s)(10 in.) 5 6.928 in./s

 vD 5 6.928 in./s f 30°

Now, since you know the directions of the velocities of D and E, vE 5 vE 

a 30°, you can find point I, which is the instantaneous center of bar DE. 

From geometry, rD/I 5 20 cos 30° in., and therefore

 vDE 5
vD

rD/I
5

6.928 in./s

20 cos 30° in.
5 0.400 rad/s vDE 5 0.400 rad/s l b

b. Velocity of E. Using this angular velocity, you can easily determine 

the velocity of E:

vE 5 vDErE/I 5 (0.400 rad/s)(20 sin 30° in.) 5 4.00 in./s 

vE 5 0.333 ft/s a 30° b

REFLECT and THINK: The direction of vDE makes intuitive sense; 

you would expect it to be rotating counterclockwise at the instant shown. 

You could have also solved this problem using vector equations.
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1021 1021

In this section, we introduced the instantaneous center of rotation in plane motion. 

This provides us with an alternative way of solving problems involving the velocities
of the various points of a body in plane motion [Sample Probs. 15.9 through 15.11]. 

As its name suggests, the instantaneous center of rotation is the point about which 

you can assume a body is rotating at a given instant; you can use the instantaneous 

center to determine the velocity of any point on the body at that instant in time.

A. To determine the instantaneous center of rotation of a body in plane motion, 

you should use one of the following procedures.

1. If you know both the velocity vA of a point A and the angular velocity v of 
the body (Fig. 15.18):

 a. Draw a sketch of the body, showing point A, its velocity vA, and the angular 

velocity v of the body.

 b. From A draw a line perpendicular to vA on the side of vA from which this 

velocity is viewed as having the same sense as v.

 c. Locate the instantaneous center C on this line at a distance r 5 vA /v from 

point A.

2. If you know the directions of the velocities of two points A and B and they 
are different (Fig. 15.19a):

 a. Draw a sketch of the body showing points A and B and their velocities vA 

and vB.

 b. From A and B draw lines perpendicular to vA and vB, respectively. The 

instantaneous center C is located at the point where the two lines intersect.

 c. If you know the velocity of one of the two points, you can determine 

the angular velocity of the body at that instant in time. For example, if you know vA, 

you can write v 5 vA /AC, where AC is the distance from point A to the instantaneous 

center C.

3. If you know the velocities of two points A and B and both are perpendicular 
to the line AB (Fig. 15.19b):

 a. Draw a sketch of the body, showing points A and B with their velocities 

vA and vB drawn to scale.

 b. Draw a line through points A and B, and another line through the tips of 

the vectors vA and vB. The instantaneous center C is located at the point where the 

two lines intersect.

SOLVING PROBLEMS 
ON YOUR OWN

bee87342_ch15_977-1106.indd   1021bee87342_ch15_977-1106.indd   1021 11/26/14   4:48 PM11/26/14   4:48 PM

UPLOADED BY AHMAD T JUNDI



1022

c. Obtain the angular velocity of the body by either dividing vA by AC or vB

by BC.

d. If the velocities vA and vB have the same magnitude, the two lines drawn 

in part b do not intersect; the instantaneous center C is at an infinite distance. The 

angular velocity v is zero and the body is in translation.

B. Once you have determined the instantaneous center and the angular velocity
of a body, you can determine the velocity vP of any point P of the body in the fol-

lowing way.

1. Draw a sketch of the body, showing point P, the instantaneous center of rotation 

C, and the angular velocity v.

2. Draw a line from P to the instantaneous center C and measure or calculate the 

distance from P to C.

3. The velocity vP is a vector perpendicular to the line PC, of the same sense as 

v, and with a magnitude of vP 5 (PC)v.

Finally, keep in mind that the instantaneous center of rotation can be used only to 

determine velocities at a specific instant in time. It cannot be used to determine 

accelerations.
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CONCEPT QUESTIONS

 15.CQ5 The disk rolls without sliding on the fixed horizontal surface. At the 

instant shown, the instantaneous center of zero velocity for rod AB 
would be located in which region?

a. Region 1

b. Region 2

c. Region 3

d.   Region 4

e. Region 5

f.   Region 6

A

B

C

3

4

2

1

65

Fig. P15.CQ5

15.CQ6 Bar BDE is pinned to two links, AB and CD. At the instant shown, 

the angular velocities of link AB, link CD, and bar BDE are vAB, 

vCD, and vBDE, respectively. Which of the following statements 

concerning the angular speeds of the three objects is true at this 

instant? 

   a. vAB 5 vCD 5 vBDE

b. vBDE . vAB . vCD

   c. vAB 5 vCD . vBDE

   d. vAB . vCD . vBDE

   e. vCD . vAB . vBDE

END-OF-SECTION PROBLEMS

 15.73 A juggling club is thrown vertically into the air. The center of 

gravity G of the 20-in. club is located 12 in. from the knob. Knowing 

that at the instant shown, G has a velocity of 4 ft/s upwards and the 

club has an angular velocity of 30 rad/s counterclockwise, determine 

(a) the speeds of points A and B, (b) the location of the instantaneous 

center of rotation.

Problems

A
B

C

E

D

240 mm

180 mm

150 mm

150 mm

Fig. P15.CQ6

GA B

12 in.

30 rad/s

4 ft/s

Fig. P15.73
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15.74 At the instant shown during deceleration, the velocity of an automo-

bile is 40 ft/s to the right. Knowing that the velocity of the contact 

point A of the wheel with the ground is 5 ft/s to the right, determine 

(a) the instantaneous center of rotation of the wheel, (b) the velocity 

of point B, (c) the velocity of point D.

D E

B

24 in.O

A

Fig. P15.74

15.75 A helicopter moves horizontally in the x direction at a speed of 

120 mi/h. Knowing that the main blades rotate clockwise when 

viewed from above with an angular velocity of 180 rpm, determine 

the instantaneous axis of rotation of the main blades.

15.76 and 15.77 A 60-mm-radius drum is rigidly attached to a 

100-mm-radius drum as shown. One of the drums rolls without 

sliding on the surface shown, and a cord is wound around the other 

drum. Knowing that end E of the cord is pulled to the left with a 

velocity of 120 mm/s, determine (a) the angular velocity of the 

drums, (b) the velocity of the center of the drums, (c) the length of 

cord wound or unwound per second.

A

BE

D

60 mm
100 mm

Fig. P15.76

A

B

E D

60 mm
100 mm

Fig. P15.77

 15.78 The spool of tape shown and its frame assembly are pulled upward 

at a speed vA 5 750 mm/s. Knowing that the 80-mm-radius spool 

has an angular velocity of 15 rad/s clockwise and that at the instant 

shown the total thickness of the tape on the spool is 20 mm, deter-

mine (a) the instantaneous center of rotation of the spool, (b) the 

velocities of points B and D.

 15.79 The spool of tape shown and its frame assembly are pulled upward 

at a speed vA 5 100 mm/s. Knowing that end B of the tape is pulled 

downward with a velocity of 300 mm/s and that at the instant shown 

the total thickness of the tape on the spool is 20 mm, determine 

(a) the instantaneous center of rotation of the spool, (b) the velocity 

of point D of the spool.

y

x

z

ω

Fig. P15.75

A

B

D

80 mm

vB

vA

Fig. P15.78 and P15.79
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15.80 The arm ABC rotates with an angular velocity of 4 rad/s counter-

clockwise. Knowing that the angular velocity of the intermediate 

gear B is 8 rad/s counterclockwise, determine (a) the instantaneous 

centers of rotation of gears A and C, (b) the angular velocities of 

gears A and C.

15.81 The double gear rolls on the stationary left rack R. Knowing that 

the rack on the right has a constant velocity of 2 ft/s, determine 

(a) the angular velocity of the gear, (b) the velocities of points A 

and D.

4 in.

6 in.

vB = 2 ft/s

D

B

R

A
C

Fig. P15.81

 15.82 An overhead door is guided by wheels at A and B that roll in hori-

zontal and vertical tracks. Knowing that when θ 5 40° the velocity 

of wheel B is 1.5 ft/s upward, determine (a) the angular velocity of 

the door, (b) the velocity of end D of the door.

A

B

D

q

5 ft

5 ft

Fig. P15.82

 15.83 Rod ABD is guided by wheels at A and B that roll in horizontal and 

vertical tracks. Knowing that at the instant β 5 60° and the velocity 

of wheel B is 40 in./s downward, determine (a) the angular velocity 

of the rod, (b) the velocity of point D.

200 mm
100 mm

300 mm 300 mm

BA C

Fig. P15.80

A

B

D

15 in.

15 in.

b

Fig. P15.83
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 15.84 Rod BDE is partially guided by a roller at D that moves in a vertical 

track. Knowing that at the instant shown the angular velocity of 

crank AB is 5 rad/s clockwise and that β 5 258, determine (a) the 

angular velocity of the rod, (b) the velocity of point E.

 15.85 Rod BDE is partially guided by a roller at D that moves in a vertical 

track. Knowing that at the instant shown β 5 308, point E has a 

velocity of 2 m/s down and to the right, determine the angular 

velocities of rod BDE and crank AB.

 15.86 A motor at O drives the windshield wiper mechanism so that OA 

has a constant angular velocity of 15 rpm. Knowing that at the 

instant shown linkage OA is vertical, θ 5 30°, and β 5 15°, deter-

mine (a) the angular velocity of bar AB, (b) the velocity of the center 

of bar AB.

ω

30 mm

100 mm15 mm

F

E

A

O B

D
θ

β

Fig. P15.86 and P15.87

 15.87 A motor at O drives the windshield wiper mechanism so that point B 

has a speed of 2 m/s. Knowing that at the instant shown linkage OA 

is vertical, θ 5 30°, and β 5 15°, determine (a) the angular velocity 

of bar OA, (b) the velocity of the center of bar AB.

 15.88 Rod AB can slide freely along the floor and the inclined plane. 

Denoting the velocity of point A by vA, derive an expression for 

(a) the angular velocity of the rod, (b) the velocity of end B.

vA q
bA

B

l

Fig. P15.88

 15.89 Small wheels have been attached to the ends of bar AB and roll 

freely along the surfaces shown. Knowing that the velocity of 

wheel B is 7.5 ft/s to the right at the instant shown, determine (a) the 

velocity of end A of the bar, (b) the angular velocity of the bar, 

(c) the velocity of the midpoint of the bar.

b

500 mm

200 mm

120 mm
A

E

B

D

Fig. P15.84 and P15.85

24 in.

45°

30°A

B

Fig. P15.89

bee87342_ch15_977-1106.indd   1026bee87342_ch15_977-1106.indd   1026 11/26/14   4:48 PM11/26/14   4:48 PM

UPLOADED BY AHMAD T JUNDI



1027

15.90 Two slots have been cut in plate FG and the plate has been placed 

so that the slots fit two fixed pins A and B. Knowing that at the 

instant shown the angular velocity of crank DE is 6 rad/s clockwise, 

determine (a) the velocity of point F, (b) the velocity of point G.

A

B

G

DE

F

80 mm

140 mm

120 mm

160 mm

120 mm
360 mm

160 mm

72 mm

608

Fig. P15.90

15.91 The disk is released from rest and rolls down the incline. Knowing 

that the speed of A is 1.2 m/s when θ 5 08, determine at that instant 

(a) the angular velocity of the rod, (b) the velocity of B. (Only por-

tions of the two tracks are shown.)

 15.92 The pin at B is attached to member ABD and can slide freely 

along the slot cut in the fixed plate. Knowing that at the instant 

shown the angular velocity of arm DE is 3 rad/s clockwise, deter-

mine (a) the angular velocity of member ABD, (b) the velocity of 

point A.

 15.93 Two identical rods ABF and DBE are connected by a pin at B. Know-

ing that at the instant shown the velocity of point D is 200 mm/s 

upward, determine the velocity of (a) point E, (b) point F.

A
E

F

B

D
120 mm

180 mm

15�

15�

Fig. P15.93

 15.94 Arm ABD is connected by pins to a collar at B and to crank DE. 

Knowing that the velocity of collar B is 16 in./s upward, determine 

(a) the angular velocity of arm ABD, (b) the velocity of point A.

B

A

q

0.6 m

0.2 m

308

Fig. P15.91

A

B

D

E

200 mm

120 mm

160 mm

30�

B

Fig. P15.92

E

B

A

D

6.4 in.

3.6 in.

7.2 in.
12.8 in.

12 in.

5 in.

Fig. P15.94
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15.95 Two 25-in. rods are pin-connected at D as shown. Knowing that B
moves to the left with a constant velocity of 24 in./s, determine at the 

instant shown (a) the angular velocity of each rod, (b) the velocity of E.

A

D

B

E

10 in.

10 in.

7.5 in.7.5 in. 12.5 in.

25 in.

Fig. P15.95

 15.96 Two rods ABD and DE are connected to three collars as shown. 

Knowing that the angular velocity of ABD is 5 rad/s clockwise, 

determine at the instant shown (a) the angular velocity of DE,
(b) the velocity of collar E.

 15.97 At the instant shown, the velocity of collar A is 0.4 m/s to the right 

and the velocity of collar B is 1 m/s to the left. Determine (a) the 

angular velocity of bar AD, (b) the angular velocity of bar BD, (c) the 

velocity of point D.

270 mm

360 mm

135 mm

A

B

D

180 mm

Fig. P15.97

 15.98 Two rods AB and DE are connected as shown. Knowing that point 

D moves to the left with a velocity of 40 in./s, determine (a) the 

angular velocity of each rod, (b) the velocity of point A.

 15.99 Describe the space centrode and the body centrode of rod ABD of 

Prob. 15.83. (Hint: The body centrode need not lie on a physical 

portion of the rod.)

15.100 Describe the space centrode and the body centrode of the gear of 

Sample Prob. 15.6 as the gear rolls on the stationary horizontal rack.

 15.101 Using the method of Sec. 15.3, solve Prob. 15.60.

15.102 Using the method of Sec. 15.3, solve Prob. 15.64.

 15.103 Using the method of Sec. 15.3, solve Prob. 15.65.

 15.104 Using the method of Sec. 15.3, solve Prob. 15.38.

A

B

D

E

8 in.

8 in.

9 in. 8 in. 8 in.

Fig. P15.98

A

B

E

D
200 mm

200 mm

200 mm

200 mm200 mm

Fig. P15.96
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15.4 General Plane Motion: Acceleration 1029

15.4  GENERAL PLANE MOTION: 
ACCELERATION

We saw in Sec. 15.2A that any plane motion can be replaced by a translation 

defined by the motion of an arbitrary reference point A and a simultaneous 

rotation about A. We used this property in Sec. 15.2B to determine the 

velocity of the various points of a moving rigid body. We now use this 

same property to determine the acceleration of the points of the body.

15.4A  Absolute and Relative 
Acceleration in Plane Motion

We first recall that the absolute acceleration aB of a particle of the rigid 

body can be obtained from the relative-acceleration formula derived in 

Sec. 11.4D,

 aB 5 aA 1 aB/A (15.21)

where the right-hand side represents a vector sum. The acceleration aA

corresponds to the translation of the rigid body with A. The relative 

acceleration aB/A is associated with the rotation of the body about A and 

is measured with respect to axes centered at A and with fixed orientation. 

Recall from Sec. 15.1B that we can resolve the relative acceleration 

aB/A into two components: a tangential component (aB/A)t perpendicular 

to the line AB and a normal component (aB/A)n directed toward A 

(Fig. 15.22). We denote the position vector of B relative to A by rB/A and 

the angular velocity and angular acceleration of the rigid body with respect 

to axes of fixed orientation by vk and αk, respectively. Then we have

 (aB/A)t 5 αk 3 rB/A  (aB/A)t 5 rα

 (aB/A)n 5 2v2rB/A   (aB/A)n 5 rv2 
(15.22)

where r is the distance from A to B. Substituting the expressions obtained for 

the tangential and normal components of aB/A into Eq. (15.21), we also have

Relative acceleration for two
points on a rigid body 

 aB 5 aA 1 αk 3 rB/A 2 v2rB/A
 (15.219)

aB 5 aAa 1 aB/A//

Plane motion = Translation with A + Rotation about A

A (fixed)A

B
aB

aB/A

aB/A
(aB/A)n

(aB/A)n

(aB/A)t (aB/A)t

aA

A

B
B

x'

y'

aA

aB

aA

aA

ak
wk

rB/A= +

Fig. 15.22 Pictorial representation of the vector equation relating the acceleration of two points on a rigid 
body undergoing general plane motion.

Photo 15.6 The central gear rotates about a 
fixed axis and is pin-connected to three bars 
in general plane motion.
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1030 Kinematics of Rigid Bodies

As an example, let us again consider the rod AB whose ends slide 

along a horizontal and a vertical track (Fig. 15.23). Assuming that we 

know the velocity vA and the acceleration aA of A, we propose to determine 

the acceleration aB of B and the angular acceleration α of the rod. Choosing 

A as a reference point, the given motion is equivalent to a translation with 

A and a rotation about A. The absolute acceleration of B must be equal 

to the sum

 aB 5 aA 1 aB/A

 5 aA 1 (aB/A)n 1 (aB/A)t 
(15.23)

where (aB/A)n has magnitude lv2 and is directed toward A, while (aB/A)t has 

the magnitude lα and is perpendicular to AB. Note that there is no way 

to tell whether the tangential component (aB/A)t is directed to the left or 

to the right, and therefore, both possible directions for this component are 

indicated in Fig. 15.23. Similarly, both possible senses for aB are indicated, 

since we do not know whether point B is accelerated upward or downward.

We can illustrate Eq. (15.23) geometrically. Figure 15.24 shows four 

different vector polygons, depending upon the sense of aA and the relative 

magnitudes of aA and (aB/A)n. To determine aB and α from one of these 

diagrams, we must know not only aA and θ but also v. Therefore, we need 

to determine the angular velocity of the rod separately, by one of the 

methods indicated in Secs. 15.2 and 15.3. Then we can obtain the values 

of aB and α by considering successively the x and y components of the 

vectors shown in Fig. 15.24. In the case of polygon a, we are assuming 

that α is in the counter-clockwise direction and aB is down. Therefore, 

we have

y
1 x components: 0 5 aA 1 lv2 sin θ 2 lα cos θ

1xy components: 2aB 5 2lv2 cos θ 2 lα sin θ

and solve for aB and α. An alternative approach to drawing Fig. 15.24 is 

to use a vector algebra solution; that is, you substitute the vector quantities 

into (15.219), take the cross product, and equate components to obtain the 

two scalar equations shown previously. 

θ

A A

B B
B

l l
(aB/A)n

(a B/A
) t

aB
aA

aA aA

= +

Plane motion = Translation with A + Rotation about A
A (fixed)

α
ω

Fig. 15.23 For a sliding rod in general plane motion, the acceleration of 
point B relative to point A may have a tangential component in either direction 
perpendicular to the rod. The normal acceleration of B relative to A will always 
point toward A.

q

q

q

q

(aB/A)n

(aB/A)n

(aB/A)n

(aB/A)n

(aB/A)t

(aB/A)t

(aB/A)t

(aB/A)t

aB

aB

aB

aB

aA

aA

aA

aA

(a)

(b)

(c)

(d)

Fig. 15.24 Four possible vector polygons for 
the acceleration of the sliding rod.
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15.4 General Plane Motion: Acceleration 1031

Clearly, the determination of accelerations is considerably more 

involved than the determination of velocities. Yet in the example considered 

here, the ends A and B of the rod were moving along straight tracks, and 

the diagrams drawn were relatively simple. If A and B had moved along 

curved tracks, it would have been necessary to resolve the accelerations 

aA and aB into normal and tangential components and the solution of the 

problem would have involved six different vectors.

When a mechanism consists of several moving parts that are pin-

connected, we can analyze the mechanism by considering each part to be 

a rigid body, keeping in mind that the points at which two parts 

are connected must have the same absolute acceleration (see Sample 

Prob. 15.15). In the case of meshed gears (see Sample Prob. 15.13), the 

tangential components of the accelerations of the teeth in contact are equal, 

but their normal components are different.

*15.4B  Analysis of Plane Motion in 
Terms of a Parameter

In analyzing some mechanisms, it is possible to express the coordinates 

x and y of all the significant points of the mechanism by means of simple 

analytic expressions containing a single parameter. It is sometimes 

advantageous in such a case to determine the absolute velocity and the 

absolute acceleration of the various points of the mechanism directly, since 

we can obtain the components of the velocity and of the acceleration of 

a given point by differentiating the coordinates x and y of that point.

Let us consider again the rod AB whose ends slide, respectively, in 

a horizontal and a vertical track (Fig. 15.25). We can express the 

coordinates xA and yB of the ends of the rod in terms of the angle θ that 

the rod forms with the vertical:

 xA 5 l sin θ  yB 5 l cos θ (15.24)

Differentiating Eqs. (15.24) twice with respect to t, we have

 vA 5 ẋA 5 lθ̇ cos θ

 aA 5 ẍA 5 2lθ̇ 2 sin θ 1 lθ̈ cos θ

 vB 5 ẏB 5 2lθ̇ sin θ

 aB 5 ÿB 5 2lθ̇ 2 cos θ 2 lθ̈ sin θ

Recalling that θ̇ 5 v and θ̈ 5 α, we obtain

 vA 5 lv cos θ vB 5 2lv sin θ (15.25)

aA 5 2lv2 sin θ 1 lα cos θ  aB 5 2lv2 cos θ 2 lα sin θ

(15.26)

Note that a positive sign for vA or aA indicates that the velocity vA or the 

acceleration aA is directed to the right; a positive sign for vB or aB indicates 

that vB or aB is directed upward. We can use Eqs. (15.25) to determine, 

for example, vB and v when vA and θ, are known. Substituting for v in 

Eqs. (15.26), we can then determine aB and α if we know aA.

q

A

B

lyB

xA

Fig. 15.25 The coordinates of the ends of 
the rod may be expressed in terms of the 
parameter θ.
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1032 Kinematics of Rigid Bodies

Sample Problem 15.12

Collars A and B are pin-connected to bar ABD and can slide along 

fixed rods. Knowing that, at the instant shown, the velocity of A is 

a constant 0.9 m/s to the right, determine the angular acceleration 

of AB and the acceleration of B.

STRATEGY: Use the kinematic equation that relates the accelera-

tion of two points on the same rigid body. Because you know that 

the directions of the accelerations of A and B must be along the 

fixed rods, choose these two points to relate.

MODELING and ANALYSIS: Model bar ABD as a rigid body. 

From Sample Prob. 15.5, you know v 5 3.00 rad/s l. The accelera-

tions of A and B are related by

aB 5 aA 1 aB/A 5 aA 1 α 3 rB/A 2 v2rB/A

Substituting in known values (Fig. 1) and assuming α 5 αk gives 

aB cos 60°i 1 aB sin 60°j 5 0i 1 αk 3[(0.3 cos 30°)i 1 (0.3 sin 30°)j] 

 2 32 [(0.3 cos 30°)i 1 (0.3 sin30°)j]

    0.500aBi 1 0.866aB j 5 (0 2 0.15α 2 2.338)i 1 (0.260α 2 1.350)j

60°
60°

A

B

D

rB/A

aB

aA = 0

y

x

Fig. 1 Position vector and the assumed 
direction of the acceleration of point B.

Equating components, you have

i:   0.500aB 5 20.15α 2 2.338

j:  0.866aB 5 0.260α 2 1.350

Solving these equations gives aB 5 23.12 m/s2 and α 5 25.20 rad/s2.

α 5 5.20 rad/s2
i b

aB 5 3.12 m/s2 d 60° b

REFLECT and THINK: Even though A is traveling at a constant 

speed, bar AB still has an angular acceleration, and B has a linear 

acceleration. Just because one point on a body is moving at a con-

stant speed doesn’t mean the rest of the points on the body also have 

a constant speed.

60°
60°

A

B

D
300 mm

300 mm
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15.4 General Plane Motion: Acceleration 1033

Sample Problem 15.13

The center of the double gear of Sample Prob. 15.6 has a velocity of 

1.2 m/s to the right and an acceleration of 3 m/s2 to the right. Recalling 

that the lower rack is stationary, determine (a) the angular acceleration of 

the gear, (b) the acceleration of points B, C, and D of the gear.

STRATEGY: The double gear is a rigid body undergoing general plane 

motion, so use acceleration kinematics. You can also differentiate the 

equation for the gear’s velocity and use that to find the gear’s acceleration.

MODELING and ANALYSIS: 
a. Angular Acceleration of the Gear. In Sample Prob. 15.6, you 

found that xA 5 2r1θ and vA 5 2r1v. Differentiating the second equation 

with respect to time, you obtain aA 5 2r1α.

 vA 5 2r1v 1.2 m/s 5 2(0.150 m)v v 5 28 rad/s

aA 5 2r1α 3 m/s2 5 2(0.150 m)α α 5 220 rad/s2

α 5 αk 5 2(20 rad/s2)k b

b. Accelerations. The relationship between the acceleration of any 

two points on a rigid body undergoing general plane motion is

 aB 5 aA 1 aB/A 5 aA 1 (aB/A)t 1 (aB/A)n (1)
 5 aA 1 αk 3 rB/A 2 v2rB/A

This equation indicates that the rolling motion of the gear can be thought 

of as a translation with A and a rotation about A (Fig. 1).

Translation + Rotation = Rolling motion

aA

(aC/A)t

aAaA

aA

D

C

B

A =+ A
D

C

B

A(fixed)
ωα

aA

aB

aD

aC(aC/A)n

(aB/A)t(aD/A)t

(aD/A)n

(aB/A)n

y

x

Fig. 1 A pictorial representation of Eq. 1.

Acceleration of Point B. Substituting values into Eq. (1) gives 

 aB 5 aA 1 aB/A 5 aA 1 (aB/A)t 1 (aB/A)n

 5 aA 1 αk 3 rB/A 2 v2rB/A

 5 (3 m/s2)i 2 (20 rad/s2)k 3 (0.100 m)j 2 (8 rad/s)2(0.100 m)j
 5 (3 m/s2)i 1 (2 m/s2)i 2 (6.40 m/s2)j

aB 5 8.12 m/s2 c 52.0° b

The vector triangle corresponding to this equation is shown in Fig. 2.

Acceleration of Point C Referring to Fig 3,

 aC 5 aA 1 aC/A 5 aA 1 αk 3 rC/A 2 v2rC/A

 5 (3 m/s2)i 2 (20 rad/s2)k 3 (20.150 m)j 2 (8 rad/s)2(20.150 m)j
 5 (3 m/s2)i 2 (3 m/s2)i 1 (9.60 m/s2)j

aC 5 9.60 m/s2
x b

D

C

R

r2 = 100 mm

vA = 1.2 m/s

r1 = 150 mm

A

B

aA

aB

(aB/A)t

(aB/A)n

Fig. 2 Vector diagram 
relating the accelerations 
of A and B.

(continued)

aA

aC

(aC/A)n

(aC/A)t

Fig. 3 Vector diagram of 
the equation relating the 
accelerations of A and C.
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1034 Kinematics of Rigid Bodies

Acceleration of Point D (Fig. 4).

 aD 5 aA 1 aD/A 5 aA 1 αk 3 rD/A 2 v2rD/A

 5 (3 m/s2)i 2 (20 rad/s2)k 3 (20.150 m)i 2 (8 rad/s)2(20.150 m)i
 5 (3 m/s2)i 1 (3 m/s2)j 1 (9.60 m/s2)i

aD 5 12.95 m/s2 a 13.4° b

REFLECT and THINK: It is interesting to note that the x-component 

of acceleration for point C is zero since it is in direct contact with the fixed 

lower rack. It does, however, have a normal acceleration pointed upward. 

This is also true for a wheel rolling without slip.

aA

aD
(aD/A)t

(aD/A)n

Fig. 4 Vector diagram 
relating the accelerations 
of A and D.

Sample Problem 15.14

Two adjacent identical wheels of a train can be modeled as rolling 

cylinders connected by a horizontal link. The distance between A and D 

is 10 in. Assume the wheels roll without sliding on the tracks. Knowing 

that the train is traveling at a constant 30 mph, determine the acceleration 

of the center of mass of DE.

STRATEGY: The connecting bar DE is undergoing curvilinear 

translation, so the acceleration of every point is identical; that is, 

aG 5 aD. Therefore, all you need to do is determine the acceleration of 

D using the kinematic relationship between A and D.

MODELING and ANALYSIS: Model the wheels and bar DE as rigid 

bodies. The speed of A is vA 5 30 mph 5 44 ft/s. Since the wheel does 

not slip, the point of contact with the ground, C (Fig. 1), has a velocity 

of zero, so

v 5
vA

rA/C
5

44 ft/s

(20/12) ft.
5 26.4 rad/s

Acceleration of D. The acceleration of D is

 aD 5 aA 1 aD/A 5 aA 1 α 3 rD/A 2 v2rD/A (1)

The train is traveling at a constant speed, so aA and α are both zero. 

Substituting known quantities into Eq. (1) gives 

aD 5 0 1 0 2 (26.4 rad/s)2 c a10

12
 cos 60° ftb i 1  a10

12
 sin 60° ftb j d

 52(290.4 ft/s2)i 2 (503.0 ft/s2)j

aG 5 aD 5 2(290 ft/s2)i 2 (503 ft/s2)j b

REFLECT and THINK: Instead of using vector algebra, you could have 

recognized that the direction of 2v2rD/A is directed from D to A. So the 

final acceleration of D is simply 2v2rD/A d60º.

A B
G

D E

20 in.

20 in.

60° 60°

vA

ω

A

C

y

x

Fig. 1 Velocity and angular 
velocity of the wheel.
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15.4 General Plane Motion: Acceleration 1035

Sample Problem 15.15

Crank AB of the engine system of Sample Prob. 15.7 has a constant 

clockwise angular velocity of 2000 rpm. For the crank position shown, 

determine the angular acceleration of the connecting rod BD and the 

acceleration of point D.

STRATEGY: The linkage consists of two rigid bodies: crank AB is 

rotating about a fixed axis and connecting rod BD is undergoing general 

plane motion. Therefore, you need to use rigid-body kinematics.

MODELING and ANALYSIS: 
Motion of Crank AB. Since the crank rotates about A with constant 

vAB 5 2000 rpm 5 209.4 rad/s, you have αAB 5 0. The acceleration of 

B is therefore directed toward A (Fig. 1) and has the magnitude of

aB 5 rv2
AB 5 (

3
12 ft)(209.4 rad/s)2 5 10,962 ft/s2

 aB 5 10,962 ft/s2
d 40°

Motion of Connecting Rod BD. The angular velocity vBD and the 

value of β were obtained in Sample Prob. 15.7 using relative velocity 

equations:

vBD 5 62.0 rad/s l β 5 13.95°

Resolve the motion of BD into a translation with B and a rotation about 

B (Fig. 2). Resolve the relative acceleration aD/B into normal and tangential 

components:

(aD/B)n 5 (BD)v2
BD 5 (

8
12 ft)(62.0 rad/s)2 5 2563 ft/s2

 (aD/B)n 5 2563 ft/s2
b 13.95°

(aD/B)t 5 (BD)αBD 5 (
8
12)αBD 5 0.6667αBD

 (aD/B)t 5 0.6667αBD a 76.05°

Although (aD/B)t must be perpendicular to BD, its sense is not known.

B
G

D
aB

B

D
G

B

DaB
aB

aB

aD

(aD/B)n

(aD/B)t

αBD ωBD

13.95°

Plane motion Translation Rotation= +

= +

y

x

Fig. 2 General plane motion is a translation plus a rotation.

 Noting that the acceleration aD must be horizontal, you have

 aD 5 aB 1 aD/B 5 aB 1 (aD/B)n 1 (aD/B)t (1)
[aD
G

] 5 [10,962 d 40°] 1 [2563 b 13.95°] 1 [0.6667αBD a 76.05°]

Equating x and y components, you obtain the following scalar equations, as

y
1  x components:

2aD 5 210,962 cos 40° 2 2563 cos 13.95° 1 0.6667αBD sin 13.95°

1xy components:

 0 5 210,962 sin 40° 1 2563 sin 13.95° 1 0.6667αBD cos 13.95°

z

z

r = 3 in.
l = 8 in.

40° b
P

D

A

G
B

r = 3 in.

A

B

40°
aB

Fig. 1 The acceleration 
of B is only in the 
normal direction.

(continued)
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1036 Kinematics of Rigid Bodies

Solving the equations simultaneously gives αBD 5 19940 rad/s2 and 

aD 5 19290 ft/s2. The positive signs indicate that the senses shown on 

the vector polygon (Fig. 3) are correct.

αBD 5 9940 rad/s2
l b

aD 5 9290 ft/s2
z b

REFLECT and THINK: In this solution, you looked at the magnitude 

and direction of each term in Eq. (1) and then found the x and y components. 

Alternatively, you could have assumed that aD was to the left, αBD was 

positive, and then substituted in the vector quantities to get

 aD 5 aB 1 αk 3 rD/B 2 v2rD/B

2aDi 5 2aB cos 40°i 2 aB sin 40°j 1 αBDk 3(l cos βi 2 l sin βj) 
2 v2

BD (l cos βi 2 l sin βj)
 5 2aB cos 40°i 2 aB sin 40°j 1 αBD l cos βj 1 αBD l sin βi 

2 v2
BD l cos βi 1 v2

BD l sin βj
Equating components gives 

i:  2aD 5 2aB cos 40° 1 αBD l sin β 2 v2
BD l cos β

j:  0 5 2aB sin 40° 1 αBD l cos β 1 v2
BD l sin β

These are identical to the previous equations if you substitute in the 

numbers.

40°

aB

aD

(aD/B)n

(aD/B)t

aD/B

13.95°

13.95°

Fig. 3 Vector polygon relating the 
accelerations of B and D.

Sample Problem 15.16

The linkage ABDE moves in the vertical plane. Knowing that, in the 

position shown, crank AB has a constant angular velocity v1 of 20 rad/s 

counterclockwise, determine the angular velocities and angular accelerations 

of the connecting rod BD and of the crank DE.

STRATEGY: The linkage consists of three interconnected rigid bodies. 

Use multiple velocity and acceleration kinematic equations to relate the 

motions of each body. You could solve this problem with the method used 

in Sample Prob. 15.15; however, we illustrate a vector approach, choosing 

position vectors rB, rD, and rD/B as shown in Fig. 1.

MODELING and ANALYSIS: 

Velocities. Assuming that the angular velocities of BD and DE are 

counterclockwise, you have

vAB 5 vABk 5 (20 rad/s)k  vBD 5 vBDk  vDE 5 vDEk

where k is a unit vector pointing out of the page. We can obtain the 

velocity of D by relating it to point E, as

 vD 5 vE 1 vD/E 5 0 1 vABk 3 rD (1)

A ω1

B
D

E

3 in.

14 in.

17 in.

17 in.

12 in.8 in.

A

B
D

E
rB

rD

rB = 8i + 14j
rD = –17i + 17j

rD/B = 12i + 3j

rD/B

y

x

Fig. 1 Position vectors for 
points B, D, and E.
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15.4 General Plane Motion: Acceleration 1037

We can obtain the velocity of B by relating it to point A, as

 vB 5 vA 1 vB/A 5 0 1 vABk 3 rB (2)

The relationship between the velocities of D and B is

 vD 5 vB 1 vD/B (3)

Substituting Eqs. (1) and (2) into Eq. (3) and using vD/B 5 vBDk 3 rD/B gives 

 vDEk 3 rD 5 vABk 3 rB 1 vBDk 3 rD/B

vDEk 3 (217i 1 17j) 5 20k 3 (8i 1 14j) 1 vBDk 3 (12i 1 3j)
 217vDEj 2 17vDEi 5 160j 2 280i 1 12vBDj 2 3vBDi

Equating the coefficients of the unit vectors i and j, the following two 

scalar equations are

 217vDE 5 2280 2 3vBD

 217vDE 5 1160 1 12vBD

Solving these gives you vBD 5 2(29.33 rad/s)k vDE 5 (11.29 rad/s)k b

Accelerations. At the instant considered, crank AB has a constant 

angular velocity, so you have

 αAB 5 0  αBD 5 αBDk  αDE 5 αDEk 
 aD 5 aB 1 aD/B (4)

Evaluate each term of Eq. (4) separately:

Bar DE: aD 5 αDEk 3 rD 2 v2
DErD

 5 αDEk 3 (217i 1 17j) 2 (11.29)2(217i 1 17j)
 5 217αDEj 2 17αDEi 1 2170i 2 2170j
Bar AB: aB 5 αABk 3 rB 2 v2

ABrB 5 0 2 (20)2(8i 1 14j)
 5 23200i 2 5600j
Bar BD: aD/B 5 αBDk 3 rD/B 2 v2

BDrD/B

 5 αBDk 3 (12i 1 3j) 2 (29.33)2(12i 1 3j)
 5 12αBDj 2 3αBDi 2 10,320i 2 2580j

Substituting into Eq. (4) and equating the coefficients of i and j, you 

obtain

 217αDE 1 3αBD 5 215,690

 217αDE 2 12αBD 5 26010

Solving these gives you αBD 5 2(645 rad/s2)k αDE 5 (809 rad/s2)k b

REFLECT and THINK: The vector approach is preferred when there 

are more than two linkages. It is a very methodic approach and is easier 

to program when simulating mechanism movement over time.
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10381038

T his section was devoted to determining the accelerations of the points of a rigid 

body in plane motion. As you did previously for velocities, you will again consider 

the plane motion of a rigid body as the sum of two motions, namely, a translation 

and a rotation.

To solve a problem involving accelerations in plane motion, use the following steps.

1. Determine the angular velocity of the body. To find v, you can either

 a. Consider the motion of the body as the sum of a translation and a rotation, 

as you did in Sec. 15.2, or

 b. Use the vector approach, as you did in Sec. 15.2, or the instantaneous center 

of rotation of the body, as you did in Sec. 15.3. However, keep in mind that you 

cannot use the instantaneous center to determine accelerations.

2. A diagram may be helpful to visualize the kinematics of the rigid bodies. The 

diagram will include the following diagrams (Fig 15.22):

 a. Plane motion diagram. Draw a sketch of the body, including all dimensions, 

as well as the angular velocity v. Show the angular acceleration α with its magnitude 

and sense if you know them. Also show those points for which you know or seek the 

accelerations, indicating all that you know about these accelerations.

b. Translation diagram. Select a reference point A for which you know the 

direction, the magnitude, or a component of the acceleration aA. Draw a second dia-

gram showing the body in translation with each point having the same acceleration 

as point A.

 c. Rotation diagram. Considering point A as a fixed reference point, draw a 

third diagram showing the body in rotation about A. Indicate the normal and tangential 

components of the relative accelerations of other points, such as the components 

(aB/A)n and (aB/A)t of the acceleration of point B with respect to point A.

3. Write the relative-acceleration formula relating two points of interest on the 
body being analyzed

aB 5 aA 1 aB/A  or  aB 5 aA 1 (aB/A)n 1 (aB/A)t

 a. Graphical approach. Select a point for which you know the direction, the 

magnitude, or a component of the acceleration and draw a vector diagram of the 

equation [Sample Prob. 15.15]. Starting at the same point, draw all known acceleration 

SOLVING PROBLEMS 
ON YOUR OWN
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1039 1039

components in tip-to-tail fashion for each member of the equation. Complete the 

diagram by drawing the two remaining vectors in appropriate directions and in such 

a way that the two sums of vectors end at a common point.

b. Vector approach. For a single rigid body, it is straightforward to apply 

aB 5 aA 1 αAB 3 rB/A 2 v2
ABrB/A

For linkage type problems, you will need to write multiple relative acceleration 

equations relating the accelerations of points along the linkage [Sample Prob. 15.16].

4. The analysis of plane motion in terms of a parameter completed this section. 

This method should be used only if it is possible to express the coordinates x and y 

of all significant points of the body in terms of a single parameter (Sec. 15.4B). By 

differentiating the coordinates x and y of a given point twice with respect to t, you 

can determine the rectangular components of the absolute velocity and absolute 

acceleration of that point.
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CONCEPT QUESTIONS

15.CQ7 A rear-wheel-drive car starts from rest and accelerates to the left so 

that the tires do not slip on the road. What is the direction of the 

acceleration of the point on the tire in contact with the road, that is, 

point A?

   a. z  b. a  c. x  d. w  e. b

AB

a

Fig. P15.CQ7

END-OF-SECTION PROBLEMS

 15.105 A 5-m steel beam is lowered by means of two cables unwinding at 

the same speed from overhead cranes. As the beam approaches the 

ground, the crane operators apply brakes to slow the unwinding 

motion. At the instant considered, the deceleration of the cable 

attached at B is 2.5 m/s2, while that of the cable attached at D is 

1.5 m/s2. Determine (a) the angular acceleration of the beam, (b) the 

acceleration of points A and E.

 15.106 For a 5-m steel beam AE, the acceleration of point A is 2 m/s2 downward 

and the angular acceleration of the beam is 1.2 rad/s2 counterclockwise. 

Knowing that at the instant considered the angular velocity of the beam 

is zero, determine the acceleration (a) of cable B, (b) of cable D.

15.107 A 900-mm rod rests on a horizontal table. A force P applied as 

shown produces the following accelerations: aA 5 3.6 m/s2 to the 

right, α 5 6 rad/s2 counterclockwise as viewed from above. Deter-

mine the acceleration (a) of point G, (b) of point B.

15.108 In Prob. 15.107, determine the point of the rod that (a) has no accel-

eration, (b) has an acceleration of 2.4 m/s2 to the right.

15.109 Knowing that at the instant shown crank BC has a constant angular 

velocity of 45 rpm clockwise, determine the acceleration (a) of 

point A, (b) of point D.

 15.110 End A of rod AB moves to the right with a constant velocity of 

6 ft/s. For the position shown, determine (a) the angular acceleration 

of rod AB, (b) the acceleration of the midpoint G of rod AB.

4 ft

10 ft
B

308

D

A

G

Fig. P15.110

Problems

B

G

A
0.45 m

0.45 m

P

Fig. P15.107 and P15.108

D

8 in.

8 in.

4 in.

B

A

C

Fig. P15.109

A B D E

1.5 m 2 m 1.5 m

Fig. P15.105 and P15.106
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15.111 An automobile travels to the left at a constant speed of 72 km/h. 

Knowing that the diameter of the wheel is 560 mm, determine the 

acceleration (a) of point B, (b) of point C, (c) of point D.

15.112 The 18-in.-radius flywheel is rigidly attached to a 1.5-in.-radius shaft 

that can roll along parallel rails. Knowing that at the instant shown 

the center of the shaft has a velocity of 1.2 in./s and an acceleration 

of 0.5 in./s2, both directed down to the left, determine the accelera-

tion (a) of point A, (b) of point B.

A

B

18 in.

20�

Fig. P15.112

 15.113 and 15.114 A 3-in.-radius drum is rigidly attached to a 5-in.-

radius drum as shown. One of the drums rolls without sliding on 

the surface shown, and a cord is wound around the other drum. 

Knowing that at the instant shown end D of the cord has a velocity 

of 8 in./s and an acceleration of 30 in./s2, both directed to the left, 

determine the accelerations of points A, B, and C of the drums.

3 in.
5 in.

G

AD

B

C

Fig. P15.113   

3 in.
5 in.

G

A

D B

C

Fig. P15.114

15.115 A heavy crate is being moved a short distance using three identical 

cylinders as rollers. Knowing that at the instant shown the crate has 

a velocity of 200 mm/s and an acceleration of 400 mm/s2, both 

directed to the right, determine (a) the angular acceleration of the 

center cylinder, (b) the acceleration of point A on the center cylinder.

200 mmA

Fig. P15.115

A

B
D

C

560 mm

308

Fig. P15.111
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15.116 A wheel rolls without slipping on a fixed cylinder. Knowing that at 

the instant shown the angular velocity of the wheel is 10 rad/s clock-

wise and its angular acceleration is 30 rad/s2 counter clockwise, 

determine the  acceleration of (a) point A, (b) point B, (c) point C.

15.117 The 100-mm-radius drum rolls without slipping on a portion of a 

belt that moves downward to the left with a constant velocity of 

120 mm/s. Knowing that at a given instant the velocity and 

acceleration of the center A of the drum are as shown, determine 

the acceleration of point D.

A
B

E
720 mm/s2

120 mm/s

180 mm/s

 30°

100 mm

D

Fig. P15.117

15.118 In the planetary gear system shown, the radius of gears A, B, C, and 

D is 3 in. and the radius of the outer gear E is 9 in. Knowing that 

gear A has a constant angular velocity of 150 rpm clockwise and 

that the outer gear E is stationary, determine the magnitude of 

the acceleration of the tooth of gear D that is in contact with 

(a) gear A, (b) gear E.

 15.119 The 200-mm-radius disk rolls without sliding on the surface shown. 

Knowing that the distance BG is 160 mm and that at the instant 

shown the disk has an angular velocity of 8 rad/s counterclockwise 

and an angular acceleration of 2 rad/s2 clockwise, determine the 

acceleration of A.

800 mm
200 mm

B

G

A

Fig. P15.119

15.120 Knowing that crank AB rotates about point A with a constant angular 

velocity of 900 rpm clockwise, determine the acceleration of the 

piston P when θ 5 60°.

 15.121 Knowing that crank AB rotates about point A with a constant angular 

velocity of 900 rpm clockwise, determine the acceleration of the 

piston P when θ 5 120°.

80 mm
B

160 mm

C

A

Fig. P15.116

A

B

C

D

E

Fig. P15.118

A
B

P

D

150 mm

50 mm

θ

Fig. P15.120 and P15.121
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15.122 In the two-cylinder air compressor shown, the connecting rods BD
and BE are each 190 mm long and crank AB rotates about the fixed 

point A with a constant angular velocity of 1500 rpm clockwise. 

Determine the acceleration of each piston when θ 5 0.

 15.123 The disk shown has a constant angular velocity of 500 rpm counter-

clockwise. Knowing that rod BD is 10 in. long, determine the accel-

eration of collar D when (a) θ 5 90°, (b) θ 5 180°.

6 in.

2 in.

q

A

B

D

Fig. P15.123

 15.124 Arm AB has a constant angular velocity of 16 rad/s counter clockwise. 

At the instant when θ 5 90°, determine the acceleration (a) of 

collar D, (b) of the midpoint G of bar BD.

θ

6 in.

3 in.

A

B

D

G

10 in.

Fig. P15.124 and P15.125

 15.125 Arm AB has a constant angular velocity of 16 rad/s counter-

clockwise. At the instant when θ 5 60°, determine the acceleration 

of collar D.

 15.126 A straight rack rests on a gear of radius r 5 3 in. and is attached 

to a block B as shown. Knowing that at the instant shown θ 5 208, 

the angular velocity of gear D is 3 rad/s clockwise, and it is speeding 

up at a rate of 2 rad/s2, determine (a) the angular acceleration of AB, 
(b) the acceleration of block B.

E

D

B

θ

50 mm

90°

45°

A

Fig. P15.122

A

D
B

q

r

Fig. P15.126
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15.127 The elliptical exercise machine has fixed axes of rotation at 

points A and E. Knowing that at the instant shown the flywheel 

AB has a constant angular velocity of 6 rad/s clockwise, determine 

the acceleration of point D.

F

E

DA

B

0.12 m
1.2 m

0.2 m

0.09 m

0.8 m

0.6 m

Fig. P15.127 and P15.128

15.128 The elliptical exercise machine has fixed axes of rotation at 

points A and E. Knowing that at the instant shown the flywheel AB
has a constant angular velocity of 6 rad/s clockwise, determine (a) the 

angular acceleration of bar DEF, (b) the acceleration of point F.

15.129 Knowing that at the instant shown bar AB has a constant angular 

velocity of 19 rad/s clockwise, determine (a) the angular acceleration 

of bar BGD, (b) the angular acceleration of bar DE.

15.2 in.
4 in.

4 in.

4 in.

8 in.

A

B

G

D E

Fig. P15.129 and P15.130

 15.130 Knowing that at the instant shown bar DE has a constant angular 

velocity of 18 rad/s clockwise, determine (a) the acceleration of 

point B, (b) the acceleration of point G.

 15.131 and 15.132  Knowing that at the instant shown bar AB has a con-

stant angular velocity of 4 rad/s clockwise, determine the angular 

acceleration (a) of bar BD, (b) of bar DE.

20 in. 20 in.

25 in.

15 in.

D
B

A

E

Fig. P15.131 and P15.133
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 15.133 and 15.134 Knowing that at the instant shown bar AB has an 

angular velocity of 4 rad/s and an angular acceleration of 2 rad/s2, 

both clockwise, determine the angular acceleration (a) of bar BD,

(b) of bar DE by using the vector approach as is done in Sample 

Prob. 15.16.

15.135 Roberts linkage is named after Richard Roberts (1789–1864) and 

can be used to draw a close approximation to a straight line by 

locating a pen at point F. The distance AB is the same as BF, DF, 

and DE. Knowing that at the instant shown, bar AB has a constant 

angular velocity of 4 rad/s clockwise, determine (a) the angular 

acceleration of bar DE, (b) the acceleration of point F.

 15.136 For the oil pump rig shown, link AB causes the beam BCE to oscillate 

as the crank OA revolves. Knowing that OA has a radius of 0.6 m and 

a constant clockwise angular velocity of 20 rpm, determine the 

velocity and acceleration of point D at the instant shown.

B

A O

E

D

3 m

2 m

0.6 m

3.3 m

C

Fig. P15.136

 15.137 Denoting by rA the position vector of a point A of a rigid slab that is 

in plane motion, show that (a) the position vector rC of the instan-

taneous center of rotation is

rC 5 rA 1
v 3 vA

v2

  where v is the angular velocity of the slab and vA is the velocity of 

point A, (b) the acceleration of the instantaneous center of rotation 

is zero if, and only if,

aA 5
α

v
 vA 1 v 3 vA

  where α 5 αk is the angular acceleration of the slab.

  *15.138 The drive disk of the Scotch crosshead mechanism shown has an 

angular velocity v and an angular acceleration α, both directed 

counterclockwise. Using the method of Sec. 15.4B, derive expressions 

for the velocity and acceleration of point B.

A

B D

EF

q

12 in.

3 in.

12 in.

3 in.

6 in.

Fig. P15.135

A

B

b

θ

Fig. P15.138

A

C
O

w

a

rA

vA

rC

Fig. P15.137

200 mm

175 mm
100 mm

75 mm

A

B

D

E
Fig. P15.132 and P15.134
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  *15.139 The wheels attached to the ends of rod AB roll along the surfaces 

shown. Using the method of Sec. 15.4B, derive an expression for the 

angular velocity of the rod in terms of vB, θ, l, and β.

A

B

q

b
dB

l

vB

Fig. P15.139 and P15.140

  *15.140 The wheels attached to the ends of rod AB roll along the surfaces 

shown. Using the method of Sec. 15.4B and knowing that the accel-

eration of wheel B is zero, derive an expression for the angular 

acceleration of the rod in terms of vB, θ, l, and β.

  *15.141 A disk of radius r rolls to the right with a constant velocity v. 

Denoting by P the point of the rim in contact with the ground at 

t 5 0, derive expressions for the horizontal and vertical components 

of the velocity of P at any time t.

  *15.142 Rod AB moves over a small wheel at C while end A moves to the 

right with a constant velocity vA. Using the method of Sec. 15.4B, 

derive expressions for the angular velocity and angular acceleration 

of the rod.

  *15.143 Rod AB moves over a small wheel at C while end A moves to the 

right with a constant velocity vA. Using the method of Sec. 15.4B, 

derive expressions for the horizontal and vertical components of the 

velocity of point B.

  15.144 Crank AB rotates with a constant clockwise angular velocity v. 

Using the method of Sec. 15.4B, derive expressions for the angular 

velocity of rod BD and the velocity of the point on the rod coincid-

ing with point E in terms of θ, v, b, and l.

l

D

E
Bq

A
b

Fig. P15.144 and P15.145

 15.145 Crank AB rotates with a constant clockwise angular velocity v. 

Using the method of Sec. 15.4B, derive an expression for the angular 

acceleration of rod BD in terms of θ, v, b, and l.

C

A

B

θ

b

xA

l

Fig. P15.142 and P15.143

bee87342_ch15_977-1106.indd   1046bee87342_ch15_977-1106.indd   1046 11/26/14   4:48 PM11/26/14   4:48 PM

UPLOADED BY AHMAD T JUNDI



1047

15.146 Solve the engine system from Sample Prob. 15.15 using the methods 

of Section 15.4B. Hint: Define the angle between the horizontal and 

the crank AB as θ and derive the motion in terms of this 

parameter.

r = 3 in.
l = 8 in.

A

B
G

b P

D

40°

Fig. P15.146

  *15.147 The position of rod AB is controlled by a disk of radius r that is 

attached to yoke CD. Knowing that the yoke moves vertically 

upward with a constant velocity v0, derive expressions for the angu-

lar velocity and angular acceleration of rod AB.

B

C

D

A

r

q

Fig. P15.147

  *15.148 A wheel of radius r rolls without slipping along the inside of a fixed 

cylinder of radius R with a constant angular velocity v. Denoting 

by P the point of the wheel in contact with the cylinder at t 5 0, 

derive expressions for the horizontal and vertical components of the 

velocity of P at any time t. (The curve described by point P is a 

hypocycloid.)

  *15.149 In Prob. 15.148, show that the path of P is a vertical straight line 

when r 5 R /2. Derive expressions for the corresponding velocity 

and acceleration of P at any time t.

ω

y

r

P
x

R

Fig. P15.148
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1048 Kinematics of Rigid Bodies

15.5  ANALYZING MOTION WITH 
RESPECT TO A ROTATING 
FRAME

We saw in Sec. 11.4B that the rate of change of a vector is the same with 

respect to a fixed frame and with respect to a frame in translation. In this 

section, we consider the rates of change of a vector Q with respect to a 

fixed frame and with respect to a rotating frame of reference.† You will 

see how to determine the rate of change of Q with respect to one frame 

of reference when Q is defined by its components in another frame. This 

kind of analysis is very useful for designing mechanisms that convert one 

kind of motion into another, such as continuous rotation into intermittent 

rotation. It is also helpful when you have, say, an extending linear actuator 

that is also rotating.

15.5A  Rate of Change of a Vector with 
Respect to a Rotating Frame

Consider two frames of reference centered at O: a fixed frame OXYZ and 

a frame Oxyz that rotates about the fixed axis OA. Let V denote the 

angular velocity of the frame Oxyz at a given instant (Fig. 15.26). Consider 

now a vector function Q(t) represented by the vector Q attached at O; as 

the time t varies, both the direction and the magnitude of Q change. The 

variation of Q is viewed differently by an observer using OXYZ as a frame 

of reference and by an observer using Oxyz, so we should expect the rate 

of change of Q to depend upon the frame of reference that has been 

selected. Therefore, we denote the rate of change of Q with respect to the 

fixed frame OXYZ by (Q
.

)OXYZ and the rate of change of Q with respect 

to the rotating frame Oxyz by (Q
.

)Oxyz. We propose to determine the 

relation between these two rates of change.

Let us first resolve the vector Q into components along the x, y, and 

z axes of the rotating frame. Denoting the corresponding unit vectors by i, 
j, and k, we have

 Q 5 Qxi 1 Qyj 1 Qzk (15.27)

Differentiating Eq. (15.27) with respect to t and considering the unit 

vectors i, j, k to be fixed, we obtain the rate of change of Q with respect 

to the rotating frame Oxyz, as

 (Q̇)Oxyz 5 Q̇xi 1  Q̇yj 1  Q̇zk (15.28)

To obtain the rate of change of Q with respect to the fixed frame 
OXYZ, we must consider the unit vectors i, j, k to be variable when 

differentiating Eq. (15.27). This gives

(Q
.

)OXYZ 5 Q
.

xi 1 Q
.

yj 1 Q
.

zk 1 Qx 

di
dt

1 Qy  

dj

dt
1 Qz 

dk
dt

  (15.29)

From Eq. (15.28), we observe that the sum of the first three terms in 

the right-hand side of Eq. (15.29) represents the rate of change (Q
.

)Oxyz. 

†Recall that the selection of a fixed frame of reference is arbitrary. Any frame may be 

designated as “fixed”; all others are then considered as moving. 

Photo 15.7 A Geneva mechanism is used to 
convert rotary motion into intermittent 
motion.

A

O

x

z

y

Z

X

Y

Q

j
i

k

ΩΩ

Fig. 15.26 A fixed frame of reference OXYZ 
and a rotating frame Oxyz with angular 
velocity V.
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15.5 Analyzing Motion with Respect to a Rotating Frame 1049

We note, on the other hand, that the rate of change (Q
.

)OXYZ would reduce 

to the last three terms in Eq. (15.29) if vector Q were fixed within the 

frame Oxyz, since (Q
.

)Oxyz would then be zero. But in that case, (Q
.

)OXYZ 

would represent the velocity of a particle located at the tip of Q and 

belonging to a body rigidly attached to the frame Oxyz. Thus, the last 

three terms in Eq. (15.29) represent the velocity of that particle. Since the 

frame Oxyz has an angular velocity V with respect to OXYZ at the instant 

considered, we have, by Eq. (15.5),

 Qx 

di
dt

1 Qy 

dj

dt
1 Qz 

dk
dt

5 V 3 Q (15.30)

Substituting from Eqs. (15.28) and (15.30) into Eq. (15.29), we obtain the 

fundamental relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

We conclude that the rate of change of vector Q with respect to the fixed 

frame OXYZ consists of two parts: The first part represents the rate of 

change of Q with respect to the rotating frame Oxyz; the second part, 

V 3 Q, is induced by the rotation of the frame Oxyz.
The use of the relation in Eq. (15.31) simplifies the determination of 

the rate of change of a vector Q with respect to a fixed frame of reference 

OXYZ when vector Q is defined by its components along the axes of a 

rotating frame Oxyz. In particular, this relation does not require separate 

computations of the derivatives of the unit vectors defining the orientation 

of the rotating frame.

15.5B  Plane Motion of a Particle 
Relative to a Rotating Frame 

Consider two frames of reference with both centered at O and both in the 

plane of the figure: a fixed frame OXY and a rotating frame Oxy 

(Fig. 15.27). Let P be a particle moving in the plane of the figure. The 

position vector r of P is the same in both frames, but its rate of change 

depends upon which frame of reference you select.

The absolute velocity vP of the particle is defined as the velocity 

observed from the fixed frame OXY and is equal to the rate of change 

(ṙ)OXY of r with respect to that frame. We can, however, express vP in 

terms of the rate of change (ṙ)Oxy observed from the rotating frame if we 

make use of Eq. (15.31). Denoting the angular velocity of the frame Oxy 

with respect to OXY at the instant considered by V, we have

 vP 5 (ṙ)OXY 5 V 3 r 1 (ṙ)Oxy (15.32)

where (ṙ)Oxy defines the velocity of particle P relative to the rotating frame 

Oxy and is sometimes denoted as vrel. There also may be instances where 

point O is not fixed and has a velocity denoted by vO. Therefore, an 

alternative way to express Eq. (15.32) is

 vP 5 vO 1 V 3 r 1 vrel (15.329)

(Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q

vP 5 (ṙ)OXY 5 V 3 r 1 (ṙ)Oxy

vP 5 vO 1 V 3 r 1 vrel

x

y

X

Y

r

ΩΩ

P

O

Fig. 15.27 We can express the motion of 
particle P in either a fixed (OXYZ) or a 
rotating (Oxyz) frame of reference.
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1050 Kinematics of Rigid Bodies

The relative velocity, vrel or (ṙ)Oxy , is the velocity of point P with respect 

to the rotating frame. Denoting the rotating frame by ^, another way to 

represent the velocity (ṙ)Oxy of P relative to the rotating frame is vP/^. Let 

us imagine that a rigid body has been attached to the rotating frame. Then 

vP/^ represents the velocity of P along the path that it describes on that 

body (Fig. 15.28), and the term V 3 r in Eq. (15.32) represents the veloc-

ity vP9 of the point P9 of the rigid body—or rotating frame—that coincides 

with P at the instant considered. Thus, we have

 vP 5 vP9 1 vP/^ (15.33)

where 

 vP 5 absolute velocity of particle P

 vP9 5 velocity of point P9 of moving frame ^ coinciding with P

 vP/ ̂  5 velocity of P relative to moving frame ^

We define the absolute acceleration aP of the particle as the rate of 

change of vP with respect to the fixed frame OXY. Computing the rates 

of change with respect to OXY of the terms in Eq. (15.32), we have

 aP 5 v
.
P 5 V

.
3 r 1 V 3 r

.
1

d

dt
[(r

.
)Oxy] (15.34)

where all derivatives are defined with respect to OXY, except where 

indicated otherwise. Referring to Eq. (15.31), we note that we can express 

the last term in Eq. (15.34) as

d

dt
[(r

.
)Oxy] 5 (r̈ )Oxy 1 V 3 (r

.
)Oxy

On the other hand, ṙ represents the velocity vP and can be replaced by 

the right-hand side of Eq. (15.32). After completing these two substitutions 

into Eq. (15.34), we obtain

 aP 5 V̇ 3 r 1 V 3 (V 3 r) 1 2V 3 (ṙ)Oxy 1 (  ̈r)Oxy (15.35)

As we had for the velocity expression, our reference point O might also 

be accelerating. For plane motion,

 aP 5 aO 1 V̇  3 r 2 V2r 1 2V 3 vrel 1 arel (15.359)

where

 aO 5 the linear acceleration of point O

V̇  5 angular acceleration of the rotating frame

V 5 angular velocity of the rotating frame

 r 5 position vector from the origin to point P

 vrel 5 relative velocity of point P with respect to the rotating frame

 arel 5 relative acceleration of point P with respect to the rotating frame

From expression (15.8) obtained in Sec. 15.1B for the acceleration of a 

particle on a rigid body rotating about a fixed axis, we note that the sum 

of the first two terms in Eq. (15.35) represents the acceleration aP9 of the 

point P9 of the rotating frame that coincides with P at the instant 

vP 5 vP9 1 vP/PP ^

aP 5 V̇3 r 1 V 3 (V 3 r) 1 2V 3 (ṙ)Oxy 1 (  ̈r)Oxy

aP 5 aO 1 V̇  3 r 2 V2r 1 2V 3 vrel 1 arel

x

y

X

Y

r

ΩΩ

P

O

P'

vP' = ΩΩ × r
vP/    = (r)O xy

.

Fig. 15.28 The velocity of a point P is equal 
to the velocity of a point P9 coincident with P 
but attached to the rotating frame plus the 
velocity of P with respect to the rotating 
frame.
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15.5 Analyzing Motion with Respect to a Rotating Frame 1051

considered. The last term defines the acceleration aP/ ̂  of P relative to the 

rotating frame. If it were not for the third term, which has not been 

accounted for, we could write a relation similar to Eq. (15.33) for the 

accelerations, and aP could be expressed as the sum of aP9 and aP/ ̂ . 

However, it is clear that such a relation would be incorrect and that we 

must include the additional term. This term, which we denote by aC, is 

called the Coriolis acceleration, after the French mathematician Gaspard 

de Coriolis (1792–1843). We have

 aP 5 aP9 1 aP/ ̂  1 aC (15.36)

where

 aP 5 absolute acceleration of particle P

 aP9 5 acceleration of point P9 of moving frame ^ coinciding with P

aP/^ 5 acceleration of P relative to moving frame ^ 

 aC 5 2V 3 (ṙ)Oxy 5 2V 3 vP/ ̂  

 5 Coriolis acceleration

Note the difference between Eq. (15.36) and Eq. (15.21). When we wrote

 aB 5 aA 1 aB/A (15.21)

in Sec. 15.4A, we were expressing the absolute acceleration of point B as 

the sum of the acceleration aB/A relative to a frame in translation and the 

acceleration aA of a point of that frame. We are now relating the absolute 

acceleration of point P to its acceleration aP/ ̂  relative to a rotating frame 

^ and to the acceleration aP9 of point P9 of that frame, which coincides 

with P. Equation (15.36) shows that, because the frame is rotating, 

it is necessary to include an additional term to represent the Coriolis 

acceleration aC.

Note that since point P9 moves in a circle about the origin O, its 

acceleration aP9 has, in general, two components: (aP9)t tangent to the circle 

and (aP9)n directed toward O. Similarly, the acceleration aP/ ̂  generally has 

two components: (aP/ ̂ )t tangent to the path that P describes on the rotating 

rigid body and (aP/ ̂ )n directed toward the center of curvature of that path. 

We further note that since the vector V is perpendicular to the plane of 

motion, and thus to vP/ ̂ , the magnitude of the Coriolis acceleration 

aC 5 2V 3 vP/ ̂  is equal to 2VvP/ ̂ , and its direction can be obtained by 

rotating the vector vP/ ̂  through 90° in the sense of rotation of the moving 

frame (Fig. 15.29). The Coriolis acceleration reduces to zero when either 

V or vP/ ̂  is zero.

Consider a collar P that is made to slide at a constant relative speed 

u along a rod OB rotating at a constant angular velocity v about O
(Fig. 15.30a). According to formula (15.36), we can obtain the absolute 

acceleration of P by adding vectorially the acceleration aA of the point A
of the rod coinciding with P, the relative acceleration aP/OB of P with 

respect to the rod, and the Coriolis acceleration aC.

Since the angular velocity v of the rod is constant, aA reduces to its 

normal component (aA)n with a magnitude of rv
2; and since u is constant, 

the relative acceleration aP/OB is zero. According to the definition given 

previously, the Coriolis acceleration is a vector perpendicular to OB, has a 

aP 5 aP9 1 aP/ ̂ 1 aC

x

y

X

Y

r

ΩΩ

P

O

aC = 2 ΩΩ × vP/

vP/

Fig. 15.29 The Coriolis acceleration is 
perpendicular to the relative velocity of P 
with respect to the rotating frame.
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1052 Kinematics of Rigid Bodies

magnitude of 2vu, and is directed as shown in Figure 15.30. The acceleration 

of the collar P consists, therefore, of the two vectors shown in Fig. 15.30a. 

Note that you can check this result by applying the relation in Eq. (11.43).

To understand better the significance of the Coriolis acceleration, let 

us consider the absolute velocity of P at time t and at time t 1 Dt 
(Fig. 15.30b). We can resolve the velocity at time t into its components u 

and vA; we can resolve the velocity at time t 1 Dt into its components u9 
and vA9. Drawing these components from the same origin (Fig. 15.30c), 

we note that the change in velocity during the time Dt can be represented 

by the sum of three vectors: RR ¿
¡

, TT0
¡

, and T 0T9
¡

. The vector TT0
¡

 measures 

the change in direction of the velocity vA, and the quotient TT–
¡

/¢t repre-

sents the acceleration aA when Dt approaches zero. We check that the 

direction of TT0
¡

 is that of aA when Dt approaches zero and that

lim
Dty0

 
TT0

Dt
5 lim

Dty0
 vA 

Dθ

Dt
5 rvv 5 rv2 5 aA

The vector RR ¿
¡

 measures the change in direction of u due to the rotation 

of the rod; the vector T0T9
¡

 measures the change in magnitude of vA due to

the motion of P on the rod. The vectors RR ¿
¡

 and T 0T9
¡

 result from the 

combined effect of the relative motion of P and of the rotation of the rod; 

they would vanish if either of these two motions stopped. It is easily 

verified that the sum of these two vectors defines the Coriolis acceleration. 

Their direction is that of aC when Dt approaches zero, and since RR9 5 

u Dθ and T  0T9 5 vA9 2 vA 5 (r 1 Dr) v 2 rv 5 v Dr, we check that 

aC is equal to

lim
Dty0

 aRR9

Dt
1

T0T9

Dt
b 5 lim

Dty0
 au 

Dθ

Dt
1 v 

Dr

Dt
b 5 uv 1 v u 5 2v u

We can use formulas (15.33) and (15.36) to analyze the motion of 

mechanisms that contain parts sliding on each other. They make it possible, 

for example, to relate the absolute and relative motions of sliding pins and 

collars (see Sample Probs. 15.18 through 15.20). The concept of Coriolis 

acceleration is also very useful in the study of long-range projectiles and 

of other objects whose motions are appreciably affected by the rotation 

of the earth. As we pointed out in Sec. 12.1A, a system of axes attached 

to the earth does not truly constitute a newtonian frame of reference; such 

a system of axes actually should be considered rotating. Thus, the formulas 

derived in this section facilitate the study of the motion of bodies with 

respect to axes attached to the earth.

a c = 2ωu

aA = rω2

u

P

P

B

A

A

O

ω

(a)

(b)

(c)

vA' = (r + Δr)ω

vA

vA = rω

Δθ

u'

u

u'
u

A'

R'
R

T' T

T"

r

Δr

r

Δθ
Δθ O'

vA'

Fig. 15.30 (a) A collar sliding at constant 
speed along a rotating rod; (b) velocities of 
the collar at two points in time; (c) the 
acceleration components equal the changes 
in velocity.
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15.5 Analyzing Motion with Respect to a Rotating Frame 1053

Sample Problem 15.17

At the instant shown, the truck is moving forward with a speed of 

2 ft/s and is slowing down at a rate of 0.25 ft/s2. The length of the 

boom AB is decreasing at a constant rate of 0.5 ft/s, the angular velocity 

of the boom is 0.1 rad/s, and the angular acceleration of the boom is 

0.02 rad/s2, both clockwise. Determine the velocity and acceleration of 

point B.

STRATEGY: Since you are not given any forces and are asked to find 

the velocity and acceleration of a point, use rigid-body kinematics. The 

boom is moving with respect to the truck, so use a rotating reference 

frame. 

MODELING and ANALYSIS: Attach a rotating coordinate system to 

the boom housing with its origin at A (Fig. 1).

Velocity of B. From Eq. (15.329), you know

 vB 5 vA 1 V 3 rB/A 1 vrel (1)

where vA 5 (2 ft/s)i, rB/A 5 (20 cos 30° ft)i 1 (20 sin 30° ft)j, and 

V 5 (20.1 rad/s2)k. To find the relative velocity, ask yourself what the 

velocity of B would be, assuming that the rotating coordinate system is 

not moving. In this case, vrel 5 2(0.5 cos 30° ft/s)i 2 (0.5 sin 30° ft/s)j. 
Substituting into Eq. (1) gives 

vB 5 2i 1 (20.1k) 3 (17.32i 1 10j) 2 (0.433i 1 0.25j)

vB 5 (2.57 ft/s)i 2 (1.982 ft/s)j b

Acceleration of B. From Eq. (15.359), you know

 aB 5 aA 1 V
?
  3 rB/A 2 V2rB/A 1 2V 3 vrel 1 arel (2)

where aA 5 2(0.25 ft/s2)i, V
?
  5 2(0.02 rad/s2)k, and arel 5 0. Substituting 

into Eq. (2) gives

aB 5 20.25i 1 (20.02k) 3 (17.32i 1 10j) 2 0.12(17.32i 1 10j) 
 1 2(20.1k) 3 (20.433i 2 0.25j) 1 0

 5 20.25i 1 (20.3464j 1 0.2i) 2 (0.1732i 1 0.10j) 1 (0.0866j 2 0.05i) 1 0

aB 5 (20.273 ft/s2)i 2 (0.360 ft/s2)j b

REFLECT and THINK: The biggest challenge with this problem is 

interpreting what you are given in the problem statement. After that, it is 

straightforward to substitute into the governing equations. The last four 

terms in Eq. (2) are analogous to the polar coordinate expressions we 

used in Chapter 11. The following terms represent the same physical 

quantities: V
?
  3 rB/A y rθ̈ , 2V2rB/A y 2rθ

.
2, 2V 3 vrel y 2r

.
θ
.
, and 

arel y r̈ .

A

B

θ = 30�

20 ft

A

B

θ = 30�

20 ft
rB/A

y

x

Fig. 1 The rotating 
coordinate system is 
attached to the truck at A.
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1054 Kinematics of Rigid Bodies

Sample Problem 15.18

In a can crusher, bar AB has a length of 30 in. and slides inside a collar 

located at point P. This collar is attached to plunger DP, which is 

constrained to move vertically. At the instant shown, the velocity of 

point B is a constant 4 ft/s perpendicular to the bar. Determine the velocity 

and acceleration of the plunger D.

STRATEGY: You are not given any forces and are asked to find the 

velocity and acceleration of a point, so use rigid-body kinematics. Since 

the collar is moving with respect to the bar, use a rotating reference frame. 

MODELING and ANALYSIS: Attach a rotating coordinate system to 

the bar with its origin at A (Fig. 1).

Angular Velocity of AB. Rod AB is undergoing fixed-axis rotation, 

so

vAB 5
vB

rB/A
5

48 in./s

30 in.
5 1.60 rad/s i

Velocity of P. Points D and P have the same velocity and acceleration 

because the plunger is constrained to translate only. From Eq. (15.329) 

you know

 vP 5 vA 1 V 3 rP/A 1 vrel (1)

where vA 5 0, rP/A 5 (20 in.)i 1 (12 in.)j, and V 5 2(1.6 rad/s)k. To 

find the relative velocity, ask yourself what the velocity of P would be 

assuming that the rotating coordinate system is not moving. In this case, 

vrel 5 vrel cos θi 1 vrel sin θj where θ 5 tan21 (12/20) 5 30.96°.  Substituting 

into Eq. (1) gives

2vP j 5 0 1 (21.6k) 3 (20i 1 12j) 1 (vrel cos θ i 1 vrel sin θ j)

 5232j 1 19.2i 1 0.8575vreli 1 0.5145vrel j

Equating components allows you to solve for the unknown velocities:

i: 0 5 19.2 1 0.8575vrel 4 vrel 5 222.39 in./s

j: 2vP 5 232 1 0.5145vrel 4 vP 5 43.53 in./s

vP 5 43.53 in./sw b

Acceleration of P. From Eq. (15.359), you know

 aP 5 aA 1 V
?
  3 rP/A 2 V2rP/A 1 2V 3 vrel 1 arel (2)

where aA 5 0, V
?
  5 0, arel 5 arel cos θ i 1 arel sin θ j. Substituting into 

Eq. (2) gives

2aPj 5 0 1 0 2 1.62(20i 1 12j) 1 2(21.6k) 3 

 (222.39 cos θi 2 22.39 sin θj) 1 (arel cos θi 1 arel sin θj)
 5 (251.2i 2 30.72j) 1 (61.44j 2 36.86i) 1 (0.8575areli 1 0.5145arel j)

vB
P

B

A
12 in.

20 in.

D

vB

vP

P

B

A

y

x

DrP/A

Fig. 1 The rotating coordinate system is 
attached to arm AB.
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15.5 Analyzing Motion with Respect to a Rotating Frame 1055

Equating components allows you to solve for the unknown 

accelerations:

i: 0 5 251.2 2 36.86 1 0.8575arel 4 arel 5 102.7 in./s2

j: 2aP 5 230.72 1 61.44 1 0.5145arel 4 aP 5 283.56 in./s2

aP 5 283.6 in./s2
w b

REFLECT and THINK: You used the same strategy for the telescoping 

boom in Sample Prob. 15.17 as you did for the sliding collar in this 

problem. For each case, the point of interest was moving with respect to 

a coordinate frame attached to a rigid body. The same strategy is used in 

problems where pins move within slotted bodies (such as the Geneva 

mechanism in Sample Prob. 15.19).

Sample Problem 15.19

The Geneva mechanism shown is used in many counting instruments and 

in other applications where an intermittent rotary motion is required. 

Disk D rotates with a constant counterclockwise angular velocity vD of 

10 rad/s. A pin P is attached to disk D and slides along one of several 

slots cut in disk S. It is desirable that the angular velocity of disk S be 

zero as the pin enters and leaves each slot; in the case of four slots, this 

occurs if the distance between the centers of the disks is l 5 22R.

 At the instant when f 5 150°, determine (a) the angular velocity of 

disk S, (b) the velocity of pin P relative to disk S.

STRATEGY: You have two rigid bodies whose motions are related; 

therefore use rigid-body kinematics. Since point P is moving in a slot, use 

a rotating reference frame. 

MODELING and ANALYSIS: 

Using geometry, you can solve triangle OPB, which corresponds to the 

position f 5 150° (Fig. 1). Using the law of cosines, you have

r 2 5 R2 1 l2 2 2Rl cos 30° 5 0.551R2  r 5 0.742R 5 37.1 mm

Then, from the law of sines, you have

 sin β

R
5

 sin 308

r
sin β 5

 sin 308

0.742
β 5 42.48

Since pin P is attached to disk D and disk D rotates about point B, the 

magnitude of the absolute velocity of P is

vP 5 RvD 5 (50 mm)(10 rad/s) 5 500 mm/s

 vP 5 500 mm/s d 60°

Disk S

Disk D

R = 50 mm

O

f = 135°R

P

B

l =    2R

Disk S Disk DP

O B

f = 150°
b P'

R

r

l =    2R

Fig. 1 Distances and angles 
relating points O, P, and B.

(continued)
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1056 Kinematics of Rigid Bodies

Now consider the motion of pin P along the slot in disk S. Denote the 

point of disk S that coincides with P by P9 at the instant considered and 

select a rotating frame S attached to disk S. Then from Eq. (15.33), you 

have

 vP 5 vP9 1 vP/S (1)

In Eq. (1), vP9 is perpendicular to the radius OP, and vP/S is directed along 

the slot. Draw the velocity triangle corresponding to Eq. (1) (see Fig. 2). 

From the triangle, you can compute

 γ 5 90° 2 42.4° 2 30° 5 17.6°

 vP9 5 vP sin γ 5 (500 mm/s) sin 17.6°

 vP9 5 151.2 mm/s f 42.4°

 vP/S 5 vP cos γ 5 (500 mm/s) cos 17.6°

 vP/S 5 vP/S 5 477 mm/s d 42.4° b

Since vP9 is perpendicular to the radius OP, you have

vP9 5 rvS   151.2 mm/s 5 (37.1 mm)vS

 vS 5 vS 5 4.08 rad/s i b

REFLECT and THINK: The result of the Geneva mechanism is that 

disk S rotates ¼ turn each time pin P engages, then it remains motionless 

while pin P rotates around before entering the next slot. Disk D rotates 

continuously, but disk S rotates intermittently. An alternative approach to 

drawing the vector triangle is to use vector algebra, as was done in Sample 

Prob. 15.18.

b = 42.4°

30°
�

vP'

vP

vP/

Fig. 2 Vector diagram 
for the velocity of 
point P.

Sample Problem 15.20

In the Geneva mechanism of Sample Prob. 15.19, disk D rotates with a 

constant counterclockwise angular velocity vD of 10 rad/s. At the instant 

when f 5 150°, determine the angular acceleration of disk S.

STRATEGY: You have two rigid bodies whose motions are related; 

therefore use rigid-body kinematics. Since point P is moving in a slot, use 

a rotating reference frame. 

MODELING and ANALYSIS: Since you are computing accelerations 

instead of velocities, you need to use Eq. (15.36), which includes the 

Coriolis acceleration. You found the angular velocity of the frame S attached 

to disk S and the velocity of the pin relative to S in Sample Prob. 15.19:

vS 5 4.08 rad/s i

β 5 42.4°  vP/S 5 477 mm/s d 42.4°

Since pin P moves with respect to the rotating frame S, you have

 aP 5 aP9 1 aP/S 1 ac (1)

Investigate each term of this vector equation separately.
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15.5 Analyzing Motion with Respect to a Rotating Frame 1057

Absolute Acceleration aP. Since disk D rotates with a constant 

angular velocity, the absolute acceleration aP is directed toward B. This 

gives

 aP 5 Rv2
D 5 (500 mm)(10 rad/s)2 5 5000 mm/s2

 aP 5 5000 mm/s2 c 30°

Acceleration aP9 of the Coinciding Point P9. Resolve into normal 

and tangential components the acceleration aP9 of the point P9 of the frame 

S that coincides with P at the given instant. (Recall from Sample Prob. 15.19 

that r 5 37.1 mm.)

(aP9)n 5 rv2
S 5 (37.1 mm)(4.08 rad/s)2 5 618 mm/s2

 (aP9)n 5 618 mm/s2 d 42.4°

 (aP9)t 5 rαS 5 37.1αS  (aP9)t 5 37.1αS f 42.4°

Relative Acceleration aP/S. Since the pin P moves in a straight slot 

cut in disk S, the relative acceleration aP/S must be parallel to the slot; i.e., 

its direction must be a 42.4°.

Coriolis Acceleration aC. Rotating the relative velocity vP/S through 

90° in the sense of vS, you obtain the direction of the Coriolis component 

of the acceleration: h 42.4°. You have

aC 5 2vSvP/S  5 2(4.08 rad/s)(477 mm/s) 5 3890 mm/s2

aC 5 3890 mm/s2 h 42.4°

Rewrite Eq. (1) and substitute the accelerations found (Fig. 1):

 aP 5 (aP9)n 1 (aP9)t 1 aP/S  1 aC

[5000 c 30°] 5 [618 d 42.4°] 1 [37.1αS  f 42.4°]

1 [aP/S  a 42.4°] 1 [3890 h 42.4°]

Equating components in a direction perpendicular to the slot,

5000 cos 17.6° 5 37.1αS  2 3890

αS 5 αS 5 233 rad/s2
i b

REFLECT and THINK: It seems reasonable that, since disk S starts 

and stops over the very short time intervals when pin P is engaged in the 

slots, the disk must have a very large angular acceleration. An alternative 

approach would have been to use the vector algebra.

x

z

x

z
30

42.4

42.4

42.4

42.4

(aP')n = 618 mm/s2

(aP')t = 37.1α
aP/

ac = 3890 mm/s2

aP = 5000 mm/s2

Fig. 1 Vector polygon for the 
acceleration of point P.
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10581058

In this section you studied the rate of change of a vector with respect to a rotating 

frame and then applied that idea to the analysis of the plane motion of a particle 

relative to a rotating frame.

1. Rate of change of a vector with respect to a fixed frame and with respect to 
a rotating frame. Denoting the rate of change of a vector Q with respect to a fixed 

frame OXYZ by (Q
.

)OXYZ and its rate of change with respect to a rotating frame Oxyz
by (Q

.
)Oxyz, we obtained the fundamental relation

 (Q̇)OXYZ 5 (Q̇)Oxyz1  V 3 Q (15.31)

where V is the angular velocity of the rotating frame.

You can now apply this fundamental relation to the solution of two-dimensional 

problems.

2. Plane motion of a particle relative to a rotating frame. Using Eq. (15.31) and 

designating the rotating frame by ^, we obtained the following expressions for the 

velocity and the acceleration of a particle P:

 vP 5 vP9 1 vP/ ̂  (15.33)

or

 vP 5 vO 1 V 3 r 1 vrel (15.329)

and

 aP 5 aP9 1 aP/ ̂  1 aC (15.36)

or

 aP 5 aO 1 α 3 r 2 V2r 1 2V 3 vrel 1 arel (15.359)

The notation in Eqs. (15.33) and (15.36) is as follows.

a. The subscript P refers to the absolute motion of the particle P; that is, to 

its motion with respect to a fixed or newtonian frame of reference OXY.
b. The subscr ipt P9 refers to the motion of the point P9 of the rotating frame 

^ that coincides with P at the instant considered.

c. The subscript P/^ refers to the motion of the particle P relative to the 

rotating frame ^.

d. The term aC represents the Coriolis acceleration of point P. Its magnitude 

is 2VvP/ ̂ , and its direction is found by rotating vP/ ̂  through 90° in the sense of  

rotation of the frame ^.

You should keep in mind that you need to take the Coriolis acceleration into account 

whenever a point has a relative velocity in a rotating frame. The problems you will 

encounter in this section involve collars that slide on rotating rods, booms that extend 

from cranes rotating in a vertical plane, etc.

When solving a problem involving a rotating frame, you can either a) draw vector 

diagrams representing Eqs. (15.33) and (15.36), respectively, and use these diagrams 

to obtain either an analytical or a graphical solution, or b) use vector algebra.

SOLVING PROBLEMS 
ON YOUR OWN

bee87342_ch15_977-1106.indd   1058bee87342_ch15_977-1106.indd   1058 11/26/14   4:49 PM11/26/14   4:49 PM

UPLOADED BY AHMAD T JUNDI



1059

CONCEPT QUESTIONS

 15.CQ8 A person walks radially inward on a platform that is rotating 

counterclockwise about its center. Knowing that the platform has a 

constant angular velocity v and the person walks with a constant 

speed u relative to the platform, what is the direction of the 

acceleration of the person at the instant shown?

a. Negative x
b. Negative y
c. Negative x and positive y
d. Positive x and positive y 
e. Negative x and negative y

y
x

ω

u

Person

Overhead View

Fig. P15.CQ8

END-OF-SECTION PROBLEMS

 15.150 and 15.151 Pin P is attached to the collar shown; the motion of 

the pin is guided by a slot cut in rod BD and by the collar that slides 

on rod AE. Knowing that at the instant considered the rods rotate 

clockwise with constant angular velocities, determine for the given 

data the velocity of pin P.

 15.150 vAE 5 8 rad/s, vBD 5 3 rad/s

 15.151 vAE 5 7 rad/s, vBD 5 4.8 rad/s

 15.152 and 15.153 Two rotating rods are connected by slider block P. The 

rod attached at A rotates with a constant clockwise angular velocity 

vA. For the given data, determine for the position shown (a) the 

angular velocity of the rod attached at B, (b) the relative velocity of 

slider block P with respect to the rod on which it slides.

15.152 b 5 8 in., vA 5 6 rad/s

15.153 b 5 300 mm, vA 5 10 rad/s

60° 20°
BA

P
E

b

Fig. P15.152

Problems

A P

B

E

D

500 mm
308

Fig. P15.150 and P15.151

A

P

B

b

D

60° 20°

Fig. P15.153
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 15.154 Pin P is attached to the wheel shown and slides in a slot cut in bar 

BD. The wheel rolls to the right without slipping with a constant 

angular velocity of 20 rad/s. Knowing that x 5 480 mm when θ 5 0, 

determine the angular velocity of the bar and the relative velocity of 

pin P with respect to the rod when (a) θ 5 0, (b) θ 5 90°.

B

x q

P

A

D

200 mm
140 mm

Fig. P15.154

 15.155 Knowing that at the instant shown the angular velocity of bar AB is 

15 rad/s clockwise and the angular velocity of bar EF is 10 rad/s 

clockwise, determine (a) the angular velocity of rod DE, (b) the 

relative velocity of collar B with respect to rod DE.

 15.156 Knowing that at the instant shown the angular velocity of rod DE is 

10 rad/s clockwise and the angular velocity of bar EF is 15 rad/s 

counterclockwise, determine (a) the angular velocity of bar AB, 

(b) the relative velocity of collar B with respect to rod DE.

 15.157 The motion of pin P is guided by slots cut in rods AD and BE. 

Knowing that bar AD has a constant angular velocity of 4 rad/s 

clockwise and bar BE has an angular velocity of 5 rad/s counter-

clockwise and is slowing down at a rate of 2 rad/s2, determine the 

velocity of P for the position shown.

 15.158 Four pins slide in four separate slots cut in a circular plate as shown. 

When the plate is at rest, each pin has a velocity directed as shown 

and of the same constant magnitude u. If each pin maintains the same 

velocity relative to the plate when the plate rotates about O with a 

constant counterclockwise angular velocity v, determine the accelera-

tion of each pin.

u

u

u

uOP1

P2

P3

P4

r

r
r

r

Fig. P15.158

 15.159 Solve Prob. 15.158, assuming that the plate rotates about O with a 

constant clockwise angular velocity v.

20 in.

15 in.

B

ED

A F
45�

Fig. P15.155 and P15.156

A B

E

D

P

100 mm
300 mm

150 mm
150 mm

Fig. P15.157

bee87342_ch15_977-1106.indd   1060bee87342_ch15_977-1106.indd   1060 11/26/14   4:49 PM11/26/14   4:49 PM

UPLOADED BY AHMAD T JUNDI



1061

15.160 The cage of a mine elevator moves downward at a constant speed of 

12.2 m/s. Determine the magnitude and direction of the Coriolis 

acceleration of the cage if the elevator is located (a) at the equator, 

(b) at latitude 40° north, (c) at latitude 40° south.

 15.161 Pin P is attached to the collar shown; the motion of the pin is guided 

by a slot cut in bar BD and by the collar that slides on rod AE. 

Rod AE rotates with a constant angular velocity of 6 rad/s clockwise 

and the distance from A to P increases at a constant rate of 8 ft/s. 

Determine at the instant shown (a) the angular acceleration of 

bar BD, (b) the relative acceleration of pin P with respect to bar BD.

15.162 A rocket sled is tested on a straight track that is built along a 

meridian. Knowing that the track is located at latitude 40° north, 

determine the Coriolis acceleration of the sled when it is moving 

north at a speed of 900 km/h.

 15.163 Solve the Geneva mechanism of Sample Prob. 15.20 using vector 

algebra.

15.164 At the instant shown the length of the boom AB is being decreased 
at the constant rate of 0.2 m/s and the boom is being lowered at the 

constant rate of 0.08 rad/s. Determine (a) the velocity of point B,

(b) the acceleration of point B.

A

B

θ = 30�

6 m

Fig. P15.164 and P15.165

15.165 At the instant shown the length of the boom AB is being increased 
at the constant rate of 0.2 m/s and the boom is being lowered at the 

constant rate of 0.08 rad/s. Determine (a) the velocity of point B, 
(b) the acceleration of point B.

 15.166 In the automated welding setup shown, the position of the two welding 

tips G and H is controlled by the hydraulic cylinder D and rod BC. 

The cylinder is bolted to the vertical plate that at the instant shown 

rotates counterclockwise about A with a constant angular velocity of 

1.6 rad/s. Knowing that at the same instant the length EF of the 

welding assembly is increasing at the constant rate of 300 mm/s, 

determine (a) the velocity of tip H, (b) the acceleration of tip H.

 15.167 In the automated welding setup shown, the position of the two welding 

tips G and H is controlled by the hydraulic cylinder D and rod BC. 

The cylinder is bolted to the vertical plate that at the instant shown 

rotates counterclockwise about A with a constant angular velocity of 

1.6 rad/s. Knowing that at the same instant the length EF of the 

welding assembly is increasing at the constant rate of 300 mm/s, 

determine (a) the velocity of tip G, (b) the acceleration of tip G.

Fig. P15.161

E

D

P

B

16 in.

45�
A

Disk S

Disk D

R = 50 mm

O

φR

P

B

l =    2R

Fig. P15.163

600 mm

C E F

G

H

B

A

D

200 mm

200 mm

Fig. P15.166 and P15.167
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 15.168 and 15.169 A chain is looped around two gears of radius 40 mm 

that can rotate freely with respect to the 320-mm arm AB. The chain 

moves about arm AB in a clockwise direction at the constant rate of 

80 mm/s relative to the arm. Knowing that in the position shown arm 

AB rotates clockwise about A at the constant rate v 5 0.75 rad/s, 

determine the acceleration of each of the chain links indicated.

15.168 Links 1 and 2

15.169 Links 3 and 4

 15.170 A basketball player shoots a free throw in such a way that his shoul-

der can be considered a pin joint at the moment of release as shown. 

Knowing that at the instant shown the upper arm SE has a constant 

angular velocity of 2 rad/s counterclockwise and the forearm EW has 

a constant clockwise angular velocity of 4 rad/s with respect to SE, 

determine the velocity and acceleration of the wrist W.

W

S

E
808

308
Model

300 mm

350 mm

Fig. P15.170

 15.171 The human leg can be crudely approximated as two rigid bars (the 

femur and the tibia) connected with a pin joint. At the instant shown, 

the velocity of the ankle A is zero, the tibia AK has an angular 

velocity of 1.5 rad/s counterclockwise and an angular acceleration 

of 1 rad/s2 counterclockwise. Determine the relative angular velocity 

and relative angular acceleration of the femur KH with respect to 

AK so that the velocity and acceleration of H are both straight up 

at this instant. 

 15.172 The collar P slides outward at a constant relative speed u along rod 

AB, which rotates counterclockwise with a constant angular velocity 

of 20 rpm. Knowing that r 5 250 mm when θ 5 0 and that the 

collar reaches B when θ 5 90°, determine the magnitude of the 

acceleration of the collar P just as it reaches B.

A

B

P

u

ω

θ

500 mmr

Fig. P15.172

1

2

4

A

160 mm 160 mm

3A B

u

Fig. P15.168 and P15.169

H

K

A

458

458

14 in.

12 in.

hip

Fig. P15.171
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1063

 15.173 Pin P slides in a circular slot cut in the plate shown at a constant rela-

tive speed u 5 90 mm/s. Knowing that at the instant shown the plate 

rotates clockwise about A at the constant rate v 5 3 rad/s, determine 

the acceleration of the pin if it is located at (a) point A, (b) point B, 
(c) point C.

 15.174 Rod AD is bent in the shape of an arc of a circle with a radius of 

b 5 150 mm. The position of the rod is controlled by pin B that 

slides in a horizontal slot and also slides along the rod. Knowing that 

at the instant shown pin B moves to the right at a constant speed of 

75 mm/s, determine (a) the angular velocity of the rod, (b) the 

angular acceleration of the rod.

A
B

b D
θ = 110°

Fig. P15.174

 15.175 Solve Prob. 15.174 when θ 5 90°.

 15.176 Knowing that at the instant shown the rod attached at A has an 

angular velocity of 5 rad/s counterclockwise and an angular accel-

eration of 2 rad/s2 clockwise, determine the angular velocity and the 

angular acceleration of the rod attached at B.

A

P

B

D

258

708

200 mm

Fig. P15.176

 15.177 The Geneva mechanism shown is used to provide an intermittent 

rotary motion of disk S. Disk D rotates with a constant counterclock-

wise angular velocity vD of 8 rad/s. A pin P is attached to disk D 
and can slide in one of the six equally spaced slots cut in disk S. It 
is desirable that the angular velocity of disk S be zero as the pin 

enters and leaves each of the six slots; this will occur if the distance 

between the centers of the disks and the radii of the disks are related 

as shown. Determine the angular velocity and angular acceleration of 

disk S at the instant when f 5 150°.

 15.178 In Prob. 15.177, determine the angular velocity and angular accelera-

tion of disk S at the instant when f 5 135°.

A

B

C

P
u

100 mm

ω

Fig. P15.173

RS = √3RD

O

P

B

f

RD = 1.25 in.

l = 2RD

Disk D
when f = 120°

Disk S

Fig. P15.177
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 15.179 At the instant shown bar BC has an angular velocity of 3 rad/s and 

an angular acceleration of 2 rad/s2, both counterclockwise; determine 

the angular acceleration of the plate.

3 in.

4 in.A

D

B

C

4 in. 6 in.

Fig. P15.179 and P15.180

 15.180 At the instant shown bar BC has an angular velocity of 3 rad/s and 

an angular acceleration of 2 rad/s2, both clockwise; determine the 

angular acceleration of the plate.

*15.181 Rod AB passes through a collar that is welded to link DE. Knowing 

that at the instant shown block A moves to the right at a constant 

speed of 75 in./s, determine (a) the angular velocity of rod AB, 
(b) the velocity relative to the collar of the point of the rod in contact 

with the collar, (c) the acceleration of the point of the rod in contact 

with the collar. (Hint: Rod AB and link DE have the same v and 

the same α.)

A 30�

6 in.
D

E

B

Fig. P15.181

  *15.182 Solve Prob. 15.181 assuming block A moves to the left at a constant 

speed of 75 in./s.

  *15.183 In Prob. 15.157, determine the acceleration of pin P.
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*15.6 Motion of a Rigid Body in Space 1065

*15.6  MOTION OF A RIGID 
BODY IN SPACE

Extending the study of motion in two dimensions to analyzing three-

dimensional motion uses most of the same concepts as before, but with 

some added computational complexity. We introduce these ideas in this 

section and the next, and we will return to them when discussing kinetics 

of a rigid body in Chapter 18.

15.6A Motion About a Fixed Point
In Sec. 15.1B, we considered the motion of a rigid body constrained to 

rotate about a fixed axis. Here we examine the more general case of the 

three-dimensional motion of a rigid body that has a fixed point O. First, 

we prove:

The most general displacement of a rigid body with a fixed point O is 
equivalent to a rotation of the body about an axis through O. 

This statement is known as Euler’s theorem. We analyze the motion of a 

sphere with a center O; this analysis can be extended to a rigid body of 

any shape. Since three points define the position of a solid in space, we 

let the center O and two points A and B on the surface of the sphere define 

the position of the sphere and thus the position of the body. Let A1 and 

B1 characterize the position of the sphere at one instant, and let A2 and B2

characterize its position at a later instant (Fig. 15.31a). Since the sphere 

is rigid, the lengths of the arcs of great circles A1B1 and A2B2 must be 

equal, but except for this requirement, the positions of A1, A2, B1, and B2 

are arbitrary. We will show that the points A and B can be brought, 

respectively, from A1 and B1 into A2 and B2 by a single rotation of the 

sphere about an axis.

For convenience, and without loss of generality, we select 

point B so that its initial position coincides with the final position of 

A; thus, B1 5 A2 (Fig. 15.31b). We draw the arcs of great circles A1A2, 

A2B2, and the arcs bisecting, respectively, A1A2 and A2B2. Let C be the 

point of intersection of these last two arcs. We complete the construc-

tion by drawing A1C, A2C, and B2C. As pointed out above, because of 

the rigidity of the sphere, A1B1 5 A2B2. Since C is by construction 

equidistant from A1, A2, and B2, we also have A1C 5 A2C 5 B2C. As 

a result, the spherical triangles A1CA2 and B1CB2 are congruent, and 

the angles A1CA2 and B1CB2 are equal. Denoting the common value of 

these angles by θ, we conclude that the sphere can be brought from its 

initial position into its final position by a single rotation through θ 

about the axis OC.
It follows that we can consider the motion during a time interval Dt 

of a rigid body with a fixed point O as a rotation through Dθ about a 

certain axis. Drawing a vector with a magnitude of Dθ/Dt along that axis 

and letting Dt approach zero, we obtain in the limit the instantaneous 
axis of rotation and the angular velocity v of the body at the instant 

considered (Fig. 15.32). We can then obtain the velocity of a particle P 

B2

B1 = A2

B1

A1

(a)

(b)

A1

A2

B2

O

C

Fig. 15.31 (a) Positions of two points on a 
rotating sphere; (b) the sphere can be 
brought into this new position by a single 
rotation.
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1066 Kinematics of Rigid Bodies

of the body, as in Sec. 15.1B, by forming the vector product of v and of 

the position vector r of the particle:

v 5
dr
dt

5 v 3 r (15.37)

We obtain the acceleration of the particle by differentiating Eq. (15.37) 

with respect to t. As in Sec. 15.1B, we have

a 5 α 3 r 1 v 3 (v 3 r) (15.38)

Here we have defined the angular acceleration α as the derivative

α 5
dv

dt
 (15.39)

of the angular velocity v.

In the case of the motion of a rigid body with a fixed point, the 

direction of v and of the instantaneous axis of rotation changes from one 

instant to the next. The angular acceleration α therefore reflects the change 

in direction of v as well as its change in magnitude. Thus, in general, α

is not directed along the instantaneous axis of rotation. Although the 

particles of the body located on the instantaneous axis of rotation have zero 

velocity at the instant considered, they do not have zero acceleration. Also, 

the accelerations of the various particles of the body cannot be determined 

as if the body were rotating permanently about the instantaneous axis.

Recalling the definition of the velocity of a particle with position 

vector r, we note that the angular acceleration α, as expressed in 

Eq. (15.39), represents the velocity of the tip of vector v. This property 

may be useful in determining the angular acceleration of a rigid body. For 

example, it follows that vector α is tangent to the curve described in space 

by the tip of vector v.

Note that vector v moves within the body, as well as in space. It 

thus generates two cones called, respectively, the body cone and the space 
cone (Fig. 15.33).† It can be shown that, at any given instant, the two 

cones are tangent along the instantaneous axis of rotation and that, as the 

body moves, the body cone appears to roll on the space cone.

Before concluding our analysis of the motion of a rigid body with 

a fixed point, we should prove that angular velocities are actually vectors. 

Some quantities, such as the finite rotations of a rigid body, have magnitude 

and direction but do not obey the parallelogram law of addition; these 

quantities cannot be considered to be vectors. In contrast, angular velocities 

(and also infinitesimal rotations), as we demonstrate presently, do obey 

the parallelogram law and thus are truly vector quantities.

Consider a rigid body with a fixed point O that rotates at a given 

instant simultaneously about the axes OA and OB with angular 

velocities v1 and v2 (Fig. 15.34a). We know that this motion must be 

equivalent at the instant considered to a single rotation of angular 

velocity v. We propose to show that

v 5 v1 1 v2 (15.40)

v 5
dr
dt

5 v 3 r

a 5 α 3 r 1 v 3 (v 3 r)

O

P

r

ω

α

Fig. 15.32 Angular velocity and angular 
acceleration of a rigid body moving about a 
fixed point O.

†Recall that a cone is, by definition, a surface generated by a straight line passing through 

a fixed point. In general, the cones considered here are not circular cones. 

Fig. 15.33 The angular velocity vector 
generates a body cone and a space cone as it 
changes direction.

Space cone

O

α

Body cone

ω
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*15.6 Motion of a Rigid Body in Space 1067

i.e., that we can obtain the resulting angular velocity by adding v1 and 

v2 using the parallelogram law (Fig. 15.34b).

Consider a particle P of the body, defined by the position vector r. 

Denoting the velocity of P when the body rotates about OA only, about 

OB only, and about both axes simultaneously, by v1, v2, and v, respec-

tively, we have

 v 5 v 3 r  v1 5 v1 3 r  v2 5 v2 3 r  (15.41)

But the vectorial character of linear velocities is well established (since 

they represent the derivatives of position vectors). We therefore have

v 5 v1 1 v2

where the plus sign indicates vector addition. Substituting from Eq. (15.41), 

we obtain

v 3 r 5 v1 3 r 1 v2 3 r
v 3 r 5 (v1 1 v2) 3 r

where the plus sign still indicates vector addition. Since the relation obtained 

holds for an arbitrary r, we conclude that Eq. (15.40) must be true.

*15.6B General Motion
We now consider the most general motion of a rigid body in space. Let A and 

B be two particles of the body. Recall from Sec. 11.4D that we can express 

the velocity of B with respect to the fixed frame of reference OXYZ as

 vB 5 vA 1 vB/A (15.42)

where vB/A is the velocity of B relative to a frame AX9Y9Z9 attached to A 

and of fixed orientation (Fig. 15.35). Since A is fixed in this frame, the 

motion of the body relative to AX9Y9Z9 is the motion of a body with a 

fixed point. Therefore we can obtain the relative velocity vB/A from 

Eq. (15.37) after replacing r by the position vector rB/A of B relative to A. 
Substituting for vB/A into Eq. (15.42), we have

 vB 5 vA 1 v 3 rB/A (15.43)

where v is the angular velocity of the body at the instant considered.

vB 5 vAv 1 v 3 rB/A//

Photo 15.8 You can obtain the angular 
velocity of a fire truck ladder rotating about 
its fixed base by adding the angular velocities 
that correspond to simultaneous rotations 
about two different axes.

X
O

A
B

ω

α

Y

Z

X'

Y'

Z'

rA

rB/A

Fig. 15.35 A rigid body moving relative to a 
fixed reference frame OXYZ and a reference 
frame attached to the body but with fixed 
orientation, OX9Y9Z9.

Fig. 15.34 (a) A rigid body rotating about two axes simultaneously; (b) the 
motion is equivalent to a single rotation with angular velocity equal to the 
vector sum of the initial angular velocities.

O O
B

A
C

ω
ω1

ω2

ω1

ω2

(a) (b)
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1068 Kinematics of Rigid Bodies

We can obtain the acceleration of B by a similar reasoning. We first 

write

aB 5 aA 1 aB/A

and, from Eq. (15.38),

 aB 5 aA 1 α 3 rB/A 1 v 3 (v 3 rB/A) (15.44)

where α is the angular acceleration of the body at the instant considered.

The angular acceleration α represents the rate of change (v
.

)OXYZ of 

vector v with respect to a fixed frame of reference OXYZ and reflects 

both a change in magnitude and a change in direction of the angular 

velocity. When computing α, you will usually find it convenient to first 

compute the rate of change (v
.

)Oxyz of v with respect to a rotating frame 

of reference Oxyz of your choice and use Eq. (15.31) to obtain α. You 

have

α 5 (v
.

)OXYZ 5 (v
.

)Oxyz 1 V 3 v

where V is the angular velocity of the rotating frame Oxyz [Sample 

Prob. 15.21].

Equations (15.43) and (15.44) show that the most general motion 
of a rigid body is equivalent, at any given instant, to the sum of a 
translation (in which all of the particles of the body have the same 

velocity and acceleration as a reference particle A) and of a motion in 
which particle A is assumed to be fixed.†

By solving Eqs. (15.43) and (15.44) for vA and aA, it can be shown 

that the motion of the body with respect to a frame attached to B would 

be characterized by the same vectors v and α as its motion relative to 

AX9Y9Z9. Thus, the angular velocity and angular acceleration of a rigid 

body at a given instant are independent of the choice of reference point. 

If AX9Y9Z9 is a non-rotating frame, you should keep in mind that whether 

the moving frame is attached to A or to B, it should maintain a fixed 

orientation; that is, it should remain parallel to the fixed reference frame 

OXYZ throughout the motion of the rigid body. 

In many problems, it will be more convenient to use a moving frame 

that is allowed to rotate as well as to translate. We discuss the use of such 

moving frames in Sec. 15.7.

aB 5 aAa 1 α 3 rB/A// 1 v 3 (v 3 rB/A// )

†Recall from Sec 15.6A that, in general, vectors v and α are not collinear and that the accel-

erations of the particles of the body in their motion relative to the frame AX9Y9Z9 cannot be 

determined as if the body were rotating permanently about the instantaneous axis through A. 
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*15.6 Motion of a Rigid Body in Space 1069

Sample Problem 15.21

The crane shown rotates horizontally with a constant angular velocity 

v1 of 0.30 rad/s. Simultaneously, the boom is being raised with a 

constant angular velocity v2 of 0.50 rad/s relative to the cab. Knowing 

that the length of the boom OP is l 5 12 m, determine (a) the angular 

velocity v of the boom, (b) the angular acceleration α of the boom, 

(c) the velocity v of the tip of the boom, (d) the acceleration a of the 

tip of the boom.

STRATEGY: There are multiple rotational axes, so you need to use the 

general motion velocity and acceleration kinematic equations. Add the 

given angular velocities vectorially to find the overall angular velocity of 

the boom, and differentiate that to find the angular acceleration. 

MODELING and ANALYSIS: 

a. Angular Velocity of Boom. Add the angular velocity v1 of the 

cab and the angular velocity v2 of the boom relative to the cab to obtain 

the angular velocity v of the boom at the instant considered:

v 5 v1 1 v2  v 5 (0.30 rad/s)j 1 (0.50 rad/s)k b

b. Angular Acceleration of Boom. Obtain the angular acceleration 

α of the boom by differentiating v. Since the vector v1 is constant in 

magnitude and direction, you have

α 5 v? 5 v? 1 1 v?  2 5 0 1 v?  2

where the rate of change v?  2 is to be computed with respect to the fixed 

frame OXYZ. However, it is more convenient to use a frame Oxyz attached 

to the cab and rotating with it, since the vector v2 also rotates with the 

cab and therefore has zero rate of change with respect to that frame. Using 

Eq. (15.31) with Q 5 v2 and V 5 v1, you have

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q
 (v?  2)OXYZ 5 (v? 2)Oxyz 1 v1 3 v2

α 5 (v?  2)OXYZ 5 0 1 (0.30 rad/s)j 3 (0.50 rad/s)k

 α 5 (0.15 rad/s2)i b

c. Velocity of Tip of Boom. Noting that the position vector of 

point P is r 5 (10.39 m)i 1 (6 m)j (Fig. 1) and using the expression 

found for v in part (a), you get

v 5 v 3 r 5 † i j k
0 0.30 rad/s 0.50 rad/s

10.39 m 6 m 0

†
v 5 2(3 m/s)i 1 (5.20 m/s)j 2 (3.12 m/s)k b

X

Y

Z

O

P

θ = 30°

ω1

ω2

Xx

Y

Z

O

P

ω1 = 0.30j

ω2 = 0.50k

y

z

10.39 m

6 m

Fig. 1 A rotating frame xyz is 
attached to the cab.

(continued)

bee87342_ch15_977-1106.indd   1069bee87342_ch15_977-1106.indd   1069 11/26/14   4:49 PM11/26/14   4:49 PM

UPLOADED BY AHMAD T JUNDI



1070 Kinematics of Rigid Bodies

d. Acceleration of Tip of Boom. Recall that v 5 v 3 r. Then, 

from Fig. 2,

 a 5 α 3 r 1 v 3 (v 3 r) 5 α 3 r 1 v 3 v

 a 5 † i j k
0.15 0 0

10.39 6 0

† 1 † i j k
0 0.30 0.50

23 5.20 23.12

†
 5 0.90k 2 0.94i 2 2.60i 2 1.50j 1 0.90k

 a 5 2(3.54 m/s2)i 2 (1.50 m/s2)j 1 (1.80 m/s2)k b

REFLECT and THINK: The base of the cab acts as the fixed point of 

the motion. Even though both components of angular velocity are constant, 

there is an angular acceleration due to the change in direction of the 

angular velocity v2. The angular velocity vector v2 changes due to the 

rotation of the cab, v1.

P

α = 0.15i
X

Y

Z

O

ω1 = 0.30j

ω2 = 0.50k

10.39 m

6 m

Fig. 2 Angular velocities and 
accelerations of the boom.

Sample Problem 15.22

The rod AB has a length of 7 in. and is attached to the disk by a ball-and-

socket connection and to the collar B by a clevis. The disk rotates in the 

yz plane at a constant rate of v1 5 12 rad/s, while the collar is free to 

slide along the horizontal rod CD. For the position θ 5 0, determine 

(a) the velocity of the collar, (b) the angular velocity of the rod.

STRATEGY: Use the velocity and acceleration kinematic equations to 

relate the velocities of points A and B.

MODELING and ANALYSIS: 

a. Velocity of Collar. Since point A is attached to the disk and since 

collar B moves in a direction parallel to the x axis, you have (Fig. 1)

vA 5 v1 3 rA 5 12i 3 2k 5 224j   vB 5 vBi

Denoting the angular velocity of the rod by v, you obtain

 vB 5 vA 1 vB/A 5 vA 1 v 3 rB/A

 vBi 5 224j 1 † i j k
vx vy vz

6 3 22

†

vBi 5 224j 1 (22vy 2 3vz)i 1 (6vz 1 2vx)j 1 (3vx 2 6vy)k

Equating the coefficients of the unit vectors, you get

 vB 5 22vy 23vz (1)
 24 5 2vx  16vz (2)
 0 5 3vx 26vy  (3)

A

B DC

ω1

x

y

z

2 in. 3 in.

θ

ω1 = ω1i

6 in.

vB

vA

ω1 = 12 i
rA = 2k
rB = 6i + 3j

rB/A = 6i + 3j – 2k

A

B

x

y

z

2 in.

3 in.

O

Fig. 1 Angular velocity of the 
disk and the direction of the 
velocities of A and B.
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*15.6 Motion of a Rigid Body in Space 1071

You have three equations and four unknowns in these equations. 

Fortunately, multiplying Eqs. (1), (2), (3), respectively, by 6, 3, 22 and 

adding gives you

6vB 1 72 5 0   vB 5 212   vB 5 2(12 in./s)i b

b. Angular Velocity of Rod AB. Note that you cannot determine 

the angular velocity from Eqs. (1), (2), and (3) because the determinant 

formed by the coefficients of vx, vy, and vz is zero. You must therefore 

obtain an additional equation by considering the constraint imposed by 

the clevis at B.
 The collar–clevis connection at B permits rotation of AB about rod 

CD and also about an axis perpendicular to the plane containing AB and 

CD. It prevents rotation of AB about the axis EB, which is perpendicular 

to CD and lies in the plane containing AB and CD (Fig. 2). Thus, the 

projection of v on rE/B must be zero, and you have

 v ? rE/B 5 0

(vxi 1 vyj 1 vzk) ? (23j 1 2k) 5 0

 23vy 1 2vz 5 0 (4)

Solving Eqs. (1) through (4) simultaneously, you obtain

vB 5 212  vx 5 3.69  vy 5 1.846  vz 5 2.77

v 5 (3.69 rad/s)i 1 (1.846 rad/s)j 1 (2.77 rad/s)k b

REFLECT and THINK: Note that the direction of EB is that of the vector 

triple product

rB/C 3 (rB/C 3 rB/A)

so you could write

v ? [rB/C 3 (rB/C 3 rB/A)] 5 0

This formulation would be particularly useful if the rod CD were not in 

a convenient direction.

rE/B = –3j + 2k

A

B

E

DC

x

y

z

2 in.

3 in.

O

Fig. 2 The collar-clevis prevents 
rotation about EB.
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10721072

In this section, you started the study of the kinematics of rigid bodies in three 
dimensions. You first studied the motion of a rigid body about a fixed point and 

then the general motion of a rigid body.

A. Motion of a rigid body about a fixed point. To analyze the motion of a 

point B of a body rotating about a fixed point O, you may have to take some or all 

of the following steps.

1. Determine the position vector r connecting the fixed point O to point B.

2. Determine the angular velocity v of the body with respect to a fixed frame of 

reference. You can often obtain the angular velocity v by adding two component 

angular velocities v1 and v2 [Sample Prob. 15.21].

3. Compute the velocity of B from the equation

 v 5 v 3 r (15.37)

Your computation is usually easier if you express the vector product as a 

determinant.

4. Determine the angular acceleration α of the body. The angular acceleration α 

represents the rate of change (v
.

)OXYZ of the vector v with respect to a fixed frame 

of reference OXYZ and reflects both a change in magnitude and a change in direction 

of the angular velocity. However, when computing α, you may find it convenient to 

first compute the rate of change (v
.

)Oxyz of v with respect to a rotating frame of 

reference Oxyz of your choice and use Eq. (15.31). You have

α 5 (v? )OXYZ 5 (v? )Oxyz 1 V 3 v

where V is the angular velocity of the rotating frame Oxyz [Sample Prob. 15.21].

5. Compute the acceleration of B by using the equation

 a 5 α 3 r 1 v 3 (v 3 r) (15.38)

Note that the vector product (v 3 r) represents the velocity of point B and was 

computed in Step 3. Also, the computation of the first vector product in Eq. (15.38) 

is often simpler if you express this product in determinant form. Remember that, as 

was the case with the plane motion of a rigid body, the instantaneous axis of rotation 

cannot be used to determine accelerat ions.

SOLVING PROBLEMS 
ON YOUR OWN
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1073 1073

B. General motion of a rigid body. The general motion of a rigid body may be 

considered as the sum of a translation and a rotation. Keep the following in mind:

a. In the translation part of the motion, all of the points of the body have 

the same velocity vA and the same acceleration aA as point A of the body that has 

been selected as the reference point.

b. In the rotation part of the motion, the same reference point A is treated 

as if it were a fixed point.

1. To determine the velocity of a point B of the rigid body when you know the 

velocity vA of the reference point A and the angular velocity v of the body, you simply 

add vA to the velocity vB/A 5 v 3 rB/A of B in its rotation about A:

 vB 5 vA 1 v 3 rB/A (15.43)

As indicated earlier, the computation of the vector product is usually simpler if you 

express this product in determinant form.

You can also use Eq. (15.43) to determine the magnitude of vB when its direction is 

known, even if v is not known. Although the corresponding three scalar equations 

are linearly dependent and the components of v are indeterminate, you can eliminate 

these components and find vA by using an appropriate linear combination of the three 

equations [Sample Prob. 15.22, part (a)]. Alternatively, you can assign an arbitrary 

value to one of the components of v and solve the equations for vA. However, you 

must seek an additional equation in order to determine the true values of the components 

of v [Sample Prob. 15.22, part (b)].

2. To determine the acceleration of a point B of the rigid body when you know 

the acceleration aA of the reference point A and the angular acceleration α of the body, 

you simply add aA to the acceleration of B in its rotation about A, as expressed by 

Eq. (15.38):

 aB 5 aA 1 α 3 rB/A 1 v 3 (v 3 rB/A) (15.44)

Note that the vector product (v 3 rB/A) represents the velocity vB/A of B relative to A 

and already may have been computed as part of your calculation of vB.

You can also use the three scalar equations associated with Eq. (15.44) to determine 

the magnitude of aB when its direction is known, even if v and α are not known. 

Although the components of v and α are indeterminate, you can assign arbitrary 

values to one of the components of v and to one of the components of α and solve 

the equations for aB.
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END-OF-SECTION PROBLEMS

 15.184 The bowling ball shown rolls without slipping on the horizontal 

xz plane with an angular velocity v 5 vxi 1 vy j 1 vzk. Knowing 

that vA 5 (4.8 m/s)i 2 (4.8 m/s)j 1 (3.6 m/s)k and vD 5 (9.6 m/s)i
1 (7.2 m/s)k, determine (a) the angular velocity of the bowling ball, 

(b) the velocity of its center C.

 15.185 The bowling ball shown rolls without slipping on the horizontal 

xz plane with an angular velocity v 5 vxi 1 vy j 1 vzk. Knowing 

that vB 5 (3.6 m/s)i 2 (4.8 m/s)j 1 (4.8 m/s)k and vD 5 (7.2 m/s)i
1 (9.6 m/s)k, determine (a) the angular velocity of the bowling ball, 

(b) the velocity of its center C.

15.186 Plate ABD and rod OB are rigidly connected and rotate about the 

ball-and-socket joint O with an angular velocity v 5 vxi 1 vy j 1
vzk. Knowing that vA 5 (80 mm/s)i 1 (360 mm/s)j 1 (vA)zk and 

vx 5 1.5 rad/s, determine (a) the angular velocity of the assembly, 

(b) the velocity of point D.

O

y

A

B

D

160 mm
160 mm

120 mm
80 mm

80 mm

z

x

Fig. P15.186

 15.187 At the instant considered, the radar antenna shown rotates about the 

origin of coordinates with an angular velocity v 5 vxi 1 vy j 1 vzk. 

Knowing that (vA)y 5 15 in./s, (vB)y 5 9 in./s, and (vB)z 5 18 in./s, 

determine (a) the angular velocity of the antenna, (b) the velocity of 

point A.

 15.188 The rotor of an electric motor rotates at the constant rate 

v1 5 1800 rpm. Determine the angular acceleration of the rotor as 

the motor is rotated about the y axis with a constant angular velocity 

v2 of 6 rpm counterclockwise when viewed from the positive y axis.

Problems

x

y

z

A

B

O

12 in.

10 in.

10 in.

Fig. P15.187

y

D

C

B A

109 mm

O
z x

Fig. P15.184 and P15.185

y

z

x

ω2

ω1

Fig. P15.188
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 15.189 The disk of a portable sander rotates at the constant rate 

v1 5 4400 rpm as shown. Determine the angular acceleration of 

the disk as a worker rotates the sander about the z axis with an 

angular velocity of 0.5 rad/s and an angular acceleration of 2.5 rad/s2, 

both clockwise when viewed from the positive z axis.

ω1

z

x

y

Fig. P15.189

 15.190 A flight simulator is used to train pilots on how to recognize spatial 

disorientation. It has four degrees of freedom, and can rotate around 

a planetary axis as well as in yaw, pitch, and roll. Knowing that the 

simulator is rotating around the planetary axis with a constant 

angular velocity of 20 rpm counterclockwise as seen from above, 

determine the angular acceleration of the cab if (a) the cab has a 

constant pitch angular velocity of 13k rad/s, (b) the cab has a 

constant roll angular velocity of 24i rad/s.

Planetary
axis

O

Yaw

Pitch
Roll

z

x

y

Fig. P15.190

15.191 In the system shown, disk A is free to rotate about the horizontal rod 

OA. Assuming that disk B is stationary (v2 5 0), and that shaft OC
rotates with a constant angular velocity v1, determine (a) the angular 

velocity of disk A, (b) the angular acceleration of disk A.

 15.192 In the system shown, disk A is free to rotate about the horizontal 

rod OA. Assuming that shaft OC and disk B rotate with constant 

angular velocities v1 and v2, respectively, both counterclockwise, 

determine (a) the angular velocity of disk A, (b) the angular accel-

eration of disk A.

ω2

y

C

R
z x

ω1

B

O

r

A

Fig. P15.191 and P15.192
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15.193 The L-shaped arm BCD rotates about the z axis with a constant angu-

lar velocity v1 5 5 rad/s. Knowing that the 150-mm-radius disk rotates 

about BC with a constant angular velocity v2 5 4 rad/s, determine 

(a) the velocity of point A, (b) the acceleration of point A.

 15.194 A gun barrel of length OP 5 4 m is mounted on a turret as shown. 

To keep the gun aimed at a moving target, the azimuth angle β is 

being increased at the rate dβ/dt 5 308/s and the elevation angle γ

is being increased at the rate dγ/dt 5 108/s. For the position β 5 908

and γ 5 308, determine (a) the angular velocity of the barrel, (b) the 

angular acceleration of the barrel, (c) the velocity and acceleration 

of point P.

x

y
P

γ

O

β

z

Fig. P15.194

 15.195 A 3-in.-radius disk spins at the constant rate v2 5 4 rad/s about an 

axis held by a housing attached to a horizontal rod that rotates at 

the constant rate v1 5 5 rad/s. For the position shown, determine 

(a) the angular acceleration of the disk, (b) the acceleration of point 

P on the rim of the disk if θ 5 0, (c) the acceleration of point P on 

the rim of the disk if θ 5 90°.

3 in.

θ

x

y

z

Pω1

ω2

Fig. P15.195 and P15.196

 15.196 A 3-in.-radius disk spins at the constant rate v2 5 4 rad/s about an 

axis held by a housing attached to a horizontal rod that rotates at 

the constant rate v1 5 5 rad/s. Knowing that θ 5 30°, determine 

the acceleration of point P on the rim of the disk.

120 mm

150 mm

A

D

C

x

B

y

z

ω2

ω1

Fig. P15.193
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 15.197 The cone shown rolls on the zx plane with its apex at the origin of 

coordinates. Denoting by v1 the constant angular velocity of the axis 

OB of the cone about the y axis, determine (a) the rate of spin of 

the cone about the axis OB, (b) the total angular velocity of the cone, 

(c) the angular acceleration of the cone.

 15.198 At the instant shown, the robotic arm ABC is being rotated simul-

taneously at the constant rate v1 5 0.15 rad/s about the y axis, and 

at the constant rate v2 5 0.25 rad/s about the z axis. Knowing that 

the length of arm ABC is 1 m, determine (a) the angular acceleration 

of the arm, (b) the velocity of point C, (c) the acceleration of point C.

35°

y

z
x

B

C

ω1

ω2

A

Fig. P15.198

 15.199 In the planetary gear system shown, gears A and B are rigidly con-

nected to each other and rotate as a unit about the inclined shaft. 

Gears C and D rotate with constant angular velocities of 30 rad/s and 

20 rad/s, respectively (both counterclockwise when viewed from the 

right). Choosing the x axis to the right, the y axis upward, and the 

z axis pointing out of the plane of the figure, determine (a) the common 

angular velocity of gears A and B, (b) the angular velocity of shaft FH, 
which is rigidly attached to the inclined shaft.

C
B

F D G H

A

1

1
2

2

260 mm

80 mm

E

80 mm

50 mm

Fig. P15.199

 15.200 In Prob. 15.199, determine (a) the common angular acceleration of 

gears A and B, (b) the acceleration of the tooth of gear A that is in 

contact with gear C at point 1.

ω1 β

β

y

O

C

z

x
l

A

B

Fig. P15.197
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15.201 Several rods are brazed together to form the robotic guide arm shown 

that is attached to a ball-and-socket joint at O. Rod OA slides in a 

straight inclined slot while rod OB slides in a slot parallel to the 

z axis. Knowing that at the instant shown vB 5 (9 in./s)k, determine 

(a) the angular velocity of the guide arm, (b) the velocity of point A, 

(c) the velocity of point C.

B
5 in.

12 in.

4 in.2 in.

10 in.

E

C

D

O

A

y

x

z

2
1

Fig. P15.201

 15.202 In Prob. 15.201, the speed of point B is known to be constant. For 

the position shown, determine (a) the angular acceleration of the 

guide arm, (b) the acceleration of point C.

 15.203 Rod AB of length 25 in. is connected by ball-and-socket joints to 

collars A and B, which slide along the two rods shown. Knowing that 

collar B moves toward point E at a constant speed of 20 in./s, deter-

mine the velocity of collar A as collar B passes through point D.

 15.204 Rod AB has a length of 13 in. and is connected by ball-and-socket 

joints to collars A and B that slide along the two rods shown. Know-

ing that collar B moves toward point D at a constant speed of 36 in./s, 

determine the velocity of collar A when b 5 4 in.

y

D

A

x

b

Bz

7.8 in.

c

Fig. P15.204

C

B

O

D

E

A

y

z

x

9 in.

12 in. 20 in.

20 in.

Fig. P15.203
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15.205 Rod BC and BD are each 840 mm long and are connected by ball-

and-socket joints to collars that may slide on the fixed rods shown. 

Knowing that collar B moves toward A at a constant speed of 

390 mm/s, determine the velocity of collar C for the position shown.

C

B

A

D 320 mm

200 mm

x

y

z

480 mm
320 mm

Fig. P15.205

 15.206 Rod AB is connected by ball-and-socket joints to collar A
and to the 16-in.-diameter disk C. Knowing that disk C rotates 

counterclockwise at the constant rate v0 5 3 rad/s in the zx plane, 

determine the velocity of collar A for the position shown.

 15.207 Rod AB of length 29 in. is connected by ball-and-socket joints to 

the rotating crank BC and to the collar A. Crank BC is of length 

8 in. and rotates in the horizontal xz plane at the constant rate 

v0 5 10 rad/s. At the instant shown, when crank BC is parallel to 

the z axis, determine the velocity of collar A.

ω0

O

A

B

C

z x

y

12 in.

8 in.

8 in.

21 in.

Fig. P15.207

C

B

A

y

z

x

20 in.

25 in.

8 in.ω0

Fig. P15.206
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 15.208 Rod AB of length 300 mm is connected by ball-and-socket joints 

to collars A and B, which slide along the two rods shown. 

Knowing that collar B moves toward point D at a constant speed 

of 50 mm/s, determine the velocity of collar A when c 5 80 mm.

 15.209 Rod AB of length 300 mm is connected by ball-and-socket joints 

to collars A and B, which slide along the two rods shown. 

Knowing that collar B moves toward point D at a constant speed 

of 50 mm/s, determine the velocity of collar A when c 5 120 mm.

 15.210 Two shafts AC and EG, which lie in the vertical yz plane, are connected 

by a universal joint at D. Shaft AC rotates with a constant angular 

velocity v1 as shown. At a time when the arm of the crosspiece attached 

to shaft AC is vertical, determine the angular velocity of shaft EG.

D

y

x
25�

5 in.

ω2

4 in.

3 in.

B

C

E

G

A

z

ω1

Fig. P15.210

 15.211 Solve Prob. 15.210, assuming that the arm of the crosspiece attached 

to shaft AC is horizontal.

 15.212 Rod BC has a length of 42 in. and is connected by a ball-and-socket 

joint to collar B and by a clevis connection to collar C. Knowing 

that collar B moves toward A at a constant speed of 19.5 in./s, 

determine at the instant shown (a) the angular velocity of the rod, 

(b) the velocity of collar C.

10 in.

32 in.

24 in.

B

A

C

y

z
x

Fig. P15.212

O

c
C

D

B

A

y

z

x

90 mm

180 mm

Fig. P15.208 and P15.209
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 15.213 Rod AB has a length of 275 mm and is connected by a ball-and-socket 

joint to collar A and by a clevis connection to collar B. Knowing that 

collar B moves down at a constant speed of 1.35 m/s, determine at 

the instant shown (a) the angular velocity of the rod, (b) the velocity 

of collar A.

A

O
B

x

y

z

150 mm

50 mm

Fig. P15.213

 15.214 For the mechanism of the Prob.15.204, determine the acceleration of 

collar A.

15.215 In Prob. 15.205, determine the acceleration of collar C.

 15.216 In Prob. 15.206, determine the acceleration of collar A.

 15.217 In Prob. 15.207, determine the acceleration of collar A.

 15.218 In Prob. 15.208, determine the acceleration of collar A.

 15.219 In Prob. 15.209, determine the acceleration of collar A.

bee87342_ch15_977-1106.indd   1081bee87342_ch15_977-1106.indd   1081 11/26/14   4:49 PM11/26/14   4:49 PM

UPLOADED BY AHMAD T JUNDI



1082 Kinematics of Rigid Bodies

*15.7  MOTION RELATIVE TO 
A MOVING REFERENCE 
FRAME

In this final section of the chapter, we describe motion relative to a moving 

reference frame—either rotating or in general motion. We will use these 

results in Chapter 18 when we discuss the kinetics of rigid bodies in three 

dimensions.

15.7A  Three-Dimensional Motion 
of a Particle Relative to a 
Rotating Frame

We saw in Sec. 15.5A that given a vector function Q(t) and two frames 

of reference centered at O—a fixed frame OXYZ and a rotating frame 

Oxyz—the rates of change of Q with respect to the two frames satisfy the 

relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

We had assumed at the time that the frame Oxyz was constrained to rotate 

about a fixed axis OA. However, the derivation given in Sec. 15.5A 

remains valid when the frame Oxyz is constrained to have only a fixed 

point O. Under this more general assumption, the axis OA represents the 

instantaneous axis of rotation of the frame Oxyz (Sec. 15.6A) and the 

vector V represents its angular velocity at the instant considered 

(Fig. 15.36).

Let us now consider the three-dimensional motion of a particle P
relative to a rotating frame Oxyz constrained to have a fixed origin O. Let 

r be the position vector of P at a given instant, and let V be the angular 

velocity of the frame Oxyz with respect to the fixed frame OXYZ at the 

same instant (Fig. 15.37). The derivations given in Sec. 15.5B for the 

two-dimensional motion of a particle can be readily extended to the three-

dimensional case. Then we can express the absolute velocity vP of P
(i.e., its velocity with respect to the fixed frame OXYZ) as

vP 5 V 3 r 1 (ṙ)Oxyz (15.45)

where 1r? 2Oxyz is the relative velocity of point P with respect to the rotating 

frame. Sometimes this is also written as vrel. Denoting the rotating frame 

Oxyz by ^, we can write this relation in the alternative form

vP 5 vP9 1 vP/^ (15.46)

where vP 5 absolute velocity of particle P

 vP9 5 velocity of point P9 of moving frame ^ coinciding with P

vP/ ̂  5 velocity of P relative to moving frame ^

vP 5 V 3 r 1 (ṙ)Oxyz

vP 5 vP9 1 vP/^

A
Y

Z

O

ΩΩ
Q

j
i

k

X

z

x

y

Fig. 15.36 Reference frame Oxyz rotating 
about an instantaneous axis in fixed frame 
OXYZ with angular velocity V.

Y

Z

O

ΩΩ P

r

X

z

x

y

Fig. 15.37 A particle P moving relative to 
the rotating frame.
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*15.7 Motion Relative to a Moving Reference Frame  1083

The absolute acceleration aP of P can be expressed as

aP 5 V̇  3 r 1 V 3 (V 3 r) 1 2V 3 (ṙ)Oxyz 1 (r̈)Oxyz (15.47)

An alternative form is

 aP 5 aP9 1 aP/^ 1 aC (15.48)

where aP 5 absolute acceleration of particle P

 aP9 5 acceleration of point P9 of moving frame ^ coinciding with P

 aP/ ̂  5 acceleration of P relative to moving frame ^

 aC 5 2V 3 (ṙ)Oxyz 5 2V 3 vP/ ̂  5 Coriolis acceleration

Note the difference between this equation and Eq. (15.21) of Sec.15.4A, 

and recall the discussion following Eq. (15.36) of Sec. 15.5B.

Also note that the Coriolis acceleration is perpendicular to the 

vectors V and vP/ ̂ . However, since these vectors are usually not 

perpendicular to each other, the magnitude of aC is in general not equal 

to 2VvP/ ̂  —as was the case for the plane motion of a particle. We further 

note that the Coriolis acceleration reduces to zero when the vectors V and 

vP/ ̂  are parallel or when either of them is zero.

Rotating frames of reference are particularly useful in the study of 

the three-dimensional motion of rigid bodies. If a rigid body has a fixed 

point O—as was the case for the crane of Sample Prob. 15.21—we can 

use a frame Oxyz that can rotate. Denoting the angular velocity of the 

frame Oxyz by V, we then resolve the angular velocity v of the body into 

the components V and vB/ ̂ , where the second component represents the 

angular velocity of the body relative to the frame Oxyz (see Sample 

Prob. 15.24). An appropriate choice of a rotating frame often leads to a 

simpler analysis of the motion of the rigid body than would be possible 

with axes of fixed orientation. This is especially true in the case of the 

general three-dimensional motion of a rigid body, i.e., when the rigid body 

under consideration has no fixed point (see Sample Prob. 15.25).

*15.7B  Frame of Reference in General 
Motion

Consider a fixed frame of reference OXYZ and a frame Axyz that moves 

in a known, but arbitrary, fashion with respect to OXYZ (Fig. 15.38). Let 

P be a particle moving in space. The position of P is defined at any instant 

by the vector rP in the fixed frame and by the vector rP/A in the moving 

frame. Denoting the position vector of A in the fixed frame by rA, we have

 rP 5 rA 1 rP/A (15.49)

We obtain the absolute velocity vP of the particle by differentiating, as

 vP 5  ṙP 5 ṙA 1 ṙP/A (15.50)

where the derivatives are defined with respect to the fixed frame OXYZ. 

The first term in the right-hand side of Eq. (15.50) thus represents the 

velocity vA of the origin A of the moving axes. Since the rate of change 

aPa 5 V̇ 3 r 1 V 3 (V 3 r) 1 2V 3 (ṙ)Oxyz 1 (r̈)Oxyz

aP 5 aP9 1 aP/^// 1 aC

Fig. 15.38 Reference frame Axyz moves 
arbitrarily relative to fixed frame OXYZ.

X

P

O

rP/A

rP

z

x

y

A

Y

Z

X'

Y'

Z'

rA
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1084 Kinematics of Rigid Bodies

of a vector is the same with respect to both a fixed frame and a frame in 

translation (See. 11.4B), we can regard the second term as the velocity 

vP/A of P relative to the frame AX9Y9Z9 with the same orientation as OXYZ
and the same origin as Axyz. We therefore have

vP 5 vA 1 vP/A (15.51)

However, we can obtain the velocity vP/A of P relative to AX9Y9Z9 from 

Eq. (15.45) by substituting rP/A for r in that equation. We get

 vP 5 vA 1 V 3 rP/A 1 (ṙP/A)Axyz (15.52)

where V is the angular velocity of the frame Axyz at the instant 

considered.

We obtain the absolute acceleration aP of the particle by differentiating 

Eq. (15.51), as

 aP 5  v̇P 5  v̇A 1  v̇P/A (15.53)

where the derivatives are defined with respect to either of the frames 

OXYZ or AX9Y9Z9. Thus, the first term in the right-hand side of Eq. (15.53) 

represents the acceleration aA of the origin A of the moving axes, and the 

second term represents the acceleration aP/A of P relative to the frame 

AX9Y9Z9. We can obtain this acceleration from Eq. (15.47) by substituting 

rP/A for r. We therefore have

aP 5 aA 1 V̇  3 rP/A 1 V 3 (V 3 rP/A)

 1 2V 3 (ṙP/A)Axyz 1 ( r̈P/A)Axyz (15.54)

Formulas (15.52) and (15.54) enable us to determine the velocity and 

acceleration of a given particle with respect to a fixed frame of reference 

when we know the motion of the particle with respect to a moving frame. 

These formulas become more significant, and considerably easier to 

remember, if we note that the sum of the first two terms in Eq. (15.52) 

represents the velocity of the point P9 of the moving frame that coincides 

with P at the instant considered and that the sum of the first three terms 

in Eq. (15.54) represents the acceleration of the same point. Thus, relations 

in Eqs. (15.46) and (15.48) of the preceding section are still valid in the 

case of a reference frame in general motion, and we have

 vP 5 vP9 1 vP/^ (15.46)

aP 5 aP9 1 aP/^ 1 aC (15.48)

where the various vectors involved were defined earlier.

Note that if the moving reference frame ^ (or Axyz) is in translation, 

the velocity and acceleration of the point P9 of the frame that coincides 

with P become, respectively, equal to the velocity and acceleration of the 

origin A of the frame. On the other hand, since the frame maintains a 

fixed orientation, ac is zero, and the relations in Eqs. (15.46) and (15.48) 

reduce, respectively, to the relations in Eqs. 11.32 and 11.33 derived in 

Sec. 11.4D.

vP 5 vAv 1 V 3 rP/PP A// 1 (ṙ(( P/A)Axyz

aP 5 aAa 1 V̇  3 rP/PP A// 1 V 3 (V 3 rP/PP A// )

1 2V 3 (ṙP/PP A// )Axyz 1 ( r̈P/PP A// )Axyz

vP 5 vP9 1 vP/PP ^

aP 5 aP9 1 aP/PP ^ 1 aC

Photo 15.9 The motion of air particles in a 
hurricane can be considered as motion 
relative to a frame of reference attached to 
the Earth and rotating with it.
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*15.7 Motion Relative to a Moving Reference Frame  1085

Sample Problem 15.23

The bent rod OAB rotates about the vertical axis OB. At the instant 

considered, its angular velocity and angular acceleration are, respectively, 

20 rad/s and 200 rad/s2, which are both clockwise when viewed from the 

positive Y axis. The collar D moves along the rod, and at the instant 

considered, OD 5 8 in. The velocity and acceleration of the collar relative 

to the rod are, respectively, 50 in./s and 600 in./s2, where both are upward. 

Determine (a) the velocity of the collar, (b) the acceleration of the collar.

STRATEGY: Use rigid-body kinematics with a rotating coordinate 

system since collar D is moving relative to the bent rod. Attach the rotating 

reference frame to the bent rod; then you can calculate its motion relative 

to the fixed frame and the collar’s motion relative to the rotating frame.

MODELING: 

Frames of Reference. The angular veloci ty and angular acceleration 

of the bent rod (and rotating frame Oxyz) relative to the fixed frame OXYZ 

are V 5 (220 rad/s)j and V̇ 5 (2200 rad/s2)j, respectively (Fig. 1). The 

position vector of D is

r 5 (8 in.)(sin 30°i 1 cos 30°j) 5 (4 in.)i 1 (6.93 in.)j

ANALYSIS: 

a. Velocity vD. Denote the point of the rod that coincides with D by 

D9 and the rotating frame Oxyz by ^. Then from Eq. (15.46) you have

 vD 5 vD9 1 vD/^ (1)

where

 vD9 5 V 3 r 5 (220 rad/s)j 3 [(4 in.)i 1 (6.93 in.)j] 5 (80 in./s)k
 vD/^ 5 (50 in./s)(sin 30°i 1 cos 30°j) 5 (25 in./s)i 1 (43.3 in./s)j

Substituting the values obtained for vD9 and vD/^ into Eq. (1) gives 

vD 5 (25 in./s)i 1 (43.3 in./s)j 1 (80 in./s)k b

b. Acceleration aD. From Eq. (15.48), you have

 aD 5 aD9 1 aD/^ 1 aC (2)

where

 aD9 5 V̇  3 r 1 V 3 (V 3 r)

 5 (2200 rad/s2)j 3 [(4 in.)i 1 (6.93 in.)j] 2 (20 rad/s)j 3 (80 in./s)k
 5 1(800 in./s2)k 2 (1600 in./s2)i
 aD/^ 5 (600 in./s2)(sin 30°i 1 cos 30°j) 5 (300 in./s2)i 1 (520 in./s2)j
 aC 5 2V 3 vD/^

 5 2(220 rad/s)j 3 [(25 in./s)i 1 (43.3 in./s)j] 5 (1000 in./s2)k

B

A

D

O X

Y

Z

8 in. 30°

x

z

D

D'
vD/

aD/

ΩΩ = (–20 rad/s)j

ΩΩ = (–200 rad/s2)j
.

B
A

y

O X

Y

Z

8 in.
30°

Fig. 1 The rotating 
coordinate system xyz is 
attached to rod OAB.

(continued)
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1086 Kinematics of Rigid Bodies

Substituting the values obtained for aD9, aD/^, and ac into Eq. (2), you 

obtain

aD 5 2(1300 in./s2)i 1 (520 in./s2)j 1 (1800 in./s2)k b

REFLECT and THINK: For this problem, the 800 in./s2 k in the aD9, 

term corresponds to a tangential acceleration due to V̇  , while the 

21600 in./s2i corresponds to a normal acceleration toward the axis of 

rotation. The Coriolis term reflects the fact that the vD/ ̂  term is changing 

its direction due to V. When solving three-dimensional problems like this, 

the vector algebra approach is clearly superior to the method discussed 

in Sample Problem 15.20, since it is very difficult to visualize the direction 

of the acceleration terms.

Sample Problem 15.24

The crane shown rotates with a constant angular velocity v1 of 0.30 rad/s. 

Simultaneously, the boom is being raised with a constant angular velocity 

v2 of 0.50 rad/s relative to the cab. Knowing that the length of the boom 

OP is l 5 12 m, determine (a) the velocity of the tip of the boom, (b) the 

acceleration of the tip of the boom.

STRATEGY: Use rigid body kinematics with a rotating coordinate 

system because v2 is given relative to the cab. Attach a rotating reference 

frame to the cab; then you can calculate its motion relative to the fixed 

frame and the motion of the crane tip relative to the rotating frame.

MODELING: 

Frames of Reference. The angular velocity of the cab (and rotating 

frame Oxyz) with respect to the fixed frame OXYZ is V 5 v1 5 (0.30 rad/s)j 
(Fig. 1). The angular velocity of the boom relative to the cab and the 

rotating frame Oxyz (or ^ for short) is vB/ ̂  5 v2 5 (0.50 rad/s)k.

ANALYSIS: 

a. Velocity vP. From Eq. (15.46), you have

 vP 5 vP9 1 vP/^ (1)

where vP9 is the velocity of the point P9 of the rotating frame that coincides 

with P as

vP9 5 V 3 r 5 (0.30 rad/s)j 3 [(10.39 m)i 1 (6 m)j] 5 2(3.12 m/s)k

and where vP/^ is the velocity of P relative to the rotating frame Oxyz. How-

ever, you know that the angular velocity of the boom relative to Oxyz is 

vB/ ̂  5 (0.50 rad/s)k. The velocity of its tip P relative to Oxyz is therefore

vP/^ 5 vB/^ 3 r 5 (0.50 rad/s)k 3 [(10.39 m)i 1 (6 m)j]
 5 2(3 m/s)i 1 (5.20 m/s)j

X

Y

Z

O

P

θ = 30°

ω1

ω2

Xx

Y

Z

O

Py

z

10.39 m

6 m

Ω = ω1 = 0.30j

ωB/     = ω2 = 0.50k

Fig. 1 The rotating coordinate system 
xyz is attached to the cab.
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*15.7 Motion Relative to a Moving Reference Frame  1087

Substituting the values obtained for vP9 and vB/ ̂  into Eq. (1), you find

vP 5 2(3 m/s)i 1 (5.20 m/s)j 2 (3.12 m/s)k b

b. Acceleration aP. From Eq. (15.48), you have

 aP 5 aP9 1 aP/^ 1 aC (2)

Since V and vB/ ̂  are both constant, you obtain

 aP9 5 V 3 (V 3 r) 5 (0.30 rad/s)j 3 (23.12 m/s)k 5 2(0.94 m/s2)i
 aP/^ 5 vB/^ 3 (vB/^ 3 r)

 5 (0.50 rad/s)k 3 [2(3 m/s)i 1 (5.20 m/s)j]
 5 2(1.50 m/s2)j 2 (2.60 m/s2)i
 aC 5 2V 3 vP/^

 5 2(0.30 rad/s)j 3 [2(3 m/s)i 1 (5.20 m/s)j] 5 (1.80 m/s2)k

Substituting for aP9, aP/^, and aC into Eq. (2), you find

aP 5 2(3.54 m/s2)i 2 (1.50 m/s2)j 1 (1.80 m/s2)k b

REFLECT and THINK: You also could have attached your reference 

frame to rotate with the boom: 

 VB 5 v^ 1 vB/ ̂  5 (0.30 rad/s)j 1 (0.50 rad/s)k

and used Eq. 15.52 for

vP 5 VB 3 r 5 [(0.30 rad/s)j 1 (0.5 rad/s)k] 3 [(10.39 m)i 1 (6 m)j]

 5 2(3.0 m/s)i 1 (5.20 m/s)j 2 (3.12 m/s)k

which is the same answer you found previously. Similarly, you could use 

Eq. 15.54 to solve for the acceleration. If the crane were moving forward, 

you would just add its translational velocity and acceleration to that due 

to the rotations.

Sample Problem 15.25

Disk D has a radius R and is pinned to end A of the arm OA. OA has a 

length L and is located in the plane of the disk. The arm rotates about a 

vertical axis through O at the constant rate v1, and the disk rotates about 

A at the constant rate v2. Determine (a) the velocity of point P located 

directly above A, (b) the acceleration of P, (c) the angular velocity and 

angular acceleration of the disk.

STRATEGY: Use rigid-body kinematics with a rotating coordinate 

system, since disk D is moving relative to the arm OA. 

MODELING: 

Frames of Reference. Attach a moving frame Axyz to arm OA. Its 

angular velocity with respect to the fixed frame OXYZ is therefore V 5 v1j 

(continued)

O

L

P
ω1

ω2R

Disk D

A
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1088 Kinematics of Rigid Bodies

(Fig. 1). The angular velocity of disk D relative to the moving frame Axyz 

(or ^ for short) is vD/^ 5 v2k. The position vector of P relative to O is 

r 5 L i 1 Rj, and its position vector relative to A is rP/A 5 Rj.

ANALYSIS: 

a. Velocity vP. Denote by P9 the point of the moving frame that 

coincides with P. Then from Eq. (15.46), you have

 vP 5 vP9 1 vP/^ (1)

where vP9 5 V 3 r 5 v1j 3 (Li 1 Rj) 5 2v1Lk

 vP/^ 5 vD/^ 3 rP/A 5 v2k 3 Rj 5 2v2Ri

Substituting the values obtained for vP9 and vD/^ into Eq. (1), you obtain

vP 5 2v2Ri 2 v1Lk b

b. Acceleration aP. From Eq. (15.48), you have

 aP 5 aP9 1 aP/^ 1 aC (2)

Since V and vD/^ are both constant, you obtain

 aP9 5 V 3 (V 3 r) 5 v1 j 3 (2v1Lk) 5 2v2
1Li

 aP/^ 5 vD/^ 3 (vD/^ 3 rP/A) 5 v2k 3 (2v2Ri) 5 2v2
2Rj

 aC 5 2V 3 vP/^ 5 2v1 j 3 (2v2Ri) 5 2v1v2Rk

Substituting these values into Eq. (2), you find

aP 5 2v
2
1Li 2 v2

2Rj 1 2v1v2Rk b

c. Angular Velocity and Angular Acceleration of Disk.

 v 5 V 1 vD/^ v 5 v1j 1 v2k b

Using Eq. (15.31) with V 5 v, you obtain

 α 5 (v
.

)OXYZ 5 (v
.

)Axyz 1 V 3 v
  5 0 1 v1j 3 (v1j 1 v2k)

α 5 v1v2i b

REFLECT and THINK: Knowing the absolute angular velocity of the 

disk is equal to v1 j 1 v2k, you could have determined the velocity of P 

by attaching the rotating axes to the disk and using Eq. 15.52,

vP 5 vA 1 VD 3 rP/A 1 vP/A 5 v1j 3 Li 1 (v1 j 1 v2k) 3 Rj 1 0

 5 2v1 Lk 2 v2Ri

which is the same answer we found earlier. Similarly,

aP 5 aA 1 V̇D 3 rP/A 1 VD 3 (VD 3 rP/A) 1 2VD 3 ṙP/A 1 r̈P/A

5 2v2
1Li 1 v1v2 i 3 Rj 1 (v1j 1 v2k) 3 [(v1j 1 v2k) 3 Rj] 1 0 1 0

 5 2v2
1Li 1 v1v2 Rk 1 (v1j 1 v2k) 3 (2v2Ri)

 5 2v2
1Li 2 v2

2Rj 1 2v1v2 Rk

which, again, is the same answer shown previously. 

y

z

Y

Z

P'
Ω = ω1j

ωD/    = ω2k

O

L

P

A

R

Xx

Fig. 1 The rotating coordinate system 
xyz is attached to arm OA at point A.
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1089 1089

In this section, we concluded our presentation of the kinematics of rigid bodies by 

showing you how to use an auxiliary frame of reference ^ to analyze the three-

dimensional motion of a rigid body. This auxiliary frame may be a rotating frame
with a fixed origin O or it may be a frame in general motion.

A. Using a rotating frame of reference. As you approach a problem involving the 

use of a rotating frame ^, you should take the following steps.

1. Select the rotating frame ^ that you wish to use and draw the corresponding 

coordinate axes x, y, and z from the fixed point O.

2. Determine the angular velocity V of the frame ^ with respect to a fixed frame 

OXYZ. In most cases, you will have selected a frame that is attached to some rotating 

element of the system; V is then the angular velocity of that element.

3. Designate as P9 the point of the rotating frame ^ that coincides with the 

point P of interest at the instant you are considering. Determine the velocity vP9 and 

the acceleration aP9 of point P9. Since P9 is part of ^ and has the same position vector 

r as P, you will find 

vP9 5 V 3 r  and  aP9 5 α 3 r 1 V 3 (V 3 r)

where α is the angular acceleration of ^. 

4. Determine the velocity and acceleration of point P with respect to the frame ^.

As you are trying to determine vP/^ and aP/^, you will find it useful to visualize the 

motion of P on frame ^ when the frame is not rotating. If P is a point of a rigid 

body B that has an angular velocity vB and an angular acceleration αB relative to ^ 

[Sample Prob. 15.24], you will find that

vP/^ 5 vB 3 r  and  aP/^ 5 αB 3 r 1 vB 3 (vB 3 r)

5. Determine the Coriolis acceleration. Considering the angular velocity V of 

frame ^ and the velocity vP/ ̂  of point P relative to that frame, which was computed 

in Step 4, you have

aC 5 2V 3 vP/^

6. The velocity and the acceleration of P with respect to the fixed frame OXYZ can 

now be obtained by adding the expressions you have determined:

 vP 5 vP9 1 vP/^ (15.46)
 aP 5 aP9 1 aP/^ 1 aC (15.48)

SOLVING PROBLEMS 
ON YOUR OWN

(continued)
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1090

B. Using a frame of reference in general motion. The steps that you will take differ 

only slightly from those listed under part A. They consist of the following:

1. Select the frame ^ that you wish to use and a reference point A in that frame 

from which you will draw the coordinate axes, x, y, and z, defining that frame. 

Consider the motion of the frame as the sum of a translation with A and a rotation 
about A.

2. Determine the velocity vA of point A and the angular velocity V of the frame. In 

most cases, you will have selected a frame that is attached to some element of the 

system; V is then the angular velocity of that element.

3. Designate as P9 the point of frame ^ that coincides with the point P of interest 

at the instant you are considering, and determine the velocity vP9 and the acceleration 

aP9 of that point. In some cases, you can do this by visualizing the motion of P if that 

point were prevented from moving with respect to ^ [Sample Prob. 15.25]. A more 

general approach is to recall that the motion of P9 is the sum of a translation with 

the reference point A and a rotation about A. You can obtain the velocity vP9 and the 

acceleration aP9 of P9, therefore, by adding vA and aA, respectively, to the expressions 

found in part A, Step 3, and replacing the position vector r by the vector rP/A drawn 

from A to P:

vP9 5 vA 1 V 3 rP/A    aP9 5 aA 1 α 3 rP/A 1 V 3 (V 3 rP/A)

4, 5, and 6 are the same as in part A of this summary, except that the vector r 

should again be replaced by rP/A. Thus, Eqs. (15.46) and (15.48) can still be used to 

obtain the velocity and the acceleration of P with respect to the fixed frame of 

reference OXYZ.

C. Alternative approach using a frame of reference in general motion. As shown 

in the sample problems, you can also use Eqs. (15.52) and (15.54) to determine the 

velocity and acceleration of point P, respectively.

 vP 5 vA 1 V 3 rP/A 1 (ṙP/A)Axyz (15.52)

 aP 5 aA 1 V̇  3 rP/A 1 V 3 (V 3 rP/A)

 1 2V 3 (ṙP/A)Axyz 1 ( r̈P/A)Axyz (15.54)

You first need to determine a reference point A and attach your rotating frame of 

reference at that point; generally this is attached to a specific part of the object under 

consideration (e.g., the cab or boom of a crane). Define the angular velocity of the 

frame as V and the angular acceleration of the frame as  V̇. The terms (ṙP/A)Axyz and 

( r̈P/A)Axyz represent the velocity and acceleration of point P relative to the rotating 

frame of reference Axyz.
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END-OF-SECTION PROBLEMS

 15.220 A flight simulator is used to train pilots on how to recognize spatial 

disorientation. It has four degrees of freedom and can rotate around 

a planetary axis as well as in yaw, pitch, and roll. The pilot is seated 

so that her head B is located at r 5 2i 1 1j ft with respect to the 

center of the cab A. Knowing that the cab is rotating about the plan-

etary axis with a constant angular velocity of 20 rpm counterclock-

wise as seen from above, and pitches with a constant angular velocity 

of 13k rad/s, determine (a) the velocity of the pilot’s head, (b) the 

angular acceleration of the cab, (c) the acceleration of the pilot’s head.

Planetary
axis

O

Yaw

Pitch
Roll

z

x

y

B

A

8 ft

Fig. P15.220 and P15.221

 15.221 A flight simulator is used to train pilots on how to recognize spatial 

disorientation. It has four degrees of freedom and can rotate around 

a planetary axis as well as in yaw, pitch, and roll. The pilot is seated 

so that her head B is located at r 5 2i 1 1j ft with respect to the 

center of the cab A. The cab is rotating about the planetary axis with 

an angular velocity of 20 rpm counterclockwise as seen from above 

and this is increasing by 1 rad/s2. Knowing that the cab rolls with a 

constant angular velocity of 24i rad/s, determine (a) the velocity of 

the pilot’s head, (b) the angular acceleration of the cab, (c) the accel-

eration of the pilot’s head.

 15.222 and 15.223 The rectangular plate shown rotates at the constant 

rate v2 5 12 rad/s with respect to arm AE, which itself rotates at 

the constant rate v1 5 9 rad/s about the Z axis. For the position 

shown, determine the velocity and acceleration of the point of the 

plate indicated.

 15.222 Corner B
 15.223 Corner C

Problems

A

C

D

B

E

X

Y

Z

90 mm

135 mm

135 mm

ω1

ω2

Fig. P15.222 and P15.223
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15.224 Rod AB is welded to the 0.3-m-radius plate that rotates at the 

constant rate v1 5 6 rad/s. Knowing that collar D moves toward 

end B of the rod at a constant speed u 5 1.3 m/s, determine, for 

the position shown, (a) the velocity of D, (b) the acceleration of D.

 15.225 The bent rod shown rotates at the constant rate of v1 5 5 rad/s and 

collar C moves toward point B at a constant relative speed of 

u 5 39 in./s. Knowing that collar C is halfway between points B and 

D at the instant shown, determine its velocity and acceleration.

A

X

B

20.8 in.

14.4 in.

u

Z

6 in.

D

E

C

Y

ω1

Fig. P15.225

 15.226 The bent pipe shown rotates at the constant rate v1 5 10 rad/s. 

Knowing that a ball bearing D moves in portion BC of the pipe 

toward end C at a constant relative speed u 5 2 ft/s, determine at 

the instant shown (a) the velocity of D, (b) the acceleration of D.

Fig. P15.226

Y

B

X

A

Z

D

u
C

8 in.

6 in.

12 in.ω1 

C

B
u

A

Y

X

0.2 m

0.25 m
0.3 m

D

ω1
Z

Fig. P15.224
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1093

 15.227 The circular plate shown rotates about its vertical diameter at the 

constant rate v1 5 10 rad/s. Knowing that in the position shown the 

disk lies in the XY plane and point D of strap CD moves upward at 

a constant relative speed u 5 1.5 m/s, determine (a) the velocity 

of D, (b) the acceleration of D.

 15.228 Manufactured items are spray-painted as they pass through the auto-

mated work station shown. Knowing that the bent pipe ACE rotates 

at the constant rate v1 5 0.4 rad/s and that at point D the paint moves 

through the pipe at a constant relative speed u 5 150 mm/s, deter-

mine, for the position shown, (a) the velocity of the paint at D, (b) the 

acceleration of the paint at D.

Y

E

F

X

A

Z

D

C

450 mm

250 mm

ω1 

u

608B

Fig. P15.228

 15.229 Solve Prob. 15.227, assuming that at the instant shown the angular 

velocity v1 of the plate is 10 rad/s and is decreasing at the rate of 

25 rad/s2, while the relative speed u of point D of strap CD is 

1.5 m/s and is decreasing at the rate of 3 m/s2. 

 15.230 Solve Prob. 15.225, assuming that at the instant shown the angular 

velocity v1 of the rod is 5 rad/s and is increasing at the rate of 

10 rad/s2 while the relative speed u of the collar C is 39 in./s and is 

decreasing at the rate of 260 in./s2.

 15.231 Using the method of Sec. 15.7A, solve Prob. 15.192.

 15.232 Using the method of Sec. 15.7A, solve Prob. 15.196.

 15.233 Using the method of Sec. 15.7A, solve Prob. 15.198.

 15.234 The 400-mm bar AB is made to rotate at the constant rate of 

v2 5 dθ/dt 5 8 rad/s with respect to the frame CD that rotates at 

the constant rate of v1 5 12 rad/s about the Y axis. Knowing that 

θ 5 60° at the instant shown, determine the velocity and acceleration 

of point A.

 15.235 The 400-mm bar AB is made to rotate at the rate v2 5 dθ/dt with 

respect to the frame CD that rotates at the rate v1 about the Y axis. 

At the instant shown, v1 5 12 rad/s, dv1/dt 5 216 rad/s2, 

v2 5 8 rad/s, dv2/dt 5 10 rad/s2, and θ 5 60°. Determine the velocity 

and acceleration of point A at this instant.

30°

ω1

B

A

C

D

Y

Z

200 mm
uu

X

Fig. P15.227

200 mm

Z

B

D

X

A

θ

C

Y

ω2

ω1

200 mm

Fig. P15.234 and P15.235
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15.236 The arm AB of length 16 ft is used to provide an elevated platform 

for construction workers. In the position shown, arm AB is being 

raised at the constant rate dθ/dt 5 0.25 rad/s; simultaneously, the 

unit is being rotated about the Y axis at the constant rate 

v1 5 0.15 rad/s. Knowing that θ 5 20°, determine the velocity and 

acceleration of point B.

 15.237 The remote manipulator system (RMS) shown is used to deploy pay-

loads from the cargo bay of space shuttles. At the instant shown, the 

whole RMS is rotating at the constant rate v1 5 0.03 rad/s about the 

axis AB. At the same time, portion BCD rotates as a rigid body at 

the constant rate v2 5 dβ/dt 5 0.04 rad/s about an axis through B par-

allel to the X axis. Knowing that β 5 308, determine (a) the angular 

acceleration of BCD, (b) the velocity of D, (c) the acceleration of D.

C

B

D

A

Y

Z
X

6.5 m

6.5 m

2.5 m

ω1

β

Fig. P15.237

 15.238 A disk with a radius of 120 mm rotates at the constant rate of 

v2 5 5 rad/s with respect to the arm AB that rotates at the constant 

rate of v1 5 3 rad/s. For the position shown, determine the velocity 

and acceleration of point C.

 15.239 The crane shown rotates at the constant rate v1 5 0.25 rad/s; simul-

taneously, the telescoping boom is being lowered at the constant rate 

v2 5 0.40 rad/s. Knowing that at the instant shown the length of 

the boom is 20 ft and is increasing at the constant rate u 5 1.5 ft/s, 

determine the velocity and acceleration of point B.

A

X

Y

Z

30°

B

u

ω1

ω2

Fig. P15.239

A

C

B

O

2.5 ft

θ

X

Y

Z

ω1

Fig. P15.236

A

C
B

D

X

Y

Z 140 mm

120 mm75 mm

ω1

ω2

Fig. P15.238
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15.240 The vertical plate shown is welded to arm EFG, and the entire unit 

rotates at the constant rate v1 5 1.6 rad/s about the Y axis. At the 

same time, a continuous link belt moves around the perimeter of the 

plate at a constant speed u 5 4.5 in./s. For the position shown, 

determine the acceleration of the link of the belt located (a) at 

point A, (b) at point B.

 15.241 The vertical plate shown is welded to arm EFG, and the entire unit 

rotates at the constant rate v1 5 1.6 rad/s about the Y axis. At the 

same time, a continuous link belt moves around the perimeter of the 

plate at a constant speed u 5 4.5 in./s. For the position shown, 

determine the acceleration of the link of the belt located (a) at 

point C, (b) at point D.

 15.242 A disk of 180-mm radius rotates at the constant rate v2 5 12 rad/s 

with respect to arm CD, which itself rotates at the constant rate 

v1 5 8 rad/s about the Y axis. Determine at the instant shown the 

velocity and acceleration of point A on the rim of the disk.

 15.243 A disk of 180-mm radius rotates at the constant rate v2 5 12 rad/s 

with respect to arm CD, which itself rotates at the constant 

rate v1 5 8 rad/s about the Y axis. Determine at the instant 

shown the velocity and acceleration of point B on the rim of 

the disk.

 15.244 A square plate of side 2r is welded to a vertical shaft that rotates 

with a constant angular velocity v1. At the same time, rod AB of 

length r rotates about the center of the plate with a constant angular 

velocity v2 with respect to the plate. For the position of the plate 

shown, determine the acceleration of end B of the rod if 

(a) θ 5 0, (b) θ 5 908, (c) θ 5 1808.

2r

2r

Z

X

Y

O

A

B 308

ω1

ω2

θ

Fig. P15.244

A

B

C

DE

F

XZ

Y

3 in.

3 in.
G

5 in.

10 in.

6 in.

6 in.

u

ω1

Fig. P15.240 and P15.241

A

B
D

C

XZ

Y 180 mm

360 mm

150 mm

ω1

ω2

Fig. P15.242 and P15.243
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 15.245 Two disks, each of 130-mm radius, are welded to the 500-mm rod CD. 

The rod-and-disks unit rotates at the constant rate v2 5 3 rad/s with 

respect to arm AB. Knowing that at the instant shown v1 5 4 rad/s, 

determine the velocity and acceleration of (a) point E, (b) point F.

C

G

E

H

130 mm

130 mm

250 mm
D

F
250 mm

Y

A

B

X
Z

ω1

ω2

Fig. P15.245

 15.246 In Prob. 15.245, determine the velocity and acceleration of

(a) point G, (b) point H.

 15.247 The position of the stylus tip A is controlled by the robot shown. In 

the position shown, the stylus moves at a constant speed u 5 180 mm/s 

relative to the solenoid BC. At the same time, arm CD rotates at the 

constant rate v2 5 1.6 rad/s with respect to component DEG. 

Knowing that the entire robot rotates about the X axis at the constant 

rate v1 5 1.2 rad/s, determine (a) the velocity of A, (b) the 

acceleration of A.

Y

Y

E

G X

A

Z

D

C250 mm

300 mm

300 mm

500 mm

600 mm

u B

ω2

ω1

Fig. P15.247
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This chapter was devoted to the study of the kinematics of rigid bodies.

Rigid Body in Translation
We first considered the translation of a rigid body [Sec. 15.1A] and observed 

that in such a motion all points of the body have the same velocity and the 
same acceleration at any given instant.

Rigid Body in Rotation About a Fixed Axis
We next considered the rotation of a rigid body about a fixed axis [Sec. 15.1B]. 

The position of the body is defined by the angle θ that the line BP, drawn 

from the axis of rotation to a point P of the body, forms with a fixed plane 

(Fig. 15.39). We found that the magnitude of the velocity of P is

 v 5
ds

dt
5 rθ

.
 sin ϕ (15.4)

where θ̇ is the time derivative of θ. We then expressed the velocity of P as

v 5
dr
dt

5 v 3 r (15.5)

where the vector

v 5 vk 5 θ̇k (15.6)

is directed along the fixed axis of rotation and represents the angular velocity 

of the body.

 Denoting the derivative dv/dt of the angular velocity by α, we expressed 

the acceleration of P as

 a 5 α 3 r 1 v 3 (v 3 r) (15.8)

Differentiating Eq. (15.6) and recalling that k is constant in magnitude and 

direction, we found that

α 5 αk 5 v
.
k 5  θ̈ k (15.9)

The vector α represents the angular acceleration of the body and is directed 

along the fixed axis of rotation [Sample Prob. 15.2].

Review and Summary

x

z

y

O

A'

A

B

P
f

r

q

Fig. 15.39
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Rotation of a Representative Slab:

Tangential and Normal Components
Next we considered the motion of a representative slab located in a plane 

perpendicular to the axis of rotation of the body (Fig. 15.40). Since the angular 

velocity is perpendicular to the slab, we expressed the velocity of a point P
of the slab as

v 5 vk 3 r (15.10)

where v is contained in the plane of the slab. Substituting v 5 vk and 

α 5 αk into Eq. (15.8), we found that we could resolve the acceleration of 

P into tangential and normal components (Fig. 15.41) respectively equal to

at 5 αk 3 r  at 5 rα

  an 5 2v2r     an 5 rv2 (15.119)

Angular Velocity and Angular Acceleration 
of a Rotating Rigid Body
Recalling Eqs. (15.6) and (15.9), we obtained the following expressions for the 

angular velocity and the angular acceleration of the rigid body [Sec. 15.1C]:

 v 5
dθ

dt
 (15.12)

 α 5
dv

dt
5

d2
θ

dt2
 (15.13)

or

 α 5 v 

dv

dθ
 (15.14)

We noted that these expressions are similar to those obtained in Chap. 11 for 

the rectilinear motion of a particle.

 Two particular cases of rotation are frequently encountered: uniform 
rotation and uniformly accelerated rotation. You can solve problems involving 

either of these motions by using equations similar to those used in Sec. 11.2 

for the uniform rectilinear motion and the uniformly accelerated rectilinear 

motion of a particle, but where x, v, and a are replaced by θ, v, and α, 

respectively [Sample Prob. 15.1].

Velocities in Plane Motion
We can consider the most general plane motion of a rigid body as the sum 
of a translation and a rotation [Sec. 15.2A]. For example, the body shown 

in Fig. 15.42 can be assumed to translate with point A, while simultaneously 

rotating about A. It follows [Sec. 15.2B] that the velocity of any point B of 

the rigid body can be expressed as

 vB 5 vA 1 vB/A (15.17)

where vA is the velocity of A and vB/A is the relative velocity of B with respect 

to A or, more precisely, with respect to axes x9y9 translating with A. Denoting 

the position vector of B relative to A by rB/A, we found that

 vB/A 5 vk 3 rB/A  vB/A 5 rv (15.18)

x

y

O

r
P

wk

v = wk × r

Fig. 15.40

x

y

O
ω = ωk

α = αk

a t = α k × r

a n = – ω2r

P

Fig. 15.41
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The fundamental equation (15.17) relating the absolute velocities of points A
and B and the relative velocity of B with respect to A was expressed in the 

form of a vector diagram, which can be used to solve problems involving the 

motion of various types of mechanisms [Sample Probs. 15.6 and 15.7].

Instantaneous Center of Rotation
We presented another approach to the solution of problems involving the 

velocities of the points of a rigid body in plane motion in Sec. 15.3 and used 

it in Sample Probs. 15.9 through 15.11. It is based on the determination of 

the instantaneous center of rotation C of the rigid body (Fig. 15.43).

Accelerations in Plane Motion
In Sec. 15.4A, we used the fact that any plane motion of a rigid body can be 

considered the sum of a translation of the body with a reference point A and 

a rotation about A. Knowing this, we can find the absolute acceleration of A 

by adding the relative acceleration of B with respect to A to the absolute 

acceleration of B. 

 aB 5 aA 1 aB/A (15.21)

where aB/A consisted of a normal component (aB/A)n with a magnitude rv2 

directed toward A and a tangential component (aB/A)t with a magnitude rα 

= +

Plane motion = Translation with A + Rotation about A

A

B

A

B B

vA

vA

vA

vB

vA
vB

x'

y'

wk

rB/A

vB/A

vB/A

vB = vA + vB/A

A
(fixed)

Fig. 15.42

C C

A

(a) (b)

A

B B

vAvA

vB
vB

Fig. 15.43
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perpendicular to the line AB (Fig. 15.44). We expressed the fundamental 

relation in Eq. (15.21) in terms of vector diagrams or vector equations and 

used them to determine the accelerations of given points of various mechanisms 

[Sample Probs. 15.12 through 15.16]. We noted that we cannot use the 

instantaneous center of rotation C considered in Sec. 15.3 for the determination 

of accelerations, since point C, in general, does not have zero acceleration.

Coordinates Expressed in Terms of a Parameter
In the case of certain mechanisms, it is possible to express the coordinates x
and y of all significant points of the mechanism by means of simple analytic 

expressions containing a single parameter. We can obtain the components of 

the absolute velocity and acceleration of a given point by differentiating twice 

with respect to the time t the coordinates x and y of that point [Sec. 15.4B].

Rate of Change of a Vector with Respect 
to a Rotating Frame
The rate of change of a vector is the same with respect to a fixed frame of 

reference and with respect to a frame in translation, but the rate of change of 

a vector with respect to a rotating frame is different. Therefore, in order to 

study the motion of a particle relative to a rotating frame, we first had to 

compare the rates of change of a general vector Q with respect to a fixed 

frame OXYZ and with respect to a frame Oxyz rotating with an angular velocity 

V [Sec. 15.5A] (Fig. 15.45). We obtained the fundamental relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

and we concluded that the rate of change of the vector Q with respect to the 

fixed frame OXYZ consists of two parts: The first part represents the rate of 

change of Q with respect to the rotating frame Oxyz; the second part, V 3 Q, 

is induced by the rotation of the frame Oxyz.

Plane Motion of a Particle Relative to a Rotating Frame
The next section [Sec. 15.5B] was devoted to the two-dimensional kinematic 

analysis of a particle P moving with respect to a frame ^ rotating with an 

angular velocity V about a fixed axis (Fig. 15.46). We found that the absolute 

velocity of P could be expressed as

 vP 5 vP9 1 vP/^ (15.33)

Plane motion = Translation with A + Rotation about A

A (fixed)A

B
aB

aB/A

aB/A
(aB/A)n

(aB/A)n

(aB/A)t (aB/A)t

aA

A

B
B

x'

y'

aA

aB

aA

aA

ak
wk

rB/A= +

Fig. 15.44

A

O

x

z

y

Z

X

Y

Q

j
i

k

ΩΩ

Fig. 15.45

x

y

X

Y

r

ΩΩ

P

O

P'

vP' = Ω × r
vP/    = (r)O xy

.

Fig. 15.46
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or

vP 5 vO 1 V 3 r 1 vrel (15.329)

where vP 5 absolute velocity of particle P

 vP9 5  vO 1 V 3 r 5 velocity of point P9 of moving frame ^ 

coinciding with P

 vP/^ 5 vrel 5 velocity of P relative to moving frame ^

We noted that we obtain the same expression for vP if the frame is in translation 

rather than in rotation. However, when the frame is in rotation, the expression 

for the acceleration of P contains an additional term ac called the Coriolis 
acceleration. We have

aP 5 aP9 1 aP/^ 1 aC (15.36)

or

aP 5 aO 1 V
? 3 r 2 V

2r 1 2V 3 vrel 1 arel

where aP 5 absolute acceleration of particle P
 aP9 5  aO 1 V

?  3 r 2 V2r 5 acceleration of point P9 of moving 

frame ^ coinciding with P
 aP/^ 5 arel 5 acceleration of P relative to moving frame ^

 aC 5  2V 3 (r? )Oxyz 5 2V 3 vP/^ 5 2V 3 vrel 5 Coriolis acceleration

Since V and vP/^ are perpendicular to each other in the case of plane motion, 

the Coriolis acceleration has a magnitude aC 5 2VvP/^ and points in the 

direction obtained by rotating the vector vP/^ through 90° in the sense of 

rotation of the moving frame. We can use formulas (15.33) and (15.36) to 

analyze the motion of mechanisms that contain parts sliding on each other 

[Sample Probs. 15.17 through 15.20].

Motion of a Rigid Body with a Fixed Point
In the last part of this chapter, we studied the kinematics of rigid bodies in 

three dimensions. We first considered the motion of a rigid body with a fixed 

point [Sec. 15.6A]. After proving that the most general displacement of a rigid 

body with a fixed point O is equivalent to a rotation of the body about an 

axis through O, we were able to define the angular velocity v and the 

instantaneous axis of rotation of the body at a given instant. The velocity 

of a point P of the body (Fig. 15.47) again could be expressed as

 v 5
dr
dt

5 v 3 r (15.37)

Differentiating this expression gave 

 a 5 α 3 r 1 v 3 (v 3 r) (15.38)

However, since the direction of v changes from one instant to the next, the 

angular acceleration α is, in general, not directed along the instantaneous axis 

of rotation [Sample Prob. 15.21].

O

P

r

ω

α

Fig. 15.47
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General Motion in Space
We sh owed in Sec. 15.6B that the most general motion of a rigid body in 
space is equivalent, at any given instant, to the sum of a translation and 
a rotation. Considering two particles A and B of the body, we found that

 vB 5 vA 1 vB/A (15.42)

where vB/A is the velocity of B relative to a frame AX9Y9Z9 attached to A and 

of fixed orientation (Fig. 15.48). Denoting by rB/A the position vector of B
relative to A, we have

vB 5 vA 1 v 3 rB/A (15.43)

where v is the angular velocity of the body at the instant considered [Sample 

Prob. 15.22]. We obtained the acceleration of B using a similar reasoning. We 

first wrote

aB 5 aA 1 aB/A

and, recalling Eq. (15.38),

 aB 5 aA 1 α 3 rB/A 1 v 3 (v 3 rB/A) (15.44)

Three-Dimensional Motion of a Particle Relative 
to a Rotating Frame
In the final section of this chapter, we considered the three-dimensional 

motion of a particle P relative to a frame Oxyz rotating with an angular 

velocity V with respect to a fixed frame OXYZ (Fig. 15.49). In Sec. 15.7A, 

we expressed the absolute velocity vP of P as

 vP 5 V 3 r 1 (r? )Oxyz  (15.45)

or alternatively as

 vP 5 vP9 1 vP/^ (15.46)

where vP 5 absolute velocity of particle P
 vP9 5 velocity of point P9 of moving frame ^ coinciding with P
 vP/^ 5 velocity of P relative to moving frame ^

The absolute acceleration aP of P can be expressed as

 aP 5 V
?  3 r 1 V 3 (V 3 r) 1 2V 3 (ṙ)Oxyz 1 (r̈)Oxyz (15.47)

or alternatively

 aP 5 aP9 1 aP/^ 1 aC (15.48)

X
O

A
B

ω

α

Y

Z

X'

Y'

Z'

rA

rB/A

Fig. 15.48

Fig. 15.49
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O
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z

y

Z

X

Y

P
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i
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k

Ω
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where aP 5 absolute acceleration of particle P
 aP9 5 acceleration of point P9 of moving frame ^ coinciding with P

aP/^ 5 acceleration of P relative to moving frame ^

aC 5  2V 3 (r? )Oxyz 5 2V 3 vP/^ 5 Coriolis acceleration

We noted that the magnitude ac of the Coriolis acceleration is not equal to 

2VvP/^ [Sample Prob. 15.23] except in the special case when V and vP/^ are 

perpendicular to each other. Additionally, we usually will have to use Eq. 15.31 

to determine the angular acceleration V
?  of the rotating frame.

Frame of Reference in General Motion
We also observed [Sec. 15.7B] that Eqs. (15.46) and (15.48) remain valid 

when the frame Axyz moves in a known—but arbitrary—fashion with respect 

to the fixed frame OXYZ (Fig. 15.50), provided that the motion of A is included 

in the terms vP9 and aP9 representing the absolute velocity and acceleration of 

the coinciding point P9. We obtained

 vP 5 vA 1 V 3 rP/A 1 (ṙP/A)Axyz (15.52)

and 

aP 5 aA 1  V
?  3 rP/A 1 V 3 (V 3 rP/A)

 1 2V 3 ( ṙP/A)Axyz 1 ( r̈P/A)Axyz (15.54)

 Rotating frames of reference are particularly useful in the study of the  

three-dimensional motion of rigid bodies. Indeed, in many cases, an appropri-

ate choice of the rotating frame leads to a simpler analysis of the motion of 

the rigid body than would be possible with axes of fixed orientation [Sample 

Probs. 15.24 and 15.25].

X

Y

Z

A

y

x

Z'

P

X'

Y'

z
O

rA

rP/A

rP

Fig. 15.50
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15.248 A wheel moves in the xy plane in such a way that the location of 

its center is given by the equations xO 5 12t3 and yO 5 R 5 2, 

where xO and yO are measured in feet and t is measured in seconds. 

The angular displacement of a radial line measured from a vertical 

reference line is θ 5 8t4, where θ is measured in radians. Determine 

the velocity of point P located on the horizontal diameter of the 

wheel at t 5 1 s.

 15.249 Two blocks and a pulley are connected by inextensible cords as 

shown. The relative velocity of block A with respect to block B is 

2.5 ft/s to the left at time t 5 0 and 1.25 ft/s to the left when 

t 5 0.25 s. Knowing that the angular acceleration of the pulley is 

constant, find (a) the relative acceleration of block A with respect to 

block B, (b) the distance block A moves relative to block B during 

the interval 0 # t # 0.25 s.

12 in. 8 in.

B

A

Fig. P15.249

 15.250 A baseball pitching machine is designed to deliver a baseball with 

a ball speed of 70 mph and a ball rotation of 300 rpm clockwise. 

Knowing that there is no slipping between the wheels and the base-

ball during the ball launch, determine the angular velocities of 

wheels A and B.

7 in.

3 in.

B

7 in.
A

Fig. P15.250

 15.251 Knowing that inner gear A is stationary and outer gear C starts from 

rest and has a constant angular acceleration of 4 rad/s2 clockwise, 

determine at t 5 5 s (a) the angular velocity of arm AB, 

(b) the angular velocity of gear B, (c) the acceleration of the point 

on gear B that is in contact with gear A.

Review Problems

xO = 12t3

R = 2 ft

x

P
O

y

θ = 8 t4

Fig. P15.248

80 mm

C

40 mm 80 mm

B
A

Fig. P15.251
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15.252 Knowing that at the instant shown bar AB has an angular velocity of 

10 rad/s clockwise and it is slowing down at a rate of 2 rad/s2, 

determine the angular accelerations of bar BD and bar DE.

A

B

D
E

0.2 m

0.2 m

0.25 m

0.6 m

Fig. P15.252

15.253 Knowing that at the instant shown rod AB has zero angular 

acceleration and an angular velocity of 15 rad/s counterclockwise, 

determine (a) the angular acceleration of arm DE, (b) the acceleration 

of point D.

 15.254 Rod AB is attached to a collar at A and is fitted with a wheel at B 

that has a radius r 5 15 mm. Knowing that when θ 5 60° the collar 

has a velocity of 250 mm/s upward and it is slowing down at a rate 

of 150 mm/s2, determine (a) the angular acceleration of rod AB, 
(b) the angular acceleration of the wheel.

200 mm

C

A

300 mm

q

B

r

Fig. P15.254

 15.255 Water flows through a curved pipe AB that rotates with a constant 

clockwise angular velocity of 90 rpm. If the velocity of the water 

relative to the pipe is 8 m/s, determine the total acceleration of a 

particle of water at point P.

A

DGB
E

3 in.

4 in. 5 in. 5 in. 4 in.

Fig. P15.253

B

P

A

0.5 m
ω

Fig. P15.255
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15.256 A disk of 0.15-m radius rotates at the constant rate v2 with respect 

to plate BC, which itself rotates at the constant rate v1 about the 

y axis. Knowing that v1 5 v2 5 3 rad/s, determine, for the position 

shown, the velocity and acceleration (a) of point D, (b) of point F.

0.15 m

ω2
D F

ω1B C

y

z

x

0.15 m

A

Fig. P15.256

 15.257 Two rods AE and BD pass through holes drilled into a hexagonal 

block. (The holes are drilled in different planes so that the rods will 

not touch each other.) Knowing that rod AE has an angular velocity 

of 20 rad/s clockwise and an angular acceleration of 4 rad/s2 coun-

terclockwise when θ 5 90°, determine (a) the relative velocity of the 

block with respect to each rod, (b) the relative acceleration 

of the block with respect to each rod. 

 15.258 Rod BC of length 24 in. is connected by ball-and-socket joints to a 

rotating arm AB and to a collar C that slides on the fixed rod DE. Know-

ing that the length of arm AB is 4 in. and that it rotates at the constant 

rate v1 5 10 rad/s, determine the velocity of collar C when θ 5 0.

 15.259 In the position shown the thin rod moves at a constant speed u 5 3 in./s 

out of the tube BC. At the same time, tube BC rotates at the constant 

rate v2 5 1.5 rad/s with respect to arm CD. Knowing that the entire 

assembly rotates about the X axis at the constant rate v1 5 1.2 rad/s, 

determine the velocity and acceleration of end A of the rod.

9 in.

6 in.

A

B

C

D
u

X

Y

Z
ω2

ω1

Fig. P15.259

A

B

E

D

H

100 mm

θ
60°

Fig. P15.257

y

θ
AB

C

E

D

x

z

4 in.

16 in.

4 in.

ω1

Fig. P15.258
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The blades of the wind turbines shown in this picture are 

subjected to large forces and moments during motion. In this 

chapter, you will learn to analyze the motion of a rigid body by 

considering the motion of its mass center, the motion relative to 

its mass center, and the external forces acting on it.

Plane Motion of Rigid Bodies: 
Forces and Accelerations

16
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1108 Plane Motion of Rigid Bodies: Forces and Accelerations

Introduction

 16.1 KINETICS OF A RIGID 
BODY

16.1A Equations of Motion for a 
Rigid Body

16.1B Angular Momentum of a Rigid 
Body in Plane Motion

16.1C Plane Motion of a Rigid Body
*16.1D A Remark on the Axioms of 

the Mechanics of Rigid Bodies
16.1E Solution of Problems Involving 

the Motion of a Rigid Body
16.1F Systems of Rigid Bodies

 16.2 CONSTRAINED PLANE 
MOTION

Objectives
• Discuss how the mass and mass moment of inertia 

affect the linear and angular accelerations of a rigid 
body.

• Model physical systems involving rigid bodies by 
drawing correct free-body diagrams and kinetic 
diagrams.

• Using rigid-body kinetics principles, determine 
whether a body slips or tips and if a wheel rolls 
with or without slip.

• Apply appropriate kinetic equations and kinematics 
relationships to solve kinetics problems for a rigid 
body undergoing translation, centroidal rotation, or 
general plane motion.

• Analyze systems of connected rigid bodies using 
appropriate kinetic and kinematic equations.

• Analyze constrained motion of rigid bodies, including 
fi xed-axis rotation and rolling disks and wheels.

Introduction
In this chapter and in Chaps. 17 and 18, you will study the kinetics of 
rigid bodies; i.e., the relations between the forces acting on a rigid body, 

the shape and mass of the body, and the motion produced. You studied 

similar relations in Chaps. 12 and 13, assuming then that you could con-

sider the body as a particle, with its mass concentrated in one point and 

all forces acting at that point. Now you have to take into account the shape 

of the body, as well as the exact location of the points of application of 

the forces. You also will be concerned not only with the motion of the 

body as a whole but with the motion of the body about its mass center.

Our approach will be to consider rigid bodies as made up of large 

numbers of particles and to use the results obtained in Chap. 14 for the motion 

of systems of particles. Specifically, we use two equations from Chap. 14: 

Eq. (14.16), ©F 5 ma, which relates the resultant of the external forces and 

the acceleration of the mass center G of the system of particles, and Eq. (14.23), 

oMG 5 H
.

G, which relates the resultant moment of the external forces and 

the angular momentum of the system of particles about G.

Except for Sec. 16.1A, which applies to the most general case of 

the motion of a rigid body, the results derived in this chapter are limited 

in two ways: (1) They are restricted to the plane motion of rigid bodies, 

i.e., where all motion occurs in a single two-dimensional reference plane. 

(2) The rigid bodies considered consist only of plane rigid bodies and of 

bodies that are symmetrical with respect to a reference plane (or more 

generally, bodies that have a principal centroidal axis of inertia perpen-

dicular to a reference plane). The study of the plane motion of nonsym-

metrical three-dimensional bodies and, more generally, the motion of rigid 

bodies in three-dimensional space will be postponed until Chap. 18.
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16.1 Kinetics of a Rigid Body 1109

In Sec. 16.1B, we define the angular momentum of a rigid body in 

plane motion and show that the rate of change of the angular momentum 

H
.

G about the mass center is equal to the product  Iα of the centroidal mass 

moment of inertia  I  and the angular acceleration α of the body. We then 

prove that the external forces acting on a rigid body are equivalent to a 

vector ma attached at the mass center and a couple of moment  Iα.

We also derive the principle of transmissibility using only the 

parallelogram law and Newton’s laws of motion, allowing us to remove this 

principle from the list of axioms (Statics, Sec. 1.2) required for the study 

of the statics and dynamics of rigid bodies. We then discuss the use of 

the free-body diagram and kinetic diagram in the solution of all problems 

involving the plane motion of rigid bodies.

We consider the plane motion of connected rigid bodies in Sec. 16.1F, 

which will prepare you to solve a variety of problems involving the 

translation, centroidal rotation, and unconstrained motion of rigid bodies. 

In the remaining part of this chapter, we present the solutions of problems 

involving noncentroidal rotation, rolling motion, and other partially 

constrained plane motions of rigid bodies.

16.1  KINETICS OF A RIGID 
BODY

As we saw in Chapter 15, we can generally consider the motion of a rigid 

body to be a combination of translation of the body and rotation about its 

mass center. We use this same idea to analyze the relationship between 

forces and moments acting on a rigid body and the body’s linear and 

angular acceleration.

16.1A  Equations of Motion for 
a Rigid Body

Consider a rigid body acted upon by several external forces F1, F2, F3, . . . 

(Fig. 16.1). We can assume that the body is made of a large number n of 

particles of mass Dmi (i 5 1, 2, . . . , n) and apply the results obtained in 

Chap. 14 for a system of particles (Fig. 16.2). Consider first the motion of 

the mass center G of the body with respect to the newtonian frame of 

reference Oxyz. From Eq. (14.16), we have

Translational equation 
of motion

 ©F 5 ma (16.1)

where m is the mass of the body and a is the acceleration of the mass 

center G. Turning now to the motion of the body relative to the centroidal 

frame of reference Gx9y9z9, from Eq. (14.23), we have

Rotational equation 
of motion

 oMG 5 H
.

G (16.2)

where H
.

G represents the rate of change of HG, which is the angular 

momentum about G of the system of particles forming the rigid body. 

©F 5 ma

oMG 5 H
.

G

O
x

y

z

F1

F2

F3

F4

G

Fig. 16.1 A rigid body acted on by several 
external forces.

O

G

x

y

z

x'

y'

z'

Δmi

r'i

Fig. 16.2 A particle of a rigid body in 
relation to the mass center G.
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1110 Plane Motion of Rigid Bodies: Forces and Accelerations

In the following discussion, we refer to HG simply as the angular momen-
tum of the rigid body about its mass center G. Together, Eqs. (16.1) 

and (16.2) express that 

The system of the external forces and moments is equipollent to the 
system consisting of the vector ma attached at G and the couple of 
moment H

.
G (Fig. 16.3).

As you will see in Chap. 18, Eqs. (16.1) and (16.2) apply to general 

three-dimensional motion of a rigid body. In the rest of this chapter, 

however, we limit our analysis to the plane motion of rigid bodies, i.e., 

to a motion in which each particle remains within a fixed reference plane. 

We also assume that the rigid bodies considered consist only of plane rigid 

bodies and of bodies that are symmetrical with respect to the plane of 

motion. Further study of the plane motion of nonsymmetrical three-

dimensional bodies and of the motion of rigid bodies in three-dimensional 

space will be postponed until Chap. 18.

F1

F2

F3

F4

HG
.

⎯am

=G G

Fig. 16.3 A system of external forces is equipollent to an 
inertial vector ma– and a couple of moment H

? 
G acting at 

the mass center.

Photo 16.1 The system of external forces acting on the man and wakeboard includes the 
weights, the tension in the tow rope, and the forces exerted by the water and the air.

Tension

Fair

Fwater

Weight
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16.1 Kinetics of a Rigid Body 1111

16.1B  Angular Momentum of a Rigid 
Body in Plane Motion

Consider a rigid body in plane motion. Assume that the body is made of 

a large number n of particles Pi with a mass Dmi. Then from Eq. (14.24) 

of Sec. 14.1D, we can compute the angular momentum HG of the rigid 

body about its mass center G by taking the moments about G of the 

momenta of the particles of the body with respect to either of the frames 

Oxy or Gx9y9 (Fig. 16.4). Choosing the second option gives 

 HG 5 On

i51

(r9i 3 v9i  Dmi) (16.3)

where r9i and v9iDmi denote, respectively, the position vector and the linear 

momentum of the particle Pi relative to the centroidal frame of reference 

Gx9y9. However, since the particle is part of the rigid body, we have 

v9i 5 v 3 r9i, where v is the angular velocity of the body at the instant 

considered. We have

HG 5 On

i51

[r9i 3 (v 3 r9i) Dmi]

Referring to Fig. 16.4, we easily verify that this expression represents a 

vector of the same direction as v (i.e., perpendicular to the body) and 

with a magnitude of v©r92
i  Dmi Recalling that the sum ©r92

i  Dmi repre-

sents the moment of inertia I  of the rigid body about a centroidal axis 

perpendicular to the body, we conclude that the angular momentum HG

of the rigid body about its mass center is

Angular momentum of a 
rigid body about G

HG 5 Iv (16.4)

Differentiating both sides of Eq. (16.4), we obtain

Rate of change of angular 
momentum about G

H
.

G 5 Iv
.

5 Iα  (16.5)

Thus, the rate of change of the angular momentum of the rigid body is 

represented by a vector in the same direction as α (i.e., perpendicular to 

the body) with a magnitude  Iα.

Keep in mind that the results obtained in this section have been 

derived for a rigid body in plane motion. As you will see in Chap. 18, 

they remain valid in the case of the plane motion of rigid bodies that are 

symmetrical with respect to a reference plane (or, more generally, bodies 

that have a principal centroidal axis of inertia perpendicular to a reference 

plane). However, they do not apply in the case of nonsymmetrical bodies 

or in the case of three-dimensional motion.

HG 5 IvII

H
.

G 5 Iv
.

5 Iα 

O

G

x

y

x'

y'

r'i

Pi

v'i Δmi

ω

Fig. 16.4 The angular momentum about G 
of a particle of a rigid body is r9i 3 v9i Dmi.

Photo 16.2 The hard disk and pick-up arm 
of a computer hard drive undergo fixed-axis 
rotation. 
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1112 Plane Motion of Rigid Bodies: Forces and Accelerations

16.1C  Plane Motion of a Rigid Body
Consider a rigid body with a mass m moving under the action of several 

external forces F1, F2, F3, . . . contained in the plane of the body (Fig. 16.5). 

Substituting H
.

G from Eq. (16.5) into Eq. (16.2) and writing the funda-

mental equations of motion from Eqs. (16.1) and (16.2) in scalar form, 

we have

 ©Fx 5 max  ©Fy 5 may  ©MG 5 Iα (16.6)

Equations (16.6) show that we can obtain the acceleration of the 

mass center G of the rigid body and its angular acceleration α once we 

have determined the resultant of the external forces acting on the body 

and their moment resultant about G. Given appropriate initial conditions, 

we can then obtain the coordinates x  and y of the mass center and the 

angular coordinate θ of the body by integration at any instant t. Thus, 

The motion of the rigid body is completely defined by the resultant 
force and resultant moment about G acting on the body.

Since the motion of a rigid body depends only upon the resultant 

and resultant moment of the external forces acting on it, it follows that 

two systems of forces that are equipollent (i.e., that have the same 

resultant and the same moment resultant) are also equivalent. That is, 

they have exactly the same effect on a given rigid body.

Consider in particular the system of external forces acting on a rigid 

body (Fig. 16.6a) and the system of inertial terms associated with the 

particles forming the rigid body (Fig. 16.6b). We showed in Sec. 14.1A 

that the two systems thus defined are equipollent. But since the particles 

we are considering now form a rigid body, it follows from the discussion 

above that the two systems are also equivalent. We can thus state that 

The external forces acting on a rigid body are equivalent to the 
inertial terms of the various particles forming the body. 

The fact that the system of external forces is equivalent to the system 

of inertial terms has been emphasized by the use of red equal signs in 

Fig. 16.6 and also in Fig. 16.7. Here, using results obtained earlier in this 

section, we replaced the inertial terms by a vector ma attached at the mass 

center G of the rigid body and the rotational inertial term  Iα. 

Let’s look at three examples of rigid-body plane motion.

Translation. In the case of a body in translation, the angular accelera-

tion of the body is equal to zero and its inertial terms reduce to the vector 

ma attached at G (Fig. 16.8). Thus, the resultant of the external forces 

acting on a rigid body in translation passes through the mass center of the 

body and is equal to ma.

Centroidal Rotation. When a rigid body, or more generally, a body 

symmetrical with respect to a reference plane, rotates about a fixed axis 

perpendicular to the reference plane and passing through its mass center 

G, we say that the body is in centroidal rotation. Since the acceleration 

a is identically equal to zero, the inertial terms of the body reduce to the 

couple  Iα (Fig. 16.9). Thus, the external forces acting on a body in 

centroidal rotation are equivalent to the rotational inertia  Iα.

©FxF 5 max ©FyFF 5 may ©MGMM 5 IαII

O

G

x

y

F1

F2

F3
F4

Fig. 16.5 A rigid body acted upon by several 
external forces in the plane of the body.

P

F1

F2

F3

F4

=

(a) (b)

(Δmi)a i

G G

Fig. 16.6 The external forces acting on the 
rigid body are equivalent to the inertial 
terms of the particles of the body.

G G

F1

F2

F3
F4

=

(a) (b)

⎯am

⎯Iα

Fig. 16.7 The external forces acting on the 
rigid body are also equivalent to a vector 
ma– attached to the mass center G and a 
rotational inertia I

–
α.
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16.1 Kinetics of a Rigid Body 1113

General Plane Motion. Comparing Fig. 16.7 with Figs. 16.8 and 

16.9, we observe that, from the point of view of kinetics, the most general 

plane motion of a rigid body symmetrical with respect to a reference plane 

can be replaced by the sum of a translation and a centroidal rotation. Note 

that this statement is more restrictive than the similar statement made 

earlier from the point of view of kinematics (Sec. 15.2A), since we now 

require that the mass center of the body be selected as the reference point.

Referring to Eqs. (16.6), we observe that the first two equations are 

identical with the equations of motion of a particle of mass m acted upon 

by the given forces F1, F2, F3, . . . . We thus check that

The mass center G of a rigid body in plane motion moves as if the 
entire mass of the body were concentrated at that point, and as if 
all the external forces act on it. 

Recall that we already obtained this result in Sec. 14.1C in the general 

case of a system of particles with the particles being not necessarily rigidly 

connected. We also note, as we did earlier, that the system of the external 

forces does not, in general, reduce to a single vector ma attached at G. 

Therefore, in the general case of the plane motion of a rigid body, the 
resultant of the external forces acting on the body does not pass 
through the mass center of the body.

Finally, note that the last of Eqs. (16.6) would still be valid if the 

rigid body, while subjected to the same applied forces, were constrained 

to rotate about a fixed axis through G. Thus, a rigid body in plane motion 
rotates about its mass center as if this point were fixed.

*16.1D  A Remark on the Axioms of 
the Mechanics of Rigid Bodies

The fact that two equipollent systems of external forces acting on a rigid 

body are also equivalent––i.e., have the same effect on that rigid body––

has already been established in Statics, Sec. 3.4B. However, there we 

derived it from the principle of transmissibility, which is one of the axioms 

used in our study of the statics of rigid bodies. We have not used this 

axiom in the present chapter because Newton’s second and third laws of 

motion make its use unnecessary in the study of the dynamics of rigid 

bodies.

In fact, we can now derive the principle of transmissibility from the 

other axioms used in the study of mechanics. This principle stated, without 

proof (Sec. 3.1B), that the conditions of equilibrium or motion of a rigid 

body remain unchanged if a force F acting at a given point of the rigid 

body is replaced by a force F9 of the same magnitude and same direction—

but acting at a different point—provided that the two forces have the same 

line of action. But since F and F9 have the same moment about any given 

point, it is clear that they form two equipollent systems of external forces. 

Thus, we may now prove, as a result of what we established in the 

preceding section, that F and F9 have the same effect on the rigid body 

(see Fig. 3.3 repeated here).

We can therefore remove the principle of transmissibility from the 

list of axioms required for the study of the mechanics of rigid bodies. 

These axioms are reduced to the parallelogram law of addition of vectors 

and to Newton’s laws of motion.

F1

F2

F3

F4

G =

(a) (b)

⎯Iα
G

Fig. 16.9 A rigid body in centroidal rotation 
has a rotational inertia I

–
α but no ma–.

F1

F2

F3
F4

G =

(a) (b)

⎯am

G

Fig. 16.8 A rigid body in translation has a 
vector ma– attached to the mass center G but 
no rotational inertia I

–
α.

Fig. 3.3 (repeated)

=

F

F'
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1114 Plane Motion of Rigid Bodies: Forces and Accelerations

16.1E  Solution of Problems Involving 
the Motion of a Rigid Body

We saw in Sec. 16.1C that when a rigid body is in plane motion a 

fundamental relation exists between the forces F1, F2, F3, . . . , acting on 

the body, the acceleration a of its mass center, and the angular acceleration 

α of the body. This relation is represented in Fig. 16.7 in the form of a 

free-body diagram and a kinetic diagram. We can use these diagrams 

to determine the acceleration a and the angular acceleration α produced 

by a given system of forces acting on a rigid body or, conversely, to 

determine the forces that produce a given motion of the rigid body.

We can use the three algebraic equations of Eq. (16.6) to solve 

problems of plane motion.† However, our experience in statics suggests 

that the solution of many problems involving rigid bodies can be simplified 

by an appropriate choice of the point about which we compute the 

moments of the forces. It is therefore preferable to remember the relation 

between the forces and the accelerations in the pictorial form shown in 

Fig. 16.7 and to derive from this fundamental relation the component or 

moment equations that best fit the solution of the problem under 

consideration. 

Drawing a free-body diagram for rigid bodies follows the same basic 

steps as we discussed in Chapter 12. For rigid bodies, however, it is important 

to draw your forces at their location of action, since you will be summing 

moments about specific points. Labeling different dimensions on your free-

body diagram is particularly helpful when summing these moments.

The kinetic diagram is also slightly modified from Chap. 12. The 

translational inertial term ma is always located at the center of mass of 

the body. We are now concerned with the rotational inertia of the body, 

so we include an additional term on our kinetic diagram,  Iα. This is also 

located at the center of mass of the body.

We can apply the steps from Chap. 12 to the pendulum shown in 

Fig. 16.10, where a moment M is applied to the bar. These steps include:

 1. Isolating the body 

 2. Defining the axes
 3. Replacing constraints with support forces 

 4. Adding applied forces and moments, as well as body forces to the 

diagram 

 5. Labeling the free-body diagram with dimensions

For the kinetic diagram, we typically draw the translational inertial term 

in component form (e.g., max and may) at the center of mass of the 

body and add the rotational inertial term  Iα. Using these steps gives you 

the free-body diagram and kinetic diagram shown in Fig. 16.11.

W e use the pendulum shown in Fig. 16.10 to illustrate an alternative 

form of the moment equation. It is straightforward to apply Eq. 16.6 to this 

problem, where the sum of moments about the center of mass results in

1loMG 5 Iα :    M 2 Py aL

2
b 5 Iα

†Recall that the last of Eq. (16.6) is valid only in the case of the plane motion of a rigid 

body symmetrical with respect to a reference plane. In all other cases, you need to use the 

methods of Chap. 18. 

Fig. 16.10 A pendulum with mass m, length l, 
and an applied moment M.

P BG

l

M
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16.1 Kinetics of a Rigid Body 1115

Alternatively, we could choose an arbitrary point P about which to sum 

moments. If we choose P to be at the left end of the rod, then we also 

have to sum the moments about P due to the inertial terms. In this case, 

we obtain

1l oMP 5 Iα 1 mad' :    M 2 W aL

2
b 5 Iα 1 may 

aL

2
b 1 max102

where d' is the perpendicular distance from point P to the line of action 

of the resultant acceleration vector a. As in statics, you can also determine 

the moment about a point P by using vector products, as

mad' 5 rG/P 3 ma

where rG/P is the vector from point P to the center of mass of the body. 

Therefore, we can also write Eq (16.6) as

oFx 5 max    oFy 5 may

  ©MG 5 Iα or ©MP 5 Iα 1 mad' or ©MP 5 Iα 1 rG/P 3 ma (16.69)

The use of a free-body diagram and a kinetic diagram, showing vectorially 

the relationship between the forces applied on the rigid body and the 

resulting linear and angular accelerations, presents considerable advantages 

over the blind application of formulas (16.6). We can summarize these 

advantages as follows.

 1. The use of a pictorial representation provides a much clearer  under-

standing of the effect of the forces on the motion of the body.

 2. This approach makes it possible to divide the solution of a dynamics 

problem into two parts: In the first part, the analysis of the kinematic 

and kinetic characteristics of the problem leads to the free-body 

diagram and the kinetic diagram of Fig. 16.7; in the second part, you 

can use the diagrams to analyze the various forces and vectors 

involved.

 3. A unified approach is provided for the analysis of the plane motion of 

a rigid body, regardless of the particular type of motion involved. 

Although the kinematics of the various motions considered may vary 

from one case to the other, the approach to the kinetics of the motion 

is consistently the same. In every case, you draw a diagram showing 

the external forces, the vector ma associated with the motion of G, and 

the couple  Iα associated with the rotation of the body about G.

 4. The resolution of the plane motion of a rigid body into a translation 

and a centroidal rotation, which we use here, is a basic concept that can 

be applied effectively throughout the study of mechanics. We will use 

it again in Chap. 17 with both the method of work and energy and the 

method of impulse and momentum.

G G

F1

F2

F3
F4

=

(a) (b)

⎯am

⎯Iα

Fig. 16.7 (repeated)

Fig. 16.11 Free-body diagram and kinetic diagram for a pendulum 
with an external moment applied.

G G

L
2

L
2

M

W

Py

Px P P ⎯a xm

⎯a ym

⎯Iα

y

x
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1116 Plane Motion of Rigid Bodies: Forces and Accelerations

 5. As you will see in Chap. 18, we can extend this approach to the study 

of the general three-dimensional motion of a rigid body. The motion of 

the body is again resolved into a translation and a rotation about the 

mass center, and we use free-body diagrams and kinetic diagrams to 

indicate the relationship between the external forces and the rates of 

change of the linear and angular momenta of the body.

16.1F Systems of Rigid Bodies
The method just described also can be used in problems involving the 

plane motion of several connected rigid bodies. For each part of the sys-

tem, you draw a diagram similar to Fig. 16.7. You can obtain the equations 

of motion from these diagrams and solve them simultaneously.

In some cases, as in Sample Prob. 16.4, you can draw a single 

diagram for the entire system. This diagram should include all of the 

external forces as well as the vectors ma and the couples  Iα associated 

with the various parts of the system. However, you can omit internal 

forces, such as the forces exerted by connecting cables, because they occur 

in pairs of equal and opposite forces and are thus equipollent to zero. The 

equations obtained by expressing that the system of external forces is 

equipollent to the system of inertial terms can be solved for the remaining 

unknowns (note that we cannot speak of equivalent systems because we 

are not dealing with a single rigid body). For systems involving multiple 

rigid bodies, the general equation of motion is written as

oF 5 omiai  and  OMP 5 H
.

P

where

H
.

P 5 o Iiαi 1 omiai1d'2i 5 o Iiαi 1 o [ 1rG/P2i 3 miai]

Historically, sometimes these equations have been written as 

oF 5 oFeff       and       oMP 5  o1MP2eff

where the left-hand sides of these equations come from the free-body 

diagram and the right-hand sides come from the kinetic diagram. We have 

chosen not to use this notation because the terms on the right-hand side 

are due to the inertial terms and not due to external forces and moments. 

It is not possible to include more than one rigid body in your system 

in problems involving more than three unknowns, since only three 

equations of motion are available when a single diagram is used. We will 

not elaborate upon this point, since the discussion involved would be 

completely similar to that given in Sec. 6.3B in the case of the equilibrium 

of a system of rigid bodies.

Photo 16.3 The forklift and moving load 
can be analyzed as a system of two connected 
rigid bodies in plane motion.
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16.1 Kinetics of a Rigid Body 1117

Sample Problem 16.1

When the forward speed of the van shown is 30 ft/s, the brakes are 

suddenly applied, causing all four wheels to stop rotating. The van skids 

to rest in 20 ft. Determine the magnitude of the normal reaction and of 

the friction force at each wheel as the van skids to rest.

STRATEGY: You are given enough information to determine the accel-

eration and you want to find forces, so use Newton’s second law. The 

motion described is pure translation, so the angular acceleration is zero.

MODELING: Choose the van to be your system and model it as a rigid 

body. A free-body diagram and a kinetic diagram for this system are 

shown in Fig. 1. The external forces consist of the weight W of the truck 

and of the normal reactions and friction forces at the wheels. The vectors 

NA and FA represent the sum of the reactions at the rear wheels, while NB 

and FB represent the sum of the reactions at the front wheels. Since the 

truck is in translation, α 5 0 and the inertial terms reduce to the vector 

ma attached at G. 

ANALYSIS: 

Kinematics of Motion. Choose the positive sense to the right and 

use the equations of uniformly accelerated motion. You have

v0 5 130 ft/s   v2 5 v2
0 1 2ax   0 5 (30)2 1 2a(20)

a 5 222.5 ft/s2   a 5 22.5 ft/s2
z

Equations of Motion. You can obtain three equations of motion by 

expressing that the system of the external forces from your free-body 

diagram is equivalent to the inertial terms from your kinetic diagram. 

Applying Newton’s second law in the x and y directions gives

 1↑oFy 5 may:       NA 1 NB 2 W 5 0 (1)

 y
1 oFx 5 max:     21 FA 1 FB2 5 2ma (2)

Taking moments about any point gives you a third equation. For moments 

about point A, you find

 1l oMA 5 Iα 1 mad' :   2 W15 ft2 1 NB112 ft2 5 ma14 ft2  (3)

In these three equations you have five unknowns, NA, NB, FA, FB, and a. 

Since FA 5 μkNA and FB 5 μkNB, where μk is the coefficient of kinetic fric-

tion, you have from Eq. (1)

FA 1 FB 5 μk(NA 1 NB) 5 μkW

Substituting into Eq. (2) and using m 5 W/g gives

 2μkW 5 2
W

32.2 ft/s2
 a 5 2

W

32.2 ft/s2
(22.5 ft/s2)

A B

4 ft

5 ft 7 ft

G

=
A

A

W

FA FB
NA NB

4 ft

5 ft 7 ft

⎯am

G

G

y

x

Fig. 1 Free-body diagram and kinetic 
diagram for the van.

(continued)
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1118 Plane Motion of Rigid Bodies: Forces and Accelerations

or μk 5 0.699. Solving Eq. (3) for NB gives you NB 5 0.640W. Substituting 

this into Eq. (1), you find NA 5 0.350W. The friction forces are easily 

determined once you know the normal forces FA 5 μkNA 5 (0.699)(0.350W) 

5 0.245W and FB 5 μkNB 5 (0.699)(0.650W) 5 0.454W.

Reactions at Each Wheel. Recall that the values computed here 

represent the sum of the reactions at the two front wheels or the two rear 

wheels. You obtain the magnitude of the reactions at each wheel by 

writing

Nfront 5 1
2NB 5 0.325W    Nrear 5 1

2NA 5 0.175W b

 Ffront 5 1
2FB 5 0.227W  Frear 5  1

2FA 5 0.122W b

REFLECT and THINK: Note that even though the angular acceleration 

of the van is zero, the sum of the moments about point A is not equal to 

zero, since from the kinetic diagram, ma produces a moment about A. 

Rather than taking moments about point A, you also could have chosen 

to take moments about the center of mass, G. In this case, the sum of the 

moments would have been equal to zero. You only get three independent 

equations for a rigid body in plane motion: oFx, oFy, and one moment 

equation. 

Sample Problem 16.2

A sled is jet-propelled along a straight track by a force P that increases 

linearly with time according to P 5 kt, where k is a constant. The 

coefficient of sliding friction between the sled runners and the track is μk, 

the coefficient of static friction is μs, and the mass of the sled is m. 

Determine (a) the time at which the tip of the rocket begins to rotate 

downward, (b) the acceleration of the sled at this instant. Neglect loss of 

mass due to fuel consumption and assume that the sled will slide before 

it tips.

STRATEGY: Since you are given a force, use Newton’s second law to 

find the acceleration required for the rocket to begin rotating forward. You 

can then find the time using P 5 kt.

MODELING: Choose the sled as your system and model it as a rigid 

body. The rocket force must overcome the static friction force before it 

begins moving. Define this time to be t0. Figure 1 shows a free-body 

diagram when the motion is impending. In this case, both of the friction 

forces are set equal to the maximum allowable friction force μsN. Free-body 

and kinetic diagrams for when the sled is about to tip are shown in Fig. 2. 

Just as the sled starts to tip, the normal force on the rear of the sled goes 

to zero.

G

A

P

c
b

d
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16.1 Kinetics of a Rigid Body 1119

G

mSNB mSNA

NB NA

c b

d

mg

P = kt0

y

x

Fig. 1 Free-body diagram when motion is impending.

ANALYSIS: Using Fig. 1 and applying Newton’s second law in the y- 

and x-directions gives 

1↑oFy 5 may:       NA 1 NB 2 mg 5 0 or NA 1 NB 5 mg

y
1 oFx 5 max:     kt0 2  1 μsNA 1 μsNB2 5 0

or 

 kt0 5  μs1 NA 1 NB2 5 μsmg (1)

Now that you know when the sled begins to slide, you can determine the 

time it will start to tip using Fig. 2.

G

c b

d

mg

P = k(t–t0) G

A
b

d

⎯am

mkN
N

y

x

Fig. 2 Free-body diagram and kinetic diagram for the sled after it begins to move.

From this diagram, you can apply Newton’s second law in the x and y 

directions and sum moments about any point. If you choose to take 

moments about G, you find

 y1 oFx 5 max:     k1t 2 t02 2 μkN 5 ma (2)

 1↑oFy 5 may :     N 2 mg 5 0  (3)

1l oMG 5 Iα:     Nd 2 μkNb 2 k1t 2 t02c 5 0 (4)

Solving Eqs. (1), (2), (3), and (4) for t0, t, N, a , you find N 5 mg, 

t0 5 μsmg/k and

 t 5
mg(d 1 cμs 2 bμk)

kc
 b

 a 5
g(d 2 cμk 2 bμk)

c  b

(continued)
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1120 Plane Motion of Rigid Bodies: Forces and Accelerations

REFLECT and THINK: Rather than taking moments about G, you 

could have chosen any other point. For example, for moments about A, 

you have

1loMA 5 Iα 1 mad:     mgd 2 k1t 2 t02 1b 1 c2 5 2mab

Using this equation rather than Eq. (4) will give you the same answer. To 

check the assumption that the sled slides before it tips, you would need 

to use Fig. 1 and show that both NA and NB are positive for the given 

value of P 5 kt0.

Sample Problem 16.3

The thin plate ABCD has a mass of 8 kg and is held in the position shown 

by the wire BH and two links AE and DF. Neglecting the mass of the 

links, determine immediately after wire BH has been cut (a) the accelera-

tion of the plate, (b) the force in each link.

STRATEGY: Since you are asked to determine the acceleration and 

forces, use Newton’s second law. After wire BH has been cut, corners A 

and D move along parallel circles, each with a radius of 150 mm centered, 

respectively, at E and F. The motion of the plate is thus a curvilinear 

translation (Fig. 1); the particles forming the plate move along parallel 

circles each with a radius of 150 mm. 

MODELING: Choose the plate to be your system and model it as a 

rigid body. To draw the kinetic diagram, you need to consider the 
kinematics of the motion. At the instant wire BH is cut, the velocity of 

the plate is zero. Thus, the acceleration of the mass center G of the plate 

is tangent to the circular path described by G (Fig. 1). The free-body 

diagram and kinetic diagram for this system are shown in Fig. 2. The 

external forces consist of the weight W and the forces FAE and FDF exerted 

by the links. Since the plate is in translation, the kinetic diagram is the 

vector ma attached at G and directed along the t axis. 

ANALYSIS:

a. Acceleration of the Plate. 

1b oFt 5 mat:

 W cos 30° 5 ma

 mg cos 30° 5 ma

 a 5 g cos 30° 5 (9.81 m/s2) cos 30° (1)
a 5 8.50 m/s2 d 60° b

A B

CD

30°

150 mmE

F

H

200 mm

500 mm

30°

A B

C
D

⎯a

30°

60°

E

F

150 mm

30°
G

Fig. 1 Curvilinear translation of the 
plate.

bee87342_ch16_1107-1180.indd   1120bee87342_ch16_1107-1180.indd   1120 11/26/14   5:18 PM11/26/14   5:18 PM

UPLOADED BY AHMAD T JUNDI



16.1 Kinetics of a Rigid Body 1121

b. Forces in Links AE and DF.

1a oFn 5 man:  FAE 1 FDF 2 W sin 30° 5 0 (2)
    1ioMG 5  Iα:

(FAE sin 30°)(250 mm) 2 (FAE cos 30°)(100 mm)

1 (FDF sin 30°)(250 mm) 1 (FDF cos 30°)(100 mm) 5 0

38.4FAE 1 211.6FDF 5 0

 FDF 5 20.1815FAE (3)

Substituting FDF from Eq. (3) into Eq. (2), you have

FAE 2 0.1815FAE 2 W sin 30° 5 0

 FAE 5 0.6109W

FDF 5 20.1815(0.6109W) 5 20.1109W

Noting that W 5 mg 5 (8 kg)(9.81 m/s2) 5 78.48 N, you have

 FAE 5 0.6109(78.48 N) FAE 5 47.9 N T b

FDF 5 20.1109(78.48 N)  FDF 5 8.70 N C b

where bar AE is in tension and bar DF is in compression.

REFLECT and THINK: If AE and DF had been cables rather than 

links, the answers you just determined indicate that DF would have gone 

slack (i.e., you can’t push on a rope), since the analysis showed that it 

would be in compression. Therefore, the plate would not be undergoing 

curvilinear translation, but it would have been undergoing general plane 

motion. It is important to note that that there is always more than one way 

to solve problems like this, since you can choose to take moments about 

any point you wish. In this case, you took them about G, but you could 

have also chosen to take them about A or D.

n

n
A

A

B

CD

B

C
D

FAE

FDF

=
⎯am

30°

30°
30°

30°

G

G

W

t

t

250 mm

200 mm

250 mm

100 mm

100 mm

Fig. 2 Free-body diagram and kinetic 
diagram for the plate.

Sample Problem 16.4

A pulley weighing 12 lb and having a radius of gyration of 8 in. is connected 

to two blocks as shown. Assuming no axle friction, determine the angular 

acceleration of the pulley and the acceleration of each block.

STRATEGY: Since you want to determine accelerations and are given 

the weights, use Newton’s second law.

MODELING: Choose the pulley and the two blocks as a single system. 

The pulley moves in pure rotation and each block moves in pure 

translation. 

(continued)

B
A

G

6 in.

10 in.

10 lb

5 lb
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1122 Plane Motion of Rigid Bodies: Forces and Accelerations

Sense of Motion. Although you can assume an arbitrary sense of 

motion as shown in Fig. 1 (since no friction forces are involved) and later 

check it by the sign of the answer, you may prefer to determine the actual 

sense of rotation of the pulley. First determine the weight of block B, W9B, 
required to maintain the equilibrium of the pulley when it is acted upon 

by the 5-lb block A.

1loMG 5 0:  W9B(6 in.) 2 (5 lb)(10 in.) 5 0  W9B  5 8.33 lb

Since block B actually weighs 10 lb, the pulley rotates counterclockwise. 

The free-body and kinetic diagrams for this system are shown in Fig. 2. 

The forces external to the system consist of the weights of the pulley 

and the two blocks and of the reaction at G (Fig. 2). The forces exerted 

by the cables on the pulley and on the blocks are internal to the system 

and cancel out. Since the motion of the pulley is a centroidal rotation and 

the motion of each block is a translation, the inertial terms reduce to the 

couple  Iα and the two vectors maA and maB.

ANALYSIS: 

Kinematics of Motion. Assuming α is counterclockwise and noting 

that aA 5 rAα and aB 5 rB 
α, you obtain

aA 5 (
10
12 ft)αx  aB 5 (

6
12 ft)αw

Equations of Motion.  The centroidal moment of inertia of the 

pulley is

 I 5 mk2 5
W
g

 k2 5
12 lb

32.2 ft/s2
 (

8
12  ft)2 5 0.1656 lb?ft?s2

Since the system of external forces is equivalent to the system of inertial 

terms, you have

1loMG 5 H
.

G:

 (10 lb)(
6
12 ft) 2 (5 lb)(

10
12 ft) 5 1Iα 1 mBaB(

6
12 ft) 1 mAaA(

10
12 ft)

 (10)(
6
12) 2 (5)(

10
12) 5 0.1656α 1 

10
32.2(

6
12 α)(

6
12) 1 

5
32.2(

10
12 α)(

10
12)

 α 5 12.374 rad/s2 α 5 2.37 rad/s2
l  b

aA 5 rA α 5 (
10
12 ft)(2.374 rad/s2)  aA 5 1.978 ft/s2

x b

aB 5 rB α 5 (
6
12 ft)(2.374 rad/s2)  aB 5 1.187 ft/s2

w b

REFLECT and THINK: You could also solve this problem by 

considering the pulley and each block as separate systems, but you would 

have more resulting equations. You would have to use this approach if you 

wanted to know the forces in the cables.

B

aB

aA

A

G

α
rB rA

Fig. 1 Acceleration directions 
assuming a CCW angular 
acceleration.

10 lb

12 lb

5 lb

mBaB

mAaA

B
A

G

B
A

G

R

⎯Iα
=

y

x

Fig. 2 Free-body diagram and kinetic 
diagram for the system.
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16.1 Kinetics of a Rigid Body 1123

Sample Problem 16.5

A cord is wrapped around a homogeneous disk with a radius of r 5 0.5 m 

and a mass of m 5 15 kg. If the cord is pulled upward with a force T of 

magnitude 180 N, determine (a) the acceleration of the center of the disk, 

(b) the angular acceleration of the disk, (c) the acceleration of the cord.

STRATEGY: Since you have forces and are interested in determining 

accelerations, use Newton’s second law. 

MODELING: Choose the disk and the cord as your system. Assume 

that the components ax and ay of the acceleration of the center are directed, 

respectively, to the right and upward and that the angular acceleration of 

the disk is counterclockwise (Fig. 1). A free-body diagram and kinetic 

diagram for this system are shown in Fig. 2. The external forces acting 

on the disk consist of its weight W and the force T exerted by the cord. 

ANALYSIS: 

Equations of Motion. Applying Newton’s second law in the x and 

y directions gives 

 y1 oFx 5 max:  0 5 max  ax 5 0 b

 1xoFy 5 may:  T 2 W 5 may

  ay 5
T 2 W

m

Since T 5 180 N, m 5 15 kg, and W 5 (15 kg)(9.81 m/s2) 5 147.1 N, 

you have

 ay 5
180 N 2 147.1 N

15 kg
5 12.19 m/s2   ay 5 2.19 m/s2

x b

Now taking moments about the center of gravity, you get

1loMG 5  Iα:  2Tr 5 Iα

  2Tr 5 (
1
2 mr2)α

 α 5 2
2T
mr

5 2
2(180 N)

(15 kg)(0.5 m)
5 248.0 rad/s2

α 5 48.0 rad/s2 
i b

Acceleration of Cord. The acceleration of the cord is equal to the 

tangential component of the acceleration of point A on the disk, so you 

have (Fig. 3)

acord 5 (aA)t 5 a 1 (aA/G)t

 5 [2.19 m/s2 
x] 1 [(0.5 m)(48 rad/s2)x]

 acord 5 26.2 m/s2 
x b

REFLECT and THINK: The angular acceleration is clockwise, as we 

would expect. A similar analysis would apply in many practical situations, 

such as pulling wire off a spool or paper off a roll. In such cases, you would 

need to be sure that the tension pulling on the disk is not larger than the 

tensile strength of the material.

A
0.5 m

G

T

⎯ay

⎯a xα
G

Fig. 1 Assumed directions for 
the angular acceleration and the 
acceleration of the center of mass.

T

⎯aym

⎯a xm

r

W

=
⎯Ia

G
G

y

x

Fig. 2 Free-body diagram and kinetic 
diagram for the disk.

A

⎯a

acord

αr G

Fig. 3 Acceleration of 
points A and G on the disk.
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1124 Plane Motion of Rigid Bodies: Forces and Accelerations

Sample Problem 16.6

A uniform sphere with mass m and radius r is projected along a rough 

horizontal surface with a linear velocity v0 and no angular velocity. 

Denoting the coefficient of kinetic friction between the sphere and the 

floor by μk, determine (a) the time t1 at which the sphere starts rolling 

without sliding, (b) the linear velocity and angular velocity of the sphere 

at time t1.

STRATEGY: Since you have forces acting on the sphere, use Newton’s 

second law. To relate the acceleration to the velocity, you need to use the 

basic kinematic relationships. The sphere starts out rotating and sliding; 

it stops sliding when the instantaneous point of contact with the ground 

has a velocity of zero.

MODELING: Choose the sphere as your system and model it as a rigid 

body. The assumed positive directions for the acceleration of the mass 

center and the angular acceleration are shown in Fig. 1. Free-body and 

kinetic diagrams for this system are shown in Fig. 2. Since the point of 

the sphere in contact with the surface is sliding to the right, the friction 

force F is directed to the left. While the sphere is sliding, the magnitude 

of the friction force is F 5 μkN.

= ⎯am
G

G
W

N

F

α⎯I

y

x

Fig. 2 Free-body diagram and 
kinetic diagram for the sphere.

ANALYSIS: 

Equations of Motion.  Applying Newton’s second law in the x and 

y directions gives 

 1xoFy 5 may: N 2 W 5 0

 N 5 W 5 mg   F 5 μkN 5 μkmg

 y1 oFx 5 max: 2F 5 ma     2μkmg 5 ma     a 5 2μkg

Now taking moments about the center of gravity, you get

1ioMG 5  Iα:  Fr 5  Iα

Noting that  I 5
2
5 mr2 and substituting the given value for F, you have

(μkmg)r 5
2
5 mr2

α    α 5
5

2
 
μkg

r

⎯v0

G
⎯a

α
r

Fig. 1 Assumed directions 
for the angular and linear 
acceleration of the sphere.
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16.1 Kinetics of a Rigid Body 1125

Kinematics of Motion. As long as the sphere both rotates and slides, 

its linear and angular accelerations are constant. Therefore, you can use 

the constant-acceleration equations to relate these accelerations to the 

linear velocity and angular velocity.

 t 5 0, v 5 v0          v 5 v0 1 at 5 v0 2 μk 
gt (1)

 t 5 0, v0 5 0    v 5 v0 1 αt 5 0 1 a5

2
 
μk 

g

r
b t (2)

The sphere starts rolling without sliding when the velocity vC of the point 

of contact C is zero (Fig. 3). At that time, t 5 t1, point C becomes the 

instantaneous center of rotation, and you have

 v1 5 rv1 (3)

Substituting in Eq. (3) the values obtained for v1 and v1 by making 

t 5 t1 in Eqs. (1) and (2), respectively, you obtain

 
v0 2 μk 

gt1 5 r a5

2
 
μk 

g

r
 t1b  t1 5

2

7
 

v0

μk 
g

 b

Substituting for t1 into Eq. (2), you have

v1 5
5

2
 
μk 

g

r
 t1 5

5

2
 
μk 

g

r
 a2

7
  

v0

μk 
g
b      v1 5

5

7
 
v0

r
    v1 5

5

7
 
v0

r
 i  b

 
v1 5 rv1 5 r a5

7
 
v0

r
b   v1 5

5
7 v0   v1 5

5
7 v0 y  b

REFLECT and THINK: Notice we chose a different coordinate system 

then we usually do, with the positive rotation going clockwise. This means 

that you will not be able to use vector algebra solutions since it is not a 

right-handed coordinate system.

 You could use this type of analysis to determine how long it takes a 

bowling ball to begin to roll without slip or to see how the coefficient of 

friction affects this motion. Instead of taking moments about the center of 

gravity, you could have chosen to take moments about point C, in which case 

your third equation would have been oMC 5 H
.

C ¡ 0 5 mar 1 Iα.

⎯v1

w1

G
C

Fig. 3 The point of contact 
has zero velocity when the 
sphere starts rolling.
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11261126

This chapter deals with the plane motion of rigid bodies, and in this first section, 

we considered rigid bodies that are free to move under the action of applied 

forces.

1. Free-body diagram and kinetic diagram. After choosing a system, your first step 

in the solution of a problem is to draw a free-body diagram and a kinetic diagram.

a. A free-body diagram shows the forces exerted on the body, including the 

applied forces and moments, the reactions at the supports, and the weight of the body. 

b. A kinetic diagram shows the inertial terms: vector ma and the couple  Iα.

2. Using your free-body diagram and kinetic diagram, generate the equations of 
motion for the system. Drawing good free-body and kinetic diagrams will allow you 

to sum components in any direction and to sum moments about any point. For a single 

body, you can obtain a maximum of three independent equations (two translational 

and one moment) that can be used to help analyze the system. Noting that the external 

forces and moments are equivalent to the inertial terms, we wrote

©Fx 5 max ©Fy 5 may

 oMG 5 Iα or oMP 5 Iα 1 mad' or oMP 5 Iα 1 rG/P 3 ma (16.69)

where G is the center of mass of the body, P is any arbitrary point, and d'is the 

perpendicular distance between point P and the line of action of the acceleration of 

the center of mass.

3. Apply kinematic relationships. Often, you will have more than three unknowns 

and will need to generate additional equations. You can usually do this by applying 

kinematic relationships, such as an 5 rv2 and at 5 rα or for a rigid body undergoing 

fixed-axis rotation or the more general expression relating the acceleration of two 

points on a rigid body, as

 aB 5 aA 1 αk 3 rB/A 2 v2rB/A (15.219)

4. Plane motion of a rigid body. The problems that you will be asked to solve will 

fall into one of the following categories.

 a. Rigid body in translation. For a body in translation, the angular acceleration 

is zero. The kinetic diagram, therefore, is simply the vector ma applied at the mass 

center [Sample Probs. 16.1 through 16.3].

SOLVING PROBLEMS 
ON YOUR OWN
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1127 1127

b. Rigid body in centroidal rotation. For a body in centroidal rotation, the 

linear acceleration of the mass center is zero. Therefore, the kinetic diagram is simply 

the couple  Iα [Sample Prob. 16.4].

c. Rigid body in general plane motion. You can consider the general plane 

motion of a rigid body to be the sum of a translation and a centroidal rotation. The 

kinetic diagram contains the vector ma and the couple Iα [Sample Probs. 16.5 and 16.6].

5. Plane motion of a system of rigid bodies. You first should draw a free-body 

diagram and a kinetic diagram that includes all of the rigid bodies of the system. 

A vector ma and a couple  Iα are attached to each body. However, the forces exerted 

on each other by the various bodies of the system can be omitted, since they occur 

in pairs of equal and opposite forces.

 a. If no more than three unknowns are involved, you can use the free-body 

and kinetic diagrams to sum components in any direction and sum moments about 

any point, obtaining equations that can be solved for the desired unknowns [Sample 

Prob. 16.4].

 b. If more than three unknowns are involved, you must choose a new system, 

use kinematics, or use additional information in the problem statement to find additional 

equations. 
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1128

CONCEPT QUESTIONS

16.CQ1 Two pendulums, A and B, with the masses and lengths shown are 

released from rest. Which system has a larger mass moment of 

inertia about its pivot point?

a. A
   b. B

c. They are the same.

A

B

L
2m

m

q q

L
2

Fig. P16.CQ1 and P16.CQ2

 16.CQ2 Two pendulums, A and B, with the masses and lengths shown are 

released from rest. Which system has a larger angular acceleration 

immediately after release?

   a. A
   b. B
   c. They are the same.

 16.CQ3 Two solid cylinders, A and B, have the same mass m and the 

radii 2r and r, respectively. Each is accelerated from rest with 

a force applied as shown. In order to impart identical angular 

accelerations to both cylinders, what is the relationship between F1 

and F2?

   a. F1 5 0.5F2

   b. F1 5 F2

   c. F1 5 2F2

   d. F1 5 4F2

   e. F1 5 8F2

A

B

r

2r

F1

F2

Fig. P16.CQ3

Problems
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1129

FREE-BODY PRACTICE PROBLEMS

16.F1 A 6-ft board is placed in a truck with one end resting against a block 

secured to the floor and the other leaning against a vertical partition. 

Draw the FBD and KD necessary to determine the maximum 

allowable acceleration of the truck if the board is to remain in the 

position shown.

16.F2 A uniform circular plate of mass 3 kg is attached to two links AC
and BD of the same length. Knowing that the plate is released 

from rest in the position shown, in which lines joining G to A and 

B are, respectively, horizontal and vertical, draw the FBD and KD 

for the plate.

75°

75°
C

A

D

B

G

Fig. P16.F2

16.F3 Two uniform disks and two cylinders are assembled as indicated. 

Disk A weighs 20 lb and disk B weighs 12 lb. Knowing that the 

system is released from rest, draw the FBD and KD for the whole 

system.

18 lb15 lb

6 in.8 in.

B

C D

A

Fig. P16.F3

 16.F4 The 400-lb crate shown is lowered by means of two overhead cranes. 

Knowing the tension in each cable, draw the FBD and KD that can 

be used to determine the angular acceleration of the crate and the 

acceleration of the center of gravity.

A

B

78°

Fig. P16.F1

TA TB

6.6 ft

3.6 ft

3.3 ft

1.8 ft

A

G

B

Fig. P16.F4
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END-OF-SECTION PROBLEMS

 16.1 A 60-lb uniform thin panel is placed in a truck with end A resting 

on a rough horizontal surface and end B supported by a smooth 

vertical surface. Knowing that the deceleration of the truck is 

12 ft/s2, determine (a) the reactions at ends A and B, (b) the mini-

mum required coefficient of static friction at end A.

5 ft

A

B

60°

Fig. P16.1 and P16.2

 16.2 A 60-lb uniform thin panel is placed in a truck with end A resting 

on a rough horizontal surface and end B supported by a smooth 

vertical surface. Knowing that the panel remains in the position 

shown, determine (a) the maximum allowable acceleration of the 

truck, (b) the corresponding minimum required coefficient of static 

friction at end A.

 16.3 Knowing that the coefficient of static friction between the tires and 

the road is 0.80 for the automobile shown, determine the  maximum 

possible acceleration on a level road, assuming (a) four-wheel drive, 

(b) rear-wheel drive, (c) front-wheel drive.

40 in.60 in.

20 in.

G

Fig. P16.3

 16.4 The motion of the 2.5-kg rod AB is guided by two small wheels 

that roll freely in horizontal slots. If a force P of magnitude 8 N is 

applied at B, determine (a) the acceleration of the rod, (b) the 

reactions at A and B.

 16.5 A uniform rod BC of mass 4 kg is connected to a collar A by a 

250-mm cord AB. Neglecting the mass of the collar and cord, 

determine (a) the smallest constant acceleration aA for which the 

cord and the rod will lie in a straight line, (b) the corresponding 

tension in the cord.

250 mm

350 mm
400 mm

B

C

A

PaA

Fig. P16.5

r 5 0.3 m

B

A

P

Fig. P16.4
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 16.6 A 2000-kg truck is being used to lift a 400-kg boulder B that is on 

a 50-kg pallet A. Knowing the acceleration of the rear-wheel-drive 

truck is 1 m/s2, determine (a) the reaction at each of the front wheels, 

(b) the force between the boulder and the pallet.

A

B

1.4 m 2 m 1.2 m

0.6 m
1 m

Fig. P16.6

16.7 The support bracket shown is used to transport a cylindrical can from 

one elevation to another. Knowing that μs 5 0.25 between the can and 

the bracket, determine (a) the magnitude of the upward acceleration 

a for which the can will slide on the bracket, (b) the smallest ratio h/d 

for which the can will tip before it slides.

30°

h

d

A

a

Fig. P16.7 

 16.8 Solve Prob. 16.7, assuming that the acceleration a of the bracket is 

directed downward.

 16.9 A 20-kg cabinet is mounted on casters that allow it to move freely 

(μ 5 0) on the floor. If a 100-N force is applied as shown, determine 

(a) the acceleration of the cabinet, (b) the range of values of h for 

which the cabinet will not tip.

 16.10 Solve Prob. 16.9, assuming that the casters are locked and slide on 

the rough floor (μk 5 0.25).

100 N

h

G

0.6 m

0.9 m

Fig. P16.9
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 16.11 A completely filled barrel and its contents have a combined mass 

of 90 kg. A cylinder C is connected to the barrel at a height 

h 5 550 mm as shown. Knowing μs 5 0.40 and μk 5 0.35, determine 

the maximum mass of C so the barrel will not tip.

 16.12 A 40-kg vase has a 200-mm-diameter base and is being moved using 

a 100-kg utility cart as shown. The cart moves freely (μ 5 0) on the 

ground. Knowing the coefficient of static friction between the vase 

and the cart is μs 5 0.4, determine the maximum force F that can 

be applied if the vase is not to slide or tip.

G

600 mm

F

Fig. P16.12

 16.13 The retractable shelf shown is supported by two identical linkage-

and-spring systems; only one of the systems is shown. A 20-kg 

machine is placed on the shelf so that half of its weight is supported 

by the system shown. If the springs are removed and the system 

is released from rest, determine (a) the acceleration of the machine, 

(b) the  tension in link AB. Neglect the weight of the shelf and 

links.

30°

30° 30°

A

G

C

D

E

F

B

80 mm

80 mm

50 mm 100 mm

100 mm

200 mm

300 mm

Fig. P16.13

500 mm

A B

h
450 mm

900 mm

C

G

Fig. P16.11
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 16.14 Bars AB and BE, each with a mass of 4 kg, are welded together and 

are pin-connected to two links AC and BD. Knowing that the 

assembly is released from rest in the position shown and neglecting 

the masses of the links, determine (a) the acceleration of the 

assembly, (b) the forces in the links.

 16.15 At the instant shown, the tensions in the vertical ropes AB and DE 

are 300 N and 200 N, respectively. Knowing that the mass of the 

uniform bar BE is 5 kg, determine, at this instant, (a) the force P, 

(b) the magnitude of the angular velocity of each rope, (c) the 

angular acceleration of each rope.

D

E

A

1.2 m0.4 m

0.4 m

30°

B

P

Fig. P16.15

 16.16 Three bars, each of mass 3 kg, are welded together and pin- connected 

to two links BE and CF. Neglecting the weight of the links, deter-

mine the force in each link immediately after the system is released 

from rest.

450 mm

450 mm

A D

B

E F

C

50° 50°

Fig. P16.16

 16.17 Members ACE and DCB are each 600 mm long and are connected 

by a pin at C. The mass center of the 10-kg member AB is located 

at G.  Determine (a) the acceleration of AB immediately after 

the system has been released from rest in the position shown, (b) the 

corresponding force exerted by roller A on member AB. Neglect the 

weight of members ACE and DCB.

30°

C

E

B

G

D

A

50 mm

150 mm

Fig. P16.17

A

E

D

B

C

30°

30°

60°0.5 m

0.5 m

Fig. P16.14
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 16.18 A prototype rotating bicycle rack is designed to save space at a train 

station. The combined weight of platform BD and the bicycle is 

40 lbs and is centered 1 ft above the midpoint of the platform. The 

motor at A causes the support beam AB to have an angular velocity 

of 10 rpm and zero angular acceleration at θ 5 30°. At this instant, 

determine the vertical components of the forces exerted on platform 

BD by the pins at B and D.

B

M

D

A E

6 ft

5 ft
5 ft

θ

Fig. P16.18

 16.19 The triangular weldment ABC is guided by two pins that slide freely 

in parallel curved slots of radius 6 in. cut in a vertical plate. The 

weldment weighs 16 lb and its mass center is located at point G. 

Knowing that at the instant shown the velocity of each pin is 30 in./s 

downward along the slots, determine (a) the acceleration of the weld-

ment, (b) the reactions at A and B.

 16.20 The coefficients of friction between the 30-lb block and the 5-lb 

platform BD are μs 5 0.50 and μk 5 0.40. Determine the accelera-

tions of the block and of the platform immediately after wire AB has 

been cut.

C

A
D

B

18 in.

5 lb

30 lb
308

E

308

Fig. P16.20

16.21 Draw the shear and bending-moment diagrams for the vertical rod AB
of Prob. 16.16.

*16.22 Draw the shear and bending-moment diagrams for each of the 

bars AB and BE of Prob. 16.14.

6 in.

6 in.

3 in.

60°

60°

G

A C

B

Fig. P16.19
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 16.23 For a rigid body in translation, show that the system of the inertial 

terms consists of vectors (¢mi)a attached to the various particles of 

the body, where a is the acceleration of the mass center G of the 

body. Further show, by computing their sum and the sum of their 

moments about G, that the inertial terms reduce to a single vector 

ma attached at G.

 16.24 For a rigid body in centroidal rotation, show that the system of the 

inertial terms consists of vectors 2(Dmi)v2r9i and (Dmi)(α 3 r9i)

attached to the various particles Pi of the body, where v and α are 

the angular velocity and angular acceleration of the body, and where 

r¿i  denotes the position vector of the particle Pi relative to the mass 

center G of the body. Further show, by computing their sum and the 

sum of their moments about G, that the inertial terms reduce to a 

couple  Iα.

 16.25 It takes 10 min for a 2.4-Mg flywheel to coast to rest from an angular 

velocity of 300 rpm. Knowing that the radius of gyration of the 

flywheel is 1 m, determine the average magnitude of the couple due 

to kinetic friction in the bearing.

 16.26 The rotor of an electric motor has an angular velocity of 3600 rpm 

when the load and power are cut off. The 120-lb rotor, which has a 

centroidal radius of gyration of 9 in., then coasts to rest. Knowing 

that kinetic friction results in a couple of magnitude 2.5 lb?ft exerted 

on the rotor, determine the number of revolutions that the rotor 

executes before coming to rest.

 16.27 The 8-in.-radius brake drum is attached to a larger flywheel that is 

not shown. The total mass moment of inertia of the drum and the 

flywheel is 14 lb?ft?s2 and the coefficient of kinetic friction between 

the drum and the brake shoe is 0.35. Knowing that the angular 

velocity of the flywheel is 360 rpm counterclockwise when a force P 

of magnitude 75 lb is applied to the pedal C, determine the number 

of revolutions executed by the flywheel before it comes to rest.

 16.28 Solve Prob. 16.27, assuming that the initial angular velocity of the 

flywheel is 360 rpm clockwise.

 16.29 The 100-mm-radius brake drum is attached to a flywheel that is not 

shown. The drum and flywheel together have a mass of 300 kg and 

a radius of gyration of 600 mm. The coefficient of kinetic friction 

between the brake band and the drum is 0.30. Knowing that a force 

P of magnitude 50 N is applied at A when the angular velocity is 

180 rpm counterclockwise,  determine the time required to stop the 

flywheel when a 5 200 mm and b 5 160 mm.

A

a

r

B

O

P

b

DC

Fig. P16.29

G
⎯a

Pi

(Δmi)a⎯

Fig. P16.23

Pi

–(Δmi)ω2r'i

(Δmi)(α × r'i)

r'i

G α
ω

Fig. P16.24

10 in.

8 in.

A

B

C

P

6 in.

15 in.

D

Fig. P16.27
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 16.30 The 180-mm-radius disk is at rest when it is placed in contact with 

a belt moving at a constant speed. Neglecting the weight of the 

link AB and knowing that the coefficient of kinetic friction between 

the disk and the belt is 0.40, determine the angular acceleration of 

the disk while slipping occurs.

 16.31 Solve Prob. 16.30, assuming that the direction of motion of the belt 

is reversed.

16.32 In order to determine the mass moment of inertia of a flywheel of 

radius 600 mm, a 12-kg block is attached to a wire that is wrapped 

around the flywheel. The block is released and is observed to fall 

3 m in 4.6 s. To eliminate bearing friction from the computation, a 

second block of mass 24 kg is used and is observed to fall 3 m in 

3.1 s. Assuming that the moment of the couple due to friction remains 

constant, determine the mass moment of inertia of the flywheel.

A m

Fig. P16.32 and P16.33

 16.33 The flywheel shown has a radius of 20 in., a weight of 250 lb, and 

a radius of gyration of 15 in. A 30-lb block A is attached to a wire 

that is wrapped around the flywheel, and the system is released from 

rest. Neglecting the effect of friction, determine (a) the acceleration 

of block A, (b) the speed of block A after it has moved 5 ft.

 16.34 Each of the double pulleys shown has a mass moment of inertia of 

15 lb?ft?s2 and is initially at rest. The outside radius is 18 in., and the 

inner radius is 9 in. Determine (a) the angular acceleration of each 

pulley, (b) the angular velocity of each pulley after point A on the 

cord has moved 10 ft.

A A A A

160 lb

(1) (2) (3) (4)

160 lb 460 lb 300 lb 80 lb

Fig. P16.34

B

A
180 mm

60°

v

Fig. P16.30
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16.35 Each of the gears A and B has a mass of 9 kg and has a radius of 

gyration of 200 mm; gear C has a mass of 3 kg and has a radius of 

gyration of 75 mm. If a couple M of constant magnitude 5 N-m is 

applied to gear C, determine (a) the angular acceleration of gear A, 

(b) the tangential force that gear C exerts on gear A.

 16.36 Solve Prob. 16.35, assuming that the couple M is applied to disk A.

 16.37 Gear A weighs 1 lb and has a radius of gyration of 1.3 in.; gear B
weighs 6 lb and has a radius of gyration of 3 in.; gear C weighs 9 lb 

and has a radius of gyration of 4.3 in. Knowing a couple M of con-

stant magnitude of 40 lb?in. is applied to gear A, determine (a) the 

angular acceleration of gear C, (b) the tangential force that gear B
exerts on gear C.

A
B

4 in.2 in.

2 in.

6 in.

C

M

Fig. P16.37

 16.38 The 25-lb double pulley shown is at rest and in equilibrium when a 

constant 3.5 lb?ft couple M is applied. Neglecting the effect of fric-

tion and knowing that the radius of gyration of the double pulley is 

6 in., determine (a) the angular acceleration of the double pulley, 

(b) the tension in each rope.

 16.39 A belt of negligible mass passes between cylinders A and B and is 

pulled to the right with a force P. Cylinders A and B weigh, respec-

tively, 5 and 20 lb. The shaft of cylinder A is free to slide in a vertical 

slot and the coefficients of friction between the belt and each of the 

cylinders are μs 5 0.50 and μk 5 0.40. For P 5 3.6 lb, determine 

(a) whether slipping occurs between the belt and either cylinder, 
(b) the angular acceleration of each cylinder.

 16.40 Solve Prob. 16.39 for P 5 2.00 lb.

 16.41 Disk A has a mass of 6 kg and an initial angular velocity of 360 rpm 

clockwise; disk B has a mass of 3 kg and is initially at rest. The disks 

are brought together by applying a horizontal force of  magnitude 

20 N to the axle of disk A. Knowing that μk 5 0.15 between the disks 

and neglecting bearing friction, determine (a) the angular acceleration 

of each disk, (b) the final angular velocity of each disk.

 16.42 Solve Prob. 16.41, assuming that initially disk A is at rest and disk 

B has an angular velocity of 360 rpm clockwise.

100 mm

A B

C

250 mm 250 mm

M

Fig. P16.35

A B
10 lb

8 in.4 in.

5 lb

M

Fig. P16.38

P

8 in.

4 in.

B

A

Fig. P16.39

A

B

80 mm 60 mm

Fig. P16.41
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 16.43 Disk A has a mass mA 5 4 kg, a radius rA 5 300 mm, and an initial 

angular velocity v0 5 300 rpm clockwise. Disk B has a mass 

mB 5 1.6 kg, a radius rB 5 180 mm, and is at rest when it is brought 

into contact with disk A. Knowing that μk 5 0.35 between the disks 

and neglecting bearing friction, determine (a) the angular acceleration 

of each disk, (b) the reaction at the support C.

 16.44 Disk B is at rest when it is brought into contact with disk A, which 

has an initial angular velocity v0. (a) Show that the final angular 

velocities of the disks are independent of the coefficient of friction 

μk between the disks as long as μk Þ 0. (b) Express the final angular 

velocity of disk A in terms of v0 and the ratio of the masses of the 

two disks mA/mB.

 16.45 Cylinder A has an initial angular velocity of 720 rpm clockwise, and 

cylinders B and C are initially at rest. Disks A and B each weigh 

5 lb and have radius r 5 4 in. Disk C weighs 20 lb and has a radius 

of 8 in. The disks are brought together when C is placed gently 

onto A and B. Knowing that μk 5 0.25 between A and C and no 

slipping occurs between B and C, determine (a) the angular accel-

eration of each disk, (b) the final angular velocity of each disk.

 16.46 Show that the system of the inertial terms for a rigid body in plane 

motion reduces to a single vector, and express the distance from the 

mass center G of the body to the line of action of this vector in 

terms of the centroidal radius of gyration k of the body, the magni-

tude a of the acceleration of G, and the angular acceleration α.

 16.47 For a rigid body in plane motion, show that the system of the inertial 

terms consists of vectors (¢mi)a, 2(Dmi)v
2r9i, and (Dmi)(α 3 r9i) 

attached to the various particles Pi of the body, where a is the 

acceleration of the mass center G of the body, v is the angular 

velocity of the body, α is its angular acceleration, and r9i denotes 

the position vector of the particle Pi, relative to G. Further show, by 

computing their sum and the sum of their moments about G, that the 

inertial terms reduce to a vector ma attached at G and a couple Iα.

 16.48 A uniform slender rod AB rests on a frictionless horizontal surface, 

and a force P of magnitude 0.25 lb is applied at A in a direction 

perpendicular to the rod. Knowing that the rod weighs 1.75 lb, deter-

mine (a) the acceleration of point A, (b) the acceleration of point B, 

(c) the location of the point on the bar that has zero acceleration.

z

x

y

B

A

P

36 in.

Fig. P16.48

rB

rA

A

C

B

ω0

Fig. P16.43 and P16.44

G

⎯a

Pi
(Δmi)a⎯

–(Δmi)ω2r'i

(Δmi)(α × r'i)

α

r'i

ω

Fig. P16.47

r

2r

r

C

A B

30° 30°

Fig. P16.45
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 16.49 (a) In Prob. 16.48, determine the point of the rod AB at which the 

force P should be applied if the acceleration of point B is to be zero. 

(b) Knowing that P 5 0.25 lb, determine the corresponding accelera-

tion of point A.

 16.50 and 16.51 A force P with a magnitude of 3 N is applied to a tape 

wrapped around the body indicated. Knowing that the body rests on 

a frictionless horizontal surface, determine the acceleration of 

(a) point A, (b) point B.

 16.50 A thin hoop of mass 2.4 kg.

 16.51  A uniform disk of mass 2.4 kg.

z x

A
C

B

r

y

P

Fig. P16.50   

P

z x

A

B

r C

y

Fig. P16.51

 16.52 A 250-lb satellite has a radius of gyration of 24 in. with respect to 

the y axis and is symmetrical with respect to the zx plane. Its orienta-

tion is changed by firing four small rockets A, B, C, and D, each of 

which produces a 4-lb thrust T directed as shown. Determine the 

angular acceleration of the satellite and the acceleration of its mass 

center G (a) when all four rockets are fired, (b) when all rockets 

except D are fired.

 16.53 A rectangular plate of mass 5 kg is suspended from four vertical 

wires, and a force P of magnitude 6 N is applied to corner C as 

shown. Immediately after P is applied, determine the acceleration of 

(a) the midpoint of edge BC, (b) corner B.

B
D

A

CP

z
x

y

300 mm
400 mm

Fig. P16.53

32 in.

x

z

AB
C G

T

T
T

y

D

T

Fig. P16.52
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 16.54 A uniform semicircular plate with a mass of 6 kg is suspended from 

three vertical wires at points A, B, and C, and a force P with a 

magnitude of 5 N is applied to point B. Immediately after P is 

applied, determine the acceleration of (a) the mass center of the 

plate, (b) point C.

r = 300 mm

A

B

Cz x

y

P

Fig. P16.54

 16.55 A drum with a 200-mm radius is attached to a disk with a radius of 

rA 5 150 mm. The disk and drum have a combined mass of 5 kg 

and a combined radius of gyration of 120 mm and are suspended by 

two cords. Knowing that TA 5 35 N and TB 5 25 N, determine the 

accelerations of points A and B on the cords.

A B

TA

rA

TB

200 mm

G

Fig. P16.55 and P16.56

16.56 A drum with a 200-mm radius is attached to a disk with a radius of 

rA 5 140 mm. The disk and drum have a combined mass of 5 kg 

and are suspended by two cords. Knowing that the acceleration of 

point B on the cord is zero, TA 5 40 N, and TB 5 20 N, determine 

the combined radius of gyration of the disk and drum.

 16.57 The 12-lb uniform disk shown has a radius of r 5 3.2 in. and rotates 

counterclockwise. Its center C is constrained to move in a slot cut 

in the vertical member AB, and a 11-lb horizontal force P is applied 

at B to maintain contact at D between the disk and the vertical wall. 

The disk moves downward under the influence of gravity and the 

friction at D. Knowing that the coefficient of kinetic friction between 

the disk and the wall is 0.12 and neglecting friction in the vertical 

slot, determine (a) the angular acceleration of the disk, (b) the 

acceleration of the center C of the disk.

P

L

B

C

A

D

2

L
2

r

Fig. P16.57
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 16.58 The steel roll shown has a mass of 1200 kg, a centroidal radius of 

gyration of 150 mm, and is lifted by two cables looped around its 

shaft. Knowing that for each cable TA 5 3100 N and TB 5 3300 N, 

determine (a) the angular acceleration of the roll, (b) the acceleration 

of its mass center.

 16.59 The steel roll shown has a mass of 1200 kg, has a centroidal radius 

of gyration of 150 mm, and is lifted by two cables looped around 

its shaft. Knowing that at the instant shown the acceleration of the 

roll is 150 mm/s2 downward and that for each cable TA 5 3000 N, 

determine (a) the corresponding tension TB, (b) the angular accelera-

tion of the roll.

 16.60 and 16.61 A 15-ft beam weighing 500 lb is lowered by means of 

two cables unwinding from overhead cranes. As the beam approaches 

the ground, the crane operators apply brakes to slow the unwinding 

motion. Knowing that the deceleration of cable A is 20 ft/s2 and the 

deceleration of cable B is 2 ft/s2, determine the tension in each cable.

A B

15 ft

TBTA

Fig. P16.60

A B

15 ft

12 ft

TBTA

Fig. P16.61

 16.62 Two uniform cylinders, each of weight W 5 14 lb and radius r 5 5 in., 

are connected by a belt as shown. If the system is released from 

rest, determine (a) the angular acceleration of each cylinder, (b) the 

tension in the portion of belt connecting the two cylinders, (c) the 

velocity of the center of the cylinder A after it has moved through 

3 ft.

 16.63 and 16.64 A beam AB with a mass m and of uniform cross sec-

tion is suspended from two springs as shown. If spring 2 breaks, 

determine at that instant (a) the angular acceleration of the beam, 

(b) the acceleration of point A, (c) the acceleration of point B.

B

TA TB

TA TB

A

B
A

100 mm

Fig. P16.58 and P16.59

r

r

A

B

Fig. P16.62

A B

1 2

L
4

L
2

L
4

Fig. P16.63

A B

1 2

3L
4

L
4

Fig. P16.64
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 16.65 A uniform slender bar AB with a mass m is suspended from two 

springs as shown. If spring 2 breaks, determine at that instant (a) the 

angular acceleration of the bar, (b) the acceleration of point A, (c) the 

acceleration of point B.

 16.66 through 16.68 A thin plate of the shape indicated and of mass 

m is suspended from two springs as shown. If spring 2 breaks, deter-

mine the acceleration at that instant (a) of point A, (b) of point B.
 16.66 A square plate of side b
 16.67 A thin hoop of diameter b
 16.68 A rectangular plate of height b and width a

1 2

30° 30°

A B

L

Fig. P16.65

B

b
2

b 21

A

Fig. P16.66

A B

b 21

Fig. P16.67

B

21

A

45° 45°

b
2

a

Fig. P16.68

 16.69 A sphere of radius r and mass m is projected along a rough horizontal 

surface with the initial velocities indicated. If the final velocity of the 

sphere is to be zero, express, in terms of v0, r, and μk, (a) the required 

magnitude of v0, (b) the time t1 required for the sphere to come to 

rest, (c) the distance the sphere will move before coming to rest.

 16.70 Solve Prob. 16.69, assuming that the sphere is replaced by a uniform 

thin hoop of radius r and mass m.

 16.71 A bowler projects an 8-in.-diameter ball weighing 12 lb along an 

alley with a forward velocity v0 of 15 ft/s and a backspin v0 of 

9 rad/s. Knowing that the coefficient of kinetic friction between the 

ball and the alley is 0.10, determine (a) the time t1 at which the ball 

will start rolling without sliding, (b) the speed of the ball at time t1, 

(c) the distance the ball will have traveled at time t1.

ω0

v0

Fig. P16.71

 16.72 Solve Prob. 16.71, assuming that the bowler projects the ball with 

the same forward velocity but with a backspin of 18 rad/s.

v0

ω0

Fig. P16.69
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 16.73 A uniform sphere of radius r and mass m is placed with no  initial 

velocity on a belt that moves to the right with a constant velocity 

v1. Denoting by μk the coefficient of kinetic friction between the 

sphere and the belt, determine (a) the time t1 at which the sphere 

will start rolling without sliding, (b) the linear and angular velocities 

of the sphere at time t1.

v1

Fig. P16.73

 16.74 A sphere of radius r and mass m has a linear velocity v0 directed to 

the left and no angular velocity as it is placed on a belt moving to

the right with a constant velocity v1. If after first sliding on the belt the 

sphere is to have no linear velocity relative to the ground as 

it starts rolling on the belt without sliding, determine in terms of v1 

and the coefficient of kinetic friction μk between the sphere and the 

belt (a) the required value of v0, (b) the time t1 at which the sphere 

will start rolling on the belt, (c) the distance the sphere will have 

moved relative to the ground at time t1.

v1

v0

Fig. P16.74
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1144 Plane Motion of Rigid Bodies: Forces and Accelerations

16.2  CONSTRAINED PLANE 
MOTION

Most engineering applications deal with rigid bodies that are moving 

under given constraints. For example, cranks must rotate about a fixed 

axis, wheels must roll without sliding, and connecting rods must describe 

certain prescribed motions. In all such cases, definite relations exist 

between the components of the acceleration a of the mass center G of the 

body considered and its angular acceleration α. The corresponding motion 

is said to be a constrained motion.

As discussed in the previous section, we draw our free-body and 

kinetic diagrams (Fig. 16.13) and then write the equations of motion. The 

solution of a problem involving a constrained plane motion also calls for 

a kinematic analysis of the problem. Consider, for example, a slender rod 

AB with a length l and a mass m, where the extremities are connected to 

blocks of negligible mass that slide along horizontal and vertical friction-

less tracks. The rod is pulled by a force P applied at A (Fig. 16.12). We 

know from Sec. 15.4A that we can determine the acceleration a of the 

mass center G of the rod at any given instant from the position of the rod, 

its angular velocity, and its angular acceleration at that instant. Suppose, 

for example, that we know the values of θ, v, and α at a given instant, 

and we wish to determine the corresponding value of the force P as well as 

the reactions at A and B. We should first determine the components ax and 

ay of the acceleration of the mass center G using the method in Sec. 15.4A. 

We next solve our equations of motion using the expressions obtained for 

ax and ay. We can then find the unknown forces P, NA, and NB by solving 

the appropriate equations.

Suppose now that we know the applied force P, the angle θ, and 

the angular velocity v of the rod at a given instant and that we wish to 

find the angular acceleration α of the rod and the components ax and ay 

of the acceleration of its mass center at that instant, as well as the reactions 

at A and B. The preliminary kinematic study of the problem will aim to 
express the components ax and ay of the acceleration of G in terms of the 
angular acceleration α of the rod. This is done by first expressing the 

acceleration of a suitable reference point such as A in terms of the angular 

acceleration α. We can then determine the components ax and ay of 

the acceleration of G in terms of α and carry these expressions into 

Fig. 16.13. We can then derive three equations in terms of α, NA, and NB

and solve for the three unknowns (see Sample Prob. 16.12).

When a mechanism consists of several moving parts, we can use the 

approach just described with each part of the mechanism. The procedure 

required to determine the various unknowns is then similar to the procedure 

followed in the case of the equilibrium of a system of connected rigid 

bodies (Sec. 6.3B).

Earlier, we analyzed two particular cases of constrained plane 

motion: translation of a rigid body, in which the angular acceleration of 

the body is constrained to be zero, and centroidal rotation, in which the 

acceleration a of the mass center of the body is constrained to be zero. 

Two other particular cases of constrained plane motion are of special 

interest: noncentroidal rotation of a rigid body and rolling motion of a 

disk or wheel. We can analyze these two cases using one of the general 

⎯ay
(θ,ω,α)

⎯a x (θ,ω,α)

A

B

P

α

θ

ω

l

G

Fig. 16.12 Kinematic variables for a 
constrained rod pulled to the right.
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16.2 Constrained Plane Motion 1145

methods described previously. However, in view of the range of their 

applications, they deserve a few special comments.

Noncentroidal Rotation. The motion of a rigid body constrained 

to rotate about a fixed axis that does not pass through its mass center is 

called noncentroidal rotation. The mass center G of the body moves 

along a circle with a radius r centered at point O, where the axis of rotation 

intersects the plane of reference (Fig. 16.14). Denoting the angular velocity 

and the angular acceleration of the line OG by v and α, respectively, we 

obtain the following expressions for the tangential and normal components 

of the acceleration of G:

 at 5 rα    an 5 rv2 (16.7)

Since line OG belongs to the body, its angular velocity v and its angular 

acceleration α also represent the angular velocity and the angular accel-

eration of the body. Equations (16.7) define, therefore, the kinematic rela-

tion between the motion of the mass center G and the motion of the body 

about G. 

We obtain an interesting relation by equating the moments about the 

fixed point O of the forces and vectors shown, respectively, in Fig. 16.15a
and b. We have

1l oMO 5 Iα 1 (mrα)r 5 (I 1 mr 2)α

at 5 rαrr an 5 rv2

A

B

P

W

NA  

NB

=
⎯a xm

⎯a ym

⎯Iα

GG

l

y

x

Fig. 16.13 Free-body diagram and kinetic diagram for the 
rod in Fig. 16.12.

O

α

ω

⎯r

⎯a t =⎯rα

⎯an =⎯rω2

G

Fig. 16.14 For noncentroidal fixed-axis 
rotation, the center of mass has a tangential 
and a normal component of acceleration.

O
O

=

F1

F2

F3
Ry

R x

(a) (b)

⎯r ⎯a nm

⎯a tm

⎯Iα
G G

Fig. 16.15 Free-body diagram and kinetic 
diagram for the rigid body in Fig. 16.14.
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1146 Plane Motion of Rigid Bodies: Forces and Accelerations

But according to the parallel-axis theorem, we have I 1 mr 2 5 IO, where 

IO denotes the moment of inertia of the rigid body about the fixed axis. 

We therefore obtain

Moments about 
a fixed axis

oMO 5 IOα (16.8)

Although formula (16.8) expresses an important relation between the 

sum of the moments of the external forces about the fixed point O and 

the product IO α, we will still need to apply Eq. (16.1) to find the forces 

at O.

A particular case of noncentroidal rotation is of special interest—the 

case of uniform rotation, in which the angular velocity v is constant. 

Since α is zero, the inertia couple in Fig. 16.15 vanishes, and the inertia 

vector reduces to its normal component. This component (also called cen-
trifugal force in layman’s terms) represents the tendency of the rigid body 

to break away from the axis of rotation.

Rolling Motion. Another important case of plane motion is the 

motion of a disk or wheel rolling on a plane surface. If the disk is 

constrained to roll without sliding, the acceleration a of its mass center 

G and its angular acceleration α are not independent. Assuming that the 

disk is balanced so that its mass center and its geometric center coin-

cide, the distance x traveled by G during a rotation θ of the disk is 

x 5 rθ, where r is the radius of the disk. Differentiating this relation 

twice, we have

a 5 rα (16.9)

Recall that the system of the inertial terms in plane motion reduces 

to a vector ma and a couple Iα. We find that, in the particular case of the 

rolling motion of a balanced disk, these terms reduce to a vector of 

magnitude mr α attached at G and to a couple with a magnitude of Iα. 

We may thus say that the external forces are equivalent to the vector and 

couple shown in Fig. 16.16.

When a disk rolls without sliding, there is no relative motion 

between the point of the disk in contact with the ground and the ground 

itself. Thus, as far as the computation of the friction force F is concerned, 

a rolling disk can be compared with a block at rest on a surface. The 

magnitude F of the friction force can have any value, as long as this value 

does not exceed the maximum value Fm 5 μsN, where μs is the coefficient 

of static friction and N is the magnitude of the normal force. In the case 

of a rolling disk, the magnitude F of the friction force therefore should 

be determined independently of N by solving the equation obtained from 

Fig. 16.16.

When sliding is impending, the friction force reaches its maximum 

value Fm 5 μsN and can be obtained after solving for N.

oMO 5 IOII α

a 5 rα

Photo 16.4 As the ball hits the bowling 
alley, it first spins and slides, then rolls 
without sliding.
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16.2 Constrained Plane Motion 1147

When the disk rotates and slides at the same time, a relative motion 

exists between the point of the disk in contact with the ground and the 

ground itself. The force of friction has the magnitude Fk 5 μkN, where 

μk is the coefficient of kinetic friction. In this case, however, the motion 

of the mass center G of the disk and the rotation of the disk about G are 

independent, and a is not equal to rα.

We can summarize these three different cases as 

Rolling, no sliding F # μsN    a 5 rα

Rolling, sliding impending F 5 μsN    a 5 rα

Rotating and sliding F 5 μkN    a and α independent

If you do not know whether or not a disk slides, you should first assume 

that the disk rolls without sliding. You will then be able to solve your 

system of equations by assuming that a 5 rα. If F is found to be smaller 

than or equal to μsN, the assumption is proved correct. If F is found to 

be larger than μsN, the assumption is incorrect, and you should start the 

problem again, assuming rotating, sliding, and that F 5 μkN.

When a disk is unbalanced, i.e., when its mass center G does not 

coincide with its geometric center O, the relation in Eq. (16.9) does not 

hold between a and α. However, a similar relation holds between the 

magnitude aO of the acceleration of the geometric center and the angular 

acceleration α of an unbalanced disk that rolls without sliding. We have

 aO 5 rα (16.10)

To determine a in terms of the angular acceleration α and the angular 

velocity v of the disk, we can use the relative-acceleration formula, as

 a 5 aG 5 aO 1 aG/O

 5 aO 1 (aG/O)t 1 (aG/O)n (16.11)

where the three component accelerations have the directions indicated in 

Fig. 16.17 and the magnitudes aO 5 rα, (aG/O)t 5 (OG) α, and 

(aG/O)n 5 (OG) v2. These terms also can be solved using the relationship 

between two points on a rigid body undergoing plane motion:

 a 5 aO 1 α 3 rG/O 2 v2rG/O (16.12)

N

F

=
⎯Iα

W

P

CC

G
G

ma (a = rα)

Fig. 16.16 Free-body diagram and kinetic 
diagram for a disk rolling without slipping on 
a fixed surface.

O

C

aO

aO (aG/O)n

(aG/O)t

G

Fig. 16.17 Accelerations of the geometric 
center O and center of mass G for a rolling 
unbalanced disk.
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1148 Plane Motion of Rigid Bodies: Forces and Accelerations

Sample Problem 16.7

The portion AOB of a mechanism consists of a 400-mm steel rod OB 

welded to a gear E with a radius of 120 mm that can rotate about a 

horizontal shaft O. It is actuated by a gear D and, at the instant shown, 

has a clockwise angular velocity of 8 rad/s and a counterclockwise angular 

acceleration of 40 rad/s2. Knowing that rod OB has a mass of 3 kg and 

gear E has a mass of 4 kg and a radius of gyration of 85 mm, determine 

(a) the tangential force exerted by gear D on gear E, (b) the components 

of the reaction at point O on the shaft.

STRATEGY: Since you are asked to determine forces, use Newton’s 

second law. 

MODELING: For your system, choose the single object that consists of 

the steel rod OB and the gear E. Since these two objects are welded 

together, they have the same angular velocity and angular acceleration. 

Rather than finding the center of mass for this object, use the center of 

mass for gear E and for rod OB separately in your kinetic diagram. There-

fore, first determine the components of the acceleration of the mass center 

GOB of the rod (Fig. 1) as

 (aOB)t 5 rα 5 (0.200 m)(40 rad/s2) 5 8 m/s2

 (aOB)n 5 rv2 5 (0.200 m)(8 rad/s)2 5 12.8 m/s2

A free-body diagram and kinetic diagram for the system are shown in 

Fig. 2. The inertial terms on your kinetic diagram include a couple  IEα 

(since gear E is in centroidal rotation), a couple  IOBα, and two vector 

components mOB(aOB)n and mOB(aOB)t at the mass center of OB.

ANALYSIS:

Preliminary Calculations: The magnitudes of the weights are

 WE 5 mEg 5 (4 kg)(9.81 m/s2) 5 39.2 N

 WOB 5 mOBg 5 (3 kg)(9.81 m/s2) 5 29.4 N

Since you know the accelerations, you can compute the magnitudes of the 

components and couples on your kinetic diagram, as

  IE 
α 5 mEk2

Eα 5 (4 kg)(0.085 m)2(40 rad/s2) 5 1.156 N?m

 mOB(aOB)t 5 (3 kg)(8 m/s2) 5 24.0 N

 mOB(aOB)n 5 (3 kg)(12.8 m/s2) 5 38.4 N

  IOBα 5 (
1
12mOBL2)α 5

1
12(3 kg)(0.400 m)2(40 rad/s2) 5 1.600 N?m

Equations of Motion. Setting the system of the external forces shown 

in your free-body diagram equal to the inertia terms in your kinetic diagram, 

you obtain the following equations, which you can solve as

1loMO 5 H
.

O:

 F(0.120 m) 5 I E α 1 mOB(aOB)t(0.200 m) 1 I OBα

 F(0.120 m) 5 1.156 N?m 1 (24.0 N)(0.200 m) 1 1.600 N?m

 F 5 63.0 N F 5 63.0 Nw b 

O

400 mm

120 mm

D E
A

B

αω

B

O

GOB
(aOB)t

(aOB)n

⎯

⎯0.200 m

Fig. 1 Acceleration of the 
center of gravity of the bar.

⎯IOBα

⎯IEα

B B

EE

A OO

0.120 mm

GOB
GOB

WOB

WE

R x

F

Ry
=

mOB(aOB)t⎯
0.200 m mOB(aOB)n⎯

y

x

Fig. 2 Free-body diagram and kinetic 
diagram for the system.
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16.2 Constrained Plane Motion 1149

y
1 oFx 5 ©max: Rx 5 mOB(aOB)t

 Rx 5 24.0 N Rx 5 24.0 N y b

1xoFy 5 omay:   Ry 2 F 2 WE 2 WOB 5 mOB(aOB)n

 Ry 2 63.0 N 2 39.2 N 2 29.4 N 5 38.4 N

Ry 5 170.0 N Ry 5 170.0 Nx b

REFLECT and THINK: When you drew your kinetic diagram, you put 

your inertia terms at the center of mass for the gear and for the rod. 

Alternatively, you could have found the center of mass for the system and 

put the vectors  IAOBα, mAOBax and mAOBay on the diagram. Finally, you 

could have found an overall IO for the combined gear and rod and used 

Eq. 16.8 to solve for force F.

Sample Problem 16.8

A 6 3 8 in. rectangular plate weighing 60 lb is suspended from two pins 

A and B. If pin B is suddenly removed, determine (a) the angular 

acceleration of the plate, (b) the components of the reaction at pin A 

immediately after pin B has been removed.

STRATEGY: You are asked to determine forces and the angular 

acceleration of the plate, so use Newton’s second law.

MODELING: Choose the plate to be your system and model it as a 

rigid body. Observe that as the plate rotates about point A, its mass center 

G describes a circle with a radius r and its center at A (Fig. 1). The free-

body diagram and kinetic diagram for this system are shown in Fig. 2. 

The plate is released from rest (v 5 0), so the normal component of the 

acceleration of G is zero. The magnitude of the acceleration a of the mass 

center G is thus a 5 rα.

ANALYSIS: 

a. Angular Acceleration.  Using your free-body diagram and 

kinetic diagram, you can take moments about A to find

1ioMA 5  Iα 1 mad':    W x 5 Iα 1 1ma2r
Since a 5 rα, you have

 W x 5 Iα 1 1mrα2r    α 5
W x

W
g

r2 1 I

 (1)

BA

6 in.

8 in.

(continued)

G

A

⎯a
α

⎯r

⎯x

ω = 0

Fig. 1 The plate travels 
in a circle about A.
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1150 Plane Motion of Rigid Bodies: Forces and Accelerations

The centroidal moment of inertia of the plate is

  I 5
m

12
(a2 1 b2) 5

60 lb

12(32 .2 ft/s2)
 [ (

8
12 ft)

2 1 (
6
12 ft)

2]

 5 0.1078 lb?ft?s2

Substituting this value of I  together with W 5 60 lb, r 5
5

12 ft, and x 5
4

12 ft 

into Eq. (1), you obtain

 α 5 146.4 rad/s2 α 5 46.4 rad/s2 i b 

b. Reaction at A. Using the computed value of α, determine the 

magnitude of the vector ma attached at G as

ma 5 mrα 5
60 lb

32.2 ft/s2
 (

5
12 ft)(46.4 rad/s2) 5 36.0 lb

Applying Newon’s second law in the x and y directions gives

 y1 oFx 5 max:  Ax 5 2
3
5(36 lb)

 5 221.6 lb Ax 5 21.6 lb z b

1xoFy 5 may:  Ay 2 60 lb 5 2
4
5(36 lb)

 Ay 5 131.2 lb Ay 5 31.2 lbx b

REFLECT and THINK: If you had chosen to take moments about the 

center of gravity rather than point A, the two reaction forces Ax and Ay 

would have been in the resulting equation; that is, you would have had 

one equation and three unknowns, and you could not solve for α directly. 

Therefore, you would also need to use the equations from the x and y 

directions to solve for the three unknowns. Note that for convenience, we 

used a non-right handed coordinate system.

Sample Problem 16.9

A sphere with a radius r and a weight W is released with no initial velocity 

on an incline and rolls without slipping. Determine (a) the minimum value 

of the coefficient of static friction compatible with the rolling motion, 

(b) the velocity of the center G of the sphere after the sphere has rolled 

10 ft, (c) the velocity of G if the sphere were to move 10 ft down a 

frictionless 30° incline.

STRATEGY: Use Newton’s second law to determine the acceleration of 

the center of gravity. Then determine the velocity from kinematics.

MODELING: Choose the sphere to be your system and model it as a 

rigid body. Recall that for rolling motion, the instantaneous point of 

contact has a velocity of zero, which leads to a 5 rα (Fig. 1). A free-body 

diagram and kinetic diagram for this system are shown in Fig. 2. The 

external forces W, N, and F form a system equivalent to the inertial terms 

represented by the vector ma and the couple  Iα.

q = 30°

r
G

C

Fig. 2 Free-body diagram and 
kinetic diagram for the plate.

⎯ r = 5 in.

⎯am

G

A

= ⎯Iα

36 lb

G

A

= ⎯Iα4

45

53

3

y

x

⎯x = 4 in.

A x

Ay

G

A

W
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16.2 Constrained Plane Motion 1151

ANALYSIS: 

a. Minimum μs for Rolling Motion.  Since the sphere rolls with-

out sliding, you have a 5 rα and can sum moments about C:

1ioMC 5  Iα 1 mad':  1W sin θ2r 5 Iα 1 1ma2r
  1W sin θ2r 5 Iα 1 1mrα2r
Noting that m 5 W/g and  I 5

2
5mr2, you have

1W sin θ2r 5
2

5
  

W
g

r2
α 1 aW

g
 rαbr  α 5 1

5g sin θ

7r

 a 5 rα 5
5g sin θ

7
5

5(32.2 ft/s2) sin 308

7
5 11.50 ft /s2

Applying Newton’s second law in the x and y directions gives 

1R oFx 5 max:  W sin θ 2 F 5 ma

 W sin θ 2 F 5
W
g

 
5g sin θ

7

F 5 1
2
7W  sin u 5

2
7W  sin 30°   F 5 0.143W b 30°

1Q oFy 5 may:  N 2 W cos θ 5 0

N 5 W cos θ 5 0.866W   N 5 0.866W a 60°

 
μ

s
5

F

N
5

0.143W

0.866W  
μs 5 0.165 b

b. Velocity of Rolling Sphere. This is a case of uniformly accelerated 

motion, so

 v0 5 0    a 5 11.50 ft/s2    x 5 10 ft    x0 5 0

 v2 5 v2
0 1 2a(x 2 x0)    v2 5 0 1 2(11.50 ft/s2)(10 ft)

 v 5 15.17 ft/s v 5 15.17 ft/s c 30° b

c. Velocity of Sliding Sphere. Now assuming no friction, you have 

F 5 0 and obtain

1ioMG 5  Iα:     0 5 Iα     α 5 0

1R oFx 5 max:    W sin 30° 5 ma     0.50W 5 
W
g

 a

a 5 116.1 ft/s2     a 5 16.1 ft/s2 c 30°

Substituting a 5 16.1 ft/s2 into the equations for uniformly accelerated 

motion, you obtain

v2 5 v2
0 1 2a(x 2 x0)   v2 5 0 1 2(16.1 ft/s2)(10 ft)

 v 5 17.94 ft/s v 5 17.94 ft/s c 30° b

REFLECT and THINK: Note that the sphere moving down a friction-

less surface has a higher velocity than the rolling sphere, as you would 

expect. It is also interesting to note that the expression you obtained for 

the acceleration of the center of mass, that is, a 5 5g sin θ/7, is indepen-

dent of the radius of the sphere and the mass of the sphere. This means 

that any two solid spheres, as long they are rolling without sliding, have 

the same linear acceleration.

⎯a

α
G

C

r

Fig. 1 The acceleration 
of G down the incline.

= ⎯am

⎯Iα

C

C

G
G

xx

yy

W

N

F
θ

Fig. 2 Free-body diagram and kinetic 
diagram for the sphere.
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1152 Plane Motion of Rigid Bodies: Forces and Accelerations

Sample Problem 16.10

A cord is wrapped around the inner drum of a wheel and pulled horizontally 

with a force of 200 N. The wheel has a mass of 50 kg and a radius of 

gyration of 70 mm. Knowing that the coefficients of friction are μs 5 0.20 

and μk 5 0.15, determine the acceleration of G and the angular acceleration 

of the wheel.

STRATEGY: Since you have forces acting on the wheel and are interested 

in accelerations, use Newton’s second law. Assume the wheel rolls without 

sliding and compare the friction force needed with the maximum possible 

friction force. If the force needed exceeds the force available, redo the 

problem assuming rotation and sliding.

MODELING: Choose the wheel as your system and model it as a rigid 

body. The acceleration of G is to the right and the angular acceleration is 

clockwise (Fig. 1). The free-body and kinetic diagrams for this system are 

shown in (Fig. 2).

ANALYSIS: 

a. Assume Rolling without Sliding. In this case, you have 

a 5 rα 5 (0.100 m)α

The moment of inertia of the wheel is

I  5 mk2 5 (50 kg)(0.070 m)2 5 0.245 kg?m2

Equations of Motion. Setting the system of external forces in your 

free-body diagram equal to the system of inertial terms in your kinetic 

diagram, you obtain

1ioMC 5  Iα 1 mad':    1200 N2 10.040 m2 5 Iα 1 1ma2 10.100 m2
8.00 N?m 5 10.245 kg?m22α 1 150 kg210.100 m2α10.100 m2
 α 5 110.74 rad/s2

 a 5 rα 5 (0.100 m)(10.74 rad/s2) 5 1.074 m/s2

y
1 oFx 5 max:    F 1 200 N 5 ma
  F 1 200 N 5 (50 kg)(1.074 m/s2)

  F 5 2146.3 N F 5 146.3 N z

1xoFy 5 may:

N 2 W 5 0    N 2 W 5 mg 5 (50 kg)(9.81 m/s2) 5 490.5 N

N 5 490.5 Nx

Maximum Possible Friction Force.

Fmax 5 μsN 5 0.20(490.5 N) 5 98.1 N

Since F . Fmax, the assumed motion is impossible.

b. Rotating and Sliding. Since the wheel must rotate and slide at 

the same time, we draw new free-body and kinetic diagrams (Fig. 3), 

where a and α are independent and 

F 5 Fk 5 μkN 5 0.15(490.5 N) 5 73.6 N

G

100 mm 60 mm

200 N

⎯a

α

G

C

r = 0.100 m

Fig. 1 Linear and angular 
acceleration of the wheel.

= ⎯Iα ⎯am

C

G200 N
C

G

0.040 mF

N

W

0.100 m

y

x

Fig. 2 Free-body diagram and kinetic 
diagram for the wheel assuming the 
friction force is to the right.

F = 73.6 N

= ⎯Iα ⎯am

C

G200 N

C

G

0.060 m

N

W

0.100 m

Fig. 3 Free-body diagram and kinetic 
diagram for the wheel when it is sliding 
and rotating.
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16.2 Constrained Plane Motion 1153

From the computation of part (a), you found that F is directed to the left. 

You can obtain and solve the following equations of motion as 

y
1 oFx 5 max:  200 N 2 73.6 N 5 (50 kg)a
 a 5 12.53 m/s2 a 5 2.53 m/s2 y b

1ioMG 5  Iα:

(73.6 N)(0.100 m) 2 (200 N)(0.060 m) 5 (0.245 kg?m2)α

α 5 218.94 rad/s2  α 5 18.94 rad/s2 
l b

REFLECT and THINK: The wheel has larger linear and angular 

accelerations under conditions of rotating while sliding than when rolling 

without sliding. 

Sample Problem 16.11

Overhead cranes are often used to move large containers in shipyards. 

A simplified model of a 60,000-lb container and crane is shown. The 

uniform container is at rest when the connection at B fails. Determine 

the tension in the cable connecting the pulley to the container at A. 

STRATEGY: Since you are asked to find a tension, use Newton’s 

second law.

MODELING: Start by choosing the container to be your system. After 

the connection at B fails, the only external forces acting on the container 

are the tension in the cable at A and the weight. A free-body diagram 

and kinetic diagram for this system immediately after the connection at 

B fails are shown in Fig. 1. Since the container is undergoing general 

plane motion, in the kinetic diagram you can represent the acceleration 

of the center of mass as having a vertical and a horizontal component. 

(continued)

A13 ft

40 ft

10 ft

B

A
G

d13 ft

20 ft

5 ft⎯axm

⎯aym

A

G

d

T

13 ft

20 ft

10 ft

W

=
⎯Iα

y

x

Fig. 1 Free-body diagram and kinetic diagram for the container.

ANALYSIS: Using Fig. 1 and applying Newton’s second law in the 

x-direction and y-direction and summing moments about point G gives you

 y1 oFx 5 max:  0 5 max (1)

 1xoFy 5 may:  T 2 W 5 may (2)

1loMG 5  Iα:  2Td 5 Iα (3)
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1154 Plane Motion of Rigid Bodies: Forces and Accelerations

where

 d 5 7 ft and 

m 5
W
g

5
60,000 lb

32.2 ft /s2
5 1863 lb?s2/ft 

   I 5
1
12m1b2 1 c22 5

1
12 11836 lb?s2/ft2C140 ft22 1 110 ft22D 5 26,400 lb?ft?s2 

In Eqs. (1) through (3), you have four unknowns: T, ax, ay, and α. You can 

use kinematics to obtain additional equations. You want to relate the 

acceleration of the center of mass to that of another point on the container. 

At the instant the cable breaks, the angular velocity of the cable is zero, 

so point A has no normal acceleration, but it has an acceleration 

perpendicular to the cable. The accelerations of A and G are related by

aG 5 aA 1 aG/A 5 aA 1 α 3 rG/A 2 v2rG/A

Substituting in known values and letting v 5 0 and α 5 αk gives you

axi 1 ay j 5 aAi 1 αk 3 [di 2 5j] 2 0 5 aAi 1 1dα2j 1 15α2i
Equating components gives

i:  ax 5 aA 1 5α  (4)

j:  ay 5 dα  (5)

Solving Eqs. (1–5) for T, ay, ax, aA, and α gives you T 5 44,580 lb, 

ay 5 28.275 ft/s2, ax 5 0, aA 5 5.911 ft/s2, and α 5 21.182 rad/s2.

T 5 44,600 lbx b

REFLECT and THINK: You don’t need all five equations to solve for 

the required unknowns; that is, you could have chosen to just use Eqs. (2), 

(3), and (5). The acceleration of the center of gravity is only in the vertical 

direction at the instant the cable breaks. When the container was at rest, the 

force in the cable at A was 30,000 lb. The tension increased when the con-

nection at B failed. What would have happened if A had been at the upper 

left edge of the container? Your analysis would be identical except that d 

would be equal to 20 ft rather than 7 ft. Substituting this into your equations 

and solving gives you T 5 15,690 lb, which is less than 30,000 lb.

Sample Problem 16.12

The ends of a 4-ft rod weighing 50 lb can move freely and with no friction 

along two straight tracks as shown. If the rod is released from rest at the 

position shown, determine (a) the angular acceleration of the rod, (b) the 

reactions at A and B.

STRATEGY: Since you are asked to determine forces and accelerations, 

use Newton’s second law. The motion is constrained, so the acceleration of 

G must be related to the angular acceleration α. To obtain this relation, first 

determine the magnitude of the acceleration aA of point A in terms of α. 

G

A

B

D

b = 45° 30°

4 ft
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16.2 Constrained Plane Motion 1155

MODELING and ANALYSIS: Choose the rod to be your system and 

model it as a rigid body. Before drawing the kinetic diagram, you need 

to relate the acceleration of G to the angular acceleration of the rod. You 

can do this using kinematics. 

Kinematics of Motion.  Assume that α is directed counterclock-

wise. Noting that aB/A 5 4α, you have (Fig. 1)

aB 5 aA 1 aB/A

[aB c 45°] 5 [aA y] 1 [4α d 60°]

Noting that ϕ 5 75° and using the law of sines, you obtain

aA 5 5.46α    aB 5 4.90α

Now you can find the acceleration of G from

a 5 aG 5 aA 1 aG/A

a 5 [5.46α y] 1 [2α d 60°]

Resolving a into x and y components, you obtain

ax 5 5.46α 2 2α cos 60° 5 4.46α    ax 5 4.46α y

ay 5 22α sin 60° 5 21.732α         ay 5 1.732αw

Kinetics of Motion. Draw a free-body-diagram and kinetic diagram 

for your system (Fig. 2). Compute the following magnitudes.

 I 5
1
12ml2 5

1

12
 

50 lb

32.2 ft/s2
 (4 ft)2 5 2.07 lb?ft?s2     Iα 5 2.07α

max 5
50

32.2
 (4.46α) 5 6.93α    may 5 2

50

32.2
(1.732α) 5 22.69α

Equations of Motion.

1loMB 5 Iα 1 mad':

RA14 cos 30° ft2 2 W12 cos 30° ft2 5 Iα 1 1max2 12 sin 30° ft2
 2 1may2 12 cos 30° ft2
RA13.4642 2 150 lb211.7322 5 2.07α 1 16.93α2 11.0002
 2 12.69α2 11.7322 (1)

 y1 oFx 5 max:  RB sin 45° 5 6.93α (2)

1xoFy 5 may:  RA 1 RB cos 45° 2 50 5 22.69α (3)

Solving these equations gives 

 α 5 2.30 rad/s2 l b
RB 5 22.5 lb a 45° b

RA 5 27.9 lbx b

REFLECT and THINK: For the kinematics, you could have used the 

vector algebra approach rather than the method demonstrated in this 

example. Using the vector algebra approach, you can write

aB 5 aA 1 αk 3 rB/A 2 v2rB/A

⎯a

⎯a

a

ay⎯

ax⎯

aB

aA

aA

aA

aB/A

aG/A

aB

45° 60°

60°

f

b

G

A

B

Fig. 1 Vector diagrams for 
accelerations of points on the 
rod.

⎯Iα

=

⎯aym

⎯axm

45°
50 lb

1.732 ft1.732 ft 1.732 ft

1 ft

1 ft

RA

RB

y

x

Fig. 2 Free-body diagram and kinetic 
diagram for the rod assuming a 
downward acceleration.

(continued)
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1156 Plane Motion of Rigid Bodies: Forces and Accelerations

Substituting the directions assumed in Fig. 1, you find

aB

22
 i 2

aB

22
 j 5 aAi 1 αk 3 123.464i 1 2j2 1 0

       5 aAi 1 123.464αj 2 2αi2
Equating components gives 

i:  
aB

22
5 aA 2 2α

j:  
aB

22
5 23.46α

Solving these, you find aB 5 4.90α and aA 5 5.46α, which are similar 

to the approach shown previously. You can determine the acceleration of 

the center of gravity in terms of the angular acceleration using 

aG 5 aA 1 αk 3 rG/A 2 v2rG/A. Substituting the directions assumed in 

Fig. 1, you find

axi 1 ay j 5 aAi 1 αk 3 121.732i 1 1j2 1 0 5 aAi 1 121.732αj 2 1αi2
Equating components gives 

i:  ax 5 aA 2 1α 5 4.46α

j:  ay 5 21.732α

These are identical to the answers determined previously.

Sample Problem 16.13

In the engine system from Sample Prob. 15.15, the crank AB has a constant 

clockwise angular velocity of 2000 rpm. Knowing that the connecting rod 

BD weighs 4 lb and the piston P weighs 5 lb, determine the forces on the 

connecting rod at B and D. Assume the center of mass of BD is at its 

geometric center and it can be treated as a uniform, slender rod. 

r = 3 in.
l = 8 in.

A

B
G

β P

D

40°

STRATEGY: Since you are asked to find forces at the instant shown, 

use Newton’s second law.

MODELING: Since you want to determine the forces at B and D, start 

by choosing the connecting rod BD as your system. The pin forces at B 

and D are represented by horizontal and vertical components, and since 
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16.2 Constrained Plane Motion 1157

the rod is undergoing general plane motion, you can represent the accelera-

tion of the center of mass in the kinetic diagram as having a vertical and 

a horizontal component. The free-body and kinetic diagrams for this sys-

tem are shown in Fig. 1, where / 5 8 in. 5 0.6667 ft and β 5 13.95°.

l/2

B
β

D

By

Bx Dy

WBD

Dx

B

β

D

G
⎯aymBD

⎯axmBD

y

x

=
⎯IBDα

Fig. 1

ANALYSIS: Using Fig. 1, applying Newton’s second law in the x-direction 

and y-direction, and summing moments about point G gives 

 y1 oFx 5 max:  Bx 1 Dx 5 mBDax (1)

 1xoFy 5 may:  By 1 Dy 2 WBD 5 mBDay (2)

1loMG 5 Iα:   2 By1//22  cos β 2 Bx1//22  sin β 1 Dy1//22  cos β

 1 Dx1//22  sin β 5 IBDαBD (3)

where

mBD 5
WBD

g
5

4 lb

32.2 ft/s2
5 0.1242 lb?s2/ft

   IBD 5
1
12mBD/2 5

1
12 10.1242 lb?s2/ft2 10.6667 ft22 5 0.004601 lb?ft?s2 

In Eqs. (1) through (3), you have seven unknowns: Bx, By, Dx, Dy, ax, ay, and 

αBD. Therefore, you need more equations. You can get them from kinematics 

or by choosing another system. Choose the piston to be your system, model 

it as a particle, and draw its free-body and kinetic diagrams (Fig. 2). 

D

WP

Dy

N

Dx

D   aDmP

y

x

=

Fig. 2 Free-body diagram and kinetic 
diagram for the piston.

Note that you must draw Dx and Dy in the opposite directions to what you 

drew for the connecting rod. Using Fig. 2 and applying Newton’s second 

law in the x-direction and y-direction gives 

 y1 oFx 5 max:  2Dx 5 mPaD (4)

1xoFy 5 may:  2Dy 1 N 2 WP 5 0 (5)

where 

mP 5
WP

g
5

5 lb

32.2 ft/s2
5 0.1553 lb?s2/ft 
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1158 Plane Motion of Rigid Bodies: Forces and Accelerations

You now have five equations and nine unknowns: N, Bx, By, Dx, Dy, ax, 

ay, αBD, and aD. You could choose crank AB as another system, but since 

this will introduce three additional unknowns (the reactions at A and the 

driving torque) and you are not provided its mass, you should turn to 

kinematics for additional equations. From Sample Prob. 15.15, you 

obtained vBD 5 62.0 rad/sl, aD 5 9290 ft/s2
z, and αBD 5 9940 rad/s2

l. 

These reduce the number of unknowns by two, so you have five equations 

and seven unknowns: N, Bx, By, Dx, Dy, ax, and ay. You can find two more 

equations by relating the acceleration of the center of mass of the 

connecting rod to the acceleration of D,

aG 5 aD 1 aG/D 5 aD 1 α 3 rG/D 2 v2
BDrG/D

Substituting in known and assumed values (Fig. 1) aD 5 aDi, where 

aD 5 29290 ft/s2, and αBD 5 αBDk, where αBD 5 9940 rad/s2, gives 

 axi 1 ay j 5 aDi 1 αBD k 3 C2/2 cos βi 1
/
2 sin β jD 2 v2

BD [2
/
2 cos β i 1

/
2 sin βj]

5 aDi 2 αBD
/
2 cos βj 2 αBD

/
2 sin βi 1 v2

BD
/
2 cos βi 2 v2

BD
/
2 
sin βj

Equating components, you have

i: ax 5 aD 2 αBD
/
2 sinβ 1 v2

BD
/
2 cosβ (6)

j: ay 5 2αBD
/
2 cosβ 2 v2

BD
/
2 sinβ (7)

You now have seven equations and seven unknowns. Substituting in 

numerical values and solving these equations using your calculator or 

software such as MathCad, Maple, Matlab, or Mathematica gives you 

Bx 5 22541 lb, By 5 207.2 lb, Dx 5 1442 lb, Dy 5 2641 lb, N 5 2636 lb, 

ax 5 28845 ft/s2, and ay 5 23524 ft/s2.

Bx 5 2541 lb z By 5 207 lbx b

Dx 5 1442 lb y Dy 5 641 lbw b

REFLECT and THINK: The calculated forces are much larger than the 

weight of the piston and the connecting rod. This problem required 

multiple systems and rigid body kinematics to solve, most of which was 

done in Sample Prob. 15.15. In problems like this, it is a good practice 

to focus on the problem formulation and to keep track of equations and 

unknowns. Once you have enough equations to solve for all the unknowns, 

using a computer or calculator to solve the resulting equations is often the 

easiest approach.
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1159 1159

In this section, we considered the plane motion of rigid bodies under constraints. 

We found that the types of constraints involved in engineering problems vary 

widely. For example, a rigid body may be constrained to rotate about a fixed axis or 

to roll on a given surface, or it may be pin-connected to collars or to other bodies.

1. Your solution of a problem involving the constrained motion of a rigid body
consists, in general, of three steps. First, you should model your system by drawing 

the free-body diagram and the kinetic diagram. Second, use these diagrams to write 

out your equations of motion. Finally, you will generally need to consider the 

kinematics of the motion to have enough equations to solve the problem. Sometimes 

it is helpful to examine the kinematics first to help you draw the kinetic diagram and 

choose an appropriate coordinate system.

2. Free-body diagram and kinetic diagram. Your first step in the solution of a 

problem is to draw a free-body diagram and a kinetic diagram.

a. A free-body diagram shows the forces exerted on the body, including the 

applied forces, the reactions at the supports, and the weight of the body. 

b. A kinetic diagram shows the inertial terms: vector ma and couple  Iα.

3. Using your free-body diagram and kinetic diagram, generate the equations of 
motion for the system. Drawing good free-body and kinetic diagrams will allow you 

to sum components in any direction and to sum moments about any point. For a single 

body, you can obtain a maximum of three independent equations (two translational 

and one moment) that can be used to help analyze the system.

©Fx 5 max   ©Fy 5 may

oMG 5 Iα  or  oMO 5 IOα   or  oMP 5 Iα 1 mad'  or   oMP 5 Iα 1 rG/P 3 ma

where G is the center of mass of the body, O is a fixed axis of rotation, P is any 

arbitrary point, and d' is the perpendicular distance between point P and the line of 

action of the acceleration of the center of mass.

4. The kinematic analysis of the motion uses the methods you learned in Chap. 15. 

Due to the constraints, linear and angular accelerations are related. You should establish 

relationships among the accelerations (angular as well as linear), and your goal should 

be to express all accelerations in terms of a single unknown acceleration. 

a. For a body in noncentroidal rotation about a fixed axis, the components 

of the acceleration of the mass center are at 5 rα and an 5 rv2, where v is generally 

known [Sample Probs. 16.7 and 16.8].

SOLVING PROBLEMS 
ON YOUR OWN

(continued)
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1160

b. For a rolling disk or wheel, the acceleration of the geometric center is 

a 5 rα [Sample Prob. 16.9].

 c. For a body in general plane motion, your best course of action if neither 

a nor α is known or readily obtainable is to express a in terms of α [Sample 

Probs. 16.10 through 16.13]. This can be done by relating the acceleration of the 

center of mass to some reference point:

a 5 aA 1 αk 3 rG/A 2 v2rG/A

5. When solving problems involving rolling disks or wheels, keep in mind the 

following situations.

 a. If sliding is impending, the friction force exerted on the rolling body has 

reached its maximum value, so Fm 5 μsN, where N is the normal force exerted on the 

body and μs is the coefficient of static friction between the surfaces of contact.

 b. If sliding is not impending, the friction force F can have any value smaller 

than Fm and therefore should be considered an independent unknown. After you have 

determined F, be sure to check that it is smaller than Fm; if it is not, the body does 

not roll but rotates and slides as described in the next paragraph.

 c. If the body rotates and slides at the same time, then the body is not roll-

ing, and the acceleration a of the mass center is independent of the angular accelera-

tion α of the body: a ? rα. On the other hand, the friction force has a well-defined 

value, F 5 μkN, where μk is the coefficient of kinetic friction between the surfaces 

of contact.

 d. For an unbalanced rolling disk or wheel, the relation a 5 rα between the 

acceleration a of the mass center G and the angular acceleration α of the disk or 

wheel does not hold any more. However, a similar relation holds between the 

acceleration aO of the geometric center O and the angular acceleration α of the disk 

or wheel: aO 5 rα. This relation can be used to express a in terms of α and v 

(Fig. 16.17).

6. For a system of connected rigid bodies, the goal of your kinematic analysis 

should be to determine all the accelerations from the given data or to express them 

all in terms of a single unknown. For systems with several degrees of freedom, you 

will need to use as many unknowns as there are degrees of freedom.

  Your kinetic analysis will sometimes be carried out by drawing a free-body 

diagram and a kinetic diagram for the entire system. If you only have three unknowns, 

this is usually the best approach. In most cases, however, it will be necessary to 

analyze each rigid body separately in order to obtain enough equations to solve for 

all the unknown quantities in the problem.
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1161

CONCEPT QUESTIONS

 16.CQ4 A cord is attached to a spool when a force P is applied to the cord 

as shown. Assuming the spool rolls without slipping, what direction 

does the spool move for each case?

 Case 1: a. left b. right c. It would not move.

 Case 2: a. left b. right c. It would not move.

 Case 3: a. left b. right c. It would not move.

Case 1 Case 2 Case 3

P
P

P

Fig. P16.CQ4 and P16.CQ5

16.CQ5 A cord is attached to a spool when a force P is applied to the cord 

as shown. Assuming the spool rolls without slipping, in what 

direction does the friction force act for each case?

 Case 2: a. left b. right c. The friction force would be zero.

 Case 3: a. left b. right c. The friction force would be zero.

16.CQ6 A front-wheel-drive car starts from rest and accelerates to the 

right. Knowing that the tires do not slip on the road, what is 

the direction of the friction force the road applies to the front 

tires?

a. left

b. right

c. The friction force is zero.

16.CQ7 A front-wheel-drive car starts from rest and accelerates to the right. 

Knowing that the tires do not slip on the road, what is 

the direction of the friction force the road applies to the rear tires?

a. left

b. right

c. The friction force is zero.

Problems
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1162

FREE-BODY PRACTICE PROBLEMS

16.F5 A uniform 6 3 8-in. rectangular plate of mass m is pinned at A. 

Knowing the angular velocity of the plate at the instant shown is v, 

draw the FBD and KD.

 16.F6 Two identical 4-lb slender rods AB and BC are connected by a pin at 

B and by the cord AC. The assembly rotates in a vertical plane under 

the combined effect of gravity and a couple M applied to rod AB. 

Knowing that in the position shown the angular velocity of the 

assembly is v, draw the FBD and KD that can be used to determine 

the angular acceleration of the assembly.

120°

M

12 in.

12 in.

B
A

C

Fig. P16.F6

 16.F7 The 4-lb uniform rod AB is attached to collars of negligible mass 

that slide without friction along the fixed rods shown. Rod AB is at 

rest in the position θ 5 258 when a horizontal force P is applied to 

collar A causing it to start moving to the left. Draw the FBD and 

KD for the rod.

25 in.

q 70°

A

B

P

Fig. P16.F7

 16.F8 A uniform disk of mass m 5 4 kg and radius r 5 150 mm is 

supported by a belt ABCD that is bolted to the disk at B and C. If 

the belt suddenly breaks at a point located between A and B, draw 

the FBD and KD for the disk immediately after the break.

r

G
30°30°

B

A D

C

Fig. P16.F8

Fig. P16.F5

A

6 in.

8 in.
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END-OF-SECTION PROBLEMS

 16.75 Show that the couple I α of Fig. 16.15 can be eliminated by attaching 

the vectors mat and ma n at a point P called the center of percussion,
located on line OG at a distance GP 5 k2/r from the mass center 

of the body.

G

α

⎯r

m⎯a t

m⎯a n

P

O

Fig. P16.75

 16.76 A uniform slender rod of length L 5 900 mm and mass m 5 4 kg is 

suspended from a hinge at C. A horizontal force P of magnitude 75 N 

is applied at end B. Knowing that r 5 225 mm, determine (a) the 

angular acceleration of the rod, (b) the components of the reaction at C.

 16.77 In Prob. 16.76, determine (a) the distance r for which the horizontal 

component of the reaction at C is zero, (b) the corresponding angular 

acceleration of the rod.

 16.78 A uniform slender rod of length L 5 36 in. and weight W 5 4 lb hangs 

freely from a hinge at A. If a force P of magnitude 1.5 lb is applied 

at B horizontally to the left (h 5 L), determine (a) the angular accel-

eration of the rod, (b) the components of the reaction at A.

 16.79 In Prob. 16.78, determine (a) the distance h for which the horizontal 

component of the reaction at A is zero, (b) the corresponding angular 

acceleration of the rod.

 16.80 An athlete performs a leg extension on a machine using a 20-kg mass 

at A located 400 mm away from the knee joint at center O. 

Biomechanical studies show that the patella tendon inserts at B, 

which is 100 mm below point O and 20 mm from the center line of 

the tibia (see figure). The mass of the lower leg and foot is 5 kg, the 

center of gravity of this segment is 300 mm from the knee, and the 

radius of gyration about the knee is 350 mm. Knowing that the leg is 

moving at a constant angular velocity of 30 degrees per second when 

θ 5 60°, determine (a) the force F in the patella tendon, (b) the 

magnitude of the joint force at the knee joint center O.

B

G

A

O

F

θ

φ = 20°
20 mm

300 mm
300 mm

100 mm

Fig. P16.80

C

G

B

A

P

L
2

L
2

r⎯

Fig. P16.76

A

B

h

L

P

Fig. P16.78
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 16.81 The shutter shown was formed by removing one quarter of a disk of 

0.75-in. radius and is used to interrupt a beam of light emanating from 

a lens at C. Knowing that the shutter weighs 0.125 lb and rotates at 

the constant rate of 24 cycles per second, determine the magnitude of 

the force exerted by the shutter on the shaft at A.

 16.82 A 6-in.-diameter hole is cut as shown in a thin disk of 15-in. diameter. 

The disk rotates in a horizontal plane about its geometric center A
at the constant rate of 480 rpm. Knowing that the disk has a mass 

of 60 lb after the hole has been cut, determine the horizontal 

component of the force exerted by the shaft on the disk at A.

A

8 in.

15 in.
3 in.

Fig. P16.82

 16.83 A turbine disk of mass 26 kg rotates at a constant rate of 9600 rpm. 

Knowing that the mass center of the disk coincides with the  center of 

rotation O, determine the reaction at O immediately after a single blade 

at A, of mass 45 g, becomes loose and is thrown off.

 16.84 and 16.85 A uniform rod of length L and mass m is supported as 

shown. If the cable attached at end B suddenly breaks, determine 

(a) the acceleration of end B, (b) the reaction at the pin support.

 16.86 An adapted launcher uses a torsional spring about point O to help 

people with mobility impairments throw a Frisbee®. Just after the 

Frisbee leaves the arm, the angular velocity of the throwing arm is 

200 rad/s and its acceleration is 10 rad/s2; both are counterclockwise. 

The rotation point O is located 1 in. from the two sides. Assume that 

you can model the 2-lb throwing arm as a uniform rectangle. Just 

after the Frisbee leaves the arm, determine (a) the moment about O 

caused by the spring, (b) the forces on the pin at O.

ω, α

20 in.

1 in.
1 in.

O 9 in.

Fig. P16.86

B

C

A

r ω

Fig. P16.81

AO 300 mm

Fig. P16.83

A B

L

Fig. P16.84

A
BC

L

b = L
4

Fig. P16.85
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 16.87 A 1.5-kg slender rod is welded to a 5-kg uniform disk as shown. 

The assembly swings freely about C in a vertical plane. Knowing 

that in the position shown the assembly has an angular velocity of 

10 rad/s clockwise, determine (a) the angular acceleration of the 

assembly, (b) the components of the reaction at C.

 16.88 Two identical 4-lb slender rods AB and BC are connected by a pin 

at B and by the cord AC. The assembly rotates in a vertical plane 

under the combined effect of gravity and a 6 lb?ft couple M applied 

to rod AB. Knowing that in the position shown the angular velocity 

of the assembly is zero, determine (a) the angular acceleration of the 

assembly, (b) the tension in cord AC.

120°

M

12 in.

12 in.

B
A

C

Fig. P16.88

16.89 The object ABC consists of two slender rods welded together at 

point  B. Rod AB has a weight of 2 lb and bar BC has a weight of 

4 lb. Knowing the magnitude of the angular velocity of ABC is 10 

rad/s when θ 5 08, determine the components of the reaction at point 

C at this location.

 16.90 A 3.5-kg slender rod AB and a 2-kg slender rod BC are connected 

by a pin at B and by the cord AC. The assembly can rotate in a 

vertical plane under the combined effect of gravity and a couple M 

applied to rod BC. Knowing that in the position shown the angular 

velocity of the assembly is zero and the tension in cord AC is equal 

to 25 N, determine (a) the angular acceleration of the assembly, 

(b) the magnitude of the couple M.

400 mm

300 mm

400 mm

M

BA

C

Fig. P16.90

A B80 mm

C

120 mm

Fig. P16.87

2 ft

1 ft

B

A

C

q

Fig. P16.89
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16.91 A 9-kg uniform disk is attached to the 5-kg slender rod AB by means 

of frictionless pins at B and C. The assembly rotates in a vertical 

plane under the combined effect of gravity and of a couple M that 

is applied to rod AB. Knowing that at the instant shown the assembly 

has an angular velocity of 6 rad/s and an angular acceleration of 

25 rad/s2, both counterclockwise, determine (a) the couple M, (b) the 

force exerted by pin C on member AB.

 16.92 Derive the equation oMC 5 IC α for the rolling disk of Fig. 16.16, 

where oMC represents the sum of the moments of the external forces 

about the instantaneous center C, and IC is the moment of inertia of

the disk about C.

 16.93 Show that in the case of an unbalanced disk, the equation derived in 

Prob. 16.92 is valid only when the mass center G, the geometric 

center O, and the instantaneous center C happen to lie in a straight 

line.

 16.94 A wheel of radius r and centroidal radius of gyration k is released 

from rest on the incline and rolls without sliding. Derive an expression 

for the acceleration of the center of the wheel in terms of r, k, β,

and g.

β

r

Fig. P16.94

 16.95 A homogeneous sphere S, a uniform cylinder C, and a thin pipe P
are in contact when they are released from rest on the incline shown. 

Knowing that all three objects roll without slipping, determine, after 

4 s of motion, the distance between (a) the pipe and the cylinder, 

(b) the cylinder and the sphere.

 16.96 A 40-kg flywheel of radius R 5 0.5 m is rigidly attached to a shaft 

of radius r 5 0.05 m that can roll along parallel rails. A cord is 

attached as shown and pulled with a force P of magnitude 150 N. 

Knowing the centroidal radius of gyration is k 5 0.4 m, determine 

(a) the angular acceleration of the flywheel, (b) the velocity of the 

center of gravity after 5 s.

 16.97 A 40-kg flywheel of radius R 5 0.5 m is rigidly attached to a shaft 

of radius r 5 0.05 m that can roll along parallel rails. A cord is 

attached as shown and pulled with a force P. Knowing the centroidal 

radius of gyration is k 5 0.4 m and the coefficient of static friction 

is μs 5 0.4, determine the largest magnitude of force P for which 

no slipping will occur.

A

B

C

M

500 mm

150 mm 200 mm

308

Fig. P16.91

β = 10°

S
C

P

Fig. P16.95

r

R

15°

P

Fig. P16.96 and P16.97
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 16.98 through 16.101 A drum of 60-mm radius is attached to a disk of 

120-mm radius. The disk and drum have a total mass of 6 kg and a 

combined radius of gyration of 90 mm. A cord is attached as shown 

and pulled with a force P of magnitude 20 N. Knowing that the disk 

rolls without sliding, determine (a) the angular acceleration of the 

disk and the acceleration of G, (b) the minimum value of the 

coefficient of static friction compatible with this motion.

 16.102 through 16.105 A drum of 4-in. radius is attached to a disk of 

8-in. radius. The disk and drum have a combined weight of 10 lb and 

a combined radius of gyration of 6 in. A cord is attached as shown 

and pulled with a force P of magnitude 5 lb. Knowing that the coef-

ficients of static and kinetic friction are μs 5 0.25 and 

μk 5 0.20, respectively, determine (a) whether or not the disk slides, 

(b) the angular acceleration of the disk and the  acceleration of G.

P

G

Fig. P16.100 and P16.104    

P

G

Fig. P16.101 and P16.105

 16.106 and 16.107 A 12-in.-radius cylinder of weight 16 lb rests on a 6-lb 

carriage. The system is at rest when a force P of magnitude 4 lb is 

applied. Knowing that the cylinder rolls without sliding on the 

carriage and neglecting the mass of the wheels of the carriage, 

determine (a) the acceleration of the carriage, (b) the acceleration of 

point A, (c) the distance the cylinder has rolled with respect to the 

carriage after 0.5 s.

P

A

B

Fig. P16.106  

PA

B

Fig. P16.107

 16.108 Gear C has a mass of 5 kg and a centroidal radius of gyration of 

75 mm. The uniform bar AB has a mass of 3 kg and gear D is 

stationary. If the system is released from rest in the position shown, 

determine (a) the angular acceleration of gear C, (b) the acceleration 

of point B.

G
P

Fig. P16.98 and P16.102

P

G

Fig. P16.99 and P16.103

200 mm

100 mm

D

B

C

A

Fig. P16.108
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 16.109 Two uniform disks A and B, each with a mass of 2 kg, are connected 

by a 2.5-kg rod CD as shown. A counterclockwise couple M of 

moment 2.25 N?m is applied to disk A. Knowing that the disks roll 

without sliding, determine (a) the acceleration of the center of each 

disk, (b) the horizontal component of the force exerted on disk B
by pin D.

16.110 A single-axis personal transport device starts from rest with the rider 

leaning slightly forward. Together, the two wheels weigh 25 lbs, and 

each has a radius of 10 in. The mass moment of inertia of the wheels 

about the axle is 0.15 slug?ft2. The combined weight of the rest of 

the device and the rider (excluding the wheels) is 200 lbs, and the 

center of gravity G of this weight is located at x 5 4 in. in front of 

axle A and y 5 36 in. above the ground. An initial clockwise torque 

M is applied by the motor to the wheels. Knowing that the coefficients 

of static and kinetic friction are 0.7 and 0.6, respectively, determine 

(a) the torque M that will keep the rider in the same angular position, 

(b) the corresponding linear acceleration of the rider.

 16.111 A hemisphere of weight W and radius r is released from rest in the 

position shown. Determine (a) the minimum value of μs for which 

the hemisphere starts to roll without sliding, (b) the corresponding 

acceleration of point B. [Hint: Note that OG 5
3
8r  and that, by the 

parallel-axis theorem,  I 5
2
5mr2 2 m1OG22.]

O

B

A

G

Fig. P16.111

 16.112 Solve Prob. 16.111, considering a half cylinder instead of a hemi-

sphere. [Hint: Note that OG 5 4r/3π and that, by the parallel-axis 

theorem,  I 5
1
2mr2 2 m1OG22.]

 16.113 The center of gravity G of a 1.5-kg unbalanced tracking wheel is 

located at a distance r 5 18 mm from its geometric center B. The 

radius of the wheel is R 5 60 mm and its centroidal radius of 

gyration is 44 mm. At the instant shown, the center B of the wheel 

has a velocity of 0.35 m/s and an acceleration of 1.2 m/s2, both 

directed to the left. Knowing that the wheel rolls without sliding and 

neglecting the mass of the driving yoke AB, determine the horizontal 

force P applied to the yoke.

 16.114 A small clamp of mass mB is attached at B to a hoop of mass mh.
The system is released from rest when θ 5 90° and rolls without 

sliding. Knowing that mh 5 3mB, determine (a) the angular accelera-

tion of the hoop, (b) the horizontal and vertical components of the 

acceleration of B.

 16.115 A small clamp of mass mB is attached at B to a hoop of mass mh.
Knowing that the system is released from rest and rolls without 

sliding, derive an expression for the angular acceleration of the hoop 

in terms of mB, mh, r, and θ.

M

120 mm 120 mm

40 mm
A

D

B
C

Fig. P16.109

P

A

B G

r = 18 mm

R = 60 mm

Fig. P16.113

B

A

r

θ

Fig. P16.114 and P16.115

y

G

x

A

Fig. P16.110
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 16.116 A 4-lb bar is attached to a 10-lb uniform cylinder by a square pin, P, 

as shown. Knowing that r 5 16 in., h 5 8 in., θ 5 20°, L 5 20 in., 

and v 5 2 rad/s at the instant shown, determine the reactions at P 

at this instant assuming that the cylinder rolls without sliding down 

the incline.

 16.117 The uniform rod AB with a mass m and a length of 2L is attached 

to collars of negligible mass that slide without friction along fixed 

rods. If the rod is released from rest in the position shown, derive 

an expression for (a) the angular acceleration of the rod, (b) the 

reaction at A.

G

B

A

L

L

θ

Fig. P16.117 and P16.118 

 16.118 The 10-lb-uniform rod AB has a total length of 2L 5 2 ft and is 

attached to collars of negligible mass that slide without friction along 

fixed rods. If rod AB is released from rest when θ 5 30°, determine 

immediately after release (a) the angular acceleration of the rod, 

(b) the reaction at A.

 16.119 A 40-lb ladder rests against a wall when the bottom begins to slide 

out. The ladder is 30 ft long and the coefficient of kinetic friction 

between the ladder and all surfaces is 0.2. For θ 5 40°, determine 

(a) the angular acceleration of the ladder, (b) the forces at A and B.

 16.120 A beam AB of length L and mass m is supported by two cables as 

shown. If cable BD breaks, determine at that instant the tension in 

the remaining cable as a function of its initial angular orientation θ.

BA

C D

q q

Fig. P16.120

ω

L

h
r

P

θ

Fig. P16.116

A

B

θ

Fig. P16.119
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 16.121 End A of the 6-kg uniform rod AB rests on the inclined surface, while 

end B is attached to a collar of negligible mass that can slide along 

the vertical rod shown. Knowing that the rod is released from rest 

when θ 5 35° and neglecting the effect of friction, determine imme-

diately after release (a) the angular acceleration of the rod, (b) the 

reaction at B.

 16.122 End A of the 6-kg uniform rod AB rests on the inclined surface, while 

end B is attached to a collar of negligible mass that can slide along 

the vertical rod shown. When the rod is at rest, a vertical force P is 

applied at B, causing end B of the rod to start moving upward with an 

acceleration of 4 m/s2. Knowing that θ 5 35°, determine the force P.

 16.123 End A of the 8-kg uniform rod AB is attached to a collar that can 

slide without friction on a vertical rod. End B of the rod is attached 

to a vertical cable BC. If the rod is released from rest in the position 

shown, determine immediately after release (a) the angular 

acceleration of the rod, (b) the reaction at A.

 16.124 The 4-kg uniform rod ABD is attached to the crank BC and is fitted 

with a small wheel that can roll without friction along a vertical slot. 

Knowing that at the instant shown crank BC rotates with an angular 

velocity of 6 rad/s clockwise and an angular acceleration of 15 rad/s2 

counterclockwise, determine the reaction at A.

 16.125 The 3-lb uniform rod BD is connected to crank AB and to a collar 

of negligible weight. A couple (not shown) is applied to crank AB, 

causing it to rotate with an angular velocity of 12 rad/s counterclock-

wise and an angular acceleration of 80 rad/s2 clockwise at the instant 

shown. Neglecting the effect of friction, determine the reaction at D.

B

D

A

8 in.

6 in.

3 in.

Fig. P16.125 and P16.126

 16.126 The 3-lb uniform rod BD is connected to crank AB and to a collar of 

negligible weight. A couple (not shown) is applied to crank AB causing 

it to rotate. At the instant shown, crank AB has an angular velocity of 

12 rad/s and an angular acceleration of 80 rad/s2; both are counterclock-

wise. Neglecting the effect of friction, determine the reaction at D.

B

A 25°

1.5 m

θ

Fig. P16.121 and P16.122

200 mm

200 mm

100 mm

A

B

D

C

Fig. P16.124

L = 750 mm

q = 30°
A

B

C

Fig. P16.123
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 16.127 The test rig shown was developed to perform fatigue testing on fitness 

trampolines. A motor drives the 200-mm radius flywheel AB, which 

is pinned at its center point A, in a counterclockwise direction with a 

constant angular velocity of 120 rpm. The flywheel is attached to 

slider CD by the 400-mm connecting rod BC. The mass of the 

connecting rod BC is 5 kg, and the mass of the link CD and foot is 

2 kg. At the instant when θ 5 0° and the foot is just above the 

trampoline, determine the force exerted by pin C on rod BC.

θA

D

B

C

Fig. P16.127

 16.128 Solve Prob. 16.127 for θ 5 90°.

 16.129 The 4-kg uniform slender bar BD is attached to bar AB and a wheel 

of negligible mass that rolls on a circular surface. Knowing that at 

the instant shown bar AB has an angular velocity of 6 rad/s and no 

angular acceleration, determine the reaction at point D.

 16.130 The motion of the uniform slender rod of length L 5 0.5 m and mass 

m 5 3 kg is guided by pins at A and B that slide freely in friction-

less slots, circular and horizontal, cut into a vertical plate as shown. 

Knowing that at the instant shown the rod has an angular velocity 

of 3 rad/s counterclockwise and θ 5 308, determine the reactions at 

points A and B.

 16.131 At the instant shown, the 20-ft-long, uniform 100-lb pole ABC has 

an angular velocity of 1 rad/s counterclockwise and point C is sliding 

to the right. A 120-lb horizontal force P acts at B. Knowing the 

coefficient of kinetic friction between the pole and the ground is 0.3, 

determine at this instant (a) the acceleration of the center of gravity, 

(b) the normal force between the pole and the ground.

0.75 m

0.75 m

1.5 m

D

A

B

Fig. P16.129

B

0.3 m

A

q

Fig. P16.130

B

P

A

80°
6 ft

C

ω

Fig. P16.131
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16.132 A driver starts his car with the door on the passenger’s side wide 

open (θ 5 0). The 80-lb door has a centroidal radius of gyration

k 5 12.5 in., and its mass center is located at a distance r 5 22 in. 

from its vertical axis of rotation. Knowing that the driver maintains 

a constant acceleration of 6 ft/s2, determine the angular velocity of 

the door as it slams shut (θ 5 90°).

 16.133 For the car of Prob. 16.132, determine the smallest constant accelera-

tion that the driver can maintain if the door is to close and latch, 

knowing that as the door hits the frame its angular velocity must be 

at least 2 rad/s for the latching mechanism to operate.

 16.134 The hatchback of a car is positioned as shown to help determine the 

appropriate size for a damping mechanism AB. The weight of the door 

is 40 lbs, and its mass moment of inertia about the center of gravity G
is 15 lb?ft?s2. The linkage DEFH controls the motion of the hatch and 

is shown in more detail in part (b) of the figure. Assume that the mass 

of the links DE, EF, and FH are negligible, compared to the mass of 

the door. With AB removed, determine (a) the initial angular acceleration 

of the 40-lb door as it is released from rest, (b) the force on link FH.

D

H

F

E

9.5 in.

2 in.

4 in.

24°

48°

G

A

D H

F

B E

2 ft

Fig. P16.134

  *16.135 The 6-kg rod BC connects a 10-kg disk centered at A to a 5-kg rod CD. 

The motion of the system is controlled by the couple M applied to 

disk A. Knowing that at the instant shown disk A has an angular velocity 

of 36 rad/s clockwise and no angular acceleration, determine (a) the 

couple M, (b) the components of the force exerted at C on rod BC.

  *16.136 The 6-kg rod BC connects a 10-kg disk centered at A to a 5-kg rod 

CD. The motion of the system is controlled by the couple M applied 

to disk A. Knowing that at the instant shown disk A has an angular 

velocity of 36 rad/s clockwise and an angular acceleration of 

150 rad/s2 counterclockwise, determine (a) the couple M, (b) the 

components of the force exerted at C on rod BC.

 16.137 In the engine system shown l 5 250 mm and b 5 100 mm. The 

connecting rod BD is assumed to be a 1.2-kg uniform slender rod 

and is attached to the 1.8-kg piston P. During a test of the system, 

crank AB is made to rotate with a constant angular velocity of 

600 rpm clockwise with no force applied to the face of the piston. 

Determine the forces exerted on the connecting rod at B and D when 

θ 5 180°. (Neglect the effect of the weight of the rod.)

 16.138 Solve Prob. 16.137 when θ 5 90°.

A

B
θ

a

ω

Fig. P16.132

B

A

C

D

30°

30°

400 mm

250 mm200 mm

M

Fig. P16.135 and P16.136

A

B

P

D

l

b
q

Fig. P16.137

(a) (b)
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 16.139 The 4-lb uniform slender rod AB, the 8-lb uniform slender rod BF, 

and the 4-lb uniform thin sleeve CE are connected as shown and 

move without friction in a vertical plane. The motion of the linkage 

is controlled by the couple M applied to rod AB. Knowing that at 

the instant shown the angular velocity of rod AB is 15 rad/s and the 

magnitude of the couple M is 5 ft?lb, determine (a) the angular 

acceleration of rod AB, (b) the reaction at point D.

 16.140 The 4-lb uniform slender rod AB, the 8-lb uniform slender rod BF, 

and the 4-lb uniform thin sleeve CE are connected as shown and 

move without friction in a vertical plane. The motion of the linkage 

is controlled by the couple M applied to rod AB. Knowing that at 

the instant shown the angular velocity of rod AB is 30 rad/s and the 

angular acceleration of rod AB is 96 rad/s2 clockwise, determine 

(a) the magnitude of the couple M, (b) the reaction at point D.

16.141 Two rotating rods in the vertical plane are connected by a slider 

block P of negligible mass. The rod attached at A has a weight of 

1.6 lb and a length of 8 in. Rod BP weighs 2 lb and is 10 in. long 

and the friction between block P and AE is negligible. The motion 

of the system is controlled by a couple M applied to rod BP. Know-

ing that rod BP has a constant angular velocity of 20 rad/s clockwise, 

determine (a) the couple M, (b) the components of the force exerted 

on AE by block P.

A B

P

E

30°

Fig. P16.141 and P16.142

16.142 Two rotating rods in the vertical plane are connected by a slider 

block P of negligible mass. The rod attached at A has a mass of 

0.8 kg and a length of 160 mm. Rod BP has a mass of 1 kg and is 

200 mm long and the friction between block P and AE is negligible. 

The motion of the system is controlled by a couple M applied to 

bar BP. Knowing that at the instant shown rod BP has an angular 

velocity of 20 rad/s clockwise and an angular acceleration of 80 rad/s2 

clockwise, determine (a) the couple M, (b) the components of the 

force exerted on AE by block P.

 * 16.143 Two disks, each with a mass m and a radius r, are connected as 

shown by a continuous chain belt of negligible mass. If a pin at point 

C of the chain belt is suddenly removed, determine (a) the angular 

acceleration of each disk, (b) the tension in the left-hand portion of 

the belt, (c) the acceleration of the center of disk B.

 * 16.144 A uniform slender bar AB of mass m is suspended as shown from a 

uniform disk of the same mass m. Neglecting the effect of friction, 

determine the accelerations of points A and B immediately after a 

horizontal force P has been applied at B.

10 in.

5 in. 5 in. 5 in. 5 in.

B D F

EC

M

A

Fig. P16.139 and P16.140

A

B

C

r

r

Fig. P16.143

A

B

L

r

P

Fig. P16.144
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 16.145 A uniform rod AB, of mass 15 kg and length 1 m, is attached to the 

20-kg cart C. Neglecting friction, determine immediately after the 

system has been released from rest, (a) the acceleration of the cart, 

(b) the angular acceleration of the rod.

 * 16.146 The uniform slender 2-kg bar BD is attached to the uniform 6-kg 

disk by a pin at B and released from rest in the position shown. 

Assuming that the disk rolls without slipping, determine (a) the 

initial reaction at the contact point A, (b) the corresponding smallest 

allowable value of the coefficient of static friction.

750 mm

250 mm

A
B D

45°

Fig. P16.146

 * 16.147 and *16.148 The 6-lb cylinder B and the 4-lb wedge A are held at 

rest in the position shown by cord C. Assuming that the cylinder 

rolls without sliding on the wedge and neglecting friction between 

the wedge and the ground, determine, immediately after cord C has 

been cut, (a) the acceleration of the wedge, (b) the angular accelera-

tion of the cylinder.

A

B

C

r = 3 in.

20°

Fig. P16.148

* 16.149 Each of the 3-kg bars AB and BC is of length L 5 500 mm. A hori-

zontal force P of magnitude 20 N is applied to bar BC as shown. 

Knowing that b 5 L (P is applied at C), determine the angular 

acceleration of each bar.

 * 16.150 Each of the 3-kg bars AB and BC is of length L 5 500 mm. A hori-

zontal force P of magnitude 20 N is applied to bar BC. For the 

position shown, determine (a) the distance b for which the bars move 

as if they formed a single rigid body, (b) the corresponding angular 

acceleration of the bars.

 * 16.151 (a) Determine the magnitude and the location of the maximum bend-

ing moment in the rod of Prob. 16.78. (b) Show that the answer to 

part a is independent of the weight of the rod.

 * 16.152 Draw the shear and bending-moment diagrams for the rod of Prob. 

16.84 immediately after the cable at B breaks.

B

A

25�

C

Fig. P16.145

A

B
Cr = 3 in.

20°

Fig. P16.147

L

C

A

B

L
b

P

Fig. P16.149 and 
P16.150
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In this chapter, we studied the kinetics of rigid bodies, i.e., the relations 

between the forces acting on a rigid body, the shape and mass of the body, 

and the motion produced. Except for the first two sections, which apply to 

the most general case of the motion of a rigid body, our analysis was restricted 

to the plane motion of rigid bodies and rigid bodies symmetrical with respect 

to the plane of motion. We will study the plane motion of nonsymmetrical 

rigid bodies and the motion of rigid bodies in three-dimensional space in 

Chap. 18.

Fundamental Equations of Motion for a Rigid Body
We first recalled [Sec. 16.1A] the two fundamental equations derived in 

Chap. 14 for the motion of a system of particles and observed that they apply 

in the most general case of the motion of a rigid body. The first equation 

defines the motion of the mass center G of the body; we have

©F 5 ma (16.1)

where m is the mass of the body and a is the acceleration of G. The second 

equation is related to the motion of the body relative to a centroidal frame of 

reference; we have

 oMG 5 H
.

G (16.2)

where H
.

G is the rate of change of the angular momentum HG of the body 

about its mass center G. Together, Eqs. (16.1) and (16.2) state that the system 
of the external forces is equipollent to the system consisting of the vector 

ma attached at G and the couple of moment H
.

G (Fig. 16.18).

Angular Momentum in Plane Motion
Restricting our analysis at this point and for the rest of the chapter to the 

plane motion of rigid bodies and rigid bodies symmetrical with respect to 

the plane of motion, we showed [Sec. 16.1B] that the angular momentum of 

the body could be expressed as

 HG 5 Iv (16.4)

where  I  is the moment of inertia of the body about a centroidal axis 

perpendicular to the reference plane and v is the angular velocity of the body. 

Differentiating both sides of Eq. (16.4), we obtained

 H
.

G 5 Iv
.

5 Iα (16.5)

which shows that, in the restricted case considered here, we can represent the 

rate of change of the angular momentum of the rigid body by a vector of the 

same direction as α (i.e., perpendicular to the plane of reference) and of 

magnitude Iα .

Equations for the Plane Motion of a Rigid Body
It follows from [Sec. 16.1E] that the plane motion of a rigid body or of a 

rigid body symmetrical with respect to the reference plane is defined by the 

Review and Summary

F4F1

F2

F3

==  ⎯am

HG
.

G

G

Fig. 16.18
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three scalar equations. You will have one equation for the x-direction, one for 

the y-direction, and one moment equation, as 

 ©Fx 5 max       ©Fy 5 may

©MG 5 Iα  or  ©MO 5 IOα  or  ©MP 5 Iα 1 mad' or

 oMP 5 Iα 1 rG/P 3 ma

where G is the center of mass of the body, O is a fixed axis of rotation, 

P is any arbitrary point, and d' is the perpendicular distance between 

point P and the line of action of the acceleration of the center of mass.

Plane Motion of a Rigid Body
It further follows that the external forces acting on the rigid body are actually
equivalent to the inertial terms of the various particles forming the body. This 

statement can be represented by a free-body diagram and kinetic diagram as 

shown in Fig. 16.19, where the inertial terms have been represented by a 

vector ma attached at G and a couple  Iα. In the particular case of a rigid 

body in translation, the inertial terms shown in part b of this figure reduce to 

the single vector ma, whereas in the particular case of a rigid body in centroidal 
rotation, they reduce to the single couple  Iα. In any other case of plane 

motion, both the vector ma and the couple  Iα should be included.

Free-Body Diagram and Kinetic Diagram
Any kinetics problem involving the plane motion of a rigid body may be 

solved by drawing a free-body diagram and kinetic diagram similar to that 

of Fig. 16.19 [Sec. 16.1E]. You can then obtain three equations of motion (see 

previous equations) by equating the x components, y components, and moments 

about a chosen point (such as G or some arbitrary point P) of the forces and 

vectors involved [Sample Probs. 16.1 through 16.5]. 

Connected Rigid Bodies
We can also use the method described previously to solve problems involving 

the plane motion of several connected rigid bodies [Sec. 16.1F]. You draw a 

free-body diagram and kinetic diagram for each system and solve the equations 

of motion simultaneously. In some cases, however, you can include multiple 

objects in your system and draw a single diagram for the entire system, 

including all of the external forces as well as the vectors ma and the couples 

Iα  associated with the various parts of the system [Sample Prob. 16.4].

Constrained Plane Motion
In the second section of this chapter, we were concerned with rigid bodies 

moving under given constraints [Sec. 16.2]. Although the kinetic analysis of 

the constrained plane motion of a rigid body is the same as before, it must 

be supplemented by a kinematic analysis that aims to express the components 

ax and ay of the acceleration of the mass center G of the body in terms of its 

angular acceleration α. This often involves using analyses that we examined 

in Ch. 15, including the relationship between two points on a body undergoing 

general plane motion:

a 5 aA 1 αk 3 rG/A 2 v2rG/A

Problems solved in this way included the noncentroidal rotation of rods and 

plates [Sample Probs. 16.7 and 16.8], the rolling motion of spheres and wheels 

[Sample Probs. 16.9 and 16.10], the general plane motion of a body with no 

fixed point [Sample Probs. 16.11 and 16.12], and the plane motion of various 

types of linkages [Sample Prob. 16.13].

A
G

A
G =

F1F2

F4
F3

(a) (b)

⎯am

⎯Iα

Fig. 16.19
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16.153 A cyclist is riding a bicycle at a speed of 20 mph on a horizontal 

road. The distance between the axles is 42 in., and the mass center 

of the cyclist and the bicycle is located 26 in. behind the front axle 

and 40 in. above the ground. If the cyclist applies the brakes only 

on the front wheel, determine the shortest distance in which he can 

stop without being thrown over the front wheel.

16.154 The forklift truck shown weighs 2250 lb and is used to lift a crate 

of weight W 5 2500 lb. The truck is moving to the left at a speed 

of 10 ft/s when the brakes are applied on all four wheels. Knowing 

that the coefficient of static friction between the crate and the fork 

lift is 0.30, determine the smallest distance in which the truck can 

be brought to  a stop if the crate is not to slide and if the truck is 

not to tip forward.

A

G

B

4 ft

3 ft 3 ft4 ft

3 ft

W

Fig. P16.154

16.155 The total mass of the Baja car and driver, including the wheels, is 

250 kg. Each pair of 58-cm radius wheels and the axle has a total 

mass of 20 kg and a mass moment of inertia of 2.9 kg?m2. The center 

of gravity of the driver and Baja body (not including the wheels) is 

located x 5 0.70 m from the rear axle A and y 5 0.55 m from the 

ground. The wheelbase is L 5 1.60 m. If the engine exerts a torque 

of 500 N?m on the rear axle, what is the car’s acceleration?

 16.156 Identical cylinders of mass m and radius r are pushed by a series of 

moving arms. Assuming the coefficient of friction between all  surfaces 

to be μ , 1 and denoting by a the magnitude of the acceleration of 

the arms, derive an expression for (a) the maximum allowable value of 

a if each cylinder is to roll without sliding, (b) the minimum allowable 

value of a if each cylinder is to move to the right without rotating.

a

Fig. P16.156

Review Problems

A B

G

l

x

y

Fig. P16.155
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16.157 The uniform rod AB of weight W is released from rest when 

β 5 70°. Assuming that the friction force between end A and the 

surface is large enough to prevent sliding, determine immediately 

after release (a) the angular acceleration of the rod, (b) the normal 

reaction at A, (c) the friction force at A.

B

b
A

L

Fig. P16.157 and P16.158

16.158 The uniform rod AB of weight W is released from rest when 

β 5 70°. Assuming that the friction force is zero between end A
and the surface, determine immediately after release (a) the angular 

acceleration of the rod, (b) the acceleration of the mass center of the 

rod, (c) the reaction at A.

 16.159 A bar of mass m 5 5 kg is held as shown between four disks, each 

of mass m9 5 2 kg and radius r 5 75 mm. Knowing that the normal 

forces on the disks are sufficient to prevent any slipping, for each 

of the cases shown determine the acceleration of the bar immedi-

ately after it has been released from rest.

Fig. P16.159

B

A

B

A

B

A

(a) (b) (c)

16.160 A uniform plate of mass m is suspended in each of the ways shown. 

For each case determine immediately after the connection B has 

been released (a) the angular acceleration of the plate, (b) the accel-

eration of its mass center.

BA
A B

(1) (2) (3)

1
2 c

c

1
2 c

c

1
2 c

c

Pin supports Wires

BA

Springs

Fig. P16.160
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16.161 A cylinder with a circular hole is rolling without slipping on a fixed 

curved surface as shown. The cylinder would have a weight of 16 lb 

without the hole, but with the hole it has a weight of 15 lb. Knowing 

that at the instant shown the disk has an angular velocity of 

5 rad/s clockwise, determine (a) the angular acceleration of the disk, 

(b) the components of the reaction force between the cylinder and 

the ground at this instant.

8 in.

36 in.

ω12 in.A

Fig. P16.161

16.162 The motion of a square plate of side 150 mm and mass 2.5 kg is 

guided by pins at corners A and B that slide in slots cut in a vertical 

wall. Immediately after the plate is released from rest in the position 

shown, determine (a) the angular acceleration of the plate, 

(b) the reaction at corner A.

16.163 The motion of a square plate of side 150 mm and mass 2.5 kg is 

guided by a pin at corner A that slides in a horizontal slot cut in a 

vertical wall. Immediately after the plate is released from rest in the 

position shown, determine (a) the angular acceleration of the plate, 

(b) the reaction at corner A.

30°

B

A

Fig. P16.163

30°

B

A

Fig. P16.162
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16.164 The Geneva mechanism shown is used to provide an intermittent 

rotary motion of disk S. Disk D weighs 2 lb and has a radius of 

gyration of 0.9 in., and disk S weighs 6 lb and has a radius of 

gyration of 1.5 in. The motion of the system is controlled by a couple 

M applied to disk D. A pin P is attached to disk D and can slide in 

one of the six equally spaced slots cut in disk S. It is desirable that 

the angular velocity of disk S be zero as the pin enters and leaves 

each of the six slots; this will occur if the distance between the 

centers of the disks and the radii of the disks are related as shown. 

Knowing disk D rotates with a constant counterclockwise angular 

velocity of 8 rad/s and the friction between the slot and pin P is 

negligible, determine when f 5 150° (a) the couple M, (b) the 

magnitude of the force pin P applies to disk S.

RS = √3RD

O

P

B

f

RD = 1.25 in.

l = 2RD

Disk D
when f = 120°

Disk S

Fig. P16.164
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In this chapter the energy and momentum methods will be added to the tools 

available for your study of the motion of rigid bodies. We can analyze the 

transfer between potential and kinetic energy as the gymnast goes from a high 

position to a lower one, and we can use conservation of angular momentum to 

examine how changes in the gymnast‘s body position affect his angular velocity.

Plane Motion of Rigid Bodies: 
Energy and Momentum Methods

17
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1182 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Introduction

17.1 ENERGY METHODS FOR 
A RIGID BODY

17.1A. Principle of Work and Energy
17.1B. Work of Forces Acting on a 

Rigid Body
17.1C. Kinetic Energy of a Rigid Body 

in Plane Motion
17.1D. Systems of Rigid Bodies
17.1E. Conservation of Energy
17.1F. Power

17.2 MOMENTUM METHODS 
FOR A RIGID BODY

17.2A. Principle of Impulse and 
Momentum

17.2B. Systems of Rigid Bodies
17.2C. Conservation of Angular 

Momentum

17.3 ECCENTRIC IMPACT

Objectives
• Calculate the work done by a force or a moment on 

a rigid body.

• Calculate the kinetic energy of a rigid body in plane 
motion.

• Solve rigid body kinetics problems using the principle 
of work and energy. 

• Solve rigid body kinetics problems using conservation 
of energy. 

• Calculate the power of a mechanical system of rigid 
bodies. 

• Draw complete and accurate impulse–momentum 
diagrams for problems involving rigid bodies. 

• Solve rigid body kinetics problems using the principles 
of linear impulse and momentum and of angular 
impulse and momentum.

• Solve rigid body kinetics problems using conservation 
of angular momentum.

• Solve rigid body problems involving eccentric impact 
by using the principle of impulse and momentum and 
the coeffi cient of restitution.

Introduction
In this chapter, we return to the method of work and energy and the 

method of  impulse and momentum that were introduced in Chapter 13 in 

the context of particle kinetics. Here we use them to analyze the plane 

motion of rigid bodies and of systems of rigid bodies.

We consider the method of work and energy first. We define the 

work of a force and of a couple, and we obtain an expression for the 

kinetic energy of a rigid body in plane motion. Then we use the principle 

of work and energy to solve problems involving displacements and veloci-

ties. We also apply the principle of conservation of energy to solve a 

variety of engineering problems.

In the second section, we apply the principle of impulse and momen-

tum to solve problems involving velocities and time. We also discuss the 

concept of conservation of angular momentum for rigid bodies in plane 

motion.

In the last section of this chapter, we consider problems involving 

the eccentric impact of rigid bodies. As we did in Chap. 13, where we 

analyzed the impact of particles, we use the coefficient of restitution 

between colliding bodies, together with the principle of impulse and 

momentum, to solve impact problems. We will show that the method 

used is applicable not only when the colliding bodies move freely after 

the impact but also when the bodies are partially constrained in their 

motion.
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17.1 Energy Methods for a Rigid Body 1183

17.1  ENERGY METHODS FOR A 
RIGID BODY

We now use the principle of work and energy to analyze the plane motion 

of rigid bodies. As we pointed out in Chap. 13, the method of work and 

energy is particularly well adapted to solving problems involving veloci-

ties and displacements. Its main advantage is that the work of forces and 

the kinetic energy of particles are scalar quantities.

17.1A Principle of Work and Energy
To apply the principle of work and energy to the motion of a rigid body, 

we again assume that the rigid body is made up of a large number n of 

particles of mass Dmi. From Eq. (14.30) of Sec. 14.2B, we have

Principle of work 
and energy, rigid body

T1 1 U1y2 5 T2 (17.1)

where T1, T2 5  the initial and final values of total kinetic energy of 

particles forming the rigid body

 U1y2 5  work of all forces acting on various particles of 

the body 

Just as we did in Chap. 13, we can express the work done by nonconser-

vative forces as U 
NC
1y2, and we can define potential energy terms for con-

servative forces. Then we can express Eq. (17.1) as

T1 1 Vg1
1 Ve1

1 U 
NC
1y2 5 T2 1 Vg2

1 Ve2
 (17.19)

where Vg1
 and Vg2

 are the initial and final gravitational potential energy of 

the center of mass of the rigid body with respect to a reference point or 

datum, and Ve1
 and Ve2

 are the initial and final values of the elastic energy 

associated with springs in the system. 

We obtain the total kinetic energy

T 5
1

2
 On

i51

Dmi v
2
i  (17.2)

by adding positive scalar quantities, so it is itself a positive scalar quantity. 

You will see later how to determine T for various types of motion of a 

rigid body.

The expression U1y2 in Eq. (17.1) represents the work of all the 

forces acting on the various particles of the body, whether these forces are 

internal or external. However, the total work of the internal forces holding 

together the particles of a rigid body is zero. To see this, consider two 

particles A and B of a rigid body and the two equal and opposite forces F
and –F they exert on each other (Fig. 17.1). Although, in general, small 

displacements dr and dr9 of the two particles are different, the components 

of these displacements along AB must be equal; otherwise, the particles 

would not remain at the same distance from each other and the body would 

not be rigid. Therefore, the work of F is equal in magnitude and opposite 

T1TT 1 U1y2 5 T2TT

Photo 17.1 The work done by friction 
reduces the kinetic energy of the wheel.

A

B

A'

B'

F

–F

dr

dr'

Fig. 17.1 The total work of the internal 
forces acting on the particles of a rigid body 
is zero.
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1184 Plane Motion of Rigid Bodies: Energy and Momentum Methods

in sign to the work of –F, and their sum is zero. Thus, the total work of 

the internal forces acting on the particles of a rigid body is zero, and the 

expression U1y2 in Eq. (17.1) reduces to the work of the external forces 

acting on the body during the displacement considered.

17.1B  Work of Forces Acting on a 
Rigid Body

We saw in Sec. 13.1A that the work of a force F during a displacement 

of its point of application from A1 to A2 is

Work of a force U1y2 5#
A2

A1

F?dr (17.3)

or

 U1y2 5#
s2

s1

(F cos α) ds (17.39)

where F is the magnitude of the force, α is the angle it forms with the 

direction of motion of its point of application A, and s is the variable of 

integration that measures the distance traveled by A along its path.

In computing the work of the external forces acting on a rigid body, 

it is often convenient to determine the work of a couple without consider-

ing the work of each of the two forces forming the couple separately. 

Consider the two forces F and –F forming a couple of moment M and 

acting on a rigid body (Fig. 17.2). Any small displacement of the rigid 

body bringing A and B, respectively, into A9 and B99 can be divided into 

two parts: in one part, points A and B undergo equal displacements dr1; 

in the other part, A9 remains fixed, while B9 moves into B99 through a 

displacement dr2 with a magnitude of ds2 5 r dθ. In the first part of the 

motion, the work of F is equal in magnitude and opposite in sign to the 

work of –F, and their sum is zero. In the second part of the motion, only 

force F works, and its work is dU 5 F ds2 5 Fr dθ. But the product Fr 

is equal to the magnitude M of the moment of the couple. Thus, the work 

of a couple of moment M acting on a rigid body is

 dU 5 M dθ (17.4)

where dθ is the small angle through which the body rotates and is 

expressed in radians. (We again note that work should be expressed in 

units obtained by multiplying units of force by units of length.) To obtain 

the work of the couple during a finite rotation of the rigid body, we inte-

grate both members of Eq. (17.4) from the initial value θ1 of the angle θ 

to its final value θ2. 

 U1y2 5#
θ2

θ1

M dθ (17.5)

When the moment M of the couple is constant, formula (17.5) reduces to

 U1y2 5 M(θ2 2 θ1) (17.6)

U1y2 5#
A2

A
##

1

F?dr

U1y2 5#
θ2θθ

θ

##
1

M dθ

r

A

F–F

B

A'
B'

B"dq

dr1
dr1

dr2

Fig. 17.2 The work of a couple acting on 
a rigid body equals the integral of the 
moment M of the couple with respect to 
the angular displacement of the body.
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17.1 Energy Methods for a Rigid Body 1185

We pointed out in Sec. 13.1A that some forces encountered in prob-

lems of kinetics do no work. These include forces applied to fixed points 

or acting in a direction perpendicular to the displacement of their point of 

application. Among these forces are the reaction at a frictionless pin when 

the body rotates about the pin; the reaction at a frictionless surface when 

the body in contact moves along the surface; and the weight of a body 

when its center of gravity moves horizontally. We can now add that 

When a rigid body rolls without sliding on a fixed surface, the 
friction force F at the point of contact C does no work. 

The velocity vC of the point of contact C is zero, and the work of the 

friction force F during a small displacement of the rigid body is

dU 5 F dsC 5 F(vC dt) 5 0

17.1C  Kinetic Energy of a Rigid Body 
in Plane Motion

Consider a rigid body with a mass m in plane motion. Recall from 

Sec. 14.2A that, if the absolute velocity vi of each particle Pi of the body 

is expressed as the sum of the velocity v of the mass center G of the body 

and of the velocity v9i of the particle relative to a frame Gx9y9 attached to 

G and of fixed orientation (Fig. 17.3), we can express the kinetic energy 

of the system of particles forming the rigid body in the form

T 5
1
2 mv 

2 1
1

2
On

i51

Dmiv9i
2 (17.7)

As you can see in Fig. 17.3, v9i of particle Pi is equal to the product r9iv, 

where r9i  is the distance from G to Pi and v is the angular velocity of the 

body at the instant considered. Substituting into Eq. (17.7), we have

 T 5
1
2 mv 

2 1
1

2
 aOn

i51

r9i
2 Dmib v2

 (17.8)

The sum represents the moment of inertia  I  of the body about the axis 

through G, so we have

Kinetic energy of 
a rigid body

 T 5
1
2 mv 

2 1
1
2 Iv2 (17.9)

Note that, in the particular case of a body in translation (v 5 0), this 

expression reduces to 
1
2 mv 

2, whereas in the case of a centroidal rotation 

(v 5 0), it reduces to 
1
2Iv2. We conclude that we can separate the kinetic 

energy of a rigid body in plane motion into two parts: (1) the kinetic energy 
1
2 mv 

2 associated with the motion of the mass center G of the body and 

(2) the kinetic energy 
1
2Iv2 associated with the rotation of the body about G.

Noncentroidal Rotation. The relation in Eq. (17.9) is valid for 

any type of plane motion, so we can use it to express the kinetic energy 

T 5
1
2 mv 2 1

1
2 Iv2

y

O x

y'

x'
G

Pi

r'i

v'i
(v'i = r'i ω)

vi

⎯v

⎯v

ω

Fig. 17.3 The velocity of a particle Pi is 
the vector sum of the velocity of the mass 
center G and the tangential velocity r’iv due 
to rotation about G.
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1186 Plane Motion of Rigid Bodies: Energy and Momentum Methods

of a rigid body rotating with an angular velocity v about a fixed axis 

through O (Fig. 17.4). In that case, however, we can express the kinetic 

energy of the body more directly by noting that the speed vi of particle 

Pi is equal to riv, where ri is the distance from the fixed axis to Pi and v

is the angular velocity of the body at the instant considered. Substituting 

into Eq. (17.2), we have

T 5
1

2
 On

i51

Dmi(riv)2 5
1

2
 aOn

i51

 r
2
i  Dmib v2

The last sum represents the moment of inertia IO of the body about the 

fixed axis through O, so this equation reduces to

T 5
1
2 IOv2 (17.10)

Note that these results are not limited to the motion of plane rigid 

bodies or to the motion of bodies that are symmetrical with respect to the 

reference plane––we can apply them to the study of the plane motion of 

any rigid body regardless of its shape. However, remember that Eq. (17.9) 

is applicable to any plane motion, whereas Eq. (17.10) is applicable only 

in cases involving rotating about a fixed axis.

17.1D Systems of Rigid Bodies
When a problem involves several rigid bodies, we usually analyze all of 

the bodies together as a system instead of analyzing each individual rigid 

body separately. Adding the kinetic energies of all the rigid bodies and 

considering the work of all the forces involved, we can write the equation 

of work and energy for the entire system. We have

T1 1 U1y2 5 T2 (17.11)

where T represents the arithmetic sum of the kinetic energies of the rigid 

bodies forming the system (all terms are positive) and U1y2 represents 

the work of all the forces acting on the various bodies—whether these 

forces are internal or external from the point of view of the system as 

a whole.

The method of work and energy is particularly useful in solving 

problems involving pin-connected members, blocks and pulleys connected 

by inextensible cords, and meshed gears. In all of these cases, the internal 

forces occur in pairs of equal and opposite forces, and the points of appli-

cation of the forces in each pair move through equal distances during a 

small displacement of the system. As a result, the work of the internal 

forces is zero, and U1y2 reduces to the work of the forces external to the 
system.

17.1E Conservation of Energy
We saw in Sec. 13.2A that the work of conservative forces, such as the 

weight of a body or the force exerted by a spring, can be expressed as a 

change in potential energy. When a rigid body, or a system of rigid bodies, 

moves under the action of conservative forces, we can express the principle 

T 5
1
2 IOII v2 

O

Pi
ri

vi
(vi = ri ω)

ω

Fig. 17.4 For noncentroidal rotation, the 
velocity of a particle Pi is the tangential 
velocity ri v due to rotation about O.
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17.1 Energy Methods for a Rigid Body 1187

of work and energy in a modified form. Substituting for U1y2 from 

Eq. (13.199) into Eq. (17.1), we have

Conservation of 
energy, rigid body

 T1 1 V1 5 T2 1 V2 (17.12)

In Ch. 13, we discussed two types of potential energy: gravitational poten-

tial energy, Vg, and elastic potential energy, Ve. Therefore, another way to 

write Eq. (17.12) is

T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

 (17.129)

Formulas (17.12) and (17.129) indicate that when a rigid body, or a system 

of rigid bodies, moves under the action of conservative forces, the sum 
of the kinetic energy and of the potential energy of the system remains 
constant. Note that, in the case of the plane motion of a rigid body, the 

kinetic energy of the body should include both the translational term 
1
2 mv 

2

and the rotational term 
1
2Iv

2.

As an example of applying the principle of conservation of energy, 

let us consider a slender rod AB with a length l and a mass m, whose ends 

are connected to blocks of negligible mass sliding along horizontal and 

vertical tracks. We assume that the rod is released with no initial velocity 

from a horizontal position (Fig. 17.5a), and we wish to determine its 

angular velocity after it has rotated through an angle θ (Fig. 17.5b).

Since the initial velocity is zero, we have T1 5 0. Measuring the 

potential energy from the level of the horizontal track, we have V1 5 0. 

After the rod has rotated through θ, the center of gravity G of the rod is 

at a distance 
1
2 l sin θ below the reference level, and we have

V2 5 2
1
2 Wl sin θ 5 2

1
2 mgl sin θ

In this position, the instantaneous center of the rod is located at C and 

CG 5
1
2 l, so v2 5

1
2 lv, and we obtain

 T2 5
1
2 mv  

2
2 1

1
2  Iv2

2 5
1
2 m(

1
2 lv)2 1

1
2(

1
12 ml2)v2

 5
1

2
 

ml2

3
 v2

T1TT 1 V1VV 5 T2TT 1 V2VV

⎯v

ω

DatumDatum

l

G

G

AB A

B

(a) (b)

θ

C

l sin θ1
2

Fig. 17.5 (a) Rod AB in position 1 with the datum defined as shown. (b) Rod AB in 
position 2 with an instantaneous center C.
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1188 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Applying the principle of conservation of energy gives 

 T1 1 V1 5 T2 1 V2

 0 5
1

2
 

ml2

3
 v2 2

1
2 mgl sin θ

 v 5 a3g

l
 sin θb1/2

The advantages of the method of work and energy, as well as its 

shortcomings, were indicated in Sec. 13.1C. Here we should add that we 

need to supplement the method of work and energy by the application of 

Newton’s second law when we need to determine reactions at fixed axles, 

rollers, or sliding blocks. For example, in order to compute the reactions 

at the ends A and B of the rod of Fig. 17.5b, we need to draw a free-body 

diagram and a kinetic diagram to show that the system of the external 

forces applied to the rod is equivalent to both the vector ma and the couple 

 Iα. However, we first need to determine the angular velocity v of the rod 

using the method of work and energy before solving the equations of 

motion for the reactions. The complete analysis of the motion of the rod 

and of the forces exerted on the rod requires, therefore, the combined use 

of the method of work and energy and of the principle of equivalence of 

the external forces and moments and inertial terms.

17.1F Power
We defined power in Sec. 13.1D as the time rate at which work is done. 

In the case of a body acted upon by a force F and moving with a velocity v, 

we expressed the power as 

Power 5
dU

dt
5 F?v (13.13)

In the case of a rigid body rotating with an angular velocity v and acted 

upon by a couple of moment M parallel to the axis of rotation, we have, 

by Eq. (17.4),

 Power 5
dU

dt
5

M dθ

dt
5 Mv (17.13)

The various units used to measure power, such as the watt and the horse-

power, were defined in Sec. 13.1D.

Power 5
dU

dt
5 F?v

Power 5
dU

dt
5

Mdθ

dt
5 MvMM
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17.1 Energy Methods for a Rigid Body 1189

Sample Problem 17.1

A 240-lb block is suspended from an inextensible cable that is wrapped 

around a drum with a 1.25-ft radius that is rigidly attached to a flywheel. 

The drum and flywheel have a combined centroidal moment of inertia 

of  I 5 10.5 lb?ft?s2. At the instant shown, the velocity of the block is 

6 ft/s directed downward. Knowing that the bearing at A is poorly 

lubricated so that the bearing friction is equivalent to a couple M of 

magnitude 60 lb?ft, determine the velocity of the block after it has 

moved 4 ft downward.

STRATEGY: Since you have two positions and are interested in deter-

mining the velocity of the block, use the principle of work and energy. 

MODELING: Consider the system formed by the flywheel and the 

block. Since the cable is inextensible, the work done by the internal forces 

exerted by the cable cancels out to zero. The initial and final positions of 

the system and the external forces acting on the system are shown in 

Fig. 1.

ANALYSIS: Apply the principle of work and energy

T1 1 U1y2 5 T2 (1)

Kinetic Energy. You need to calculate the initial and final kinetic 

energy and the work. 

Position 1.

Block:     v1 5 6 ft/s 

Flywheel: w1 5
v1

r
5

6 ft/s

1.25 ft
5 4.80 rad/s

 T1 5
1
2 mv 

2
1 1

1
2  Iv2

1

 5
1

2
 

240 lb

32.2 ft/s2 (6 ft/s)2 1
1
2(10.5 lb?ft?s2)(4.80 rad/s)2

 5 255 ft?lb

Position 2. Noting that v2 5 v2/1.25, you have

 T2 5
1
2 mv 

2
2 1

1
2 Iv2

2

 5
1

2
 
240

32.2
 (v2)2 1 (

1
2)(10.5)a v2

1.25
b2

5 7.09v 
2
2

A

1.25 ft

240 lb

⎯v1 = 6 ft /s

W = 240 lb

s1 = 0

Ax

Wd

Ay

ω1 M = 60 lb⋅ft

Fig. 1 Free body diagram 
of the system in positions 1 
and 2.

⎯v2

W = 240 lb

4 ft

s1 = 0

s2 = 4 ft

Ax

Wd

Ay

ω2 M = 60 lb⋅ft

(continued)
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1190 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Work. During the motion, only the weight W of the block and the 

friction couple M do work. Note that W does positive work, and the fric-

tion couple M does negative work. The total work done is

 s1 5 0    s2 5 4 ft

 θ1 5 0     θ2 5
s2

r
5

4 ft

1.25 ft
5 3.20 rad

  U1y2 5 W(s2 2 s1) 2 M(θ2 2 θ1)

 5 (240 lb)(4 ft) 2 (60 lb?ft)(3.20 rad)

 5 768 ft?lb

Substituting these expressions into Eq. (1) gives 

     T1 1 U1y2 5 T2

 255 ft?lb 1 768 ft?lb 5 7.09v 2
2

 v2 5 12.01 ft/s v2 5 12.01 ft/sw b

REFLECT and THINK: The speed of the block increases as it falls, 

but much more slowly than if it were in free fall. This seems like a rea-

sonable result. Rather than calculating the work done by gravity, you could 

have also treated the effect of the weight using gravitational potential 

energy, Vg. 

Sample Problem 17.2

Gear A has a mass of 10 kg and a radius of gyration of 200 mm; gear B 

has a mass of 3 kg and a radius of gyration of 80 mm. The system is at 

rest when a couple M of magnitude 6 N?m is applied to gear B. Neglect-

ing friction, determine (a) the number of revolutions executed by gear B 

before its angular velocity reaches 600 rpm, (b) the tangential force that 

gear B exerts on gear A.

STRATEGY: You are given a couple and are asked to determine the 

position at a given angular velocity, so use the principle of work and 

energy. 

MODELING: For part (a), choose the system to be both gears and 

model each as a rigid body. In part (b), you are asked to determine an 

internal force, so you need to choose gear A as your system. 

ANALYSIS: 

Kinematics. The velocity of the point of contact, P, is the same for 

both gears (Fig. 1), so you have

vP 5 rAvA 5 rBvB     vA 5 vB 

rB

rA
5 vB 

100 mm

250 mm
5 0.40vB

A

B

rA = 250 mm

rB = 100 mm

M

rA

vP

ωA

ωB

A

B
rB

P

Fig. 1 The point of contact 
has the same velocity on 
each gear.
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17.1 Energy Methods for a Rigid Body 1191

Calculations. For vB 5 600 rpm, you have

 vB 5 62.8 rad/s  vA 5 0.40vB 5 25.1 rad/s

  IA 5 mAk 
2
A 5 (10 kg)(0.200 m)2 5 0.400 kg?m2

  IB 5 mBk 
2
B 5 (3 kg)(0.080 m)2 5 0.0192 kg?m2

Principle of Work and Energy: Apply the principle of work and energy

 T1 1 U1y2 5 T2 (1)

You need to calculate the initial and final kinetic energy and the work. 

Kinetic Energy. The system is initially at rest, so T1 5 0. Adding the 

kinetic energies of the two gears when vB 5 600 rpm gives 

 T2 5
1
2 IAv2

A 1
1
2 IBv2

B

 5
1
2(0.400 kg?m2)(25.1 rad/s)2 1

1
2(0.0192 kg?m2)(62.8 rad/s)2

 5 163.9 J

Work. Denote the angular displacement of gear B by θB. Then

U1y2 5 MθB 5 (6 N?m)(θB rad) 5 (6θB) J

Substituting these terms into Eq. (1) gives you

 0 1 (6θB) J 5 163.9 J

 θB 5 27.32 rad θB 5 4.35 rev b 

Motion of Gear A. 

Kinetic Energy. Initially, gear A is at rest, so T1 5 0. When vB 5 600 rpm, 

the kinetic energy of gear A is

T2 5
1
2 IAv2

A 5
1
2(0.400 kg?m2)(25.1 rad/s)2 5 126.0  J

Work. The forces acting on gear A are shown in Fig. 2. The tangential 

force F does work equal to the product of its magnitude and of the length 

θArA of the arc described by the point of contact. Since θArA 5 θBrB , you 

have

U1y2 5 F(θBrB) 5 F(27.3 rad)(0.100 m) 5 F(2.73 m)

Substituting these values into work and energy gives 

 T1 1 U1y2 5 T2

 0 1 F(2.73 m) 5 126.0 J

 F 5 146.2 N F 5 46.2 N b b

REFLECT and THINK: When the system was both gears, the tangential 

force between the gears did not appear in the work and energy equation, 

since it was internal to the system and therefore did no work. If you want 

to determine an internal force, you need to define a system where the 

force of interest is an external force. This problem, like most problems, 

also could have been solved using Newton’s second law and kinematic 

relationships.

rA

WA

F

A x

Ay

Fig. 2 Free-body diagram 
for gear A.

bee87342_ch17_1181-1263.indd   1191bee87342_ch17_1181-1263.indd   1191 11/27/14   2:28 PM11/27/14   2:28 PM

UPLOADED BY AHMAD T JUNDI



1192 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Sample Problem 17.3

A sphere, a cylinder, and a hoop, each having the same mass and the same 

radius, are released from rest on an incline. Determine the velocity of each 

body after it has rolled through a distance corresponding to a change in 

elevation h.

STRATEGY: You are given two positions, want to find the velocities, 

and the friction force F in rolling motion does no work, so use the con-

servation of energy. First solve the problem in general terms, and then 

find the results for each body. Denote the mass by m, the centroidal 

moment of inertia by I, and the radius by r.

MODELING: Choose the rolling object as your system and model it as 

a rigid body. Since each body rolls, the instantaneous center of rotation 

is located at C (Fig. 1). Free-body diagrams of at the two locations are 

shown in Fig. 2.

ANALYSIS: 

Conservation of Energy.

 T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

 (1)

Potential Energy.

Because there is no spring in the system, Ve1
5 Ve2

5 0. If you place your 

datum at the center of mass of the system when it is at position 2, you 

have Vg2
5 0 and Vg1

5 mgh.

Kinetic Energy.

T1 5 0

T2 5
1
2mv2 1

1
2Iv2

Kinematics. You need to relate v and v using kinematics. Since each 

body rolls, the instantaneous center of rotation is located at C (Fig. 1), 

which gives 

v 5
v
r
 

Substituting this into T2 gives 

T2 5
1
2mv2 1

1
2I  av

r
b2

5
1
2 
am 1

I

r2
b v2

Substituting these energy expressions into Eq. (1) gives 

0 1 mgh 1 0 5
1
2 
am 1

I

r2
b v2 1 0 1 0

Solving for the speed at position 2, you find

v2 5
2gh

1 1 I/mr2

r

C

⎯v

ω

Fig. 1 Angular velocity and 
the velocity of the center of 
mass of the rolling object.

W

W

F N

F N
θ

hDatum

Position 2 Position 1

Fig. 2 Free-body diagrams of the 
system in positions 1 and 2.
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17.1 Energy Methods for a Rigid Body 1193

Velocities of Sphere, Cylinder, and Hoop. Introducing the par-

ticular expressions for I, you obtain

Sphere:  I 5
2
5 mr 

2 v 5 0.84512gh b 

Cylinder:  I 5
1
2 mr 

2 v 5 0.81612gh b 

Hoop:  I 5 mr 
2 v 5 0.70712gh b 

REFLECT and THINK: Comparing the results, we note that the velocity 

of the body is independent of both its mass and radius. However, the 

velocity does depend upon the quotient of  I/mr 2 5 k 
2/r2, which measures 

the ratio of the rotational kinetic energy to the translational kinetic energy. 

Thus the hoop, which has the largest k  for a given radius r, attains the 

smallest velocity, whereas the sliding block, which does not rotate, attains 

the largest velocity.

 Let us compare the results with the velocity attained by a frictionless 

block sliding through the same distance. The solution is identical to the 

previous solution except that v 5 0; we find v 5 22gh. So, all the roll-

ing objects are slower than one moving down a frictionless surface.

Sample Problem 17.4

A 30-lb slender rod AB is 5 ft long and is pivoted about a point O that is 

1 ft from end B. The other end is pressed against a vertical spring with a 

constant of k 5 1800 lb/in. until the spring is compressed 1 in. The rod 

is then in a horizontal position. If the rod is released from this position, 

determine its angular velocity and the reaction at the pivot O as the rod 

passes through a vertical position.

STRATEGY: Since you are given two positions, want to find the 

velocities, and no external forces do work, use the conservation of energy. 

To determine the reactions at position 2, use a free-body diagram and a 

kinetic diagram.

MODELING: Choose the rod and the spring as your system and model 

the rod as a rigid body. Denote the initial position as position 1 and the 

vertical position as position 2 (Fig. 1). Choose your datum to be at 

position 1. 

ANALYSIS: 

Conservation of Energy.

 T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

 (1)

You need to calculate the energy at position 1 and position 2.

A B
O

5 ft
1 ft

Fig. 1 The rod in positions 1 
and 2.

1.5 ft

Position 1

Position 2

Datum

30 lb

30 lb

⎯v2
⎯v1 = 0

ω1 = 0

ω2

(continued)
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1194 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Position 1. 

Potential Energy. The spring is compressed 1 in., so you have x1 5 1 in. 

The elastic potential energy is

Ve1
5

1
2kx2

1 5
1
2(1800 lb/in.)(1 in.)2 5 900 in?lb 5 75 ft?lb

Since the datum is at position 1, you have Vg1
5 0.

Kinetic Energy. The velocity in position 1 is zero, so you have T1 5 0.

Position 2. 

Potential Energy. The elongation of the spring is zero, so you have 

Ve2
5 0. Since the center of gravity of the rod is now 1.5 ft above the 

datum, you have

Vg2
5 mgy 5 (30 lb)(1.5 ft) 5 45 ft?lb

Kinetic Energy. Denote the angular velocity of the rod in position 2 by 

v2. The rod rotates about O, so you have v2 5 rv2 5 1.5v2 and

 I 5
1
12 ml2 5

1

12
 

30 lb

32.2 ft/s2 (5 ft)2 5 1.941 lb?ft?s2

T2 5
1
2 mv2

2 1
1
2 Iv

2
2 5

1

2
 

30

32.2
 (1.5v2)2 1

1
2(1.941)v2

2 5 2.019v2
2

Substituting these expressions into Eq. (1) give 

0 1 0 1 75 ft?lb 5 2.019v2
2 1 45 ft?lb 1 0  v2 5 3.86 rad/si b

Reaction. Since v2 5 3.86 rad/s, the components of the acceleration of 

G as the rod passes through position 2 are (Fig. 2)

 an 5 rv2
2 5 (1.5 ft) (3.86 rad/s)2 5 22.3 ft/s2   an 5 22.3 ft/s2

 w

at 5 rα at 5 rα y

Draw free-body and kinetic diagrams (Fig. 3) to express that the system 

of external forces is equivalent to the vector of components mat and man 

attached at G and the couple  Iα. 

  1ioMO 5  Iα 1 mad':  0 5 Iα 1 m(rα)r α 5 0

   y
1 oFx 5 max: Rx 5 m(rα) Rx 5 0

1xoFy 5 may: Ry 2 30 lb 5 2man

Ry 2 30 lb 5 2
30 lb

32.2 ft/s2
 (22.3 ft/s2)

 Ry 5 19.22 lb R 5 9.22 lbx b

REFLECT and THINK: This problem illustrates how you might need 

to supplement the conservation of energy with Newton’s second law. What 

if the spring constant had been smaller, say 180 lb/in.? You would have 

found Ve1
5 7.5 ft?lb and then solved Eq. (1) to obtain v2

2 5 218.57. This 

is clearly impossible and means that the rod would not make it to position 2 

as assumed. 

ω α

⎯r

G

⎯a n

⎯a t

Fig. 2 The acceleration 
of the center of mass 
and the angular velocity 
and acceleration of the 
rod.

Rx
Ry

30 lb

m⎯a t

m⎯a n

O O

G
G

α⎯I

=
⎯r

Fig. 3 Free-body diagram 
and kinetic diagram for 
the rod.
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17.1 Energy Methods for a Rigid Body 1195

Sample Problem 17.5

A large box with a mass m and a flat bottom rests on two identical homo-

geneous cylindrical rollers, where each has radius r and a mass half that 

of the crate. The system is released from rest on a plane that is inclined 

at angle f to the horizontal. Determine the speed of the box at the instant 

when the rollers have turned through an angle θ. Neglect rolling resistance 

and assume that the rollers do not slide.

STRATEGY: You are interested in the velocity after the rollers have 

moved a specified distance, rθ, and the friction force in rolling motion 

does no work, so use the conservation of energy. 

MODELING: Choose the box and the two cylindrical rollers as your 

system and model them as rigid bodies. In order for you to draw the 

system in its initial and final positions, you need to know how far each 

mass travels. You can determine this by using the instantaneous center of 

rotation. The rollers do not slide, so the instantaneous center of rotation 

for each roller is located at the point of contact, C, between the roller and 

the ground (Fig. 1). Using this instantaneous center of velocity, you know 

vB 5 2vr and vR 5 vr. Therefore, the box moves down a distance 2h 
when the rollers move a distance h (Fig. 2). Since you have three masses 

in the system (the two rollers and the box), you may define an individual 

datum for each mass to simplify the calculation of the gravitational poten-

tial energy. 

ANALYSIS: 

Conservation of Energy.

 T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

 (1)

You need to calculate the energy at position 1 and position 2.

Potential Energy. Because there is no spring in the system, Ve1
5 Ve2

5 0. 

If you place your datum at the center of mass of each object when the 

system is at position 2, you have Vg2
5 0. The vertical distance a roller 

moves is h 5 rθ sin ϕ, so

Vg1
5 mg(2h) 1 2(

m
2 )g(h) 5 3mgh 5 3mgrθ sin ϕ

Kinetic Energy. The velocity in position 1 is zero, so T1 5 0. 

At position 2,

T2 5 2112mRv2
R 1

1
2Iv22 1

1
2mv2

B

where mR is the mass of the roller and I is the mass moment of inertia of 

the roller about its center of gravity. Substituting vB 5 2vr, vR 5 vr, and 
 I 5

1
2mRr2 5

1
2 1m2 2r2 5

1
4mr2 into T2 gives 

T2 5
11
4 mr2v2

f

r

C

vB

vR

ω

Fig. 1 Velocity of various points 
on the roller.

Datum roller

Datum crate

h

2h

Position 1 

Position 2

Fig. 2 The system in positions 1 
and 2.

(continued)
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1196 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Substituting these expressions into Eq. (1), you find

0 1 3mgrθ sin ϕ 1 0 5
11
4 mr2v2 1 0 1 0

Solving for the angular velocity, v 5
B

12gθ sin ϕ

11r
, so the velocity of the 

box at vB 5 2vr is

vB 5 4
B

3

11
 grθ sin ϕ b

REFLECT and THINK: If the rollers had been attached to the box by 

brackets, they would have traveled the same vertical distance as the box 

and the change in height of the centers of gravity of rollers and of the 

box would have been equal.

Sample Problem 17.6

Each of the two slender rods shown is 0.75 m long and has a mass of 

6 kg. If the system is released from rest with β 5 60°, determine (a) the 

angular velocity of rod AB when β 5 20°, (b) the velocity of point D at 

the same instant.

STRATEGY: You have two positions and are interested in velocities, so 

use the conservation of energy. You will also need to use kinematics to 

relate the velocity terms in the kinetic energy expression. 

MODELING: Choose the system to be both bars and model them as 

rigid bodies. 

ANALYSIS: To illustrate that the order in which you solve a problem 

doesn’t matter, let’s start with kinematics.

Kinematics of Motion When β 5 20°. Since vB is perpendicular 

to the rod AB and vD is horizontal, the instantaneous center of rotation of 

rod BD is located at C (Fig. 1). From the geometry of the figure, you obtain

BC 5 0.75 m  CD 5 2(0.75 m) sin 20° 5 0.513 m

Apply the law of cosines to triangle CDE, where E is located at the mass 

center of rod BD. You find EC 5 0.522 m. Denoting the angular velocity 

of rod AB by v, you have (Fig. 2)

 vAB 5 (0.375 m)v vAB 5 0.375v R
 vB 5 (0.75 m)v vB 5 0.75v     R

Since rod BD seems to rotate about point C, you have

vB 5 (BC)vBD   (0.75 m)v 5 (0.75 m)vBD   vBD 5 v l

vBD 5 (EC)vBD 5 (0.522 m)v   vBD 5 0.522v R

A

B

D

l =
 0.

75
 m

l = 0.75 m

b

A

0.75 m

0.75 m

0.513 m

20°

ωω

β = 20°

B

D

70°
E

C

ωBD

vB vD

Fig. 1 Instantaneous center of 
rotation C for bar BD.

A

B

⎯vAB = 0.375w ⎯vBD = 0.522w
DE

C

wAB = w

wBD = w

Fig. 2 Velocities of the center of 
masses of AB and BD in terms of v.

bee87342_ch17_1181-1263.indd   1196bee87342_ch17_1181-1263.indd   1196 11/27/14   2:28 PM11/27/14   2:28 PM

UPLOADED BY AHMAD T JUNDI



17.1 Energy Methods for a Rigid Body 1197

Conservation of Energy. Since there are no springs in the system

T1 1 Vg1
5 T2 1 Vg2

You first need to determine the energy at the two positions. 

Position 1. 

Potential Energy. Choose the datum as shown in Fig. 3, and observe 

that W 5 (6 kg)(9.81 m/s2) 5 58.86 N. Then you have

Vg1
 5 2W y1 5 2(58.86 N)(0.325 m) 5 38.26 J

Kinetic Energy. Initially, the system is at rest, so T1 5 0.

Position 2. 

Potential Energy. Compute the new height of the mass centers of the 

rods to be y2 5 0.75sin(20) 5 0.1283 m (Fig. 4).

Vg2
 5 2W y2 5 2(58.86 N)(0.1283 m) 5 15.10 J

Kinetic Energy.

 IAB 5 IBD 5
1
12 ml2 5

1
12(6 kg)(0.75 m)2 5 0.281 kg?m2

 T2 5
1
2 mv2

AB 1
1
2 IABv2

AB 1
1
2 mv2

BD 1
1
2 IBDv2

BD

 5
1
2 (6)(0.375v)2 1

1
2(0.281)v2 1

1
2(6)(0.522v)2 1

1
2 (0.281)v2

 5 1.520v2

Conservation of Energy. Now you can write

 T1 1 Vg1
5 T2 1 Vg2

0 1 38.26 J 5 1.520v2 1 15.10 J

      v 5 3.90 rad/s vAB 5 3.90 rad/s i b

Velocity of Point D.

vD 5 (CD)v 5 (0.513 m)(3.90 rad/s) 5 2.00 m/s

vD 5 2.00 m/s y b

REFLECT and THINK: The only step in which you need to use forces 

is when calculating the gravitational potential energy in each position. 

However, it is good engineering practice to show the complete free-body 

diagram in each case to identify which, if any, forces do work. Rather 

than use the instantaneous center of rotation, you could have also used 

vector algebra to relate the velocities of the various objects.

A x

Ay

A

B

D
β = 60°

Datum

Position 1

D

⎯y1 = 0.325 m

58.9 N58.9 N

Fig. 3 Free-body diagram and 
distance from the datum in 
position 1.

A x

Ay

A

B

⎯y2 = 0.1283 m
D

β = 20°

58.9 N 58.9 N

Datum
Position 2

D

Fig. 4 Free-body diagram and distance 
from the datum in position 2.
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11981198

In this section, we introduced energy methods to determine the velocity of rigid 

bodies for various positions during their motion. As you saw previously in 

Chap. 13, energy methods are particularly useful for problems involving displace-

ments and velocities.

1. The method of work and energy, when applied to all of the particles forming a 

rigid body, yields the equation

T1 1 U1y2 5 T2 (17.1)

where T1 and T2 are, respectively, the initial and final values of the total kinetic energy 

of the particles forming the body and U1y2 is the work done by the external forces 

exerted on the rigid body. If we express the work done by nonconservative forces as 

UNC
1y2 and define the potential energy terms for conservative forces, we can express 

Eq. (17.1) as

 T1 1 Vg1
1 Ve1

1 UNC
1y2 5 T2 1 Vg2

1 Ve2
 (17.19)

where Vg1
 and Vg2

 are the initial and final gravitational potential energy of the center 

of mass of the rigid body and Ve1
 and Ve2

 are the initial and final values of the elastic 

energy associated with springs in the system. Recall that, for a linear spring, Ve 5
1

2
kx2, 

where x is the deflection of the spring from its unstretched length. For a single rigid 

body, Vg 5 mgy, where y is the elevation of the center of mass from a reference plane 

or datum.

 a. Work of forces and couples. To the expression for the work of a force 

(Chap. 13), we added the expression for the work of a couple and wrote

 U1y2 5 #
A2

A1

F?dr    U
1y2

5 #
θ2

θ1

Mdθ (17.3, 17.5)

When the moment of a couple is constant, the work of the couple is

 U1y2 5 M(θ2 2 θ1)  (17.6)

where θ1 and θ2 are expressed in radians [Sample Probs. 17.1 and 17.2].

 b. The kinetic energy of a rigid body in plane motion was found by con-

sidering the motion of the body as the sum of a translation with its mass center and 

a rotation about the mass center. So

 T 5
1
2 mv 

2 1
1
2 Iv

2 (17.9)

where v is the velocity of the mass center and v is the angular velocity of the body 

[Sample Probs. 17.3 and 17.4]. You will generally need to use kinematics to relate 

v and v.

SOLVING PROBLEMS
ON YOUR OWN
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1199 1199

2. For a system of rigid bodies we again used the equation

T1 1 U1y2 5 T2 (17.1)

where T is the sum of the kinetic energies of the bodies forming the system and U 

is the work done by all the forces acting on the bodies—internal as well as external. 

Your computations will be simplified if you keep the following ideas in mind.

 a. The forces exerted on each other by pin-connected members or by 
meshed gears are equal and opposite, and since they have the same point of applica-

tion, they undergo equal small displacements. Therefore, their total work is zero and 

can be omitted from your calculations [Sample Prob. 17.2].

 b. The forces exerted by an inextensible cord on the two bodies it connects 

have the same magnitude and their points of application move through equal dis-

tances, but the work of one force is positive and the work of the other is negative. 

Therefore, their total work is zero and again can be omitted from your calculations 

[Sample Prob. 17.1].

 c. The forces exerted by a spring on the two bodies it connects also have the 

same magnitude, but their points of application generally move through different dis-

tances. Therefore, their total work is usually not zero and should be taken into account 

in your calculations. The easiest way to handle springs, therefore, is to use elastic 

potential energy.

3. The principle of conservation of energy can be expressed as

 T1 1 V1 5 T2 1 V2 (17.12)

where V represents the potential energy of the system. If you prefer to write this 

equation in terms of gravitational potential energy, Vg, and elastic potential energy, 

Ve, you get

 T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

 (17.129)

You can use this principle when a body or a system of bodies is acted upon by con-

servative forces, such as the force exerted by a spring or the force of gravity [Sample 

Probs. 17.4 through 17.6].

4. The last part of this section was devoted to power, which is the time rate at 

which work is done. For a body acted upon by a couple of moment M, the power 

can be expressed as

 Power 5 Mv (17.13)

where v is the angular velocity of the body, expressed in rad/s. As you did in Chap. 13, 

you should express power either in watts or in horsepower (1 hp 5 550 ft?lb/s).
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Problems

CONCEPT QUESTIONS

 17.CQ1 A round object of mass m and radius r is released from rest at the 

top of a curved surface and rolls without slipping until it leaves the 

surface with a horizontal velocity as shown. Will a solid sphere, a 

solid cylinder, or a hoop travel the greatest distance x?

   a. Solid sphere

   b. Solid cylinder

   c. Hoop

   d. They will all travel the same distance.

 17.CQ2 A solid steel sphere A of radius r and mass m is released from rest 

and rolls without slipping down an incline as shown. After travel-

ing a distance d, the sphere has a speed v. If a solid steel sphere 

of radius 2r is released from rest on the same incline, what will its 

speed be after rolling a distance d?

   a. 0.25v
   b. 0.5v
   c. v
   d. 2v
   e. 4v

x

Fig. P17.CQ1

d
A

r

Fig. P17.CQ2
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 17.CQ3 Slender bar A is rigidly connected to a massless rod BC in Case 1 

and two massless cords in Case 2 as shown. The vertical thickness 

of bar A is negligible compared to L. In both cases A is released 

from rest at an angle θ 5 θ0. When θ 5 08, which system will have 

the larger kinetic energy?

   a. Case 1

   b. Case 2

   c. The kinetic energy will be the same.

 17.CQ4 In Prob. 17.CQ3, how will the speeds of the centers of gravity com-

pare for the two cases when θ 5 08?

a. Case 1 will be larger.

b. Case 2 will be larger.

c. The speeds will be the same.

 17.CQ5 Slender bar A is rigidly connected to a massless rod BC in Case 1 

and two massless cords in Case 2 as shown. The vertical thickness 

of bar A is not negligible compared to L. In both cases A is released 

from rest at an angle θ 5 θ0. When θ 5 08, which system will have 

the largest kinetic energy?

   a. Case 1

   b. Case 2

   c. The kinetic energy will be the same.

END-OF-SECTION PROBLEMS

 17.1 A 200-kg flywheel is at rest when a constant 300 N?m couple is 

applied. After executing 560 revolutions, the flywheel reaches its rated 

speed of 2400 rpm. Knowing that the radius of gyration of the fly-

wheel is 400 mm, determine the average magnitude of the couple due 

to kinetic friction in the bearing. 

 17.2 The rotor of an electric motor has an angular velocity of 3600 rpm 

when the load and power are cut off. The 110-lb rotor, which has a 

centroidal radius of gyration of 9 in., then coasts to rest. Knowing 

that the kinetic friction of the rotor produces a couple with a mag-

nitude of 2.5 lb?ft, determine the number of revolutions that the rotor 

executes before coming to rest.

L L

B

C A
A

Case 1 Case 2

�

�

Fig. P17.CQ3 and P17.CQ5
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 17.3 Two uniform disks of the same material are attached to a shaft as 

shown. Disk A has a weight of 10 lb and a radius of r 5 6 in. Disk B
is twice as thick as disk A. Knowing that a couple M with a mag-

nitude of 22 lb?ft is applied to disk A when the system is at rest, 

determine the radius nr of disk B if the angular velocity of the system 

is to be 480 rpm after five revolutions.

 17.4 Two disks of the same material are attached to a shaft as shown. 

Disk A has a radius r and a thickness b, while disk B has a radius nr
and a thickness 2b. A couple M with a constant magnitude is applied 

when the system is at rest and is removed after the system has exe-

cuted two revolutions. Determine the value of n that results in the 

largest final speed for a point on the rim of disk B.

 17.5 The flywheel of a small punch rotates at 300 rpm. It is known that 

1800 ft?lb of work must be done each time a hole is punched. It is 

desired that the speed of the flywheel after one punching be not less 

than 90 percent of the original speed of 300 rpm. (a) Determine the 

required moment of inertia of the flywheel. (b) If a constant 25-lb?ft 

couple is applied to the shaft of the flywheel, determine the number 

of revolutions that must occur between each punching, knowing that 

the initial velocity is to be 300 rpm at the start of each punching.

 17.6 The flywheel of a punching machine has a mass of 300 kg and a 

radius of gyration of 600 mm. Each punching operation requires 

2500 J of work. (a) Knowing that the speed of the flywheel is 

300 rpm just before a punching, determine the speed immediately 

after the punching. (b) If a constant 25-N?m couple is applied to the 

shaft of the flywheel, determine the number of revolutions executed 

before the speed is again 300 rpm.

 17.7 Disk A, of weight 10 lb and radius r 5 6 in., is at rest when it is 

placed in contact with belt BC, which moves to the right with a 

constant speed v 5 40 ft/s. Knowing that μk 5 0.20 between the 

disk and the belt, determine the number of revolutions executed by 

the disk before it attains a constant angular velocity.

 17.8 The uniform 4-kg cylinder A with a radius of r 5 150 mm has an 

angular velocity of v0 5 50 rad/s when it is brought into contact 

with an identical cylinder B that is at rest. The coefficient of kinetic 

friction at the contact point D is μk. After a period of slipping, the 

cylinders attain constant angular velocities of equal magnitude and 

opposite direction at the same time. Knowing that cylinder A exe-

cutes three revolutions before it attains a constant angular velocity 

and cylinder B executes one revolution before it attains a constant 

angular velocity, determine (a) the final angular velocity of each 

cylinder, (b) the coefficient of kinetic friction μk.

 17.9 The 10-in.-radius brake drum is attached to a larger flywheel which 

is not shown. The total mass moment of inertia of the flywheel and 

drum is 16 lb?ft?s2 and the coefficient of kinetic friction between the 

drum and the brake shoe is 0.40. Knowing that the initial angular 

velocity is 240 rpm clockwise, determine the force that must be 

exerted by the hydraulic cylinder if the system is to stop in 75 

revolutions.

 17.10 Solve Prob. 17.9, assuming that the initial angular velocity of the 

flywheel is 240 rpm counterclockwise.

A

nr

2b

b

B

M
r

Fig. P17.3 and P17.4

Fig. P17.7

B

r
A

C

v

6 in.

10 in.

6 in.

12 in.

D

C

A

B

Fig. P17.9

Fig. P17.8

A

rB

D

ω0
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 17.11 Each of the gears A and B has a mass of 2.4 kg and a radius of 

gyration of 60 mm, while gear C has a mass of 12 kg and a radius 

of gyration of 150 mm. A couple M of constant magnitude 10 N?m 

is applied to gear C. Determine (a) the number of revolutions of gear C
required for its angular velocity to increase from 100 to 450 rpm, 

(b) the corresponding tangential force acting on gear A.

 17.12 Solve Prob. 17.11, assuming that the 10-N?m couple is applied to 

gear B.

 17.13 The gear train shown consists of four gears of the same thickness 

and of the same material; two gears are of radius r, and the other 

two are of radius nr. The system is at rest when the couple M0 is 

applied to shaft C. Denoting by I0 the moment of inertia of a gear 

of radius r, determine the angular velocity of shaft A if the couple 

M0 is applied for one revolution of shaft C. 

 17.14 The double pulley shown has a mass of 15 kg and a centroidal radius 

of gyration of 160 mm. Cylinder A and block B are attached to cords 

that are wrapped on the pulleys as shown. The coefficient of kinetic 

friction between block B and the surface is 0.2. Knowing that the 

system is at rest in the position shown when a constant force P 5 200 N 

is applied to cylinder A, determine (a) the velocity of cylinder A as 

it strikes the ground, (b) the total distance that block B moves before 

coming to rest.

Fig. P17.11

A B

80 mm 80 mm

200 mm
C

M

nrr

A
B

C

nr

M0

r

Fig. P17.13

17.15 Gear A has a mass of 1 kg and a radius of gyration of 30 mm; gear 

B has a mass of 4 kg and a radius of gyration of 75 mm; gear C has 

a mass of 9 kg and a radius of gyration of 100 mm. The system is 

at rest when a couple M0 of constant magnitude 4 N?m is applied 

to gear C. Assuming that no slipping occurs between the gears, deter-

mine the number of revolutions required for disk A to reach an angu-

lar velocity of 300 rpm.

 17.16 A slender rod of length l and weight W is pivoted at one end as 

shown. It is released from rest in a horizontal position and swings 

freely. (a) Determine the angular velocity of the rod as it passes 

through a vertical position and determine the corresponding reaction 

at the pivot. (b) Solve part a for W 5 1.8 lb and l 5 3 ft.

A
5 kg

150 mm

250 mm

C

P

30°

1 m

B
15 kg

Fig. P17.14

Fig. P17.15

A
B

100 mm50 mm

50 mm

150 mm

C

M0

A B

l

Fig. P17.16
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 17.17 A slender rod of length l is pivoted about a point C located at a 

distance b from its center G. It is released from rest in a horizontal 

position and swings freely. Determine (a) the distance b for which 

the angular velocity of the rod as it passes through a vertical position 

is maximum, (b) the corresponding values of its angular velocity and 

of the reaction at C.

A B
GC

l

b

Fig. P17.17

Fig. P17.18

D

A

B

C

5 in.

24 in.

14 in.
 17.18 A slender 9-lb rod can rotate in a vertical plane about a pivot at B. 

A spring of constant k 5 30 lb/ft and of unstretched length 6 in. is 

attached to the rod as shown. Knowing that the rod is released from 

rest in the position shown, determine its angular velocity after it has 

rotated through 908.

 17.19 An adapted golf device attaches to a wheelchair to help people with 

mobility impairments play putt-putt. The stationary frame OD is 

attached to the wheelchair, and a club holder OB is attached to the 

pin at O. Holder OB is 6 in. long and weighs 8 oz, and the distance 

between O and D is x 5 1 ft. The putter shaft has a length of 

L 5 36 in. and weighs 10 oz, while the putter head at A weighs 

12 oz. Knowing that the 1-lb/in. spring between D and B is 

unstretched when θ 5 90° and that the putter is released from rest 

at θ 5 0, determine the putter head speed when it hits the golf ball.

Fig. P17.19

θ
d

O

BD

A
L

x

Fig. P17.20

3.5 ft

3.5 ft

G

 17.20 A 160-lb gymnast is executing a series of full-circle swings on the 

horizontal bar. In the position shown, he has a small and negligible 

clockwise angular velocity and will maintain his body straight and 

rigid as he swings downward. Assuming that during the swing the 

centroidal radius of gyration of his body is 1.5 ft, determine his 

angular velocity and the force exerted on his hands after he has 

rotated through (a) 908, (b) 1808.
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 17.21 A collar with a mass of 1 kg is rigidly attached at a distance 

d 5 300 mm from the end of a uniform slender rod AB. The rod 

has a mass of 3 kg and is of length L 5 600 mm. Knowing that the 

rod is released from rest in the position shown, determine the angular 

velocity of the rod after it has rotated through 908. 

 17.22 A collar with a mass of 1 kg is rigidly attached to a slender rod AB 

of mass 3 kg and length L 5 600 mm. The rod is released from rest 

in the position shown. Determine the distance d for which the angu-

lar velocity of the rod is maximum after it has rotated through 908. 

 17.23 Two identical slender rods AB and BC are welded together to form 

an L-shaped assembly. The assembly is pressed against a spring at 

D and released from the position shown. Knowing that the maximum 

angle of rotation of the assembly in its subsequent motion is 908 

counterclockwise, determine the magnitude of the angular velocity 

of the assembly as it passes through the position where rod AB forms 

an angle of 308 with the horizontal.

 17.24 The 30-kg turbine disk has a centroidal radius of gyration of 175 mm 

and is rotating clockwise at a constant rate of 60 rpm when a small 

blade of weight 0.5 N at point A becomes loose and is thrown off. 

Neglecting friction, determine the change in the angular velocity of 

the turbine disk after it has rotated through (a) 908, (b) 2708.

Fig. P17.21 and P17.22

L
d

A B

C

Fig. P17.23

h

B A

C

D

0.4 m

0.4 m

AO 300 mm

Fig. P17.24 r

Fig. P17.25

 17.25 A rope is wrapped around a cylinder of radius r and mass m as 

shown. Knowing that the cylinder is released from rest, determine 

the velocity of the center of the cylinder after it has moved down-

ward a distance s.

 17.26 Solve Prob. 17.25, assuming that the cylinder is replaced by a thin-

walled pipe of radius r and mass m.

 17.27 Greek engineers had the unenviable task of moving large columns 

from the quarries to the city. One engineer, Chersiphron, tried several 

different techniques to do this. One method was to cut pivot holes into 

the ends of the stone and then use oxen to pull the column. The 4-ft 

diameter column weighs 12,000 lbs, and the team of oxen generates a 

constant pull force of 1500 lbs on the center of the cylinder G. Knowing 

that the column starts from rest and rolls without slipping, determine 

(a) the velocity of its center G after it has moved 5 ft, (b) the minimum 

static coefficient of friction that will keep it from slipping. Fig. P17.27

G
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17.28 A small sphere of mass m and radius r is released from rest at A
and rolls without sliding on the curved surface to point B where it 

leaves the surface with a horizontal velocity. Knowing that a 5 1.5 m 

and b 5 1.2 m, determine (a) the speed of the sphere as it strikes 

the ground at C, (b) the corresponding distance c.

w

CG

r

Fig. P17.29

Fig. P17.30

O G

Fig. P17.31

R

B

A

r
b

17.31 A sphere of mass m and radius r rolls without slipping inside a 

curved surface of radius R. Knowing that the sphere is released from 

rest in the position shown, derive an expression for (a) the linear 

velocity of the sphere as it passes through B, (b) the magnitude of 

the vertical reaction at that instant.

C

c

B
b

A

a

Fig. P17.28

 17.29 The mass center G of a 3-kg wheel of radius R 5 180 mm is located 

at a distance r 5 60 mm from its geometric center C. The centroidal 

radius of gyration of the wheel is k 5 90 mm. As the wheel rolls 

without sliding, its angular velocity is observed to vary. Knowing 

that v 5 8 rad/s in the position shown, determine (a) the angular 

velocity of the wheel when the mass center G is directly above the 

geometric center C, (b) the reaction at the horizontal surface at the 

same instant. 

 17.30 A half-cylinder with mass m and radius r is released from rest in the 

position shown. Knowing that the half-cylinder rolls without sliding, 

determine (a) its angular velocity after it has rolled through 90°, 

(b) the reaction at the horizontal surface at the same instant. 

[Hint: Note that GO 5 4r/3π and that, by the parallel-axis theorem, 

 I 5
1
2 mr 

2 2 m(GO)2.]
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 17.32 Two uniform cylinders, each of weight W 5 14 lb and radius r 5 5 in., 

are connected by a belt as shown. Knowing that at the instant shown 

the angular velocity of cylinder B is 30 rad/s clockwise, determine 

(a) the distance through which cylinder A will rise before the angu-

lar velocity of cylinder B is reduced to 5 rad/s, (b) the tension in the 

portion of belt connecting the two cylinders.

 17.33 Two uniform cylinders, each of weight W 5 14 lb and radius r 5 5 in., 

are connected by a belt as shown. If the system is released from rest, 

determine (a) the velocity of the center of cylinder A after it has 

moved through 3 ft, (b) the tension in the portion of belt connecting 

the two cylinders.

 17.34 A bar of mass m 5 5 kg is held as shown between four disks each 

of mass m9 5 2 kg and radius r 5 75 mm. Knowing that the forces 

exerted on the disks are sufficient to prevent slipping and that the 

bar is released from rest, for each of the cases shown, determine the 

velocity of the bar after it has moved through the distance h.
Fig. P17.32 and P17.33

r

r

A

B

Fig. P17.34

h hh

B

A

B

A

B

A

(a) (b) (c)

 17.35 The 1.5-kg uniform slender bar AB is connected to the 3-kg gear B
that meshes with the stationary outer gear C. The centroidal radius 

of gyration of gear B is 30 mm. Knowing that the system is released 

from rest in the position shown, determine (a) the angular velocity 

of the bar as it passes through the vertical position, (b) the corre-

sponding angular velocity of gear B.

 17.36 The motion of the uniform rod AB is guided by small wheels of 

negligible mass that roll on the surface shown. If the rod is released 

from rest when θ 5 0, determine the velocities of A and B when 

θ 5 308.

Fig. P17.35

120 mm

50 mm

C

BA

Fig. P17.36

60° q

L

B

A
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 17.37 A 5-m-long ladder has a mass of 15 kg and is placed against a house 

at an angle θ 5 208. Knowing that the ladder is released from rest, 

determine the angular velocity of the ladder and the velocity of end 

A when θ 5 458. Assume the ladder can slide freely on the horizontal 

ground and on the vertical wall.

 17.38 A long ladder of length l, mass m, and centroidal mass moment of 

inertia I is placed against a house at an angle θ 5 θ0. Knowing that 

the ladder is released from rest, determine the angular velocity of 

the ladder when θ 5 θ2. Assume the ladder can slide freely on the 

horizontal ground and on the vertical wall.

 17.39 The ends of a 9-lb rod AB are constrained to move along slots cut 

in a vertical plate as shown. A spring of constant k 5 3 lb/in. is 

attached to end A in such a way that its tension is zero when θ 5 0. 

If the rod is released from rest when θ 5 508, determine the angular 

velocity of the rod and the velocity of end B when θ 5 0.

Fig. P17.37 and P17.38

A

B

q

Fig. P17.39

A

B

θ

l = 25 in.

Fig. P17.40 and P17.41

A

C

B

k
θ

5 ft

5 ft

 17.40 The mechanism shown is one of two identical mechanisms attached 

to the two sides of a 200-lb uniform rectangular door. Edge ABC of 

the door is guided by wheels of negligible mass that roll in horizontal 

and vertical tracks. A spring with a constant of k 5 40 lb/ft is 

attached to wheel B. Knowing that the door is released from rest in 

the position θ 5 30° with the spring unstretched, determine the 

velocity of wheel A just as the door reaches the vertical position.

 17.41 The mechanism shown is one of two identical mechanisms attached 

to the two sides of a 200-lb uniform rectangular door. Edge ABC of 

the door is guided by wheels of negligible mass that roll in horizontal 

and vertical tracks. A spring with a constant k is attached to wheel B 
in such a way that its tension is zero when θ 5 30°, Knowing that 

the door is released from rest in the position θ 5 45° and reaches the 

vertical position with an angular velocity of 0.6 rad/s, determine the 

spring constant k.
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 17.42 Each of the two rods shown is of length L 5 1 m and has a mass 

of 5 kg. Point D is connected to a spring of constant k 5 20 N/m 

and is constrained to move along a vertical slot. Knowing that the 

system is released from rest when rod BD is horizontal and 

the spring connected to point D is initially unstretched, determine 

the velocity of point D when it is directly to the right of point A.

 17.43 The 4-kg rod AB is attached to a collar of negligible mass at A and 

to a flywheel at B. The flywheel has a mass of 16 kg and a radius 

of gyration of 180 mm. Knowing that in the position shown the 

angular velocity of the flywheel is 60 rpm clockwise, determine the 

velocity of the flywheel when point B is directly below C.

B

A

L

L

D

Fig. P17.42

 17.44 If in Prob. 17.43 the angular velocity of the flywheel is to be the same 

in the position shown and when point B is directly above C, determine 

the required value of its angular velocity in the position shown.

 17.45 The uniform rods AB and BC weigh 2.4 kg and 4 kg, respectively, 

and the small wheel at C is of negligible weight. If the wheel is 

moved slightly to the right and then released, determine the velocity 

of pin B after rod AB has rotated through 908.

A

B

240 mm

720 mm

C

Fig. P17.43 and P17.44

A

B

C

360 mm

600 mm

Fig. P17.45 and P17.46

 17.46 The uniform rods AB and BC weigh 2.4 kg and 4 kg, respectively, 

and the small wheel at C is of negligible weight. Knowing that in 

the position shown the velocity of wheel C is 2 m/s to the right, 

determine the velocity of pin B after rod AB has rotated through 908.
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 17.47 The 80-mm-radius gear shown has a mass of 5 kg and a centroidal 

radius of gyration of 60 mm. The 4-kg rod AB is attached to the 

center of the gear and to a pin at B that slides freely in a vertical 

slot. Knowing that the system is released from rest when θ 5 608, 

determine the velocity of the center of the gear when θ 5 208.

320 mm

80 mm
A

B

θ

Fig. P17.47

 17.48 Knowing that the maximum allowable couple that can be applied to 

a shaft is 15.5 kip?in., determine the maximum horsepower that can 

be transmitted by the shaft at (a) 180 rpm, (b) 480 rpm.

 17.49 Three shafts and four gears are used to form a gear train which will 

transmit 7.5 kW from the motor at A to a machine tool at F. (Bearings 

for the shafts are omitted from the sketch.) Knowing that the fre-

quency of the motor is 30 Hz, determine the magnitude of the couple 

that is applied to shaft (a) AB, (b) CD, (c) EF. 

 17.50 The shaft-disk-belt arrangement shown is used to transmit 2.4 kW 

from point A to point D. Knowing that the maximum allowable 

couples that can be applied to shafts AB and CD are 25 N?m and 

80 N?m, respectively, determine the required minimum speed of 

shaft AB.

 17.51 The drive belt on a vintage sander transmits ½ hp to a pulley that 

has a diameter of d 5 4 in. Knowing that the pulley rotates at 

1450 rpm, determine the tension difference T1 – T2 between the tight 

and slack sides of the belt.

75 mm

75 mm

180 mm

180 mm

C
E

F

D B

A

Fig. P17.49

A

B

C

D

30 mm

120 mm

Fig. P17.50

Fig. P17.51

d

T1 T2
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17.2 Momentum Methods for a Rigid Body 1211

17.2  MOMENTUM METHODS 
FOR A RIGID BODY

We now apply the principle of impulse and momentum to the plane motion 

of rigid bodies and of systems of rigid bodies. As we pointed out in Chap. 13, 

the method of impulse and momentum is particularly well adapted to the 

solution of problems involving time and velocities. Moreover, the principle 

of impulse and momentum provides the only practicable method for 

the solution of problems involving impulsive motion or impact (Sec. 17.3).

17.2A  Principle of Impulse and 
Momentum 

Consider again a rigid body made of a large number of particles Pi. Recall 

from Sec. 14.2C that impulse–momentum diagrams are a pictorial repre-

sentation of the principle of impulse and momentum. They show (a) the 

system formed by the momenta of the particles at time t1 and (b) the 

system of the impulses of the external forces applied from t1 to t2

are together equipollent to (c) the system formed by the momenta of the 

particles at time t2 (Fig. 17.6). We can consider the vectors associated with 

a rigid body to be sliding vectors, so it follows (Statics, Sec. 3.4B) that 

the systems of vectors shown in Fig. 17.6 are not only equipollent, but 

they are truly equivalent. In other words, the vectors on the left-hand side 

of the equal sign can be transformed into the vectors on the right-hand 

side through the use of the fundamental operations listed in Sec. 3.3B. 

We therefore have

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.14)

The momenta vi Dmi of the particles can be reduced to a vector 

attached at G that is equal to their sum

L 5 On

i51

 vi Dmi

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

y

O x

Pi

(a)

y

O x

(b)

y

O x

Pi

(c)

(vi Δmi)1

(vi Δmi)2

+ =

��F dt

Fig. 17.6 For a rigid body in plane motion: (a) the system of particle momenta at time t1 plus 
(b) the system of impulses of the external forces from time t1 to t2 is equivalent to 
(c) the system of particle momenta at time t2.
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1212 Plane Motion of Rigid Bodies: Energy and Momentum Methods

and a couple of moment equal to the sum of their moments about G, as

HG 5 On

i51

 r9i 3 vi Dmi

Recall from Sec. 14.1B that L and HG define, respectively, the linear 

momentum and the angular momentum about G of the system of particles 

forming the rigid body. Also note from Eq. (14.14) that L 5 mv. On the 

other hand, by restricting the present analysis to the plane motion of a rigid 

body or of a rigid body symmetrical with respect to the reference plane, we 

recall from Eq. (16.4) that HG 5 Iv. We thus conclude that the system of 

the momenta vi Dmi is equivalent to the linear momentum vector mv 
attached at G and to the angular momentum couple  Iv (Fig. 17.7). Photo 17.2 A Charpy impact test is used to 

determine the amount of energy absorbed by 
a material during impact. To determine the 
amount of energy absorbed, the final 
gravitational potential energy of the arm is 
subtracted from its initial gravitational 
potential energy.

Fig. 17.7 The system of momenta of a rigid body is 
equivalent to a linear momentum vector attached at G 
and an angular momentum couple.

Pi

vi Δmi

G=
HG = Iω⎯

Fig. 17.8 An impulse–momentum diagram is used for applying the principle of impulse and 
momentum.

y

O x

(a)

y

O x

(b)

y

O x

(c)

+ =

**F dt

G

I ω⎯

G I ω⎯

1

2

The system of momenta reduces to the vector mv in the particular case of 

a translation (v 5 0) and to the couple  Iv in the particular case of a 

centroidal rotation (v 5 0). Thus, we verify once more that the plane motion 

of a rigid body that is symmetrical with respect to the reference plane can 

be resolved into a translation with the mass center G and a rotation about G.
Replacing the system of momenta in Fig. 17.6a and c by the equiva-

lent linear momentum vector and angular momentum couple, we obtain 

the three diagrams shown in Fig. 17.8. This impulse–momentum diagram 

is a visual representation of the fundamental relation in Eq. (17.14) in the 

case of the plane motion of a rigid body or of a rigid body symmetrical 

with respect to the reference plane.

We can derive three equations of motion from Fig. 17.8. Two equations 

come from summing and equating the x and y components of the momenta 
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17.2 Momentum Methods for a Rigid Body 1213

and impulses. The third equation is obtained by summing and equating the 

moments of these vectors about any given point. We can choose the 

coordinate axes to be fixed in space or allowed to move with the mass center 

of the body while maintaining a fixed direction. In either case, the point 

about which moments are taken should keep the same position relative to 

the coordinate axes during the interval of time considered. If you choose to 

sum moments about a point P, Eq. (17.14) can be expressed as

  Iv1 1 mv1d' 1 O #
t2

t1

MPdt 5 Iv2 1 mv2d' (17.149)

where d
⊥

 is the perpendicular distance from point P to the line of action 

of the linear velocity of G. If you choose to sum moments about the center 

of gravity of the body, then Eq. (17.149) reduces to 

  Iv1 1 O #
t2

t1

MGdt 5 Iv2 (17.140)

In deriving the three equations of motion for a rigid body, you 

should take care to avoid adding linear and angular momenta indiscrimi-

nately. Remember that mvx and mvy represent the components of a vector, 
namely, the linear momentum vector mv, whereas Iv represents the mag-
nitude of a couple, namely, the angular momentum couple Iv. Thus, you 

should add the quantity Iv only to the moment of the linear momentum 

mv—never to this vector itself nor to its components. All angular momen-

tum quantities involved then will be expressed in the same units, namely 

N?m?s or lb?ft?s.

Noncentroidal Rotation. In this particular case of plane motion, 

the magnitude of the velocity of the mass center of the body is v 5 rv, 

where r represents the distance from the mass center to the fixed axis of 

rotation and v represents the angular velocity of the body at the instant 

considered. The magnitude of the momentum vector attached at G is thus 

mv 5 mrv. Summing the moments about O of the momentum vector and 

momentum couple (Fig. 17.9) and using the parallel-axis theorem for 

moments of inertia, we find that the angular momentum HO of the body 

about fixed axis O has the magnitude†

  Iv 1 (mrv)r 5 (I 1 mr 
2)v 5 IOv (17.15)

Equating the moments about O of the momenta and impulses in 

Eq. (17.14), we have

 IOv1 1 O #
t2

t1

 MO dt 5 IOv2 (17.16)

In the general case of plane motion of a rigid body symmetrical with 

respect to the reference plane, you can use Eq. (17.16) with respect to the 

instantaneous axis of rotation under certain conditions. We recommend, 

however, that all problems of plane motion be solved by the general 

method described earlier in this section.

†Note that the sum HP of the moments about an arbitrary point P of the momenta of the 

particles of a rigid body is, in general, not equal to IPv (see Prob. 17.67). 

Fig. 17.9 The linear and angular momenta 
for a noncentroidal rotation.

O

G

⎯rωω

 I ω⎯
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1214 Plane Motion of Rigid Bodies: Energy and Momentum Methods

17.2B Systems of Rigid Bodies
We can analyze the motion of several rigid bodies by applying the prin-

ciple of impulse and momentum to each body separately (Sample 

Prob. 17.7). However, in solving problems involving no more than three 

unknowns (including the impulses of unknown reactions), it is often con-

venient to apply the principle of impulse and momentum to the system as 

a whole. 

To do this, first draw impulse–momentum diagrams for the entire 

system of bodies. For each moving part of the system, the diagrams of 

momenta should include a linear momentum vector and a momentum 

couple. You can omit impulses of forces internal to the system from the 

diagram showing the impulses, since they occur in pairs of equal and 

opposite vectors. Summing and equating successively the x components, 

y components, and moments of all vectors involved, you obtain three rela-

tions expressing that the momenta at time t1 and the impulses of the 

external forces form a system equipollent to the system of the momenta 

at time t2. Again, you should take care not to add linear and angular 

momenta indiscriminately; check each equation to make sure that consis-

tent units are used. This approach has been used in Sample Probs. 17.9 

through 17.13.

17.2C  Conservation of Angular 
Momentum

When no external force acts on a rigid body or a system of rigid bodies, 

the impulses of the external forces are zero and the system of the momenta 

at time t1 is equipollent to the system of the momenta at time t2. Summing 

and equating successively the x components, y components, and moments 

of the momenta at times t1 and t2, we conclude that the total linear momen-

tum of the system is conserved in any direction and that its total angular 

momentum is conserved about any point.

In many engineering applications, however, the linear momentum is 

not conserved, yet the angular momentum HP of the system about a given 

point P is conserved. That is, 

 (HP)1 5 (HP)2 (17.17)

Such cases occur when the lines of action of all external forces pass 

through P or, more generally, when the sum of the angular impulses of 

the external forces about P is zero.

You can solve problems involving the conservation of angular 
momentum about a point P using the general method of impulse and 

momentum, i.e., by drawing impulse-momentum diagrams as described 

earlier. You then obtain Eq. (17.17) by summing and equating moments 

about P (Sample Prob. 17.9). As you will see in Sample Prob. 17.11, you 

can obtain two additional equations by summing and equating the x and 

y components of the linear momentum; then you can use these equations 

to determine two unknown linear impulses, such as the impulses of the 

reaction components at a fixed point.

Photo 17.3 A figure skater at the beginning 
and at the end of a spin. By using the 
principle of conservation of angular 
momentum you will find that her angular 
velocity is much higher at the end of the 
spin.
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17.2 Momentum Methods for a Rigid Body 1215

Sample Problem 17.7

Gear A has a mass of 10 kg and a radius of gyration of 200 mm, and gear B
has a mass of 3 kg and a radius of gyration of 80 mm. The system is at 

rest when a couple M with a magnitude of 6 N?m is applied to gear B.
(These gears were considered in Sample Prob. 17.2.) Neglecting friction, 

determine (a) the time required for the angular velocity of gear B to reach 

600 rpm, (b) the tangential force that gear B exerts on gear A.

STRATEGY: Since you are given an angular velocity and are asked for 

time, use the principle of impulse and momentum. 

MODELING: You are asked to find the internal tangential force, so you 

need two systems for this problem; that is, gear A and gear B. Model the 

gears as rigid bodies. Since all forces and couples are constant, you can 

obtain the impulses by multiplying the forces and moments by the 

unknown time t.

ANALYSIS: Recall from Sample Prob. 17.2 that the centroidal moments 

of inertia and the final angular velocities are

 IA 5 0.400 kg?m2  IB 5 0.0192 kg?m2

 (vA)2 5 25.1 rad/s (vB)2 5 62.8 rad/s

Principle of Impulse and Momentum for Gear A. The impulse-

momentum diagram (Fig. 1) for gear A shows the initial momenta, 

impulses, and final momenta. 

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1lmoments about A: 0 2 FtrA 5 2IA(vA)2

Ft(0.250 m) 5 (0.400 kg?m2)(25.1 rad/s)

 Ft 5 40.2 N?s

A

B

rA = 250 mm

rB = 100 mm

M

rAA

AA A xt

Ayt

Ft

+ =
⎯IA(ωA)1 = 0 ⎯IA(ωA)2

y

x

Fig. 1 Impulse–momentum diagram for gear A.

(continued)
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1216 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Principle of Impulse and Momentum for Gear B. Draw a sepa-

rate impulse–momentum diagram for gear B (Fig. 2).

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1lmoments about B:   0 1 Mt 2 FtrB 5  IB(vB)2

1(6 N?m)t 2 (40.2 N?s)(0.100 m) 5 (0.0192 kg?m2)(62.8 rad/s)

t 5 0.871 s b

Recall that Ft 5 40.2 N?m, so you have

F(0.871 s) 5 40.2 N?s   F 5 146.2 N

Thus, the force exerted by gear B on gear A is

F 5 46.2 N b b

REFLECT and THINK: This is the same answer obtained in Sample 

Prob. 17.2 by the method of work and energy, as you would expect. The 

difference is that in Sample Prob. 17.2, you were asked to find the number 

of revolutions, and in this problem, you were asked to find the time. What 

you are asked to find will often determine the best approach to use when 

solving a problem. 

rB

BB B
Bxt

Byt

Ft

Mt+ =
⎯IB(ωB)1 = 0 ⎯IB(ωB)2

y

x

Fig. 2 Impulse–momentum diagram for gear B.

Sample Problem 17.8

A uniform sphere with a mass m and a radius r is projected along a rough 

horizontal surface with a linear velocity v1 and no angular velocity. Denote 

the coefficient of kinetic friction between the sphere and the surface by 

μk. Determine (a) the time t2 at which the sphere starts rolling without 

sliding, (b) the linear and angular velocities of the sphere at time t2.

STRATEGY: You are asked to find the time, so use the principle of 

impulse and momentum. You can apply this principle to the sphere from 

the time t1 5 0 when it is placed on the surface until the time t2 5 t when 

it starts rolling without sliding.

MODELING: Choose the sphere as your system and model it as a rigid 

body. While the sphere is sliding relative to the surface, it is acted upon 

by the normal force N, the friction force F, and its weight W with a 

magnitude of W 5 mg. An impulse-momentum diagram for this system 

is shown in Fig. 1.

⎯v1
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17.2 Momentum Methods for a Rigid Body 1217

ANALYSIS: 

Principle of Impulse and Momentum. Apply the principle of 

impulse and momentum for this system between time t1 and t2

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1xy components: Nt 2 Wt 5 0 (1)
 1y x components: mv1 2 Ft 5 mv2 (2)

1i moments about G: Ftr 5  Iv2 (3)

From Eq. (1) you obtain N 5 W 5 mg. During the entire time interval 

considered, sliding occurs at point C, and F 5 μkN 5 μkmg. Substituting 

this expression for F into Eq. (2), you have

 mv1 2 μkmgt 5 mv2           v2 5 v1 2 μk 
gt (4)

Substituting F 5 μkmg and  I 5
2
5mr2 into Eq. (3) gives 

 μkmgtr 5
2
5 mr2v2        v2 5

5

2
 
μkg

r
 t (5)

The sphere starts rolling without sliding when the velocity vC of the point 

of contact is zero. At that time, point C becomes the instantaneous center 

of rotation, and you have v2 5 rv2. Substituting Eqs. (4) and (5) into this 

equation, you obtain

 v1 2 μkgt 5 r a5

2
 
μkg

r
 tb t 5

2

7
 

v1

μkg
 b

Substituting this expression for t into Eq. (5), you have

  v2 5
5

2
 
μkg

r
 a2

7
 

v1

μkg
b       v2 5

5

7
 
v1

r
  v2 5

5

7
 
v1

r
 i b

  v2 5 rv2 v2 5 r a5

7
 
v1

r
b v2 5

5
7 v1y  b

REFLECT and THINK: This is the same answer obtained in Sample 

Prob. 16.6 by first dealing directly with force and acceleration and then 

applying kinematic relationships. 

=+
ω2⎯I

G ⎯v2m
G

CC C

G ⎯v1m
ω1 = 0⎯I W t

N t

Ft

y

x

Fig. 1 Impulse–momentum diagram for the sphere.

bee87342_ch17_1181-1263.indd   1217bee87342_ch17_1181-1263.indd   1217 11/27/14   2:29 PM11/27/14   2:29 PM

UPLOADED BY AHMAD T JUNDI



1218 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Sample Problem 17.9

Two solid spheres with a radius 3 in. and weighing 2 lb each are mounted 

at A and B on the horizontal rod A9B9 that rotates freely about a vertical 

axis with a counterclockwise angular velocity of 6 rad/s. The spheres are 

held in position by a cord, which is suddenly cut. The centroidal moment 

of inertia of the rod and pivot is  IR 5 0.25 lb?ft?s2. Determine (a) the 

angular velocity of the rod after the spheres have moved to positions A9 

and B9, (b) the energy lost due to the plastic impact of the spheres and 

the stops at A9 and B9.

STRATEGY: You can first use the principle of impulse and momentum 

to find the angular velocity of the rod and then use the definition of kinetic 

energy to determine the change in energy.

MODELING: Choose the two solid spheres and the horizontal rod as 

your system and model these as rigid bodies. The impulse–momentum 

diagram for this system is shown in Fig. 1. 

ANALYSIS: 

a. Principle of Impulse and Momentum. Apply the principle of 

impulse and momentum for this system between time t1 (when the spheres 

are at r1) and t2 (when the spheres are at r1)

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

The external forces consist of the weights and the reaction at the pivot, 

which have no moment about the y axis. Noting that the rod is undergoing 

centroidal rotation and vA 5 vB 5 rv, you can equate moments about the 

y axis as

 2(mSr1v1)r1 1 2 ISv1 1 IRv1 5 2(mSr2v2)r2 1 2 ISv2 1 IRv2

  (2mSr 
2
1 1 2 IS 1 IR)v1 5 (2mSr 

2
2 1 2 IS 1 IR)v2  (1)

This states that the angular momentum of the system about the y axis is 

conserved. You can now compute

 IS 5 
2
5mSa

2 5 
2
5(2 lb/32.2 ft/s2)(

3
12 ft)

2 5 0.00155 lb?ft?s2

mSr 
2
1 5 (2/32.2)(

5
12)

2 5 0.0108   mSr 
2
2 5 (2/32.2)(

25
12)

2 5 0.2696

A
A'

B
B'

y

x

z

Cord

25 in.

25 in.
5 in.5 in.

=+

ω2⎯IS

ω2⎯IS

ω1⎯IS

ω1⎯IS

ω1⎯IR ω2⎯IRy
y

y

z

A

B
x

A'

B'

r1
r2

r2

(mSvA)1

(mSvB)1

(mSvA)2

(mSvB)2

*R x dt

*R z dt

r1

z

x

Fig. 1 Impulse–momentum diagram for the system.
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17.2 Momentum Methods for a Rigid Body 1219

Substituting these values, along with  IR 5 0.25 lb?ft?s2 and v1 5 6 rad/s, 

into Eq. (1) gives 

 0.275(6 rad/s) 5 0.792v2 v2 5 2.08 rad/s l b

b. Energy Lost. The kinetic energy of the system at any instant is

T 5 2(
1
2 mSv

2 1
1
2 
ISv2) 1

1
2IRv2 5

1
2(2mSr

2 1 2IS 1 IR)v2

Using the numerical values found here, you have

T1 5
1
2(0.275)(6)2 5 4.95 ft?lb   T2 5

1
2(0.792)(2.08)2 5 1.713 ft?lb

 DT 5 T2 2 T1 5 1.71 2 4.95 DT 5 23.24 ft?lb b

REFLECT and THINK: As expected, when the spheres move outward, 

the angular velocity of the system decreases. This is similar to an ice 

skater who throws her arms outward to reduce her angular speed.

Sample Problem 17.10

A 10-lb uniform disk is attached to the shaft of a motor mounted on arm 

AB that is free to rotate about the vertical axle CD. The arm-and-motor 

unit has a moment of inertia of 0.032 lb ? ft ? s2 about axle CD. Knowing 

that the system is initially at rest, determine the angular velocities of the 

arm and of the disk when the motor reaches a speed of 360 rpm.

STRATEGY: Since you have two times––when the system starts from 

rest and when the motor has reached a speed of 360 rpm––use the con-

servation of angular momentum. You cannot use the conservation of 

energy because the motor converts electrical energy into mechanical 

energy. 

MODELING: Choose the arm AB, the motor, and the disk to be your 

system and model them as rigid bodies. The impulse–momentum diagram 

for this system is shown in Fig. 1. 

A B

D

5 in.

C 6 in.

=+ A

∫Axdt

∫Aydt
6 in.

A B
A

B
B

⎯IBω
B

IAωAB

mBvB

lAB

y

x

Fig. 1 Impulse–momentum diagram for the system.

(continued)
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1220 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Moments of Inertia. The mass moment of inertia of the arm and 

motor about the axle is IA  5   0.032  lb ? ft ? s2, and the mass moment of 

inertia of disk B about its center of mass is

 IB  5   

1

2
 
W
g

r2
  5   

1

2
 a 10

32.2
ba 5

12
b2

  5   0.02696  lb ? ft ? s2

ANALYSIS: 

Principle of Impulse and Momentum. Apply the principle of 

impulse and momentum for this system between time t1 (when the system 

is at rest) and t2 (when the motor has an angular velocity of 360 rpm)

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

Taking moments about A gives

1l moments about A:  0 1 0 5 (mBvB)lAB 1 IAvAB 1 IBvB (1)

Kinematics. You can relate the velocity of B to the angular velocity 

of AB using

 vB  5   lABvAB  5
6
12 vAB (2)

The velocity of the motor is vM  5   360  rpm  5   12π  rad/s, which is the 

angular velocity of the disk relative to the arm. Thus,

 vB  5   vAB  1   vM (3)

Substituting Eqs. (2) and (3) into Eq. (1) and solving for  vAB gives

1mBl2
AB 1 IA2vAB 1 IB1vAB 1 vM2 5 0

c a 10

32.2
ba 6

12
b2

  1   0.032 dvAB  1   0.026961vAB  1   12π2 5 0

vAB  5   2  7.44  rad/s

vAB  5   71.0  rpm i b

The angular velocity of the disk is 

vB 5 27.44 1 12π 5 30.26 rad/s

 vB 5 289 rpm l b

REFLECT and THINK: When the motor spins the disk counterclock-

wise (as viewed from above), the arm AB rotates in a clockwise direction. 

One key to solving this problem is recognizing that the angular velocity 

of the motor is the relative angular velocity of the disk with respect to 

the bar. 
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1221 1221

SOLVING PROBLEMS
ON YOUR OWN

In this section, we described how to use the method of impulse and momentum to 

solve problems involving the plane motion of rigid bodies. As you found out previ-

ously in Chap. 13, this method is most effective when used in the solution of problems 

involving velocities and time.

1. The principle of impulse and momentum for the plane motion of a rigid body
is expressed by the vector equation:

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2  (17.14)

where Syst Momenta represents the system of the momenta of the particles forming 

the rigid body and Syst Ext Imp represents the system of all the external impulses 

exerted during the motion. 

 a. The system of the momenta of a rigid body is equivalent to a linear 

momentum vector mv attached at the mass center of the body and an angular momen-

tum couple about the center of mass  Iv (Fig. 17.7).

 b. You should draw an impulse–momentum diagram for the rigid body to 

express the vector equation (17.14) graphically. Your diagram should consist of three 

sketches of the body representing, respectively, the initial momenta, the impulses of 

the external forces, and the final momenta. This shows that the system of the initial 

momenta and the system of the impulses of the external forces are together equivalent 

to the system of the final momenta (Fig. 17.8).

 c. By using the impulse–momentum diagram, you can sum components in 

any direction and sum moments about any point. For a single rigid body, if you choose 

to sum moments about an arbitrary point P, you can write Eq. (17.14) as

  Iv1 1 mv1d' 1 O #
t2

t1

MPdt 5 Iv2 1 mv2d' (17.149)

where d
⊥

 is the perpendicular distance from point P to the line of action of the linear 

velocity of G. If you choose to sum moments about the center of gravity of the body, 

Eq. (17.149) reduces to 

  Iv1 1 O #
t2

t1

MGdt 5 Iv2  (17.1499)

If you choose to sum moments about a fixed point O, Eq. (17.149) reduces to

IOv1 1 O #
t2

t1

  MO dt 5 IOv2 (17.16)

where IO is the mass moment of inertia about point O. In most cases, you will be 

able to select and solve an equation that involves only one unknown. 
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1222

2. In problems involving a system of rigid bodies, you can apply the principle of impulse 

and momentum to the system as a whole. Since internal forces occur in equal and opposite 

pairs, they should not be part of your solution [Sample Probs. 17.9 and 17.10].

3. Conservation of angular momentum about a given axis occurs when, for a 

system of rigid bodies, the sum of the moments of the external impulses about that 
axis is zero. You can indeed easily observe from the impulse–momentum diagram that 

the initial and final angular momenta of the system about that axis are equal and, 

thus, that the angular momentum of the system about the given axis is conserved. You 

can then sum the angular momenta of the various bodies of the system and the 

moments of their linear momenta about that axis to obtain an equation that you can 

solve for one unknown [Sample Prob. 17.9 and 17.10].
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Problems
CONCEPT QUESTIONS

 17.CQ6 Slender bar A is rigidly connected to a massless rod BC in Case 1 

and two massless cords in Case 2 as shown. The vertical thickness 

of bar A is negligible compared to L. If bullet D strikes A with a 

speed v0 and becomes embedded in it, how will the speeds of the 

center of gravity of A immediately after the impact compare for the 

two cases?

   a. Case 1 will be larger.

   b. Case 2 will be larger.

   c. The speeds will be the same.

D

v0

C

D

v0

A A

L L

B

Case 1 Case 2

Fig. P17.CQ6

 17.CQ7 A 1-m-long uniform slender bar AB has an angular velocity of 

12 rad/s and its center of gravity has a velocity of 2 m/s as shown. 

About which point is the angular momentum of A smallest at this 

instant?

   a. P1

   b. P2

   c. P3

   d. P4

   e. It is the same about all the points.

Fig. P17.CQ7

vG

w

1 m

0.5 m

A P1

B

0.5 m

0.5 m

P2

P3

P4
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IMPULSE–MOMENTUM DIAGRAM PRACTICE PROBLEMS

 17.F1 The 350-kg flywheel of a small hoisting engine has a radius of gyra-

tion of 600 mm. If the power is cut off when the angular velocity 

of the flywheel is 100 rpm clockwise, draw an impulse–momentum 

diagram that can be used to determine the time required for the 

system to come to rest.

Fig. P17.F1

A
225 mm

120 kg

Fig. P17.F2

ω0

Fig. P17.F3

b

b

2b

b
b

b

ω0

A

B

C

17.F2 A sphere of radius r and mass m is placed on a horizontal floor with 

no linear velocity but with a clockwise angular velocity v0. Denot-

ing by μk the coefficient of kinetic friction between the sphere and 

the floor, draw the impulse–momentum diagram that can be used to 

determine the time t1 at which the sphere will start rolling without 

sliding.

 17.F3 Two panels A and B are attached with hinges to a rectangular plate 

and held by a wire as shown. The plate and the panels are made of 

the same material and have the same thickness. The entire assembly 

is rotating with an angular velocity v0 when the wire breaks. Draw 

the impulse–momentum diagram that is needed to determine the 

angular velocity of the assembly after the panels have come to rest 

against the plate.
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1225

END-OF-SECTION PROBLEMS

 17.52 The rotor of an electric motor has a mass of 25 kg, and it is observed 

that 4.2 min is required for the rotor to coast to rest from an angular 

velocity of 3600 rpm. Knowing that kinetic friction produces a cou-

ple of magnitude 1.2 N?m, determine the centroidal radius of gyra-

tion for the rotor.

 17.53  A small grinding wheel is attached to the shaft of an electric motor 

that has a rated speed of 3600 rpm. When the power is turned off, 

the unit coasts to rest in 70 s. The grinding wheel and rotor have a 

combined weight of 6 lb and a combined radius of gyration of 2 in. 

Determine the average magnitude of the couple due to kinetic fric-

tion in the bearings of the motor.

 17.54  A bolt located 50 mm from the center of an automobile wheel is 

tightened by applying the couple shown for 0.10 s. Assuming that 

the wheel is free to rotate and is initially at rest, determine the result-

ing angular velocity of the wheel. The wheel has a mass of 19 kg 

and has a radius of gyration of 250 mm.

Fig. P17.55 and P17.56

Fig. P17.53

Fig. P17.54

100 N

100 N

460 mm

M

r

L

 17.55  A uniform 144-lb cube is attached to a uniform 136-lb circular shaft 

as shown, and a couple M with a constant magnitude is applied to 

the shaft when the system is at rest. Knowing that r 5 4 in., 

L 5 12 in., and the angular velocity of the system is 960 rpm after 

4 s, determine the magnitude of the couple M. 

 17.56  A uniform 75-kg cube is attached to a uniform 70-kg circular shaft 

as shown, and a couple M with a constant magnitude of 20 N?m is 

applied to the shaft. Knowing that r 5 100 mm and L 5 300 mm, 

determine the time required for the angular velocity of the system 

to increase from 1000 rpm to 2000 rpm. 

17.57 A disk of constant thickness, initially at rest, is placed in contact 

with a belt that moves with a constant velocity v. Denoting by mk

the coefficient of kinetic friction between the disk and the belt, 

derive an expression for the time required for the disk to reach a 

constant angular velocity.

 17.58 Disk A, of weight 5 lb and radius r 5 3 in., is at rest when it is placed 

in contact with a belt that moves at a constant speed v 5 50 ft/s. 

Knowing that mk 5 0.20 between the disk and the belt, determine the 

time required for the disk to reach a constant angular velocity. Fig. P17.57 and P17.58

A

r

v
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 17.59 A cylinder of radius r and weight W with an initial counterclockwise 

angular velocity v0 is placed in the corner formed by the floor and 

a vertical wall. Denoting by mk the coefficient of kinetic friction 

between the cylinder and the wall and the floor, derive an expression 

for the time required for the cylinder to come to rest.

Fig. P17.59

ω0

Fig. P17.60

B

C 10 kg

A

A

60 mm

C

B

60 mm

150 mm

ω0

Fig. P17.61

17.60  Each of the double pulleys shown has a centroidal mass moment of 

inertia of 0.25 kg?m2, an inner radius of 100 mm, and an outer radius 

of 150 mm. Neglecting bearing friction, determine (a) the velocity 

of the cylinder 3 s after the system is released from rest, (b) the 

tension in the cord connecting the pulleys. 

17.61 Each of the gears A and B has a mass of 675 g and a radius of gyra-

tion of 40 mm, while gear C has a mass of 3.6 kg and a radius of 

gyration of 100 mm. Assume that kinetic friction in the bearings of 

gears A, B, and C produces couples of constant magnitude 0.15 N?m, 

0.15 N?m, and 0.3 N?m, respectively. Knowing that the initial angu-

lar velocity of gear C is 2000 rpm, determine the time required for 

the system to come to rest.

 17.62 Disk B has an initial angular velocity v0 when it is brought into 

contact with disk A, which is at rest. Show that the final angular 

velocity of disk B depends only on v0 and the ratio of the masses 

mA and mB of the two disks.

 17.63 The 7.5-lb disk A has a radius rA 5 6 in. and is initially at rest. The 

10-lb disk B has a radius rB 5 8 in. and an angular velocity v0 of 

900 rpm when it is brought into contact with disk A. Neglecting 

 friction in the bearings, determine (a) the final angular velocity of each 

disk, (b) the total impulse of the friction force exerted on disk A.Fig. P17.62 and P17.63

P

A

B

ω0

rB

rA
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 17.64 A tape moves over the two drums shown. Drum A weighs 1.4 lb and 

has a radius of gyration of 0.75 in., while drum B weighs 3.5 lb and 

has a radius of gyration of 1.25 in. In the lower portion of the tape 

the tension is constant and equal to TA 5 0.75 lb. Knowing that the 

tape is initially at rest, determine (a) the required constant tension 

TB if the velocity of the tape is to be v 5 10 ft/s after 0.24 s, (b) the 

corresponding tension in the portion of the tape between the drums. 

Fig. P17.64

v TB

TA = 0.75 lb

0.9 in.

1.5 in.

A

B

Fig. P17.66

O

P

ω

Gr⎯

m ωr⎯

Fig. P17.68

C
G

P

F

Fig. P17.69

r

15°

 17.65 Show that the system of momenta for a rigid body in plane motion 

reduces to a single vector, and express the distance from the mass 

center G to the line of action of this vector in terms of the centroidal 

radius of gyration k of the body, the magnitude v of the velocity of 

G, and the angular velocity v.

 17.66 Show that, when a rigid body rotates about a fixed axis through O 

perpendicular to the body, the system of the momenta of its particles 

is equivalent to a single vector of magnitude mrv, perpendicular to 

the line OG, and applied to a point P on this line, called the center 
of percussion, at a distance GP 5 k 

2/ r from the mass center of the 

body.

 17.67 Show that the sum HA of the moments about a point A of the 

momenta of the particles of a rigid body in plane motion is equal to 

IAv, where v is the angular velocity of the body at the instant con-

sidered and IA
 the moment of inertia of the body about A, if and only 

if one of the following conditions is satisfied: (a) A is the mass center 

of the body, (b) A is the instantaneous center of rotation, 

(c) the velocity of A is directed along a line joining point A and the 

mass center G.

 17.68 Consider a rigid body initially at rest and subjected to an impulsive 

force F contained in the plane of the body. We define the center of 
percussion P as the point of intersection of the line of action of F 

with the perpendicular drawn from G. (a) Show that the instanta-

neous center of rotation C of the body is located on line GP at a 

distance GC 5 k 
2/GP on the opposite side of G. (b) Show that if 

the center of percussion were located at C, the instantaneous center 

of rotation would be located at P.

 17.69 A flywheel is rigidly attached to a 1.5-in.-radius shaft that rolls with-

out sliding along parallel rails. Knowing that after being released 

from rest the system attains a speed of 6 in./s in 30 s, determine the 

centroidal radius of gyration of the system.
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 17.70 A wheel of radius r and centroidal radius of gyration k is released 

from rest on the incline shown at time t 5 0. Assuming that the wheel 

rolls without sliding, determine (a) the velocity of its center at time t, 
(b) the coefficient of static friction required to prevent slipping.

Fig. P17.70

r

β

Fig. P17.71

A

80 
mm

150 
mm

B C

P

 17.71 The double pulley shown has a mass of 3 kg and a radius of gyration 

of 100 mm. Knowing that when the pulley is at rest, a force P of 

magnitude 24 N is applied to cord B, determine (a) the velocity of 

the center of the pulley after 1.5 s, (b) the tension in cord C.

  17.72 and 17.73 A 9-in.-radius cylinder of weight 18 lb rests on a 6-lb 

carriage. The system is at rest when a force P of magnitude 2.5 lb 

is applied as shown for 1.2 s. Knowing that the cylinder rolls without 

sliding on the carriage and neglecting the mass of the wheels of the 

carriage, determine the resulting velocity of (a) the carriage, (b) the 

center of the cylinder.

Fig. P17.72

P

A

B

Fig. P17.73

PA

B

Fig. P17.74 and P17.75

r

r

A

B

 17.74 Two uniform cylinders, each of mass m 5 6 kg and radius 

r 5 125  mm, are connected by a belt as shown. If the system is 

released from rest when t 5 0, determine (a) the velocity of the 

center of cylinder B at t 5 3 s, (b) the tension in the portion of belt 

connecting the two cylinders.

 17.75 Two uniform cylinders, each of mass m 5 6 kg and radius 

r 5 125 mm, are connected by a belt as shown. Knowing that at the 

instant shown the angular velocity of cylinder A is 30 rad/s counter-

clockwise, determine (a) the time required for the angular velocity 

of cylinder A to be reduced to 5 rad/s, (b) the tension in the portion 

of belt connecting the two cylinders.

17.76 In the gear arrangement shown, gears A and C are attached to rod 

ABC, that is free to rotate about B, while the inner gear B is fixed. 

Knowing that the system is at rest, determine the magnitude of the 

couple M that must be applied to rod ABC, if 2.5 s later the angular 

velocity of the rod is to be 240 rpm clockwise. Gears A and C weigh 

2.5 lb each and may be considered as disks of radius 2 in.; rod ABC
weighs 4 lb. Fig. P17.76

2 in.

2 in.

8 in.

2 in.

A

B

C
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 17.77 A sphere of radius r and mass m is projected along a rough  horizontal 

surface with the initial velocities shown. If the final velocity of the 

sphere is to be zero, express (a) the required magnitude of v0 in 

terms of v0 and r, (b) the time required for the sphere to come to 

rest in terms of v0 and the coefficient of kinetic friction mk.

 17.78 A bowler projects an 8.5-in.-diameter ball weighing 16 lb along an 

alley with a forward velocity v0 of 25 ft/s and a backspin v0 of 

9 rad/s. Knowing that the coefficient of kinetic friction between the 

ball and the alley is 0.10, determine (a) the time t1 at which the ball 

will start rolling without sliding, (b) the speed of the ball at time t1.

Fig. P17.77

ω0 v0⎯

Fig. P17.78

ωω0

v0

Fig. P17.79

ω0

r

Fig. P17.80

10 ft

4 ft

z

x

y

2.5 ft

 17.79 A semicircular panel with a radius r is attached with hinges to a 

circular plate with a radius r and initially is held in the vertical posi-

tion as shown. The plate and the panel are made of the same material 

and have the same thickness. Knowing that the entire assembly is 

rotating freely with an initial angular velocity of v0, determine the 

angular velocity of the assembly after the panel has been released 

and comes to rest against the plate.

 17.80. A satellite has a total weight (on Earth) of 250 lbs, and each of the 

solar panels weighs 15 lbs. The body of the satellite has mass 

moment of inertia about the z-axis of 6 slug-ft2, and the panels can 

be modeled as flat plates. The satellite spins with a rate of 10 rpm 

about the z-axis when the solar panels are positioned in the xy plane. 

Determine the spin rate about z after a motor on the satellite has 

rotated both panels to be positioned in the yz plane (as shown in 

the figure). 
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 17.81 Two 10-lb disks and a small motor are mounted on a 15-lb rec-

tangular platform that is free to rotate about a central vertical spindle. 

The normal operating speed of the motor is 180 rpm. If the motor 

is started when the system is at rest, determine the angular velocity 

of all elements of the system after the motor has attained its normal 

operating speed. Neglect the mass of the motor and of the belt.

Fig. P17.82

Fig. P17.81

4 in.
3 in.

4 in.

16 in. 6 in.

Motor

A B

3 in.

BeltA

D

E
B

240 mm

320 mm

120 mm

ω

C

 17.82 A 3-kg rod of length 800 mm can slide freely in the 240-mm cylinder 

DE, which in turn can rotate freely in a horizontal plane. In the 

position shown, the assembly is rotating with an angular velocity of 

magnitude v 5 40 rad/s and end B of the rod is moving toward the 

cylinder at a speed of 75 mm/s relative to the cylinder. Knowing that 

the centroidal mass moment of inertia of the cylinder about a vertical 

axis is 0.025 kg?m2 and neglecting the effect of friction, determine 

the angular velocity of the assembly as end B of the rod strikes end 

E of the cylinder.

 17.83 A 1.6-kg tube AB can slide freely on rod DE, which in turn can rotate 

freely in a horizontal plane. Initially the assembly is rotating with 

an angular velocity of magnitude v 5 5 rad/s and the tube is held 

in position by a cord. The moment of inertia of the rod and bracket 

about the vertical axis of rotation is 0.30 kg?m2 and the centroidal 

moment of inertia of the tube about a vertical axis is 0.0025 kg?m2. 

If the cord suddenly breaks, determine (a) the angular velocity of 

the assembly after the tube has moved to end E, (b) the energy lost 

during the plastic impact at E.

17.84 In the helicopter shown, a vertical tail propeller is used to prevent 

rotation of the cab as the speed of the main blades is changed. 

Assuming that the tail propeller is not operating, determine the final 

angular velocity of the cab after the speed of the main blades has 

been changed from 180 to 240 rpm. (The speed of the main blades 

is measured relative to the cab, and the cab has a centroidal moment 

of inertia of 650 lb?ft?s2. Each of the four main blades is assumed 

to be a slender 14-ft rod weighing 55 lb.)

17.85 Assuming that the tail propeller in Prob. 17.84 is operating and that 

the angular velocity of the cab remains zero, determine the final 

horizontal velocity of the cab when the speed of the main blades is 

changed from 180 to 240 rpm. The cab weighs 1250 lb and is ini-

tially at rest. Also, determine the force exerted by the tail propeller 

if the change in speed takes place uniformly in 12 s.

B

E

C
D

ω

A

375 mm

500 mm

125 mm

Fig. P17.83

Fig. P17.84

x
G

z

16 ft

y
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1231

 17.86 The circular platform A is fitted with a rim of 200-mm inner radius 

and can rotate freely about the vertical shaft. It is known that the 

platform-rim unit has a mass of 5 kg and a radius of gyration of 

175 mm with respect to the shaft. At a time when the platform is 

rotating with an angular velocity of 50 rpm, a 3-kg disk B of radius 

80 mm is placed on the platform with no velocity. Knowing that 

disk B then slides until it comes to rest relative to the platform against 

the rim, determine the final angular velocity of the platform.

 17.87 The 30-kg uniform disk A and the bar BC are at rest and the 5-kg 

uniform disk D has an initial angular velocity of v1 with a magni-

tude of 440 rpm when the compressed spring is released and disk D 

contacts disk A. The system rotates freely about the vertical spindle BE. 

After a period of slippage, disk D rolls without slipping. Knowing 

that the magnitude of the final angular velocity of disk D is 176 rpm, 

determine the final angular velocities of bar BC and disk A. Neglect 

the mass of bar BC.

Fig. P17.86

200 mm

B

A

Fig. P17.87

300 mm 115 mm

A
B

D

C

E ω1

 17.88 The 4-kg rod AB can slide freely inside the 6-kg tube. The rod was 

entirely within the tube (x 5 0) and released with no initial velocity 

relative to the tube when the angular velocity of the assembly was 

5 rad/s. Neglecting the effect of friction, determine the speed of the 

rod relative to the tube when x 5 400 mm.

Fig. P17.88

B x

C

A

D

800 mm

800 mm

ω
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 17.89 A 1.8-kg collar A and a 0.7-kg collar B can slide without friction on 

a frame, consisting of the horizontal rod OE and the vertical rod CD, 

which is free to rotate about its vertical axis of symmetry. The two 

collars are connected by a cord running over a pulley that is attached 

to the frame at O. At the instant shown, the velocity vA of collar A
has a magnitude of 2.1 m/s and a stop prevents collar B from mov-

ing. The stop is suddenly removed and collar A moves toward E. As 

it reaches a distance of 0.12 m from O, the magnitude of its velocity 

is observed to be 2.5 m/s. Determine at that instant the magnitude 

of the angular velocity of the frame and the moment of inertia of 

the frame and pulley system about CD.

Fig. P17.89

B

C

A

D

O

vA0.1 m

E

Fig. P17.90

24 in.

C

A

B

10 in.

Fig. P17.91

R

q
C

 17.90 A 6-lb collar C is attached to a spring and can slide on rod AB, 

which in turn can rotate in a horizontal plane. The mass moment of 

inertia of rod AB with respect to end A is 0.35 lb?ft?s2. The spring 

has a constant k 5 15 lb/in. and an undeformed length of 10 in. At 

the instant shown, the velocity of the collar relative to the rod is zero 

and the assembly is rotating with an angular velocity of 12 rad/s. 

Neglecting the effect of friction, determine (a) the angular velocity 

of the assembly as the collar passes through a point located 7.5 in. 

from end A of the rod, (b) the corresponding velocity of the collar 

relative to the rod.

 17.91 A small 4-lb collar C can slide freely on a thin ring of weight 6 lb 

and radius 10 in. The ring is welded to a short vertical shaft, which 

can rotate freely in a fixed bearing. Initially, the ring has an angular 

velocity of 35 rad/s and the collar is at the top of the ring (θ 5 0) 

when it is given a slight nudge. Neglecting the effect of friction, 

determine (a) the angular velocity of the ring as the collar passes 

through the position θ 5 908, (b) the corresponding velocity of the 

collar relative to the ring.
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17.92 Rod AB has a weight of 6 lb and is attached to a 10-lb cart C. Know-

ing that the system is released from rest in the position shown and 

neglecting friction, determine (a) the velocity of point B as rod AB 

passes through a vertical position, (b) the corresponding velocity of 

the cart C.

Fig. P17.92

A

B

C

30°

5 ft

Fig. P17.95

C

A

B
6 in.

17.93 In Prob. 17.82, determine the velocity of rod AB relative to  cylinder 

DE as end B of the rod strikes end E of the cylinder.

 17.94 In Prob. 17.83, determine the velocity of the tube relative to the rod 

as the tube strikes end E of the assembly. 

 17.95 The 6-lb steel cylinder A of radius r and the 10-lb wooden cart B 
are at rest in the position shown when the cylinder is given a slight 

nudge, causing it to roll without sliding along the top surface of the 

cart. Neglecting friction between the cart and the ground, determine 

the velocity of the cart as the cylinder passes through the lowest 

point of the surface at C.
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1234 Plane Motion of Rigid Bodies: Energy and Momentum Methods

17.3 ECCENTRIC IMPACT
You saw in Chap. 13 that the method of impulse and momentum is the 

only practicable method for solving problems involving the impulsive 

motion of a particle. Now you will see that problems involving the impul-

sive motion of a rigid body are particularly well suited to a solution using 

the method of impulse and momentum. Since the time interval considered 

in the computation of linear impulses and angular impulses is very short, 

we can assume the bodies involved occupy the same position during that 

time interval, making the computation quite simple.

In Sec. 13.4, we described how to solve problems of central impact,
i.e., problems in which the mass centers of the two colliding bodies are 

located on the line of impact. We now analyze the eccentric impact of 

two rigid bodies. 

Consider two colliding bodies and denote the velocities of the two 

points of contact A and B before impact by vA and vB (Fig. 17.10a). Under 

A
B

n

n

vA

vB

(a) (b) (c)

A
B

n

n

uA

uB

A
B

n

n

v'A

v'B

Fig. 17.10 When two rigid bodies collide, (a) the velocities of the points of contact before impact 
(b) change during the period of deformation and (c) change again during the period of restitution.

the impact, the two bodies deform, and at the end of the period of defor-

mation, the velocities uA and uB of A and B have equal components along 

the line of impact nn (Fig. 17.10b). A period of restitution then takes 

place, at the end of which points A and B have velocities of v9A and v9B
(Fig. 17.10c). Assuming that the bodies are frictionless, we find that the 

forces they exert on each other are directed along the line of impact. We 

denote the magnitude of the impulse of one of these forces during the 

period of deformation by ePdt and the magnitude of its impulse during 

the period of restitution by eRdt. Recall that we define the coefficient of 

restitution e as the ratio of

e 5
eR dt

eP dt
 (17.18)

We propose to show that the relation established in Sec. 13.4 between the 

relative velocities of two particles before and after impact also holds 

between the components along the line of impact of the relative velocities 

of the two points of contact A and B. That is, we want to show that

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (17.19)(v9Bv )n 2 (v9Av )n 5 e[(vAv )n 2 (vB)n]

Photo 17.4 A swinging bat applies an 
impulsive force on contact with the ball. 
You can use the principle of impulse and 
momentum to determine the final velocities 
of the ball and bat.
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17.3 Eccentric Impact 1235

First, we assume that the motion of each of the two colliding bodies 

of Fig. 17.10 is unconstrained. Thus, the only impulsive forces exerted on 

the bodies during the impact are applied at A and B, respectively. Consider 

the body to which point A belongs and draw the impulse–momentum 

diagram corresponding to the period of deformation (Fig. 17.11). We 

Fig. 17.11 An impulse–momentum diagram for a body undergoing an eccentric 
impact during the period of deformation.

A

n

n

*P dt mvn

+ =A

n

n

G
G A

n

n

⎯
G

⎯ Iω

⎯

 mun

 mu t

r

 mv t

 Iω*

denote the velocity of the mass center at the beginning and at the end of 

the period of deformation by v and u, respectively, and we denote the 

angular velocity of the body at the same instants by v and v*. Summing 

and equating the components of the momenta and impulses along the line 

of impact nn, we have

 mvn 2 eP dt 5 mun (17.20)

Summing and equating the moments about G of the momenta and impulses, 

we also have

 Iv 2 reP dt 5 Iv* (17.21)

where r represents the perpendicular distance from G to the line of impact. 

Considering now the period of restitution, we obtain in a similar way

  mun 2 eR dt 5 mv9n (17.22)

  Iv* 2 reR dt 5 Iv9 (17.23)

where v9 and v9 represent, respectively, the velocity of the mass center 

and the angular velocity of the body after impact. First solving Eqs. (17.20) 

and (17.22) for the two impulses and substituting into Eq. (17.18) and 

then solving Eqs. (17.21) and (17.23) for the same two impulses and 

substituting again into Eq. (17.18), we obtain the two alternative expres-

sions for the coefficient of restitution as

 e 5
un 2 v9n

vn 2 un
   e 5

v* 2 v9

v 2 v*
 (17.24)

Multiplying the numerator and denominator of the second expression for 

e by r and adding them, respectively, to the numerator and denominator 

of the first expression, we have

 e 5
un 1 rv* 2 (v9n 1 rv9)

vn 1 rv 2 (un 1 rv*)
 (17.25)

Observe that vn 1 rv represents the component (vA)n along nn of the veloc-

ity of the point of contact A and that, similarly, un 1 rv* and v9n 1 rv9 

represent, respectively, the components (uA)n and (v9A)n. Thus, we have

 e 5
(uA)n 2 (v9A)n

(vA)n 2 (uA)n
 (17.26)
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1236 Plane Motion of Rigid Bodies: Energy and Momentum Methods

The analysis of the motion of the second body leads to a similar 

expression for e in terms of the components along nn of the successive 

velocities of point B. Recalling that (uA)n 5 (uB)n, and eliminating these 

two velocity components by a manipulation similar to the one used in 

Sec. 13.4, we obtain the relation in Eq. (17.19).

If one or both of the colliding bodies is constrained to rotate about a 

fixed point O—as in the case of a compound pendulum (Fig. 17.12a)—an 

impulsive reaction is exerted at O (Fig. 17.12b). Let us verify that, although 

Fig. 17.12 (a) A rigid body constrained to 
rotate about a fixed point O; (b) impulsive 
reaction at O resulting from an eccentric impact.

(a)

A

O

*P dt

n

n

(b)

*Oy dt

*Ox dt

A

O

r

their derivation must be modified, Eqs. (17.26) and (17.19) remain valid. 

Applying formula (17.16) to the period of deformation and to the period 

of restitution, we have

 IOv 2 reP dt 5 IOv* (17.27)

 IOv* 2 reR dt 5 IOv9 (17.28)

where r represents the perpendicular distance from the fixed point O to 

the line of impact. We solve Eqs. (17.27) and (17.28) for the two impulses 

and substitute them into Eq. (17.18). Noting that rv, rv*, and rv9 repre-

sent the components along nn of the successive velocities of point A, we 

obtain

e 5
v* 2 v9

v 2 v*
5

rv* 2 rv9

rv 2 rv*
5

(uA)n 2 (v9A)n

(vA)n 2 (uA)n

This verifies that Eq. (17.26) still holds. Thus, Eq. (17.19) remains valid 

when one or both of the colliding bodies is constrained to rotate about a 

fixed point O.

In order to determine the velocities of the two colliding bodies after 

impact, we need to use the relation in Eq. (17.19) in conjunction with one 

or several other equations obtained by applying the principle of impulse 

and momentum (Sample Prob. 17.11 and 17.13).
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17.3 Eccentric Impact 1237

Sample Problem 17.11

A 0.05-lb bullet B is fired with a horizontal velocity of 1500 ft/s into the 

side of a 20-lb square panel suspended from a hinge at A. Knowing that 

the panel is initially at rest, determine (a) the angular velocity of the panel 

immediately after the bullet becomes embedded, (b) the impulsive reaction 

at A, assuming that the bullet becomes embedded in 0.0006 s.

STRATEGY: Since you have an impact, use the principle of impulse 

and momentum. 

MODELING: Choose your system to be the bullet and the panel, where 

you model the bullet as a particle and the panel as a rigid body. The impulse-

momentum diagram for this system is shown in Fig. 1. Since the time interval 

Dt 5 0.0006 s is very short, you can neglect all nonimpulsive forces and 

consider only the external impulses Ax Dt and Ay Dt.

ANALYSIS:

Principle of Impulse and Momentum.

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1lmoments about A: mBvB(
14
12 ft) 1 0 5 mPv2(

9
12 ft) 1  IPv2 (1)

y
1 x components: mBvB 1 Ax Dt 5 mPv2 (2)

1xy components: 0 1 Ay Dt 5 0 (3)

Note that the weight of the bullet is negligible compared to the weight of 

the panel, so we did not include it on the right-hand side of Eq. (1). The 

centroidal mass moment of inertia of the square panel is

 IP 5
1
6mPb2 5

1

6
 a20 lb

32.2
b(18

12 ft)
2 5 0.2329 lb?ft?s2

Substituting this value as well as the given data into Eq. (1) and noting 

that from kinematics, you know

v2 5 (
9
12 ft)v2

18 in.

18 in.

14 in.

A

G

vB = 1500 ft/s

B

Fig. 1 Impulse–momentum diagram for the system. The bullet is 
neglected at time 2.

=

A

14 in.

G

AyΔt

A xΔt

+
ω2⎯IPmBvB

A

G

A

G

9 in.

mPv2⎯

y

x

(continued)
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1238 Plane Motion of Rigid Bodies: Energy and Momentum Methods

So you have

a0.05

32.2
b(1500)(

14
12) 5 0.2329v2 1 a 20

32.2
b( 9

12v2)(
9
12)

v2 5 4.67 rad/s v2 5 4.67 rad/sl b

v2 5 (
9
12 ft)v2 5 (

9
12 ft)(4.67 rad/s) 5 3.50 ft/s

Substituting v2 5 3.50 ft/s, Dt 5 0.0006 s, and the given data into Eq. (2) 

gives you

a0.05

32.2
b(1500) 1 Ax(0.0006) 5 a 20

32.2
b(3.50)

 Ax 5 2259 lb Ax 5 259 lb z b

From Eq. (3), you find   Ay 5 0. 

Ay 5 0 b

REFLECT and THINK: The speed of the bullet is in the range of a 

modern high-performance rifle. Notice that the reaction at A is over 5000 

times the weight of the bullet and over 10 times the weight of the plate.

Sample Problem 17.12 

A uniformly loaded square crate is falling freely with a velocity v0 when 

cable AB suddenly becomes taut. Assuming that the impact is perfectly 

plastic, determine the angular velocity of the crate and the velocity of its 

mass center immediately after the cable becomes taut.

STRATEGY: Since impact occurs, use the principle of impulse and 

momentum. 

MODELING: Choose the crate as your system and model it as a rigid 

body. The impulse–momentum diagram for this system is shown in Fig. 1. 

The mass moment of inertia of the plate about G is I 5
1
6ma2.

A

B

G

a

45°

v0

Fig. 1 Impulse–momentum diagram for the crate.

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

D

A=+
a

a √2
2

G

D

Amv0 A

D

mvy⎯

mvx⎯
⎯Iω

∫Aydt

y

x
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17.3 Eccentric Impact 1239

ANALYSIS: 

Principle of Impulse and Momentum. Applying the impulse–

momentum principle in the x-direction and taking moments about A gives 

1l moments about A: mv0a 
22

2
1 0 5 Iv 1 mvx 

a

2
2 mvy 

a

2
 (1)

R
1

 x components: mv0 
22

2
1 0 5 mvx (2)

There are three unknowns in these two equations, v, vx, and vy. For addi-

tional equations, you can use kinematics. Since you are told the impact is 

perfectly plastic, point A has a velocity perpendicular to the rope (Fig. 2). 

Therefore, you can relate the acceleration of A to that of G, as

v 5 vG 5 vA 1 vGÿ/ÿA

5 3vA c 45+4 1 c a 

22

2
 vw d  

Equating components in the x and y directions, you find

R
1

x-components: vx 5 vA 1 a 

22

2
 v 

22

2
5 vA 1

av

2
 (3)

 Q1  y-components: vy 5 2a 

22

2
 v 

22

2
5 2

av

2
 (4)

You now have four equations and four unknowns. Solving these gives 

v 5
322

5
 
v0

a
  vx 5

22

2
 v0  vy 5 2

322

10
 v0 vA 5

22

5
 v0

So

v 5 0.849 

v0

d
 l b

Resolving the velocity of the center of mass into a magnitude and direc-

tion using Fig. 3 gives you

v 5 0.825v0 c 76.08 b

REFLECT and THINK: If the impact had not been plastic, point A 

would have rebounded and the rope would have become slack. To solve 

the problem in this case, you would have needed to use the equation for 

the coefficient of restitution.

Fig. 2 Velocity of 
point A.

a √2
2

G A

vA
ω

Fig. 3 Diagram to determine the 
magnitude and direction of v–

322

10
 v0       

22

2
 v045° 45°

v⎯
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1240 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Sample Problem 17.13

A 2-kg sphere moving horizontally to the right with an initial velocity of 

5 m/s strikes the lower end of an 8-kg rigid rod AB. The rod is suspended 

from a hinge at A and is initially at rest. Knowing that the coefficient of 

restitution between the rod and the sphere is 0.80, determine the angular 

velocity of the rod and the velocity of the sphere immediately after the 

impact.

STRATEGY: Since you have an impact, use the principle of impulse 

and momentum.

MODELING: Choose the sphere and the rod as your system; model the 

sphere as a particle and the rod as a rigid body. You also need to use the 

coefficient of restitution equation. The impulse–momentum diagram for 

this system is shown in Fig. 1. Note that the only impulsive force external 

to the system is the impulsive reaction at A.

ANALYSIS: 

Principle of Impulse and Momentum.

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1lmoments about A:

 msvs(1.2  m) 5 msv9s(1.2  m) 1 mRv9R(0.6  m) 1 Iv9 (1)

In this case, the mass of the sphere is not negligible compared to the rod, 

so we must include it on the right-hand side of Eq. (1). Since the rod 

rotates about A, from kinematics, you know v9R 5 rv9 5 (0.6 m)v9. Also,

 I 5
1
12mL2 5

1
12(8 kg)(1.2 m)2 5 0.96 kg?m2

Substituting these values and the given data into Eq. (1), you obtain

(2 kg)(5 m/s)(1.2 m) 5 (2 kg)v9s (1.2 m) 1 (8 kg)(0.6 m)v9(0.6 m)

1 (0.96 kg?m2)v9

 12 5 2.4v9s 1 3.84v9 (2)

A

G

B

vs

1.2 m

0.6 m

Fig. 1 Impulse–momentum diagram for the system.

AyΔ t 

AxΔ t 

⎯vR = 0mR =+1.2 m

A

G

B

A

G

B

I ω = 0⎯ I ω' ⎯
⎯vmR

v'smsvsms

A

G

B

0.6 m
'R

y

x
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17.3 Eccentric Impact 1241

Coefficient of Restitution. Choosing positive to the right, you have

v9B 2 v9s 5 e(vs 2 vB)

Substituting vs 5 5 m/s, vB 5 0, and e 5 0.80 gives 

 v9B 2 v9s 5 0.8(5 m/s 2 0) (3)

Again noting that the rod rotates about A, you have

 v9B 5 (1.2 m) v9  (4)

Solving Eqs. (2) to (4) simultaneously, you obtain

 v9 5 3.21 rad/s v9 5 3.21 rad/s l b

 v9s 5 20.143 m/s v9s 5 0.143 m/s z b

REFLECT and THINK: The negative value for the velocity of the 

sphere after impact means that it bounces back to the left. Given the 

masses of the sphere and the rod, this seems reasonable.

Sample Problem 17.14

A square package of side a and mass m moves down a conveyor belt A 

with a constant velocity v1. At the end of the conveyor belt, the corner of 

the package strikes a rigid support at B. Assuming that the impact at B is 

perfectly plastic, derive an expression for the smallest magnitude of the 

velocity v1 for which the package will rotate about B and reach conveyor 

belt C.

STRATEGY: Because you have an impact, use the principle of impulse 

and momentum for when the package strikes the rigid support at B, and 

then apply the conservation of energy for the rotation of the package about 

the support B after the impact.

MODELING: Choose the package to be your system and model it as a 

rigid body. The impulse–momentum diagram for this system is shown in 

Fig. 1. Note that the only impulsive force external to the package is the 

impulsive reaction at B.

⎯v1

15°
A

B
C

a

a

Iω2

15°
G

B

⎯v1

BΔt

+ =m

15°

G

B
15°G

B

⎯v2

⎯

m

a√2
2

a

a

y

x

Fig. 1 Impulse–momentum diagram for the crate.

(continued)
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1242 Plane Motion of Rigid Bodies: Energy and Momentum Methods

ANALYSIS: 

Principle of Impulse and Momentum.  

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

 1l  moments about B:  (mv1)(
1
2a) 1 0 5 (mv2)(

1
212a) 1 Iv2 (1)

Since the package rotates about B, from kinematics you have 

v2 5 (GB)v2 5
1
222av2. 

 Substitute this expression, together with I 5
1
6ma2, into Eq. (1) for

 (mv1)(
1
2a) 5 m(

1
212av2)(

1
212a) 1

1
6ma2v2    v1 5

4
3av2 (2)

Conservation of Energy.  Apply the principle of conservation of 

energy between position 2 and position 3 (Fig. 2) as

 T2 1 V2 5 T3 1 V3 (3)

You need to determine the energy at these two positions.

Position 2. V2 5 Wh2. Since v2 5
1
222av2, you have

T2 5
1
2mv2

2 1
1
2Iv2

2 5
1
2m(

1
212av2)2 1

1
2(

1
6ma2)v2

2 5
1
3ma2v2

2

Position 3. The package must reach conveyor belt C, so it must pass 

through position 3 where G is directly above B. Also, since you wish to 

determine the smallest velocity for which the package will reach this 

position, choose v3 5 v3 5 0. Therefore, T3 5 0 and V3 5 Wh3.

 Substituting these into Eq. (3)

 
1
3ma2v2

2 1 Wh2 5 0 1 Wh3

 v2
2 5

3W

ma2
 (h3 2 h2) 5

3g

a2
 (h3 2 h2) (4)

Substituting the computed values of h2 and h3 into Eq. (4), you obtain

v2
2 5

3g

a2
 (0.707a 2 0.612a) 5

3g

a2
 (0.095a)     v2 5 10.285g/a

 v1 5
4
3av2 5

4
3a10.285g/a v1 5 0.7121ga b

REFLECT and THINK: The combination of energy and momentum 

methods is typical of many design analyses. If you had been interested in 

determining the reaction at B immediately after the impact or at some 

other point in the motion, you would have needed to draw a free-body 

diagram and a kinetic diagram and apply Newton’s second law. 

15
45°

Datum

G

B

h2

GB =     2a = 0.707a

  h2 = GB sin (45 + 15)

       = 0.612a

Position 2

⎯v2

ω2

1
2

a

a

G

B

h3

h3 = GB = 0.707a

Position 3

⎯v3

ω3

a

a

Fig. 2 The crate in 
positions 2 and 3.
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17.3 Eccentric Impact 1243

Sample Problem 17.15

A soccer ball tester consists of a 15-kg slender rod AB with a 1.1-kg 

simulated foot located at A and a torsional spring located at pin B. The 

torsional spring has a spring constant of kt 5 910 N·m and is unstretched 

when AB is vertical. The length of AB is 0.9 m, and you can assume that 

the foot can be modeled as a point mass. Knowing that the velocity of the 

0.45-kg soccer ball is 30 ft/s after impact, determine (a) the coefficient of 

restitution between the simulated foot and the ball, (b) the impulse at B 

during the impact.

A
B

Torsional spring
kt

l

STRATEGY: This problem can be broken into two distinct stages of 

motion. In stage 1, the arm moves downward under the influence of 

gravity and the torsional spring. You can use the conservation of energy 

for this stage. In stage 2, the foot hits the ball, and you need to use both 

the principle of impulse and momentum and the coefficient of 

restitution. 

MODELING: Each stage requires a different system. For stage 1, your 

system is rod AB, foot B, and the torsional spring. In stage 2, your system 

is rod AB, foot B, and the soccer ball. The appropriate diagrams are drawn 

in the analysis section. You can model AB as a slender rod, so its mass 

moment of inertia is

 IAB 5
1
12mABl2 5

1
12 115 kg2 10.9 m22 5 1.0125  kg?m2

ANALYSIS: 

Rod AB Moves Down. Apply the principle of conservation of energy 

 T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

 (1)

(continued)
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1244 Plane Motion of Rigid Bodies: Energy and Momentum Methods

Position 1. The system starts from rest, so T1 5 0. Using the datum 

defined in Fig. 1, you know Vg1
5 0, and since the spring is unstretched 

at position 2, you find

Ve1
5

1
2ktθ

2 5
1
2(910 N?m)(

π

2 )2 5 1123  J

A
Position 1

Position 2

B

kt

l

Fig. 1 The rod in positions 1 and 2.

Position 2. The elastic potential energy is Ve2
5 0, and the gravitational 

potential energy is

Vg2
52mABg

l

2
2 mAgl 5 2(15 kg)(9.81 m/s2)(0.45 m)2(1.1 kg)(9.81 m/s2)(0.9 m)

   5 275.93 J

The kinetic energy is

T2 5
1
2mAv2

A 1
1
2mABv2

G 1
1
2 IABv2

You can relate the velocity of the foot and the velocity of the center of 

gravity of the rod to the angular velocity of AB by recognizing that AB is 

undergoing fixed-axis rotation. Therefore, vG 5 v
l
2 and vA 5 vl. Substi-

tuting these into the expression for T2 and putting in values gives 

T2 5
1

2
 amAl2 1 mAB 

a l

2
b2

1 IABb
 

v2 5 2.4705v2

Substituting these energy terms into Eq. (1) gives 

0 1 0 1 1123 5 2.4705v2 2 75.93 1 0

Solving for the angular velocity, you find v 5 22.03 rad/s. Knowing v, 
you can calculate the velocities vG 5 9.912 m/s and vA 5 19.824 m/s.
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17.3 Eccentric Impact 1245

Foot A Impacts the Soccer Ball. Impulse–momentum diagrams for 

the impact on the ball are shown in Fig. 2.

RyΔ t 

RxΔ t 

=+

B

GIAB ω

mABvG

mAvA

B

GIAB ω'

mABv'G

mSv'S

mAv'A

B y

x

⎯ ⎯

Fig. 2

Taking moments about B gives you

1l moments about B: 

mAvAl 1 mABvG
l

2
1 IABv 1 0 5 mAv9Al 1 mABv9G

l

2
1 IABv9 1 mSv9S 

l (2)

The equation for the coefficient of restitution is

 v9S 2 v9A 5 e(vA 2 0)  (3)

where v9S 5 30 m/s. From kinematics, you know v9A 5 v9l and v9G 5 v9(l/2). 

Using these kinematic equations and Eqs. (2) and (3), you can solve for 

the unknown quantities

v9A 5 17.61 m/s v9G 5 8.81 m/s v9 5 19.57 rad/s e 5 0.625

e 5 0.625 b

Impulses During Impact. Applying impulse–momentum in the x- 

and y-directions gives

y
1 x-components: mABvG 1 mAvA 1 RxDt 5 mABv9G 1 mAv9A 1 mSv9S (4)

1xy-components: 0 1 RyDt 5 0  (5)

Solving these equations, you find RxDt 5 25.53 N and RyDt 5 0.

 RDt 5 5.53 N z b

REFLECT and THINK: This coefficient of restitution seems reason-

able. As you decrease the pressure in the ball, you would expect the coef-

ficient of restitution to decrease; therefore, the distance the ball travels 

will decrease. If you had been asked to determine the reactions at B after 

the impact, you would need to draw a free-body diagram and kinetic 

diagram for your system and apply Newton’s second law.

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2
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12461246

T his section was devoted to impulsive motion and to the eccentric impact of 

rigid bodies.

1. Impulsive motion occurs when a rigid body is subjected to a very large force F
for a very short interval of time Dt; the resulting impulse Favg Dt is both finite and 

different from zero. Such forces are referred to as impulsive forces and arise whenever 

an impact occurs between two rigid bodies. Forces for which the impulse is negligible 

are referred to as nonimpulsive forces. As discussed in Chap. 13, you can assume the 

following forces to be nonimpulsive: the weight of a body, the force exerted by a 

spring, and any other force that is known to be small by comparison with the impulsive 

forces. Unknown reactions, however, cannot be assumed to be nonimpulsive.

2. Eccentric impact of rigid bodies. When two bodies collide, the velocity compo-

nents along the line of impact of the points of contact A and B before and after impact 

satisfy

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (17.19)

where the left-hand side is the relative velocity after the impact and the right-hand 

side is the product of the coefficient of restitution and the relative velocity before the 
impact.
 This equation expresses the same relation between the velocity components 

of the points of contact before and after an impact that you used for particles in 

Chap. 13.

3. To solve a problem involving an impact you should use the method of impulse 
and momentum and take the following steps.

 a. Draw an impulse–momentum diagram of the system showing the momenta 

immediately before impact plus the impulses of the external forces acting during the 

impact; this sum is equivalent to the momenta immediately after impact.

 b. Write the governing equations for the angular momentum about some 

point. Depending on the problem type (especially when you want to find support 

impulsive reactions), you may also need to write the equations for linear momentum 

[Sample Prob. 17.11].

 c. In the case of an impact in which e . 0, the number of unknowns will be 

greater than the number of equations that you can write by summing components and 

moments. You should supplement the equations obtained from the impulse–momentum 

diagram with the coefficient of restitution from Eq. (17.19) that relates the relative veloci-

ties of the points of contact before and after impact [Sample Prob. 17.13 and 17.15].

 d. During an impact, you must use the method of impulse and momentum. 
However, before and after the impact you can, if necessary, use some of the other 

methods of solution that you have learned, such as the conservation of energy [Sample 

Prob. 17.14 and 17.15] or Newton’s second law.

SOLVING PROBLEMS
ON YOUR OWN
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1247

IMPULSE–MOMENTUM DIAGRAM PRACTICE PROBLEMS

 17.F4 A uniform slender rod AB of mass m is at rest on a frictionless 

horizontal surface when hook C engages a small pin at A. Knowing 

that the hook is pulled upward with a constant velocity v0, draw 

the impulse-momentum diagram that is needed to determine the 

impulse exerted on the rod at A and B. Assume that the velocity 

of the hook is unchanged and that the impact is perfectly plastic.

Problems

Fig. P17.F4

A

L

v0

B

C

Fig. P17.F5

C

A B

1
2

v0

Fig. P17.F6

A
C

B D
E

L L
2

L
2

ω1

 17.F5 A uniform slender rod AB of length L is falling freely with a velocity 

v0 when cord AC suddenly becomes taut. Assuming that the impact 

is perfectly plastic, draw the impulse–momentum diagram that is 

needed to determine the angular velocity of the rod and the velocity 

of its mass center immediately after the cord becomes taut.

 17.F6 A slender rod CDE of length L and mass m is attached to a pin support 

at its midpoint D. A second and identical rod AB is rotating about a 

pin support at A with an angular velocity v1 when its end B strikes 

end C of rod CDE. The coefficient of restitution between the rods is e. 

Draw the impulse–momentum diagrams that are needed to determine 

the angular velocity of each rod immediately after the impact.
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1248

END-OF-SECTION PROBLEMS

 17.96 At what height h above its center G should a billiard ball of radius r 
be struck horizontally by a cue if the ball is to start rolling without 

sliding?

 17.97 A bullet weighing 0.08 lb is fired with a horizontal velocity of 

1800 ft/s into the lower end of a slender 15-lb bar of length L 5 30 in. 

Knowing that h 5 12 in. and that the bar is initially at rest, determine 

(a) the angular velocity of the bar immediately after the bullet 

becomes embedded, (b) the impulsive reaction at C, assuming that 

the bullet becomes embedded in 0.001 s.

 17.98 In Prob. 17.97, determine (a) the required distance h if the impulsive 

reaction at C is to be zero, (b) the corresponding angular velocity of 

the bar immediately after the bullet becomes embedded.

17.99 A 16-lb wooden panel is suspended from a pin support at A and is 

initially at rest. A 4-lb metal sphere is released from rest at B and falls 

into a hemispherical cup C attached to the panel at a point located on 

its top edge. Assuming that the impact is perfectly plastic, determine the 

velocity of the mass center G of the panel immediately after the impact. 

17.100 A 16-lb wooden panel is suspended from a pin support at A and is 

initially at rest. A 4-lb metal sphere is released from rest at B9 and 

falls into a hemispherical cup C9 attached to the panel at the same 

level as the mass center G. Assuming that the impact is perfectly 

plastic, determine the velocity of the mass center G of the panel 

immediately after the impact. 

 17.101 A 45-g bullet is fired with a velocity of 400 m/s at θ 5 308 into a 9-kg 

square panel of side b 5 200 mm. Knowing that h 5 150 mm and that 

the panel is initially at rest, determine (a) the velocity of the center of 

the panel immediately after the bullet becomes embedded, (b) the impul-

sive reaction at A, assuming that the bullet becomes embedded in 2 ms.

 17.102 A 45-g bullet is fired with a velocity of 400 m/s at θ 5 58 into a 

9-kg square panel of side b 5 200 mm. Knowing that the panel is 

initially at rest, determine (a) the required distance h if the horizontal 

component of the impulsive reaction at A is to be zero, (b) the cor-

responding velocity of the center of the panel immediately after the 

bullet becomes embedded.

Fig. P17.96

G
h

Fig. P17.97

v0

B

C

A

h

L

Fig. P17.99 and P17.100

9 in.

7 in. 7 in.

9 in.

18 in.

18 in.

G

C

B B9

C9

A

Fig. P17.101 and P17.102

v0h G

A

b

b
q
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 17.103 Two uniform rods, each of mass m, form the L-shaped rigid body 

ABC, which is initially at rest on the frictionless horizontal surface 

when hook D of the carriage E engages a small pin at C. Knowing 

that the carriage is pulled to the right with a constant velocity v0, 

determine immediately after the impact (a) the angular velocity of 

the body, (b) the velocity of corner B. Assume that the velocity of 

the carriage is unchanged and that the impact is perfectly plastic.

 17.104 The uniform slender rod AB of weight 5 lb and length 30 in. forms 

an angle β  5  30° with the vertical as it strikes the smooth corner 

shown with a vertical velocity v1 of magnitude 8 ft/s and no angular 

velocity. Assuming that the impact is perfectly plastic, determine the 

angular velocity of the rod immediately after the impact.

 17.105 A bullet weighing 0.08 lb is fired with a horizontal velocity of 

1800 ft/s into the 15-lb wooden rod AB of length L 5 30 in. The 

rod, which is initially at rest, is suspended by a cord of length 

L 5 30 in. Determine the distance h for which, immediately after 

the bullet becomes embedded, the instantaneous center of rotation of 

the rod is point C.

 17.106 A prototype of an adapted bowling device is a simple ramp that 

attaches to a wheelchair. The bowling ball has a mass moment of 

inertia about its center of gravity of cmr2, where c is a unitless con-

stant, r is the radius, and m is its mass. The athlete nudges the ball 

slightly from a height of h, and the ball rolls down the ramp without 

sliding. It hits the bowling lane, and after slipping for a short dis-

tance, it begins to roll again. Assuming that the ball does not bounce 

as it hits the lane, determine the angular velocity and velocity of the 

mass center of the ball after it has resumed rolling. 

Fig. P17.103

A

C

L

L

B

D

E

v0

A

B

G

β
v1

Fig. P17.104

Fig. P17.105

G

L

B

A

v0

C

L
h

Fig. P17.106

θ

h
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 17.107 A uniform slender rod AB is at rest on a frictionless horizontal table 

when end A of the rod is struck by a hammer that delivers an impulse 

that is perpendicular to the rod. In the subsequent motion, determine 

the distance b through which the rod will move each time it com-

pletes a full revolution.

 17.108 A bullet of mass m is fired with a horizontal velocity v0 and at a 

height h 5
1
2R into a wooden disk of much larger mass M and 

radius R. The disk rests on a horizontal plane and the coefficient of 

friction between the disk and the plane is finite. (a) Determine the 

linear velocity v1 and the angular velocity v1 of the disk immediately 

after the bullet has penetrated the disk. (b) Describe the ensuing 

motion of the disk and determine its linear velocity after the motion 

has become uniform.
Fig. P17.107

A

B

A
B

b

L

90°

Fig. P17.108 and P17.109

v0

h

A

R

 17.109 Determine the height h at which the bullet of Prob. 17.108 should be 

fired (a) if the disk is to roll without sliding immediately after 

impact, (b) if the disk is to slide without rolling immediately after 

impact.

17.110 A uniform slender bar of length L 5 200 mm and mass m 5  0.5 kg 

is supported by a frictionless horizontal table. Initially the bar is 

spinning about its mass center G with a constant angular speed 

v1 5 6 rad/s. Suddenly latch D is moved to the right and is struck 

by end A of the bar. Knowing that the coefficient of restitution 

between A and D is e 5 0.6, determine the angular velocity of the 

bar and the velocity of its mass center immediately after the impact.

 17.111 A uniform slender rod of length L is dropped onto rigid supports at A 

and B. Since support B is slightly lower than support A, the rod strikes 

A with a velocity v1 before it strikes B. Assuming perfectly elastic 

impact at both A and B, determine the angular velocity of the rod and 

the velocity of its mass center immediately after the rod (a) strikes 

support A, (b) strikes support B, (c) again strikes support A.

Fig. P17.111

A

B

L B

v1⎯

 17.112 A uniform slender rod AB has a mass m, a length L, and is falling 

freely with a velocity v0 when end B strikes a smooth inclined 

surface as shown. Assuming that the impact is perfectly elastic, 

determine the angular velocity of the rod and the velocity of its mass 

center immediately after the impact. Fig. P17.112

A BG

45°
v0

A

D
G

w1

B

Fig. P17.110
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17.113 The slender rod AB of length L 5 1 m forms an angle β 5 308 with 

the vertical as it strikes the frictionless surface shown with a vertical 

velocity v1 5 2 m/s and no angular velocity. Knowing that the coef-

ficient of restitution between the rod and the ground is e 5 0.8, 

determine the angular velocity of the rod immediately after the 

impact.

 17.114 The trapeze/lanyard air drop (t /LAD) launch is a proposed innova-

tive method for airborne launch of a payload-carrying rocket. The 

release sequence involves several steps as shown in (1) where the 

payload rocket is shown at various instances during the launch. To 

investigate the first step of this process, where the rocket body drops 

freely from the carrier aircraft until the 2-m lanyard stops the vertical 

motion of B, a trial rocket is tested as shown in (2). The rocket can 

be considered a uniform 1 3 7-m rectangle with a mass of 4000 kg. 

Knowing that the rocket is released from rest and falls vertically 2 m 

before the lanyard becomes taut, determine the angular velocity of 

the rocket immediately after the lanyard is taut.

 17.115 The uniform rectangular block shown is moving along a frictionless 

surface with a velocity v1 when it strikes a small obstruction at B. 

Assuming that the impact between corner A and obstruction B is 

perfectly plastic, determine the magnitude of the velocity v1 for 

which the maximum angle θ through which the block will rotate will 

be 308.

Fig. P17.113

A

B

G

b
v1⎯

Fig. P17.114

7 m

2 m

1 m

(1) (2)

B

A

Lanyard

Fig. P17.115

200 mm

100 mm
BA q

v1
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 17.116 The 40-kg gymnast drops from her maximum height of h 5 0.5 m 

straight down to the bar as shown. Her hands hit the bar and clasp 

onto it, and her body remains straight in the position shown. Her 

center of mass is 0.75 meters away from her hands, and her mass 

moment of inertia about her center of mass is 7.5 kg?m2. Assuming 

that friction between the bar and her hands is negligible and that she 

remains in the same position throughout the swing, determine her 

angular velocity when she swings around to θ 5 135°.

 17.117 A slender rod of mass m and length L is released from rest in the 

position shown and hits edge D. Assuming perfectly plastic impact 

at D, determine for b 5 0.6L, (a) the angular velocity of the rod 

immediately after the impact, (b) the maximum angle through which 

the rod will rotate after the impact. 

 17.118 A uniformly loaded square crate is released from rest with its corner 

D directly above A; it rotates about A until its corner B strikes the 

floor, and then rotates about B. The floor is sufficiently rough to 

prevent slipping and the impact at B is perfectly plastic. Denoting 

by v0 the angular velocity of the crate immediately before B strikes 

the floor, determine (a) the angular velocity of the crate immediately 

after B strikes the floor, (b) the fraction of the kinetic energy of the 

crate lost during the impact, (c) the angle θ through which the crate 

will rotate after B strikes the floor.

Fig. P17.116

0.75 m

h

θ

Fig. P17.117

30°

B

D

A

L

b

A
A

B

C
D

B
C

D

A B

C D

q

(1) (2) (3)

Fig. P17.118
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 17.119 A 1-oz bullet is fired with a horizontal velocity of 750 mi/h into 

the 18-lb wooden beam AB. The beam is suspended from a collar 

of negligible mass that can slide along a horizontal rod. Neglecting 

friction between the collar and the rod, determine the maximum 

angle of rotation of the beam during its subsequent motion.

 17.120 For the beam of Prob. 17.119, determine the velocity of the 1-oz 

bullet for which the maximum angle of rotation of the beam will 

be 908.

 17.121 The plank CDE has a mass of 15 kg and rests on a small pivot at 

D. The 55-kg gymnast A is standing on the plank at C when the 

70-kg gymnast B jumps from a height of 2.5 m and strikes the plank 

at E. Assuming perfectly plastic impact and that gymnast A is stand-

ing absolutely straight, determine the height to which gymnast A will 

rise.

 17.122 Solve Prob. 17.121, assuming that the gymnasts change places so 

that gymnast A jumps onto the plank while gymnast B stands at C.

 17.123 A slender rod AB is released from rest in the position shown. It 

swings down to a vertical position and strikes a second and identical 

rod CD that is resting on a frictionless surface. Assuming that the 

coefficient of restitution between the rods is 0.4, determine the veloc-

ity of rod CD immediately after the impact.

 17.124 A slender rod AB is released from rest in the position shown. It 

swings down to a vertical position and strikes a second and identical 

rod CD that is resting on a frictionless surface. Assuming that the 

impact between the rods is perfectly elastic, determine the velocity 

of rod CD immediately after the impact.

 17.125 Block A has a mass m and is attached to a cord that is wrapped 

around a uniform disk with a mass M. The block is released from 

rest and falls through a distance h before the cord becomes taut. 

Derive expressions for the velocity of the block and the angular 

velocity of the disk immediately after the impact. Assume that the 

impact is (a) perfectly plastic, (b) perfectly elastic.

v0

B

A

4 ft

Fig. P17.119

Fig. P17.121

B

ED

L L

hA

C

Fig. P17.123 and P17.124

A
B

C D

L

L

L

Fig. P17.125

R

A
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17.126 A 2-kg solid sphere of radius r 5 40 mm is dropped from a height 

h 5 200 mm and lands on a uniform slender plank AB of mass 

4 kg and length L 5 500 mm that is held by two inextensible cords. 

Knowing that the impact is perfectly plastic and that the sphere 

remains attached to the plank at a distance a 5 40 mm from the left 

end, determine the velocity of the sphere immediately after impact. 

Neglect the thickness of the plank.

Fig. P17.126

B

r

L

A

h

a

30° 30°

Fig. P17.127

B
A C

D

L

v1

L
4

Fig. P17.128

v1

A

B D

C

60°60°

Fig. P17.129

B

ω1

A

v1

L

⎯

 17.127 and 17.128 Member ABC has a mass of 2.4 kg and is attached to 

a pin support at B. An 800-g sphere D strikes the end of member 

ABC with a vertical velocity vl of 3 m/s. Knowing that L 5 750 mm 

and that the coefficient of restitution between the sphere and member 

ABC is 0.5, determine immediately after the impact (a) the angular 

velocity of member ABC, (b) the velocity of the sphere.

17.129 Sphere A of mass mA 5 2 kg and radius r 5 40 mm rolls without 

slipping with a velocity v1 5 2 m/s on a horizontal surface when 

it hits squarely a uniform slender bar B of mass mB 5 0.5 kg 

and length L 5 100 mm that is standing on end and is at rest. 

Denoting by μk the coefficient of kinetic friction between the 

sphere and the horizontal surface, neglecting friction between the 

sphere and the bar, and knowing the coefficient of restitution 

between A and B is 0.1, determine the angular velocities of the 

sphere and the bar immediately after the impact.
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 17.130 A large 3-lb sphere with a radius r 5 3 in. is thrown into a light 

basket at the end of a thin, uniform rod weighing 2 lb and length 

L 5 10 in. as shown. Immediately before the impact, the angular 

velocity of the rod is 3 rad/s counterclockwise and the velocity of 

the sphere is 2 ft/s down. Assume the sphere sticks in the basket. 

Determine after the impact (a) the angular velocity of the bar and 

sphere, (b) the components of the reactions at A.

Fig. P17.130

G

A B

L

r
ω0

v0

Fig. P17.131

60°
A

ωA

vA⎯ vB⎯
60°

B

ωB

Fig. P17.132

ω1

A B

v1⎯

Fig. P17.133

A B

θ
x

y

v0⎯

 17.131 A small rubber ball of radius r is thrown against a rough floor with 

a velocity vA of magnitude v0 and a backspin vA of magnitude v0. 

It is observed that the ball bounces from A to B, then from B to A, 

then from A to B, etc. Assuming perfectly elastic impact, determine 

the required magnitude v0 of the backspin in terms of v0 and r.

 17.132 Sphere A of mass m and radius r rolls without slipping with a velocity 

v1 on a horizontal surface when it hits squarely an identical sphere B 

that is at rest. Denoting by μk the coefficient of kinetic friction 

between the spheres and the surface, neglecting friction between the 

spheres, and assuming perfectly elastic impact, determine (a) the lin-

ear and angular velocities of each sphere immediately after the impact, 

(b) the velocity of each sphere after it has started rolling uniformly.

 17.133 In a game of pool, ball A is rolling without slipping with a velocity 

v0 as it hits obliquely ball B, which is at rest. Denoting by r the radius 

of each ball and by μk the coefficient of kinetic friction between a ball 

and the table, and assuming perfectly elastic impact, determine (a) the 

linear and angular velocity of each ball immediately after the impact, 

(b) the velocity of ball B after it has started rolling uniformly.

Fig. P17.134

L

A

B

C

L

Q �t 17.134 Each of the bars AB and BC is of length L 5 400 mm and mass 

m 5 1.2 kg. Determine the angular velocity of each bar immediately 

after the impulse QDt 5 (1.5 N?s)i is applied at C.
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Review and Summary
In this chapter, we again considered the method of work and energy and the 

method of impulse and momentum. In the first section, we applied the method 

of work and energy to the analysis of the motion of rigid bodies and systems 

of rigid bodies.

 The second section was devoted to the method of impulse and momentum 

and its application to the solution of various types of problems involving the 

plane motion of rigid bodies and rigid bodies symmetrical with respect to the 

reference plane.

Principle of Work and Energy for a Rigid Body
In Sec. 17.1, we first expressed the principle of work and energy for a rigid 

body in the form

T1 1 U1y2 5 T2 (17.1)

where T1 and T2 represent the initial and final values of the kinetic energy of 

the rigid body and U1y2 represents the work of the external forces acting on 

it. If we express the work done by nonconservative forces as U 
NC
1y2 and define 

potential energy terms for conservative forces, we can express Eq. (17.1) as

 T1 1 Vg1
1 Ve1

1 UNC
1y2 5 T2 1 Vg2

1 Ve2
 (17.19)

where Vg1
 and Vg2

 are the initial and final gravitational potential energy of the 

center of mass of the rigid body and Ve1
 and Ve2

 are the initial and final values 

of the elastic energy associated with springs in the system, respectively.

Work of a Force or a Couple
In Sec. 17.1B, we recalled the expression found in Chap. 13 for the work of 

a force F applied at a point A, namely

 U1y2 5#
A2

A1

 F?dr (17.3)

or

U1y2 5#
s2

s1

 (F cos α) ds (17.39)

where F is the magnitude of the force, α is the angle it forms with the direc-

tion of motion of A, and s is the variable of integration measuring the distance 

traveled by A along its path. We also derived the expression for the work of 

a couple of moment M applied to a rigid body during a rotation in θ of the 

rigid body as

 U1y2 5#
θ2

θ1

 M dθ (17.5)

Kinetic Energy in Plane Motion
We then derived an expression for the kinetic energy of a rigid body in plane 

motion [Sec. 17.1C]: 

T 5
1
2mv2 1

1
2 Iv2 (17.9)
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where v is the speed of the mass center G of the body, v is the angular speed 

of the body, and I is its moment of inertia about an axis through G perpendicu-

lar to the plane of reference (Fig. 17.13) [Sample Prob. 17.3]. We noted that 

the kinetic energy of a rigid body in plane motion can be separated into two 

parts: (1) the kinetic energy 
1
2 mv 

2 associated with the motion of the mass center 

G of the body and (2) the kinetic energy 
1
2  Iv

2 associated with the rotation of 

the body about G. You will generally need to use kinematics to relate v and v.

Kinetic Energy in Rotation About a Fixed Axis
For a rigid body rotating about a fixed axis through O with an angular velocity 

v, we had

 T 5
1
2IOv2 (17.10)

where IO is the moment of inertia of the body about the fixed axis. We noted 

that this result is not limited to the rotation of plane rigid bodies or of bodies 

symmetrical with respect to the reference plane, but it also is valid regardless 

of the shape of the body or of the location of the axis of rotation.

Systems of Rigid Bodies
Equation (17.1) can be applied to the motion of systems of rigid bodies [Sec. 

17.1D] as long as all the forces acting on the various bodies involved—internal 

as well as external to the system—are included in the computation of U1y2.

However, in the case of systems consisting of pin-connected members or 

blocks and pulleys connected by inextensible cords or meshed gears, the 

points of application of the internal forces move through equal distances and 

the work of these forces cancels out [Sample Probs. 17.1, 17.2, and 17.6].

Conservation of Energy
When a rigid body or a system of rigid bodies moves under the action of 

conservative forces, the principle of work and energy can be expressed in the 

form

T1 1 V1 5 T2 1 V2 (17.12)

or

T1 1 Vg1
1 Ve1

5 T2 1 Vg2
1 Ve2

  (17.129)

This is referred to as the principle of conservation of energy [Sec. 17.1E]. We 

can use this principle to solve problems involving conservative forces such as 

the force of gravity or the force exerted by a spring [Sample Probs. 17.4 

through 17.6]. However, if we need to determine a reaction, we must supple-

ment the principle of conservation of energy by using Newton’s second law 

[Sample Prob. 17.4].

Power
In Sec. 17.1F, we extended the concept of power to a rotating body subjected 

to a couple as

Power 5
dU

dt
5

M dθ

dt
5 Mv (17.13)

where M is the magnitude of the couple and v is the magnitude of the angular 

velocity of the body.

G

ω

Fig. 17.13
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Principle of Impulse and Momentum for a Rigid Body
In Sec. 17.2, we applied the principle of impulse and momentum as had been 

derived in Sec. 14.2C for a system of particles to the motion of a rigid body 

[Sec. 17.2A]. We have

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2   (17.14)

Next we showed that, for a rigid body symmetrical with respect to the reference 

plane, the system of the momenta of the particles forming the body is equiva-

lent to a vector mv attached at the mass center G of the body and a couple  Iv
(Fig. 17.14). The vector mv is associated with the translation of the body with 

G and represents the linear momentum of the body, whereas the couple  Iv
corresponds to the rotation of the body about G and represents the angular 
momentum of the body about an axis through G.

P

(Δm)v

G

 mv

Iω=

Fig. 17.14

 We can express Eq. (17.14) graphically using an impulse–momentum 

diagram, as shown in Fig. 17.15. This diagram represents the system of the 

Fig. 17.15
(a)

*F dt

x

y

O

Iω1

Iω2G

(b)

x

y

O

(c)

x

y

O

 mv1

 mv2

+ =G

initial momenta of the body, the impulses of the external forces acting on the 

body, and the system of the final momenta of the body, respectively. We can 

choose to sum moments about an arbitrary point P using 

  Iv1 1 mv1d' 1 O #
t2

t1

MP 
dt 5 Iv2 1 mv2d' (17.149)

the center of mass G using

  Iv1 1 O #
t2

t1

MG dt 5 Iv2  (17.1499)

or a fixed axis of rotation O using

 IOv1 1 O #
t2

t1

MO dt 5 IOv2 (17.16)
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Using one of these expressions and the x and y components of the linear 

impulse–momentum equation, we obtain three equations of motion that we 

can solve for the desired unknowns [Sample Probs. 17.7 and 17.8].

 In problems dealing with several connected rigid bodies [Sec. 17.2B], 

we can consider each body separately [Sample Prob. 17.7], or if no more than 

three unknowns are involved, we can apply the principle of impulse and 

momentum to the entire system, considering the impulses of the external 

forces only [Sample Prob. 17.9].

Conservation of Angular Momentum
When the lines of action of all the external forces acting on a system of rigid 

bodies pass through a given point O, the angular momentum of the system 

about O is conserved [Sec. 17.2C]. We suggested that problems involving 

conservation of angular momentum be solved by the general method described 

previously [Sample Prob. 17.9 and 17.10].

Impulsive Motion
Section 17.3 was devoted to the impulsive motion and the eccentric impact
of rigid bodies. We recalled that the method of impulse and momentum is the 

only practicable method for the solution of problems involving impulsive 

motion and that the computation of impulses in such problems is particularly 

simple [Sample Prob. 17.11 and 17.12].

Eccentric Impact
We also recalled that the eccentric impact of two rigid bodies is defined as 

an impact in which the mass centers of the colliding bodies are not located 

on the line of impact. We showed that, in such a situation, a relation similar 

to that derived in Chap. 13 for the central impact of two particles and involv-

ing the coefficient of restitution e still holds, but the velocities of points A and 
B where contact occurs during the impact should be used. We have

 (v9B)n 2 (v9A)n 5 e [ (vA)n 2 (vB)n ]  (17.19)

where (vA)n and (vB)n are the components along the line of impact of the 

velocities of A and B before the impact, and (v9A)n and (v9B)n are their compo-

nents after the impact (Fig. 17.16). Equation (17.19) applies not only when 

the colliding bodies move freely after the impact but also when the bodies are 

partially constrained in their motion. You should use it in conjunction with 

one or several other equations obtained by applying the principle of impulse 

and momentum [Sample Prob. 17.13]. We also considered problems where 

the method of impulse and momentum and the method of work and energy 

can be combined [Sample Prob. 17.14].

Fig. 17.16

(a) Before impact (b) After impact

A
B

n

n

vA

vB

A
B

n

n

v'A

v'B
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17.135 A uniform disk of constant thickness and initially at rest is placed 

in contact with the belt shown, which moves at a constant speed 

v 5 80 ft/s. Knowing that the coefficient of kinetic friction between 

the disk and the belt is 0.15, determine (a) the number of revo-

lutions  executed by the disk before it reaches a constant angular 

velocity, (b) the time required for the disk to reach that constant 

angular velocity.

17.136 The 8-in.-radius brake drum is attached to a larger flywheel that is 

not shown. The total mass moment of inertia of the flywheel and 

drum is 14 lb?ft?s2 and the coefficient of kinetic friction between the 

drum and the brake shoe is 0.35. Knowing that the initial angular 

velocity of the flywheel is 360 rpm counterclockwise, determine the 

vertical force P that must be applied to the pedal C if the system is 

to stop in 100 revolutions.

17.137 Charpy impact test pendulums are used to determine the amount 

of energy a test specimen absorbs during an impact (see ASTM 

Standard E23). The hammer weighs 71.2 lbs and has a mass moment 

of inertia about its center of gravity GH of 20.9 slug·in2. The arm 

weighs 19.5 lbs and has a mass moment of inertia about its own 

center of gravity GA of 47.1 slug·in2. The pendulum is released from 

rest from an initial position of θ 5 39°. Knowing that the friction at 

pin O is negligible, determine (a) the impact speed when the ham-

mer hits the test specimen, (b) the force on the pin O just before the 

hammer hits the test specimen, (c) the amount of energy that the 

test specimen absorbs if the hammer swings up to a maximum of 

f 5 70° after the impact.

Review Problems

Fig. P17.135

v

A B

5 in.

25°

Fig. P17.136

P

10 in.

15 in.

A

B

C

D

6 in.

8 in.

Fig. P17.137

GA

15.25 in.

36.48 in.

Hammer

Test specimen

θ

φ
O

GH
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17.138 The gear shown has a radius R 5 150 mm and a radius of gyration 

k 5 125 mm. The gear is rolling without sliding with a velocity v1

of magnitude 3 m/s when it strikes a step of height h 5 75 mm. 

Because the edge of the step engages the gear teeth, no slipping 

occurs between the gear and the step. Assuming perfectly plastic 

impact, determine (a) the angular velocity of the gear immediately 

after the impact, (b) the angular velocity of the gear after it has 

rotated to the top of the step.

Fig. P17.138

R

h

v1⎯

ω1

Fig. P17.139

b

B

A

L

Fig. P17.140

θ125 mm

B

C

A

17.139 A uniform slender rod is placed at corner B and is given a slight 

clockwise motion. Assuming that the corner is sharp and becomes 

slightly embedded in the end of the rod so that the coefficient of 

static friction at B is very large, determine (a) the angle β through 

which the rod will have rotated when it loses contact with the corner, 

(b) the corresponding velocity of end A.

17.140 The motion of the slender 250-mm rod AB is guided by pins at 

A and B that slide freely in slots cut in a vertical plate as shown. 

Knowing that the rod has a mass of 2 kg and is released from rest 

when θ 5 0, determine the reactions at A and B when θ 5 908.
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17.141 A baseball attachment that helps people with mobility impairments 

play T-ball and baseball is powered by a spring that is unstretched 

at position 2. The spring is attached to a cord that is fastened to 

point B on the 75-mm radius pulley. The pulley is fixed at point O, 

rotates backwards to the cocked position at θ, and the rope wraps 

around the pulley and stretches the spring with a stiffness of 

k 5 2000 N/m. The combined mass moment of inertia of all the 

rotating components about point O is 0.40 kg·m2. The swing is timed 

perfectly to strike a 145-gram baseball travelling with a speed of 

v0 5 10 m/s at a distance of h 5 0.7 m away from point O. Knowing 

that the coefficient of restitution between the bat and ball is 0.59, 

determine the velocity of the baseball immediately after the impact. 

Assume that the ball is travelling primarily in the horizontal plane 

and that its spin is negligible.

Fig. P17.142

b

b

2b

b
b

b

ω0

A

B

C

 17.142 Two panels A and B are attached with hinges to a rectangular plate 

and held by a wire as shown. The plate and the panels are made of 

the same material and have the same thickness. The entire assem-

bly is rotating with an angular velocity v0 when the wire breaks. 

Determine the angular velocity of the assembly after the panels have 

come to rest against the plate.

Fig. P17.141

v0

Position 2

Position 1

θ

r

h

O

B

A
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17.143 Disks A and B are made of the same material, are of the same 

thickness, and can rotate freely about the vertical shaft. Disk B is 

at rest when it is dropped onto disk A, which is rotating with an 

angular velocity of 500 rpm. Knowing that disk A has a mass of 

8 kg, determine (a) the final angular velocity of the disks, (b) the 

change in kinetic energy of the system.

 17.144 A square block of mass m is falling with a velocity v1 when it strikes 

a small obstruction at B. Knowing that the coefficient of restitution 

for the impact between corner A and the obstruction B is e 5 0.5, 

determine immediately after the impact (a) the angular velocity of 

the block, (b) the velocity of its mass center G.

100 mm

150 mm

500 rpm

A

B

Fig. P17.143

A

b

b

B

1

G

v⎯

Fig. P17.144

10 ft

8.5 ft

2 ft

v0
D E C

B

A

Fig. P17.146

ω0

500 mm
A

B
C

D

Fig. P17.145

17.145 A 3-kg bar AB is attached by a pin at D to a 4-kg square plate, which 

can rotate freely about a vertical axis. Knowing that the angular 

velocity of the plate is 120 rpm when the bar is vertical, determine 

(a) the angular velocity of the plate after the bar has swung into 

a horizontal position and has come to rest against pin C, (b) the 

energy lost during the plastic impact at C.

 17.146 A 1.8-lb javelin DE impacts a 10-lb slender rod ABC with a 

horizontal velocity of v0 5 30 ft/s as shown. Knowing that the 

javelin becomes embedded into the end of the rod at point C and 

does not penetrate very far into it, determine immediately after the 

impact (a) the angular velocity of the rod ABC, (b) the components 

of the reaction at B. Assume the javelin and the rod move as a single 

rigid body after the impact.
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While the general principles that you learned in earlier chapters can 

be used again to solve problems involving the three-dimensional 

motion of rigid bodies, the solution of these problems requires a 

new approach and is considerably more involved than the solution 

of two-dimensional problems. One example is the determination of 

the forces acting on the robotic arm of the spacecraft.

Kinetics of Rigid Bodies
in Three Dimensions

18
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Introduction

 18.1 ENERGY AND MOMENTUM 
OF A RIGID BODY

18.1A Angular Momentum of a Rigid 
Body in Three Dimensions

18.1B Applying the Principle of 
Impulse and Momentum to 
the Three-Dimensional Motion 
of a Rigid Body

18.1C Kinetic Energy of a Rigid Body 
in Three Dimensions

 18.2 MOTION OF A RIGID 
BODY IN THREE 
DIMENSIONS

18.2A Rate of Change of Angular 
Momentum

18.2B Euler’s Equations of Motion 
18.2C Motion of a Rigid Body About 

a Fixed Point
18.2D Rotation of a Rigid Body 

About a Fixed Axis

 18.3 MOTION OF A 
GYROSCOPE

18.3A Eulerian Angles
18.3B Steady Precession of a 

Gyroscope
18.3C Motion of an Axisymmetrical 

Body Under No Force

Objectives
• Calculate the angular momentum and kinetic energy 

of a rigid body undergoing general three-dimensional 
motion.

• Define the inertia tensor, products of inertia, and 
principal axes of inertia.

• Apply the principle of impulse and momentum to 
solve three-dimensional rigid body kinetics problems.

• Solve three-dimensional rigid body kinetics problems, 
including fi xed point rotation, fi xed axis rotation, and 
gyroscopic motion.

• Describe the relationship between applied moment, 
precession, and spin of a gyroscope undergoing steady 
precession.

• Analyze the motion of a rotating axisymmetric body 
under no external forces.

Introduction
In Chaps. 16 and 17, we were concerned with the plane motion of rigid 

bodies and of systems of rigid bodies. In Chap. 16 and in the second half 

of Chap. 17 (impulse and momentum), our study was further restricted to 

the motion of plane rigid bodies and of bodies symmetrical with respect 

to the reference plane. However, many of the fundamental results obtained 

in these two chapters remain valid in the case of the motion of a rigid 

body in three dimensions. For example, the two fundamental equations

oF 5 ma (18.1)

oMG 5 H
.

G
 (18.2)

on which we based the analysis of the plane motion of a rigid body remain 

valid in the most general case of motion of a rigid body. As indicated in 

Sec. 16.1, these equations express that the system of external forces is 

equipollent to the system consisting of the vector ma attached at G and 

the couple of moment H
.

G (Fig. 18.1). 

oF 5 ma

oMG 5 H
.

G
H

G =
⎯am

F1

F2

F3

F4

G

HG
.

Fig. 18.1 The external forces acting on the rigid body are 
equipollent to a vector ma– attached to the mass center G 
and a rotational inertia vector H? G.
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1266 Kinetics of Rigid Bodies in Three Dimensions

The relation HG 5 Iv enabled us to determine the angular momentum 

of a rigid body and played an important part in the solution of problems 

involving the plane motion of rigid bodies and bodies symmetrical with 

respect to the reference plane. However, this equation ceases to be valid 

in the case of nonsymmetrical bodies or three-dimensional motion. Thus, 

we need to develop a more general method for computing the angular 

momentum HG of a rigid body in three dimensions.

Similarly, the main feature of the impulse–momentum method 

discussed in Sec. 17.2A is the reduction of the momenta of the particles 

of a rigid body to a linear momentum vector mv attached at the mass 

center G of the body and an angular momentum couple HG. This 

method remains valid in the more general case, but we must discard 

the relation HG 5 Iv and replace it with a more general relation before 

we can apply this method to the three-dimensional motion of a rigid 

body (Sec. 18.1B).

Also note that the work–energy principle and the principle of 

conservation of energy still apply in the case of the motion of a rigid body 

in three dimensions. However, we need to replace the expression obtained 

in Sec. 17.1C for the kinetic energy of a rigid body in plane motion with 

a new expression for a rigid body in three-dimensional motion.

In the second part of this chapter, you will learn to determine the 

rate of change H
.

G of the angular momentum HG of a three-dimensional 

rigid body using a rotating frame of reference where the moments and 

products of inertia of the body remain constant. Then you can express 

Eqs. (18.1) and (18.2) in the form of free-body and kinetic diagrams that 

you can use to solve various problems involving the three-dimensional 

motion of rigid bodies (Sec. 18.2).

The last part of this chapter (Sec. 18.3) is devoted to the study of 

the motion of gyroscopes or, more generally, of an axisymmetric body 

with a fixed point located on its axis of symmetry. We first consider the 

particular case of the steady precession of a gyroscope and then analyze 

the motion of an axisymmetric  body subjected to no force except its own 

weight.

18.1  ENERGY AND MOMENTUM 
OF A RIGID BODY

All of the methods you studied in earlier chapters for analyzing the plane 

motion of a rigid body have corresponding versions for motion in three 

dimensions. However, some of the formulas for determining kinetic 

quantities such as energy and angular momentum need to be replaced by 

more general equations. In this section, we examine some of the basic 

quantities and equations needed for the study of motion in space.

*18.1A  Angular Momentum of a Rigid 
Body in Three Dimensions

In this section you will see how to determine the angular momentum HG

of a body about its mass center G from the angular velocity v of the body 

in the case of three-dimensional motion.
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18.1 Energy and Momentum of a Rigid Body 1267

According to Eq. (14.24), we can express the angular momentum of 

the body about G as

HG 5 On

i51

(r9i 3 v9i Dmi) (18.3)

where r9i  and v9i denote, respectively, the position vector and the velocity 

of the particle Pi with a mass Dmi that is relative to the centroidal frame 

Gxyz (Fig. 18.2). However, v9i 5 v 3 r9i, where v is the angular velocity 

of the body at the instant considered. Substituting into Eq. (18.3), we have

HG 5 On

i51

[r9i 3 (v 3 r9i) Dmi]

From the rule for determining the rectangular components of a vector 

product (Statics, Sec. 3.1D, or Appendix A), we obtain the following 

expression for the x-component of the angular momentum as

 Hx 5 On

i51

[yi(v 3 r9i)z 2 zi(v 3 r9i)y] Dmi

 5 On

i51

[yi(vxyi 2 vyxi) 2 zi(vzxi 2 vxzi)] Dmi

 5 vx O
i

(y2
i 1 z2

i ) Dmi 2 vy O
i

xiyi Dmi 2 vz O
i

zixi Dmi

Replacing the sums by integrals in this expression and in the two similar 

expressions obtained for Hy and Hz, we have

 Hx 5 vxe(y2 1 z2) dm 2 vyexy dm 2 vzezx dm

 Hy 5 2vxexy dm 1 vye(z2 1 x2) dm 2 vzeyz dm (18.4)

 Hz 5 2vxezx dm 2 vyeyz dm 1 vze(x2 1 y2) dm

Note that the integrals containing squares represent the centroidal mass 
moments of inertia of the body about the x, y, and z axes, respectively 

(Statics, Sec. 9.5A, or Appendix B). That is,

  I x 5 e(y2 1 z2) dm    I y 5 e(z2 1 x2) dm 
(18.5)

 I z 5 e(x2 1 y2) dm

Similarly, the integrals containing products of coordinates represent the 

centroidal mass products of inertia of the body (Sec. 9.6A); we have

  Ixy 5 e xy dm   Iyz 5 e yz dm   I zx 5 e zx dm (18.6)

Substituting from Eqs. (18.5) and (18.6) into Eq. (18.4), we obtain the 

components of the angular momentum HG of the body about its mass 

center as

Angular momentum 
about mass center

 Hx 5 1 Ix vx 2  Ixy vy 2  Ixz vz

 Hy 5 2 I yx vx 1  I y vy 2  I yz vz (18.7)

 Hz 5 2 I zx vx 2  I zy vy 1  I z vz

HxHH 5 1IxII vx 2 IxII yvy 2 IxII zxx vz

HyHH 5 2I yxyy vx 1 I y vy 2 I yzvz 

HzHH 5 2I zxzz vx 2 I zyz vy 1 I z vz

G

Y

O
X

Z

y

x

z

Pi
r'i

v'i = ω × r'i

ω

Fig. 18.2 The velocity of particle Pi is 
needed to derive the angular momentum of 
a rigid body in three dimensions.
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1268 Kinetics of Rigid Bodies in Three Dimensions

The relations in Eq. (18.7) show that the operation transforming the 

vector v into the vector HG (Fig. 18.3) is characterized by the array of 

moments and products of inertia as

Inertia tensor

 °
  Ix 2Ixy 2Ixz

2Iyx Iy 2Iyz

2Izx 2Izy    Iz

¢  (18.8)

The array in Eq. (18.8) defines the inertia tensor of the body at its mass 

center G.† We obtain a new array of moments and products of inertia if 

we use a different system of axes. The angular momentum HG corresponding 

to a given angular velocity v is independent of the choice of the coordinate 

axes. 

As we showed in Statics, Sec. 9.6, or in Appendix B, it is always 

possible to select a system of axes Gx9y9z9, called principal axes of inertia,
with respect to which all the products of inertia of a given body are zero. 

The array of Eq. (18.8) then takes the diagonalized form as

°
Ix9 0 0

0 Iy9 0

0 0 Iz9

¢  (18.9)

where   Ix9, Iy9, Iz9 represent the principal centroidal moments of inertia of 

the body, and the relations in Eq. (18.7) reduce to

Hx9 5  Ix9vx9   Hy9 5  Iy9vy9   Hz9 5  Iz9vz9 (18.10)

Note that if the three principal centroidal moments of inertia  Ix9, Iy9,  Iz9 

are equal, the components Hx9, Hy9, Hz9 of the angular momentum about G 

are proportional to the components vx9, vy9, vz9 of the angular velocity, 

and the vectors HG and v are collinear. In general, however, the principal 

moments of inertia are different, and the vectors HG and v have different 

directions except when two of the three components of v happen to be 

zero, i.e., when v is directed along one of the coordinate axes. Thus, 

The angular momentum HG of a rigid body and its angular 
velocity v have the same direction if, and only if, v is directed along 
a principal axis of inertia.‡

This condition is satisfied in the case of the plane motion of a rigid 

body that is symmetrical with respect to the reference plane, so in Secs. 16.1 

and 17.2, we were able to represent the angular momentum HG of such a 

body by the vector  Iv. We must realize, however, that this result cannot be 

extended to the case of the plane motion of a nonsymmetrical body or to 

°
IxI 2IxI yx 2IxI z

2IyI xyy IyI 2IyI z

2IzI xzz 2IzI yz IzI

¢

HxHH 9 5 IxII 9vx9  HyHH 9 5 IyII 9vy9   HzHH 9 5 IzII 9vz9

†Setting Ix 5 I11,  Iy 5 I22,  Iz 5 I33, and 2 Ixy 5 I12, 2 Ixz 5 I13, etc., we can write the 

inertia tensor of Eq. (18.8) in the standard form

°
I11 I12 I13

I21 I22 I23

I31 I32 I33

¢
‡In the particular case when  Ix9 5 Iy9 5 Iz9, any line through G can be considered to be a 

principal axis of inertia, and the vectors HG and v are always collinear. 

G

Y

O
X

Z

y

x

z

ω

HG

Fig. 18.3 In general, the angular 
momentum and the angular velocity are not 
in the same direction.
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18.1 Energy and Momentum of a Rigid Body 1269

the case of the three-dimensional motion of a rigid body. Except when v 

happens to be directed along a principal axis of inertia, the angular momentum 

and angular velocity of a rigid body have different directions, and you must 

use the relation in Eq. (18.7) or (18.10) to determine HG from v.

Reduction of the Momenta of the Particles of a Rigid 
Body to a Momentum Vector and a Couple at G. We saw 

in Sec. 17.2A that we can reduce the system formed by the momenta of 

the various particles of a rigid body to a vector L that is attached at the 

mass center G of the body, representing the linear momentum of the body, 

and to a couple HG, representing the angular momentum of the body about 

G (Fig. 18.4). We are now in a position to determine the vector L and the 

couple HG in the most general case of three-dimensional motion of a rigid 

body. As in the case of the two-dimensional motion considered earlier, the 

linear momentum L of the body is equal to the product mv of its mass m 

and velocity v of its mass center G. However, we can no longer obtain 

the angular momentum HG by simply multiplying the angular velocity v 

of the body by the scalar I . Instead, we obtain it from the components of 

v and from the centroidal moments and products of inertia of the body 

through the use of Eq. (18.7) or (18.10).

We should also note that once we have determined the linear 

momentum mv and the angular momentum HG of a rigid body, we can 

obtain its angular momentum HO about any given point O by adding the 

moments about O of vector mv and of couple HG. We have

 HO 5 r 3 mv 1 HG (18.11)

Angular Momentum of a Rigid Body Constrained to 
Rotate about a Fixed Point. In the particular case of a rigid body 

constrained to rotate in three-dimensional space about a fixed point O 

(Fig. 18.5a), it is sometimes convenient to determine the angular 

momentum HO of the body about O. Although we could obtain HO by 

first computing HG as indicated previously and then using Eq. (18.11), it 

is often advantageous to determine HO directly from the angular velocity 

v of the body and its moments and products of inertia with respect to a 

frame Oxyz centered at O. From Eq. (14.7), we have

 HO 5 On

i51

(ri 3 vi Dmi) (18.12)

HG

G

Z

X

Y

O

L = m⎯v

⎯r

Fig. 18.4 A momentum vector attached to 
the mass center of a rigid body and the 
angular momentum of the body about its 
mass center.

Photo 18.1 The design of a robotic welder 
for an automobile assembly line requires 
a three-dimensional study of both kinematics 
and kinetics.

HO

O

y

x

z

ω

(b)

O

y

x

z

Pi

ri

vi = ω × ri

ω

(a)

Fig. 18.5 (a) The velocity of particle Pi of a rigid body rotating with 
angular velocity v; (b) angular velocity and angular momentum of a 
rigid body.
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1270 Kinetics of Rigid Bodies in Three Dimensions

where ri and vi denote, respectively, the position vector and the velocity of 

particle Pi with respect to the fixed frame Oxyz. Substituting vi 5 v 3 ri and 

after making manipulations similar to those used in the earlier part of this 

section, we find that the components of the angular momentum HO 

(Fig. 18.5b) are given by the relations

Angular momentum about 
a fixed point O

 Hx 5 1Ix vx 2 Ixyvy 2 Ixzvz

 Hy 5 2Iyxvx 1 Iy vy 2 Iyzvz (18.13)

 Hz 5 2Izxvx 2 Izyvy 1 Iz vz

where we compute the moments of inertia Ix, Iy, Iz and the products of inertia 

Ixy, Iyz, Izx with respect to the frame Oxyz centered at the fixed point O.

*18.1B  Applying the Principle of 
Impulse and Momentum to the 
Three-Dimensional Motion of a 
Rigid Body

Before we can apply the fundamental equation (18.2) to the solution of 

problems involving the three-dimensional motion of a rigid body, we must 

be able to compute the derivative of the vector HG. We show how to do 

this in Sec. 18.2A. However, we can use the results obtained already to 

solve problems using the impulse–momentum method.

Recall that the system formed by the momenta of the particles of a 

rigid body reduces to a linear momentum vector mv attached at the mass 

center G of the body and an angular momentum couple HG. We can 

represent the fundamental relation

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.14)

graphically by means of the impulse–momentum diagram shown in 

Fig. 18.6. To solve a given problem, we can use this diagram to write 

appropriate component and moment equations, keeping in mind that the 

components of the angular momentum HG are related to the components 

of the angular velocity v by Eqs. (18.7).

HxHH 5 1IxII vx 2 IxyII vy 2 IxzII vz

HyHH 5 2IyxII vx 1 IyII vy 2 IyzII vz 

HzHH 5 2IzxII vx 2 IzyII vy 1 IzII vz

G =+

⎯v1m

⎯v2m

(HG)1

(HG)2

(a)

G

(b)

G

(c)

    F dt

Fig. 18.6 Impulse–momentum diagram for applying the principle of 
impulse and momentum to the motion of a rigid body in space.

Photo 18.2 As a result of the impulsive 
force applied by the bowling ball, a pin 
acquires both linear momentum and angular 
momentum.
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18.1 Energy and Momentum of a Rigid Body 1271

In solving problems dealing with the motion of a body rotating 

about a fixed point O, it will be convenient to eliminate the impulse of 

the reaction at O by writing an equation involving the moments of the 

momenta and impulses about O. Recall that you can obtain the angular 

momentum HO of the body about the fixed point O either directly from 

Eqs. (18.13) or by first computing its linear momentum mv and its angular 

momentum HG and then using Eq. (18.11).

*18.1C  Kinetic Energy of a Rigid Body 
in Three Dimensions

Consider a rigid body with a mass m in three-dimensional motion. Recall 

from Sec. 14.2A that, if we express the absolute velocity vi of each 

particle Pi of the body as the sum of velocity v of the mass center G of 

the body and velocity v9i of the particle relative to a frame Gxyz attached 

to G and of fixed orientation (Fig. 18.7), we can write the kinetic energy 

of the system of particles forming the rigid body as

 T 5
1
2 mv 

2 1
1

2
 On

i51

Dmiv9i
2 (18.14)

G

Y

O
X

Z

y

x

z

Pi
r'i

v'i = ω × r'i

ω

Fig. 18.7 The relative velocity of a particle 
Pi with respect to the mass center is v 3 ri9.

Here the last term represents the kinetic energy T9 of the body relative to 

the centroidal frame Gxyz. Since v9i 5 Zv9iZ 5 Zv 3 r9iZ, we have

T9 5
1

2
On

i51

Dmiv9i
2 5

1

2
On

i51

Zv 3 r9iZ2 Dmi

Expressing the square in terms of the rectangular components of the vector 

product and replacing the sums by integrals, we have

 T9 5
1
2 e [(vxy 2 vyx)2 1 (vyz 2 vzy)2 1 (vzx 2 vxz)2 ]  dm

 5
1
2 [v2

x e(y2 1 z2) dm 1 v2
y e(z2 1 x2) dm 1 v2

z e(x2 1 y2) dm

 2 2vxvyexy dm 2 2vyvzeyz dm 2 2vzvxezx dm]

or recalling the relations of Eqs. (18.5) and (18.6), we have

 T9 5
1
2(Ixv

2
x 1 Iyv

2
y 1 Izv

2
z 2 2 Ixyvxvy 2 2 Iyzvyvz 2 2 Izxvzvx) (18.15)
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1272 Kinetics of Rigid Bodies in Three Dimensions

Substituting Eq. (18.15) for the kinetic energy of the body relative to 

centroidal axes into Eq. (18.14), we obtain

Kinetic energy of 
a rigid body

T 5
1
2mv2 1

1
2(I xv

2
x 1 I yv

2
y 1 I zv

2
z 2 2 I xyvxvy

 2 2  I yzvyvz 2 2 I zxvzvx) (18.16)

If we choose the axes of coordinates so that they coincide with the 

principal axes x9, y9, z9 of the body at the instant considered, this relation 

reduces to

T 5
1
2mv 2 1

1
2(I x9v

2
x9 1 I y9v

2
y9 1 I z9v

2
z9) (18.17)

where v 5 velocity of mass center

v 5 angular velocity

 m 5 mass of rigid body

Ix9, Iy9, Iz9  5 principal centroidal moments of inertia

These results enable us to apply the principles of work and energy 

(Sec. 17.1A) and the conservation of energy (Sec. 17.1E) to the three-

dimensional motion of a rigid body.

Kinetic Energy of a Rigid Body with a Fixed Point. In the 

particular case of a rigid body rotating in three-dimensional space about 

a fixed point O, we can express the kinetic energy of the body in terms 

of its moments and products of inertia with respect to axes attached at O
(Fig. 18.8). Recalling the definition of the kinetic energy of a system of 

particles and substituting vi 5 ZviZ 5 Zv 3 riZ, we have

 T 5
1

2
On

i51

Dmiv
2
i 5

1

2
On

i51

Zv 3 riZ2 Dmi (18.18)

Manipulations similar to those used to derive Eq. (18.15) yield

T 5
1
2(Ixv

2
x 1 Iyv

2
y 1 Izv

2
z 2 2Ixyvxvy 2 2Iyzvyvz 2 2Izxvzvx)

(18.19)

or if we choose the principal axes x9, y9, z9 of the body at the origin O as 

coordinate axes, we have

T 5
1
2(Ix9v

2
x9 1 Iy9v

2
y9 1 Iz9v

2
z9) (18.20)

T 5
1
2mv2 1

1
2(I(( xv

2
x 1 I yv

2
y 1 I zv

2
z 2 2I xyx vxvy

2 2I yzvyvz 2 2I zxzz vzvx)

T 5
1
2mv 2 1

1
2(I(( x9v

2
x9 1 I y9v

2
y9 1 I z9v

2
z9)

T 5
1
2(IxII v2

x 1 IyII v2
y 1 IzII v2

z 2 2IxII yx vxvy 2 2IyII zvyvz 2 2IzII xzz vzvx)

T 5
1
2(IxII 9v

2
x9 1 IyII 9v

2
y9 1 IzII 9v

2
z9)

O

y

x

z

Pi

ri

vi = ω × ri

ω

Fig. 18.8 The velocity of every particle Pi of 
a rigid body undergoing fixed axis rotation is 
v 3 ri.
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18.1 Energy and Momentum of a Rigid Body 1273

Sample Problem 18.1

A rectangular plate with a mass m is suspended from two wires at A and 

B and is hit at D in a direction perpendicular to the plate. Denoting the 

impulse applied at D by F Dt, determine immediately after the impact 

(a) the velocity of the mass center G, (b) the angular velocity of the plate.

STRATEGY: Since you have an impulse applied to the plate, use the 

principle of impulse and momentum.

MODELING: Choose the plate to be your system and model it as a 

rigid body undergoing three-dimensional motion. 

ANALYSIS: Assume that the wires remain taut. Therefore, the compo-

nents vy of v and vz of v are zero after the impact. Then you have

v 5 vxi 1 vzk   v 5 vxi 1 vy 
j

The x, y, z axes are principal axes of inertia, so you have

 HG 5 Ixvxi 1 Iyvy 
j   HG 5

1
12 mb2vxi 1

1
12 ma2vy 

j (1)

Principle of Impulse and Momentum. Since the initial momenta 

are zero, the system of the impulses must be equivalent to the system of 

the final momenta (Fig. 1).

A B

C
D

a

bG

F Δ t

x

y

z

x

y

z

m⎯vzk m⎯vxi
GG

F Δ t W Δ t

TA Δ t TB Δ t

=

a
2 Hyj

Hxi

b
2

Fig. 1 Impulse–momentum diagram for the plate.

a. Velocity of Mass Center. Equate the components of the impulses 

and momenta in the x and z directions as

x components:  0 5 mvx vx 5 0

z components:  2F Dt 5 mvz vz 5 2F Dt/m
v 5 vxi 1 vzk   v 5 2(F Dt/m)k b

b. Angular Velocity. Equate the moments of the impulses and 

momenta about the x and y axes as

About x axis: 
1
2 
bF Dt 5 Hx

About y axis: 2
1
2 
aF Dt 5 Hy

 HG 5 Hxi 1 Hyj   HG 5 
1
2 bF ¢ti 2

1
2 
aF ¢tj (2)
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1274 Kinetics of Rigid Bodies in Three Dimensions

Comparing Eqs. (1) and (2), you can conclude that

 vx 5 6F Dt/mb  vy 5 26F Dt/ma

 v 5 vxi 1 vyj  v 5 (6F Dt/mab)(ai 2 bj) b

Note that v is directed along the diagonal AC (Fig. 2).

REFLECT and THINK: Equating the y components of the 

impulses and momenta and their moments about the z axis, 

you can obtain two additional equations that yield TA 5 TB 5 
1
2W.

This verifies that the wires remain taut and that the initial 

assumption was correct. If the impulse was at G, this would 

reduce to a two-dimensional problem.

Sample Problem 18.2

A homogeneous disk of radius r and mass m is mounted on an axle OG 

of length L and negligible mass. The axle is pivoted at the fixed point O, 

and the disk is constrained to roll on a horizontal floor. The disk rotates 

counterclockwise at the rate v1 about the axle OG. Determine (a) the 

angular velocity of the disk, (b) its angular momentum about O, (c) its 

kinetic energy, (d) the linear momentum and angular momentum about G 

of the disk.

STRATEGY: Recognizing that the wheel rolls without slip, you can use 

kinematics to calculate the angular velocity of the bar around O. Then you 

can determine the kinetic energy and momenta of the system. 

MODELING and ANALYSIS: 

a. Angular Velocity. As the disk rotates about the axle OG, it also 

rotates with the axle about the y axis at a rate of v2 clockwise (Fig. 1). 

The total angular velocity of the disk is therefore

 v 5 v1i 2 v2 j  (1)

L

O
G

rω1

(continued)

L

xO
G

r

y

z C

rC

ω1i

–ω2 j

Fig. 1 Angular velocity of the 
system.

x

y

A B

CD

G
b
2

HG ω

a
2

x

z

y

⎯v

A
B

CD

G

ω

Fig. 2 Directions of the angular velocity, angular 
momentum, and velocity of G immediately after the 
impulse.
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18.1 Energy and Momentum of a Rigid Body 1275

The disk is rolling, so set the velocity of C to zero to determine v2 as

vC 5 v 3 rC 5 0

(v1i 2 v2j) 3 (Li 2 rj) 5 0

(Lv2 2 rv1)k 5 0   v2 5 rv1/L

Substituting into Eq. (1) for v2 gives

 v 5 v1i 2 (rv1/L)j b

b. Angular Momentum about O. Assuming the axle to be part 

of the disk, you can consider the disk to have a fixed point at O. Since 

the x, y, and z axes are principal axes of inertia for the disk, you have

 Hx 5 Ixvx 5 (
1
2mr2)v1

 Hy 5 Iyvy 5 (mL2 1 
1
4mr2)(2rv1/L)

 Hz 5 Izvz 5 (mL2 1 
1
4mr2)0 5 0

HO 5 
1
2mr2v1i 2 m(L2 1 

1
4r

2)(rv1/L)j b

c. Kinetic Energy. Using the values obtained for the moments of 

inertia and the components of v, you have

T 5
1
2(Ixv

2
x 1 Iyv

2
y 1 Izv

2
z ) 5

1
2 [

1
2mr2v2

1 1 m(L2 1
1
4r2)(2rv1/L)2 ]

T 5
1
8mr2 a6 1

r2

L2
b v2

1 b

d. Linear Momentum and Angular Momentum about G. The 

linear momentum vector mv and the angular momentum couple HG are 

(Fig.2)

mv 5 mrv1k b

and

HG 5 Ix9vxi 1 Iy9vyj 1 Iz9vzk 5
1
2mr2v1i 1

1
4mr2(2rv1/L)j

HG 5
1
2mr2v1 ai 2

r

2L
 jb b

G
x'

y'

z'

(HG)x

(HG)y

m⎯v

Fig. 2 Linear and 
angular momenta for 
the system.

REFLECT and THINK: If the mass of the axle was not negligible and 

it was instead modeled as a slender rod with a mass Maxle, it would also 

contribute to the kinetic energy Taxle 5
1
2 113MaxleL

22v2
2 and to the angular 

momentum Haxle 5 2113MaxleL
22v2 j of the system.
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12761276

In this section, you saw how to compute the angular momentum of a rigid body 
in three dimensions and to apply the principle of impulse and momentum to the 

three-dimensional motion of a rigid body. You also learned how to compute the kinetic 
energy of a rigid body in three dimensions. It is important for you to keep in mind 

that, except for very special situations, the angular momentum of a rigid body in three 

dimensions cannot be expressed as the product  Iv and, therefore, does not have the 

same direction as the angular velocity v (Fig. 18.3).

1. To compute the angular momentum HG of a rigid body about its mass 
center G, you must first determine the angular velocity v of the body with respect 

to a system of axes centered at G and of fixed orientation. Since you will be asked 

in the problems to determine the angular momentum of the body at a given instant 
only, select the system of axes that will be most convenient for your computations.

 a. If the principal axes of inertia of the body at G are known, use these axes 

as coordinate axes x9, y9, and z9, since the corresponding products of inertia of the 

body are equal to zero. Resolve v into components vx9, vy9, and vz9 along these axes 

and compute the principal moments of inertia as  Ix9, Iy9, Iz9. The corresponding 

components of the angular momentum HG are

 Hx9 5 Ix9vx9    Hy9 5 I y9vy9    Hz9 5 Iz9vz9 (18.10)

 b. If the principal axes of inertia of the body at G are not known, you must 

use Eqs. (18.7) to determine the components of the angular momentum HG. These 

equations require prior computation of the products of inertia of the body as well as 

prior computation of its moments of inertia with respect to the selected axes.

 c. The magnitude and direction cosines of HG are obtained from formulas 

similar to those used in Statics [Sec. 2.4A]. We have

HG 5 2H2
x 1 H2

y 1 H2
z

cos θx 5
Hx

HG
    cos θy 5

Hy

HG
    cos θz 5

Hz

HG

 d. Once you have determined HG, you can obtain the angular momentum of 

the body about any given point O by observing from Fig. (18.4) that

 HO 5 r 3 mv 1 HG  (18.11)

where r is the position vector of G relative to O and mv is the linear momentum of 

the body.

2. To compute the angular momentum HO of a rigid body with a fixed point O, 
follow the procedure described in paragraph 1, except that you should now use axes 

centered at the fixed point O. Alternatively, you can use Eq. 18.11.

 a. If you know the principal axes of inertia of the body at O, resolve v into 

components along these axes [Sample Prob. 18.2]. Obtain the corresponding components 

of the angular momentum HG from equations similar to Eqs. (18.10).

SOLVING PROBLEMS 
ON YOUR OWN
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1277 1277

b. If you do not know the principal axes of inertia of the body at O, you 

must compute the products as well as the moments of inertia of the body with respect 

to the axes that you have selected. Then use Eqs. (18.13) to determine the components 

of the angular momentum HO.

3. To apply the principle of impulse and momentum to the solution of a problem 

involving the three-dimensional motion of a rigid body, use the same vector equation 

that you used for plane motion in Chap. 17:

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.14)

where the initial and final systems of momenta are each represented by a linear-
momentum vector mv and an angular-momentum couple HG. Now, however, these 

vector-and-couple systems should be represented in three dimensions, as shown in 

Fig. 18.6, and HG should be determined as explained in paragraph 1.

 a. In problems involving the application of a known impulse to a rigid 
body, draw the impulse–momentum diagram corresponding to Eq. (17.14). Equating 

the components of the vectors involved, you can determine the final linear momentum 

mv of the body and, thus, the corresponding velocity v of its mass center. Equating 

moments about G, you can determine the final angular momentum HG of the body. 

Then substitute the values obtained for the components of HG into Eq. (18.10) or 

(18.7) and solve for the corresponding values of the components of the angular 

velocity v of the body [Sample Prob. 18.1].

 b. In problems involving unknown impulses, draw the impulse–momentum 

diagram corresponding to Eq. (17.14) and write equations that do not involve the 

unknown impulses. You can obtain such equations by equating moments about the 

point or line of impact.

4. To compute the kinetic energy of a rigid body with a fixed point O, resolve the 

angular velocity v into components along axes of your choice and compute the 

moments and products of inertia of the body with respect to these axes. As was 

the case for the computation of the angular momentum, use the principal axes of 

inertia x9, y9, and z9 if you can easily determine them. The products of inertia are then 

zero [Sample Prob. 18.2], and the expression for the kinetic energy reduces to 

 T 5
1
2(Ix9v

2
x9 1 Iy9v

2
y9 1 Iz9v

2
x9) (18.20)

If you must use axes other than the principal axes of inertia, express the kinetic energy 

of the body as shown in Eq. (18.19).

5. To compute the kinetic energy of a rigid body in general motion, consider the 

motion as the sum of a translation with the mass center G and a rotation about G. 
The kinetic energy associated with the translation is 

1
2mv2. If you can use principal 

axes of inertia, express the kinetic energy associated with the rotation about G in the 

form used in Eq. (18.20). The total kinetic energy of the rigid body is then

 T 5
1
2mv 

2 1
1
2(Ix9v

2
x9 1 Iy9v

2
y9 1 Iz9v

2
z9) (18.17)

If you must use axes other than the principal axes of inertia to determine the kinetic 

energy associated with the rotation about G, express the total kinetic energy of the 

body as shown in Eq. (18.16).
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18.1 A thin, homogeneous disk of mass m and radius r spins at the con-

stant rate v1 about an axle held by a fork-ended vertical rod that 

rotates at the constant rate v2. Determine the angular momentum 

HG of the disk about its mass center G.

 18.2 A thin rectangular plate of weight 15 lb rotates about its vertical 

diagonal AB with an angular velocity v. Knowing that the z axis is 

perpendicular to the plate and that v is constant and equal to 5 rad/s, 

determine the angular momentum of the plate about its mass center G.

A

G

x
z

12 in.

9 in.

B

ω

y

Fig. P18.2

 18.3 Two uniform rods AB and CE, each of weight 3 lb and length 2 ft, 

are welded to each other at their midpoints. Knowing that this 

assembly has an angular velocity of constant magnitude v 5 12 rad/s, 

determine the magnitude and direction of the angular momentum HD

of the assembly about D.

 18.4 A homogeneous disk of weight W 5 6 lb rotates at the constant 

rate v1 5 16 rad/s with respect to arm ABC, which is welded to a 

shaft DCE rotating at the constant rate v2 5 8 rad/s. Determine the 

angular momentum HA of the disk about its center A.

D

E

B

C

A

x

y

z

ω1

ω2

r = 8 in.

12 in.

12 in.

9 in.

9 in.

Fig. P18.4

Problems

ω2

x

y

z

G

ω1

Fig. P18.1

A

B

C

D

E
x

y

z
ω

3 in.

3 in.

9 in.

9 in.

Fig. P18.3
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18.5 A thin disk of mass m 5 4 kg rotates at the constant rate 

v2 5 15 rad/s with respect to arm ABC, which itself rotates at the 

constant rate v1 5 5 rad/s about the y axis. Determine the angular 

momentum of the disk about its center C.

18.6 A solid rectangular parallelepiped of mass m has a square base of 

side a and a length 2a. Knowing that it rotates at the constant rate 

v about its diagonal AC9 and that its rotation is observed from A as 

counterclockwise, determine (a) the magnitude of the angular 

momentum HG of the parallelepiped about its mass center G, 

(b) the angle that HG forms with the diagonal AC9.

A

B
C

B'
C'

D'

ω

x

y

z

G 2a

a
a

Fig. P18.6

 18.7 Solve Prob. 18.6, assuming that the solid rectangular parallelepiped 

has been replaced by a hollow one consisting of six thin metal plates 

welded together.

 18.8 A thin homogeneous disk with a mass m and radius r is mounted on 

the horizontal axle AB. The plane of the disk forms an angle of 

β 5 20° with the vertical. Knowing that the axle rotates with an 

angular velocity v, determine the angle θ formed by the axle and the 

angular momentum of the disk about G.

 18.9 Determine the angular momentum HD of the disk of Prob. 18.4 

about point D.

 18.10 Determine the angular momentum of the disk of Prob. 18.5 about 

point A. 

 18.11 Determine the angular momentum HO of the disk of Sample 

Prob. 18.2 from the expressions obtained for its linear momentum 

mv and its angular momentum HG, using Eqs. (18.11). Verify that 

the result obtained is the same as that obtained by direct 

computation.

A B

x

y

 r = 150 mm

450 mm

225 mm

z

ω1 C

ω2

Fig. P18.5

y

z

A

B

x

ω

β

G

Fig. P18.8
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18.12 The 100-kg projectile shown has a radius of gyration of 100 mm 

about its axis of symmetry Gx and a radius of gyration of 250 mm 

about the transverse axis Gy. Its angular velocity v can be resolved 

into two components; one component, directed along Gx, measures 

the rate of spin of the projectile, while the other component, directed 

along GD, measures its rate of precession. Knowing that θ 5 68 and 

that the angular momentum of the projectile about its mass center G
is HG 5 (500 g?m2/s)i 2 (10 g?m2/s)j, determine (a) the rate of spin, 

(b) the rate of precession.

D

x
y

300 mm
B

A

q

v⎯G

Fig. P18.12

 18.13 Determine the angular momentum HA of the projectile of Prob. 18.12 

about the center A of its base, knowing that its mass center G has a 

velocity v of 750 m/s. Give your answer in terms of components 

respectively parallel to the x and y axes shown and to a third axis z 
pointing toward you.

 18.14 (a) Show that the angular momentum HB of a rigid body about 

point B can be obtained by adding to the angular momentum HA of 

that body about point A the vector product of the vector rA/B drawn 

from B to A and the linear momentum mv of the body:

HB 5 HA 1 rA/B 3 mv

  (b) Further show that when a rigid body rotates about a fixed axis, 

its angular momentum is the same about any two points A and B 
located on the fixed axis (HA 5 HB) if, and only if, the mass 

center G of the body is located on the fixed axis.

 18.15 Two L-shaped arms each have a mass of 5 kg and are welded at the 

one-third points of the 600-mm shaft AB to form the assembly 

shown. Knowing that the assembly rotates at the constant rate of 

360 rpm, determine (a) the angular momentum HA of the assembly 

about point A, (b) the angle formed by HA and AB.

 18.16 For the assembly of Prob. 18.15, determine (a) the angular momentum 

HB of the assembly about point B, (b) the angle formed by HB and BA. 

 18.17 A 10-lb rod of uniform cross section is used to form the shaft shown. 

Knowing that the shaft rotates with a constant angular velocity v 

of magnitude 12 rad/s, determine (a) the angular momentum HG of 

the shaft about its mass center G, (b) the angle formed by HG and 

the axis AB.

 18.18 Determine the angular momentum of the shaft of Prob. 18.17 about 

(a) point A, (b) point B.

x

y

z

ω

200 mm

200 mm200 mm

200 mm
A

B

Fig. P18.15

A

G

B

x
z

10 in.

10 in.

10 in.
10 in.

10 in. 10 in.

ω

y

Fig. P18.17
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18.19 Two triangular plates each have a mass of 8 kg and are welded to 

a vertical shaft AB. Knowing that the system rotates at the constant 

rate of v 5 6 rad/s, determine its angular momentum about G.

18.20 The assembly shown consists of two pieces of sheet aluminum with a 

uniform thickness and total mass of 1.6 kg welded to a light axle 

supported by bearings A and B. Knowing that the assembly rotates 

with an angular velocity of constant magnitude v 5 20 rad/s, 

determine the angular momentum HG of the assembly about point G.

A

B

x

y

z
ω

160 mm

160 mm

G120 mm

120 mm

Fig. P18.20

 18.21 One of the sculptures displayed on a university campus consists of a 

hollow cube made of six aluminum sheets, each 1.5 3 1.5 m, 

welded together and reinforced with internal braces of negligible 

weight. The cube is mounted on a fixed base at A and can rotate 

freely about its vertical diagonal AB. As she passes by this display 

on the way to a class in mechanics, an engineering student grabs 

corner C of the cube and pushes it for 1.2 s in a direction perpen-

dicular to the plane ABC with an average force of 50 N. Having 

observed that it takes 5 s for the cube to complete one full revolu-

tion, she flips out her calculator and proceeds to determine the 

mass of the cube. What is the result of her calculation? (Hint: The 

perpendicular distance from the diagonal joining two vertices of a 

cube to any of its other six vertices can be obtained by multiplying 

the side of the cube by 12 /3.)

 18.22 If the aluminum cube of Prob. 18.21 were replaced by a cube of the 

same size, made of six plywood sheets with mass 8 kg each, how 

long would it take for that cube to complete one full revolution if 

the student pushed its corner C in the same way that she pushed the 

corner of the aluminum cube?

 18.23 A uniform rod of total mass m is bent into the shape shown and is 

suspended by a wire attached at B. The bent rod is hit at D in a 

direction perpendicular to the plane containing the rod (in the nega-

tive z direction). Denoting the corresponding impulse by F Dt, deter-

mine (a) the velocity of the mass center of the rod, (b) the angular 

velocity of the rod.

 18.24 Solve Prob. 18.23, assuming that the bent rod is hit at C.

750 mm

y

C

B

A

D

G

ω

750 mm

x
z

750 mm

750 mm

Fig. P18.19

B

C

A

Fig. P18.21

B

G

CD

A

a

2a

a

z

x

y

Fig. P18.23
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18.25 Three slender rods, each of mass m and length 2a, are welded 

together to form the assembly shown. The assembly is hit at A in a 

vertical downward direction. Denoting the corresponding impulse 

by F Dt, determine immediately after the impact (a) the velocity of 

the mass center G, (b) the angular velocity of the rod.

z

x

B

G

A

a

a

a

a

a

a

y

Fig. P18.25

 18.26 Solve Prob. 18.25, assuming that the assembly is hit at B in the 

negative x direction.

 18.27 Two circular plates, each of mass 4 kg, are rigidly connected by a 

rod AB of negligible mass and are suspended from point A as shown. 

Knowing that an impulse F Dt 5 2(2.4 N?s)k is applied at point D, 

determine (a) the velocity of the mass center G of the assembly, 

(b) the angular velocity of the assembly.

 18.28 Two circular plates, each of mass 4 kg, are rigidly connected by a 

rod AB of negligible mass and are suspended from point A as shown. 

Knowing that an impulse F Dt 5 (2.4 N?s)j is applied at point D, 

determine (a) the velocity of the mass center G of the assembly, (b) 
the angular velocity of the assembly.

 18.29 A circular plate of mass m is falling with a velocity v0 and no angular 

velocity when its edge C strikes an obstruction. A line passing the 

origin and parallel to the line CG makes a 458 angle with the x-axis. 

Assuming the impact to be perfectly plastic (e 5 0), determine the 

angular velocity of the plate immediately after the impact.

y

z x

C

v0�

G

R

Fig. P18.29

 18.30 For the plate of Prob. 18.29, determine (a) the velocity of its mass 

center G immediately after the impact, (b) the impulse exerted on 

the plate by the obstruction during the impact.

x

B

A

D

180 mm

z

G

180 mm

150 mm

150 mm

y

Fig. P18.27 and P18.28
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18.31 A square plate of side a and mass m supported by a ball-and-socket 

joint at A is rotating about the y axis with a constant angular velocity 

v 5 v0j when an obstruction is suddenly introduced at B in the 

xy plane. Assuming the impact at B to be perfectly plastic (e 5 0), 

determine immediately after the impact (a) the angular velocity of the 

plate, (b) the velocity of its mass center G.

z

A

B
xG

a

a

y

Fig. P18.31

 18.32 Determine the impulse exerted on the plate of Prob. 18.31 during the 

impact by (a) the obstruction at B, (b) the support at A.

 18.33 The coordinate axes shown represent the principal centroidal axes 

of inertia of a 3000-lb space probe whose radii of gyration are 

kx 5 1.375 ft, ky 5 1.425 ft, and kz 5 1.250 ft. The probe has no 

angular velocity when a 5-oz meteorite strikes one of its solar panels 

at point A with a velocity v0 5 (2400 ft/s)i 2 (3000 ft/s)j 1 

(3200 ft/s)k relative to the probe. Knowing that the meteorite 

emerges on the other side of the panel with no change in the direction 

of its velocity, but with a speed reduced by 20 percent, determine 

the final angular velocity of the probe.

x

y

z A
9 ft

0.75 ft

Fig. P18.33 and P18.34

 18.34 The coordinate axes shown represent the principal centroidal axes 

of inertia of a 3000-lb space probe whose radii of gyration are 

kx 5 1.375 ft, ky 5 1.425 ft, and kz 5 1.250 ft. The probe has no 

angular velocity when a 5-oz meteorite strikes one of its solar 

panels at point A and emerges on the other side of the panel with 

no change in the direction of its velocity, but with a speed reduced 

by 25 percent. Knowing that the final angular velocity of the probe 

is v 5 (0.05 rad/s)i 2 (0.12 rad/s)j 1 vzk and that the x-component 

of the resulting change in the velocity of the mass center of the probe 

is 20.675 in./s, determine (a) the component vz of the final angular 

velocity of the probe, (b) the relative velocity v0 with which the 

meteorite strikes the panel.
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18.35 A 1200-kg satellite designed to study the sun has an angular velocity 

of v0 5 (0.050 rad/s)i 1 (0.075 rad/s)k when two small jets are 

activated at A and B in a direction parallel to the y axis. Knowing 

that the coordinate axes are principal centroidal axes, that the 

radii of gyration of the satellite are kx 5 1.120 m, ky 5 1.200 m, and 

kz 5 0.900 m, and that each jet produces a 50-N thrust, determine 

(a) the required operating time of each jet if the angular velocity of 

the satellite is to be reduced to zero, (b) the resulting change in the 

velocity of the mass center G.

 18.36 If jet A in Prob. 18.35 is inoperative, determine (a) the required 

operating time of jet B to reduce the x-component of the angular 

velocity of the satellite to zero, (b) the resulting final angular velocity, 

(c) the resulting change in the velocity of the mass center G.

 18.37 Denoting, respectively, by v, HO, and T the angular velocity, the 

angular momentum, and the kinetic energy of a rigid body with a 

fixed point O, (a) prove that HO?v 5 2T; (b) show that the angle θ 

between v and HO will always be acute.

 18.38 Show that the kinetic energy of a rigid body with a fixed point O 

can be expressed as T 5
1
2 IOLv

2, where v is the instantaneous angular 

velocity of the body and IOL is its moment of inertia about the line 

of action OL of v. Derive this expression (a) from Eqs. (9.46) (or 

Eq. B.19 in the Appendix) and (18.19), (b) by considering T as the 

sum of the kinetic energies of particles Pi describing circles of radius 

ρi about line OL.

 18.39 Determine the kinetic energy of the disk of Prob. 18.1.

 18.40 Determine the kinetic energy of the plate of Prob. 18.2.

 18.41 Determine the kinetic energy of the assembly of Prob. 18.3.

 18.42 Determine the kinetic energy of the disk of Prob. 18.4.

 18.43 Determine the kinetic energy of the disk of Prob. 18.5.

 18.44 Determine the kinetic energy of the solid parallelepiped of 

Prob. 18.6.

 18.45 Determine the kinetic energy of the hollow parallelepiped of 

Prob. 18.7.

 18.46 Determine the kinetic energy of the disk of Prob. 18.8.

 18.47 Determine the kinetic energy of the assembly of Prob. 18.15.

 18.48 Determine the kinetic energy of the shaft of Prob. 18.17.

 18.49 Determine the kinetic energy of the assembly of Prob. 18.19.

 18.50 Determine the kinetic energy imparted to the cube of Prob. 18.21.

 18.51 Determine the kinetic energy lost when edge C of the plate of 

Prob. 18.29 hits the obstruction.

 18.52 Determine the kinetic energy lost when the plate of Prob. 18.31 hits 

the obstruction at B.

 18.53 Determine the kinetic energy of the space probe of Prob. 18.33 in  its 

motion about its mass center after its collision with the meteorite.

 18.54 Determine the kinetic energy of the space probe of Prob. 18.34 in its 

motion about its mass center after its collision with the meteorite.

x

BG

A

y

z

1.8 m

1.6 m

1.2 m

Fig. P18.35

O

y

L

x

z

Pi

ω

ρi

Fig. P18.38
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*18.2 Motion of a Rigid Body in Three Dimensions 1285

*18.2  MOTION OF A RIGID BODY 
IN THREE DIMENSIONS

As indicated in Sec. 18.1A, the fundamental equations

oF 5 ma (18.1)

oMG 5 H
.

G (18.2)

remain valid in the most general case of the motion of a rigid body. Before 

we could apply Eq. (18.2) to the three-dimensional motion of a rigid body, 

however, it was necessary to derive Eqs. (18.7), which relate the compo-

nents of the angular momentum HG and those of the angular velocity v. 

It still remains for us to find an effective and convenient way to compute 

the components of the derivative H
.

G of the angular momentum. In this 

section, we do that first and then show how we can use the results to 

analyze motion of a rigid body in space.

18.2A  Rate of Change of Angular 
Momentum

The notation HG represents the angular momentum of a rigid body in its 

motion relative to centroidal axes GX9Y9Z9 with a fixed orientation (Fig. 18.9). 

Since H
.

G represents the rate of change of HG with respect to the same axes, 

it would seem natural to use components of v and HG along the axes 

X9, Y9, Z9 in writing the relations of Eq. (18.7). However, since the body 

rotates, its moments and products of inertia change continually, and it would 

be necessary to determine their values as functions of time. It is therefore 

more convenient to use axes x, y, z attached to the body, ensuring that its 

moments and products of inertia maintain the same values during the motion. 

The angular velocity v, however, still should be defined with respect to the 

frame GX9Y9Z9 with a fixed orientation. We can then resolve the vector v 

into components along the rotating x, y, and z axes. Applying the relations 

of Eq. (18.7), we obtain the components of vector HG along the rotating 

axes. Vector HG, however, represents the angular momentum about G of the 

body in its motion relative to the frame GX9Y9Z9.

Differentiating the components of the angular momentum in 

Eq. (18.7) with respect to t, we define the rate of change of vector HG 

with respect to the rotating frame Gxyz as

 1H. G2Gxyz 5 H
.
xi 1 H

.
y j 1 H

.
zk (18.21)

where i, j, and k are the unit vectors along the rotating axes. Recall from 

Sec. 15.5A that the rate of change H
.

G of vector HG with respect to the 

frame GX9Y9Z9 is found by adding 1H. G2Gxyz to the vector product V 3 HG, 

where V denotes the angular velocity of the rotating frame. That is,

 H
.

G 5 1H. G2Gxyz 1 V 3 HG (18.22)

where HG 5  angular momentum of the body with respect to frame GX9Y9Z9 

with a fixed orientation

  1H. G2Gxyz 5  rate of change of HG with respect to rotating frame Gxyz to 

be computed from the relations in Eqs. (18.7) and (18.21)

 V 5 angular velocity of rotating frame Gxyz

H
.

G 5 1H. G2GxGG yx z 1 V 3 HG

G

Y

O X

Z

Y'

y

X'

x

z

Z'

ω

HG

Fig. 18.9 Angular velocity and angular 
momentum of a rigid body with centroidal 
axes X9Y9Z9 of fixed orientation and 
centroidal axes xyz attached to the body.
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1286 Kinetics of Rigid Bodies in Three Dimensions

Substituting for H
.

G from Eq. (18.22) into Eq. (18.2), we have

oMG 5 1H. G2Gxyz 1 V 3 HG (18.23)

If the rotating frame is attached to the body as we have assumed in this 

discussion, its angular velocity V is identically equal to the angular 

velocity v of the body. In many applications, however, it is advantageous 

to use a frame of reference that is not actually attached to the body but 

rotates in an independent manner. For example, if the body considered is 

axisymmetric, as in Sample Prob. 18.5 or Sec. 18.3, it is possible to select 

a frame of reference where the moments and products of inertia of the 

body remain constant, but which rotate less than the body itself. As a 

result, it is possible to obtain simpler expressions for the angular velocity 

v and the angular momentum HG of the body than we could have obtained 

if the frame of reference had actually been attached to the body. It is clear 

that in such cases the angular velocity V of the rotating frame and the 

angular velocity v of the body are different.

*18.2B Euler’s Equations of Motion
If we choose the x, y, and z axes to coincide with the principal axes of 

inertia of the body, we can use the simplified relations in Eq. (18.10) to 

determine the components of the angular momentum HG. Omitting the 

primes from the subscripts, we have

 HG 5 Ixvxi 1 Iyvy j 1 Izvzk (18.24)

where  Ix,  Iy, and  Iz denote the principal centroidal moments of inertia of 

the body. Substituting for HG from Eq. (18.24) into Eq. (18.23) and setting 

V 5 v, we obtain the three scalar equations:

Euler’s equations 
of motion

  oMx 5 Ixv
.

x 2 (Iy 2 Iz)vyvz

  oMy 5 Iyv
.

y 2 (Iz 2 Ix)vzvx (18.25)

 oMz 5 Izv
.

z 2 (Ix 2 Iy)vxvy

We can use these equations, called Euler’s equations of motion after the 

Swiss mathematician Leonhard Euler (1707–1783), to analyze the motion 

of a rigid body about its mass center. In the following sections, however, 

we will use Eq. (18.23) in preference to Eqs. (18.25), since Eq. (18.23) 

is more general, and the compact vectorial form in which it is expressed 

is easier to remember.

Writing Eq. (18.1) in scalar form, we obtain the three additional 

equations of

 oFx 5 max    oFy 5 may    oFz 5 maz (18.26)

Together with Euler’s equations, these form a system of six differential 

equations. Given appropriate initial conditions, these differential equations 

have a unique solution. Thus, the motion of a rigid body in three dimensions 

is completely defined by the resultant and the moment resultant of the 

oMG 5 1H. GHH 2GxGG yx z 1 V 3 HG

oMxM 5 IxII v
.

x 2 (I(( yII 2 IzII )vyvz

oMyMM 5 IyII v
.

y 2 (I(( zII 2 IxII )vzvx

oMzM 5 IzII v
.

z 2 (I(( xII 2 IyII )vxvy
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*18.2 Motion of a Rigid Body in Three Dimensions 1287

external forces acting on it. This result is a generalization of a similar 

result obtained in Sec. 16.1C in the case of the plane motion of a rigid 

body. It follows that in three as well as in two dimensions, two systems 

of forces that are equipollent are also equivalent; that is, they have the 

same effect on a given rigid body.

Considering in particular the system of the external forces acting on 

a rigid body (Fig. 18.10a) and the system of the inertial terms associated 

with the particles forming the rigid body (Fig. 18.10b), we can state that 

the two systems—which were shown in Sec. 14.1A to be equipollent—are 

also equivalent. Replacing the inertia terms in Fig. 18.10b by ma and H
.

G, 

we can verify that the system of the external forces acting on a rigid body 

in three-dimensional motion is equivalent to the system consisting of the 

vector ma attached at the mass center G of the body and the couple of 

moment H
.

G (Fig. 18.11), where we obtain H
.

G from the relations in 

Eqs. (18.7) and (18.22). Note that the equivalence of the systems of 

vectors shown in Figs. 18.10 and 18.11 has been indicated by red equals 

signs. You can solve problems involving the three-dimensional motion of 

a rigid body by considering the free-body diagram and kinetic diagram 

represented in Fig. 18.11 and by writing appropriate scalar equations 

relating the components or moments of the external forces and the inertial 

terms (see Sample Prob. 18.3).

=

(a)

Pi

G

(b)

(Δmi)a i

G

F1

F2

F3

F4

Fig. 18.10 (a) The system of external forces acting on a 
rigid body is equivalent to (b) the system of inertia terms 
associated with the particles of the rigid body.

*18.2C  Motion of a Rigid Body About 
a Fixed Point

If we want to analyze the motion of a rigid body constrained to rotate 

about a fixed point O, it is useful to write an equation involving the 

moments about O of the external forces and of the inertial terms, since 

this equation contains the unknown reaction at O. Although we can obtain 

such an equation from Fig. 18.11, it may be more convenient to write it 

by considering the rate of change of the angular momentum HO of the 

body about the fixed point O (Fig. 18.12). Recalling Eq. (14.11), we have

 oMO 5 H
.

O (18.27)

where H
.

O denotes the rate of change of the vector HO with respect to the 

fixed frame OXYZ. A derivation similar to that used in Sec. 18.2A enables 

G

= ⎯am

F1

F2

F3

F4

G

HG
.

Fig. 18.11 The free-body diagram and 
kinetic diagram show that the system of 
external forces is equivalent to the system 
consisting of the vectors ma– attached at the 
mass center G and H

.
G.

HO

O

Y

y

X

z

x

Z

ω

Fig. 18.12 Angular velocity and angular 
momentum of a rigid body rotating about a 
fixed point.
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1288 Kinetics of Rigid Bodies in Three Dimensions

us to relate H
.

O to the rate of change 1H. O2Oxyz of HO with respect to the 

rotating frame Oxyz. Substitution into Eq. (18.27) leads to

oMO 5 (H
.

O)Oxyz 1 V 3 HO (18.28)

where oMO 5 sum of moments about O of forces applied to the rigid body

 HO 5  angular momentum of the body with respect to fixed 

frame OXYZ

 1H. O2Oxyz 5  rate of change of HO with respect to rotating frame Oxyz to 

be computed from relations in Eq. (18.13)

 V 5 angular velocity of rotating frame Oxyz

If the rotating frame is attached to the body, its angular velocity V
is identically equal to the angular velocity v of the body. However, as 

indicated in the last paragraph of Sec. 18.2A, in many applications it is 

advantageous to use a frame of reference that is not actually attached to 

the body but rotates in an independent ma nner.

*18.2D  Rotation of a Rigid Body About 
a Fixed Axis

We can use Eq. (18.28) to analyze the motion of a rigid body constrained 

to rotate about a fixed axis AB (Fig. 18.13). First, we note that the angular 

velocity of the body with respect to the fixed frame OXYZ is represented 

by the vector v directed along the axis of rotation. Attaching the moving 

frame of reference Oxyz to the body, with the z axis along AB, we have 

v 5 vk. Substituting vx 5 0, vy 5 0, and vz 5 v into the relations of 

Eq. (18.13), we obtain the components along the rotating axes of the 

angular momentum HO of the body about O as

Hx 5 2Ixzv    Hy 5 2Iyzv    Hz 5 Izv

Since the frame Oxyz is attached to the body, we have V 5 v, and 

Eq. (18.28) yields

 oMO 5 (H
.

O)Oxyz 1 v 3 HO

 5 (2Ixzi 2 Iyz 
j 1 Izk)v

.
1 vk 3 (2Ixzi 2 Iyz 

j 1 Izk)v

 5 (2Ixzi 2 Iyz 
j 1 Izk)α 1 (2Ixz 

j 1 Iyzi)v2

We can express this result by the three scalar equations

  oMx 5 2Ixzα 1 Iyzv
2

  oMy 5 2Iyzα 2 Ixzv
2 (18.29)

  oMz 5 Izα

When the forces and moments applied to the body are known, you 

can obtain the angular acceleration α from the last of Eqs. (18.29). You 

can then determine the angular velocity v by integration and substitute 

the values obtained for α and v into the first two of Eqs. (18.29). You can 

then use these equations plus the three equations (18.26) that define the 

motion of the mass center of the body to determine the reactions at the 

bearings A and B.

oMoo O 5 (H
.

OHH )OxOO yx z 1 V 3 HO

X

Z

Y

B

O

ω

A

x

y

z

Fig. 18.13 Angular velocity of a rigid body 
rotating about a fixed axis AB.

Photo 18.3 The revolving radio telescope is 
an example of a structure constrained to 
rotate about a fixed point.
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*18.2 Motion of a Rigid Body in Three Dimensions 1289

It is possible to select axes other than those shown in Fig. 18.13 to 

analyze the rotation of a rigid body about a fixed axis. In many cases, the 

principal axes of inertia of the body will be more advantageous. It is 

therefore a good idea to revert to Eq. (18.28) and select the system of 

axes that best fits the problem under consideration.

If the rotating body is symmetrical with respect to the xy plane, the 

products of inertia Ixz and Iyz are equal to zero. Then Eqs. (18.29) reduce 

to

 oMx 5 0  oMy 5 0  oMz 5 Izα (18.30)

which is in agreement with the results obtained in Chap. 16. If, on the 

other hand, the products of inertia Ixz and Iyz are different from zero, the 

sum of the moments of the external forces about the x and y axes are also 

different from zero, even when the body rotates at a constant rate v. 

Indeed, in this case, Eqs. (18.29) yield

 oMx 5 Iyzv
2  oMy 5 2Ixzv

2  oMz 5 0  (18.31)

This last observation leads us to discuss the balancing of rotating 
shafts. Consider, for instance, the crankshaft shown in Fig. 18.14a that is 

symmetrical about its mass center G. We first observe that, when the 

crankshaft is at rest, it exerts no lateral thrust on its supports, since its 

center of gravity G is located directly above A. The shaft is said to be 

statically balanced. The reaction at A is often referred to as a static 
reaction and is vertical, and its magnitude is equal to the weight W of the 

shaft. Let us now assume that the shaft rotates with a constant angular 

velocity v. Attaching our frame of reference to the shaft with its origin 

at G, the z axis along AB, and the y axis in the plane of symmetry of the 

shaft (Fig. 18.14b), we note that Ixz is zero and that Iyz is positive. According 

to Eqs. (18.31), there is an inertial term Iyzv
2i. Summing the moments 

about G in the x direction and applying Eq. (18.31), we have

 Ay 5
Iyzv

2

l
 j    B 5 2

Iyzv
2

l
 j (18.32)

Since the bearing reactions are proportional to v2, the shaft has a tendency 

to tear away from its bearings when rotating at high speeds. Moreover, 

since the bearing reactions Ay and B, which are called dynamic reactions, 
are contained in the yz plane, they rotate with the shaft and cause the 

structure supporting it to vibrate. These undesirable effects can be avoided 

if, by rearranging the distribution of mass around the shaft or by adding 

corrective masses, we let Iyz become equal to zero. Then the dynamic 

reactions Ay and B vanish and the reactions at the bearings reduce to the 

static reaction Az—the direction of which is fixed. The shaft is then 

dynamically as well as statically balanced.

B

G

x

y

z

ω

(a)

(b)

A

A

W

B

Ay

A z

l

B

G

A

W

Fig. 18.14 (a) The crankshaft at rest is 
statically balanced; (b) the crankshaft rotating 
with constant angular velocity may or may 
not be dynamically balanced.

Photo 18.4 The rotating automobile 
crankshaft causes static and dynamic 
reactions on its bearings. The crankshaft can 
be designed to minimize dynamic imbalances 
and reduce these reaction forces.
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1290 Kinetics of Rigid Bodies in Three Dimensions

Sample Problem 18.3

A slender rod AB with a length of L 5 8 ft and a weight of W 5 40 lb 

is pinned at A to a vertical axle DE that rotates with a constant angular 

velocity v of 15 rad/s. The rod is maintained in position by means of a 

horizontal wire BC attached to the axle and to end B of the rod. Determine 

the tension in the wire and the reaction at A.

STRATEGY: Since you have a rigid body that is not symmetrical with 

respect to the plane of motion, you need to use the three-dimensional form 

of Newton’s second law.

MODELING: Choose the rod AB as your system. The angular velocity 

is shown in Fig. 1, and the free-body and kinetic diagrams consisting of 

the vector ma attached at G and the couple H
.

G are shown in Fig. 2.

ANALYSIS: Since G describes a horizontal circle with a radius of 

r 5
1
2L cos β and BG rotates at the constant rate v (Fig. 1), you have

 a 5 an 5 2rv2I 5 2(
1
2L cos β)v2I 5 2(450 ft/s2)I

 ma 5
40

g
 (2450I) 5 2(559 lb)I

Determination of H
.

G. First compute the angular momentum HG. 

Using the principal centroidal axes of inertia x, y, and z, you have

  I x 5
1
12mL2  I y 5 0  I z 5

1
12mL2

vx 5 2v cos β  vy 5 v sin β  vz 5 0

HG 5 I xvxi 1 I yvyj 1 I zvzk

 HG 5 2
1
12mL2v cos β i

Obtain the rate of change H
.

G of HG with respect to axes of fixed orienta-

tion from Eq. (18.22). Observe that the rate of change 1H. G2Gxyz of HG with 

respect to the rotating frame Gxyz is zero and that the angular velocity V 

of that frame is equal to the angular velocity v of the rod. Thus, you have

 H
.

G 5 (H
.

G)Gxyz 1 v 3 HG

 H
.

G 5 0 1 (2v cos β i 1 v sin β j) 3 (2
1
12mL2v cos β i)

 H
.

G 5
1
12mL2v2 sin β cos β k 5 (645 lb?ft) k

Equations of Motion. The system of the external forces is equiva-

lent to the inertia terms (Fig. 2). This gives 

oMA 5 H
.

A 5 r 3 ma 1 H
.

G:

  6.93J 3 (2TI) 1 2I 3 (240J) 5 3.46J 3 (2559I) 1 645K
(6.93T 2 80)K 5 (1934 1 645)K  T 5 384 lb b

oF 5 ma:  AXI 1 AYJ 1 AZK 2 384I 2 40J 5 2559I
A 5 2(175 lb)I 1 (40 lb)J b

REFLECT and THINK: You could have obtained the value of T from HA 

and Eq. (18.28). Even though the rod rotates with a constant angular velocity, 

the asymmetry of the rod causes a moment about the z axis. Note that we 

calculated the inertial term H
.

A by adding r 3 ma and the couple H
.

G.

A

BC

D

E

L = 8 ft

β = 60°

ω

x

y

z

⎯r

A

ω

β

X

Y

Z

G

Fig. 1 Angular velocity 
of the rod.

m⎯a = –559I

X

Y

Z

X

Y

Z

A

A

G

G

6.93 ft

60°

2 ft

T = –TI

W = –40J

AXI
AZK

AYJ

3.46 ft
= HG = 645K

.

Fig. 2 Free-body diagram and kinetic 
diagram of the rod.
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*18.2 Motion of a Rigid Body in Three Dimensions 1291

Sample Problem 18.4

Two 100-mm rods A and B each have a mass of 300 g and are welded to 

shaft CD that is supported by bearings at C and D. If a couple M with a 

magnitude of 6 N?m is applied to the shaft, determine the components of 

the dynamic reactions at C and D at the instant when the shaft has reached 

an angular velocity of 1200 rpm. Neglect the moment of inertia of the 

shaft itself.

STRATEGY: Use the three-dimensional form of Newton’s second law 

in the form of Eq. (18.28) for the case of rotation about a fixed axis, where 
V 5 v.

MODELING: Choose the shaft and the two rods as your system. The 

angular momentum and angular velocity are shown in Fig. 1, and a free-

body diagram is shown in Fig. 2. 

ANALYSIS: 

Angular Momentum About O. Attach the frame of reference Oxyz 

to the body and note that the axes chosen are not principal axes of inertia 

for the body. Since the body rotates about the x axis, you know that 

vx 5 v and vy 5 vz 5 0 (Fig. 1). Substituting into Eqs. (18.13), you 

have

Hx 5 Ixv   Hy 5 2Ixyv   Hz 5 2Ixzv

HO 5 (Ixi 2 Ixyj 2 Ixzk)v

Moments of the External Forces About O. Since the frame of 

reference rotates with the angular velocity v and the only angular accel-

eration term is αx 5 α, Eq. (18.28) gives 

 oMO 5 (H
.

O)Oxyz 1 v 3 HO

 5 (Ixi 2 Ixyj 2 Ixzk)α 1 vi 3 (Ixi 2 Ixyj 2 Ixzk)v

 5 Ixαi 2 (Ixyα 2 Ixzv
2)j 2 (Ixzα 1 Ixyv

2)k (1)

Dynamic Reaction at D. The external forces consist of the weights 

of the shaft and rods, the couple M, the static reactions at C and D, and 

the dynamic reactions at C and D. Since the weights and static reactions 

are balanced, the external forces reduce to the couple M and the dynamic 

reactions C and D, as shown in Fig. 2. Taking moments about O, you 

have

 oMO 5 Li 3 (Dyj 1 Dzk) 1 Mi 5 Mi 2 DzLj 1 DyLk (2)

Equating the coefficients of the unit vector i in Eqs. (1) and (2) gives 

M 5 Ixα   M 5 2(
1
3mc2)α   α 5 3M/ 2mc2

Equating the coefficients of k and j in Eqs. (1) and (2) provides

 Dy 5 2(Ixzα 1 Ixyv
2)/L   Dz 5 (Ixyα 2 Ixzv

2)/L (3)

150 mm
150 mm

100 mm
100 mm

300 mm

A

BC

D

M

x

y

z
C

D

O
ω

HO

Fig. 1 Angular momentum and 
angular velocity of the system.

x

y

z Dyj

Dzk

Cyj

Czk
c

c

O

Mi

L1
4 L1

4
L1

2

Fig. 2 Free-body diagram for the 
system.
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1292 Kinetics of Rigid Bodies in Three Dimensions

 Using the parallel-axis theorem and noting that the product of inertia 

of each rod is zero with respect to their own centroidal axes, you obtain

 Ixy 5 omx y 5 m(
1
2L)(

1
2c) 5

1
4mLc

 Ixz 5 omx z 5 m(
1
4L)(

1
2c) 5

1
8mLc

Substituting into Eq. (3) the values found for Ixy, Ixz, and α gives

Dy 5 2
3
16(M/c) 2

1
4mcv2    Dz 5

3
8(M/c) 2

1
8mcv2

Substituting v 5 1200 rpm 5 125.7 rad/s, c 5 0.100 m, M 5 6 N?m, 

and m 5 0.300 kg, you have

Dy 5 2129.8 N  Dz 5 236.8 N b

Dynamic Reaction at C. Using a frame of reference attached at D, 

you obtain equations similar to Eqs. (3) that yield

Cy 5 2152.2 N  Cz 5 2155.2 N t

REFLECT and THINK: The dynamic forces are larger at C than at D. 
Rod A is closer to this end of the bar, so you would expect it to affect 

this end more than the other end. Note that two small 300-g rods end up 

causing forces of over 150 N. You often have to account for these large 

forces when designing mechanical systems involving rotary equipment 

(e.g., automobiles, turbines, mills). 

Sample Problem 18.5

A homogeneous disk with radius r and mass m is mounted on an axle OG 

with length L and a negligible mass. The axle is pivoted at the fixed 

point O, and the disk is constrained to roll on a horizontal surface. 

The disk rotates counterclockwise at the constant rate v1 about the axle. 

Determine (a) the force (assumed vertical) exerted by the floor on the 

disk, (b) the reaction at the pivot O.

STRATEGY: Use the three-dimensional form of Newton’s second law; 

that is, Eqs (18.1) and (18.2).

MODELING: Choose the disk as your system and model it as a rigid 

body. The angular momentum and angular velocity are shown in Fig. 1, 

and free-body and kinetic diagrams consisting of the vector ma attached 

at G and the couple H
.

G are shown in Fig. 2. 

ANALYSIS: From Sample Prob. 18.2, the axle rotates about the y axis 

at the rate v2 5 rv1/L, so you have

 ma 5 2mLv2
2i 5 2mL(rv1/L)2i 5 2(mr2v2

1/L)i (1)

L

O
G

rω1

G
x'

y'

z'
HG

Ω = − ω2 j

Fig. 1 The angular 
momentum and angular 
velocity of the disk. (continued)
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*18.2 Motion of a Rigid Body in Three Dimensions 1293

Determination of H
.

G. Allow the x, y, z axes to rotate with the 

bar OG but not with the disk; the x9, y9, z9 axes rotate with both the bar 

and the disk. Recall from Sample Prob. 18.2 that the angular momentum 

of the disk about G is

HG 5
1
2mr2v1 ai 2

r

2L
 jb

where HG is resolved into components along the rotating axes x9, y9, z9; x9 is 

along OG; and y9 is vertical at the instant shown (Fig. 1). Obtain the rate 

of change H
.

G of HG with respect to axes of fixed orientation from 

Eq. (18.22). Note that the rate of change 1H. G2Gx9y9z9 of HG with respect to 

the rotating frame is zero and that the angular velocity V of that frame is

V 5 2v2 j 5 2
rv1

L
 j

Then you have

  H
.

G 5 (H
.

G)Gx9y9z9 1 V 3 HG

  5 0 2
rv1

L
 j 3

1
2mr2v1 ai 2

r

2L
 jb

  5
1
2mr2(r/L)v2

1k  (2)

Equations of Motion. The system of the external forces is equivalent 

to the system of the inertial terms (Fig. 2), so you have

oMO 5 H
.

G: Li 3 (Nj 2 Wj) 5 H
.

G

 (N 2 W)Lk 5
1
2mr2(r/L)v2

1k

N 5 W 1
1
2mr(r/L)2v2

1  N 5 [W 1 
1
2mr(r/L)2v2

1]j (3) b

oF 5 ma: R 1 Nj 2 Wj 5 ma

Substituting for N from Eq. (3), for ma from Eq. (1), and solving for R, 

you have

R 5 2(mr2v2
1/L)i 2

1
2mr(r/L)2v2

1 j

R 5 2
mr2v2

1

L
 ai 1

r

2L
 jb b

REFLECT and THINK: This is a case where the coordinate system 

attached to the rotating object has its own angular velocity. The change 

in direction of the angular momentum of the disk ends up increasing the 

normal force. 

O

z

L

x

x

O
G

y

z

G
x'

y'y

z'

m⎯a

Ryj

Rxi
Rzk

HG 
.

Wj

Nj

=

Fig. 2 Free-body diagram and kinetic 
diagram for the system.
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12941294

In this section, you were asked to solve problems involving the three-dimensional 

motion of rigid bodies. The method you used is basically the same one you used 

in Chap. 16 in your study of the plane motion of rigid bodies. You made free-body 

and kinetic diagrams showing that the system of the external forces is equivalent to 

the system of the inertia terms. You equated sums of components and sums of moments 

on both sides of this equation. Now, however, the system of the inertia terms is 

represented by the vector ma and a couple vector H
.

G, which are explained next in 

paragraphs 1 and 2.

To solve a problem involving the three-dimensional motion of a rigid body, you should 

take the following steps.

1. Determine the angular momentum HG of the body about its mass center G 

from its angular velocity v with respect to a frame of reference GX9Y9Z9 of fixed 

orientation. This is an operation you learned to perform in Sect. 18.1. However, since 

the configuration of the body is changing with time, it is now necessary for you to use 

an auxiliary system of axes Gx9y9z9 (Fig. 18.9) to compute the components of v and 

the moments and products of inertia of the body. These axes may be rigidly attached 

to the body, in which case their angular velocity is equal to v [Sample Probs. 18.3 

and 18.4], or they may have an angular velocity V of their own [Sample Prob. 18.5].

  Recall the following ideas from the preceding section.

a. If you know the principal axes of inertia of the body at G, use these axes 

as coordinate axes x9, y9, and z9, since the corresponding products of inertia of the 

body are equal to zero. (Note that if the body is axisymmetric, these axes do not need 

to be rigidly attached to the body.) Resolve v into components vx9, vy9, and vz9 along 

these axes and compute the principal moments of inertia  Ix9,  Iy9, and  Iz9. The 

corresponding components of the angular momentum HG are

 Hx9 5 Ix9vx9   Hy9 5 Iy9vy9   Hz9 5 Iz9vz9 (18.10)

 b. If you do not know the principal axes of inertia of the body at G, you 

must use Eqs. (18.7) to determine the components of the angular momentum HG. 

These equations require your prior computation of the products of inertia of the 

body—as well as of its moments of inertia—with respect to the selected axes.

SOLVING PROBLEMS 
ON YOUR OWN
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1295 1295

(continued)

2. Compute the rate of change H
.

G of the angular momentum HG with respect to 
the frame GX9Y9Z9. Note that this frame has a fixed orientation, whereas the 

frame Gx9y9z9 you used when calculating the components of the vector v was a 

rotating frame. (Review the discussion in Sec. 15.5A of the rate of change of a vector 

with respect to a rotating frame.) Recalling Eq. (15.31), you can express the rate of 

change H
.

G as

 H
.

G 5 (H
.

G)Gx9y9z9 1 V 3 HG (18.22)

The first term in the right-hand side of Eq. (18.22) represents the rate of change of 

HG with respect to the rotating frame Gx9y9z9. This term drops out if v—and thus 

HG—remains constant in both magnitude and direction when viewed from that frame. 

On the other hand, if any of the time derivatives v
.

x9, v
.

y9, or v
.

z9 is different from zero, 

1H. G2Gx9y9z9 is also different from zero, and you should determine its components by 

differentiating Eqs. (18.10) with respect to t. Finally, we remind you that if the rotat-

ing frame is rigidly attached to the body, its angular velocity is the same as that of 

the body, and V can be replaced by v.

3. Draw the free-body and kinetic diagrams for the rigid body showing that the 

system of the external forces exerted on the body is equivalent to the vector ma 

applied at G and the couple vector H
.

G (Fig. 18.11). By equating components in any 

direction and moments about any point, you can write as many as six independent 

scalar equations of motion [Sample Probs. 18.3 and 18.5].

4. When solving problems involving the motion of a rigid body about a fixed 
point O, you may find it convenient to use the following equation that was derived 

in Sec. 18.2C and eliminates the components of the reaction at the support O. So

 oMO 5 (H
.

O)Oxyz 1 V 3 HO (18.28)

Here the first term on the right-hand side represents the rate of change of HO with 

respect to the rotating frame Oxyz, and V is the angular velocity of that frame.

5. When determining the reactions at the bearings of a rotating shaft, use 

Eq. (18.28) and take the following steps.

 a. Place the fixed point O at one of the two bearings supporting the shaft 
and attach the rotating frame Oxyz to the shaft with one of the axes directed along it. 

Assuming, for instance, that the x axis has been aligned with the shaft, you will have 

V 5 v 5 vi [Sample Prob. 18.4].

 b. Since the selected axes are usually not the principal axes of inertia at O, 
you must compute the products of inertia of the shaft—as well as its moments of 

inertia—with respect to these axes and use Eqs. (18.13) to determine HO. Assuming 

again that the x axis has been aligned with the shaft, Eqs. (18.13) reduce to

 Hx 5 Ixv   Hy 5 2Iyxv   Hz 5 2Izxv (18.139)

These equations show that HO is not directed along the shaft.
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c. To obtain H
.

O, substitute these expressions into Eq. (18.28), and let 

V 5 v 5 vi. If the angular velocity of the shaft is constant, the first term in the 

right-hand side of the equation drops out. However, if the shaft has an angular accel-

eration α 5 αi, the first term is not zero and must be determined by differentiating 

the expressions in Eq. (18.139) with respect to t. The result will be equations similar 

to Eqs. (18.139) with v replaced by α. The result also can be expressed by the three 

scalar equations of Eq. (18.29).

d. Since point O coincides with one of the bearings, you can solve the three 

scalar equations corresponding to Eq. (18.28) for the components of the dynamic 

reaction at the other bearing. If the mass center G of the shaft is located on the line 

joining the two bearings, the inertial term ma is zero. Drawing the free-body diagram 

and kinetic diagram of the shaft, you then observe that the components of the dynamic 

reaction at the first bearing must be equal and opposite to those you have just deter-

mined. If G is not located on the line joining the two bearings, you can determine the 

reaction at the first bearing by placing the fixed point O at the second bearing and 

repeating the earlier procedure [Sample Prob. 18.4]; or you can obtain additional 

equations of motion from the free-body and kinetic diagrams of the shaft, making 

sure to first determine and include the inertial term ma applied at G.

e. Most problems call for the determination of the “dynamic reactions” at 

the bearings, that is, for the additional forces exerted by the bearings on the shaft when 

the shaft is rotating. When determining dynamic reactions, ignore the effect of static 

loads, such as the weight of the shaft.
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18.55 Determine the rate of change H
.

G of the angular momentum HG of 

the disk of Prob. 18.1.

 18.56 Determine the rate of change H
.

G of the angular momentum HG of 

the plate of Prob. 18.2.

18.57 Determine the rate of change H
.

D of the angular momentum HD of 

the assembly of Prob. 18.3.

18.58 Determine the rate of change H
.

A of the angular momentum HA of 

the disk of Prob. 18.4.

 18.59 Determine the rate of change H
.

C of the angular momentum HC of 

the disk of Prob. 18.5.

18.60 Determine the rate of change H
.

G of the angular momentum HG of 

the disk of Prob. 18.8 for an arbitrary value of β, knowing that its 

angular velocity v remains constant.

 18.61 Determine the rate of change H
.

D of the angular momentum HD of 

the assembly of Prob. 18.3, assuming that at the instant considered 

the assembly has an angular velocity v 5 (12 rad/s)i and an angular 

acceleration α 5 2(96 rad/s2)i.

 18.62 Determine the rate of change H
.

D of the angular momentum HD of 

the assembly of Prob. 18.3, assuming that at the instant considered 

the assembly has an angular velocity v 5 (12 rad/s)i and an angular 

acceleration α 5 (96 rad/s2)i.

 18.63 A thin, homogeneous square of mass m and side a is welded to a 

vertical shaft AB with which it forms an angle of 458. Knowing that 

the shaft rotates with an angular velocity v 5 vj and an angular accel-

eration α 5 αj, determine the rate of change H
.

A of the angular 

momentum HA of the plate assembly.

 18.64 Determine the rate of change H
.

G of the angular momentum HG of the 

disk of Prob. 18.8 for an arbitrary value of β, knowing that the disk 

has an angular velocity v 5 vi and an angular acceleration α 5 αi.

 18.65 A slender, uniform rod AB of mass m and a vertical shaft CD, each 

of length 2b, are welded together at their midpoints G. Knowing that 

the shaft rotates at the constant rate v, determine the dynamic 

reactions at C and D.

Problems

x

y

z

A

B

45°

ω

Fig. P18.63

b

b

A

B

C

D

G

x
z

β

ω

y

Fig. P18.65
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18.66 A thin, homogeneous triangular plate of weight 10 lb is welded to 

a light, vertical axle supported by bearings at A and B. Knowing 

that the plate rotates at the constant rate v 5 8 rad/s, determine the 

dynamic reactions at A and B.

 18.67 The assembly shown consists of pieces of sheet aluminum of uniform 

thickness and of total weight 2.7 lb welded to a light axle supported by 

bearings at A and B. Knowing that the assembly rotates at the constant 

rate v 5 240 rpm, determine the dynamic reactions at A and B.

A

x

y

z B
C

D
E

6 in.
6 in.

6 in.

6 in.

6 in.
6 in.

6 in.

6 in.

ω

Fig. P18.67

18.68 The 8-kg shaft shown has a uniform cross section. Knowing that 

the shaft rotates at the constant rate v 5 12 rad/s, determine the 

dynamic reactions at A and B.

A

B

x

y

z 200 mm

200 mm
200 mm 200 mm

200 mm
200 mm

ω

Fig. P18.68

 18.69 After attaching the 18-kg wheel shown to a balancing machine and 

making it spin at the rate of 15 rev/s, a mechanic has found that to 

balance the wheel both statically and dynamically, he should use two 

corrective masses, a 170-g mass placed at B and a 56-g mass placed 

at D. Using a right-handed frame of reference rotating with the wheel 

(with the z axis perpendicular to the plane of the figure), determine 

before the corrective masses have been attached (a) the distance from 

the axis of rotation to the mass center of the wheel and the products 

of inertia Ixy and Izx, (b) the force-couple system at C equivalent to 

the forces exerted by the wheel on the machine.

 18.70 When the 18-kg wheel shown is attached to a balancing machine and 

made to spin at a rate of 12.5 rev/s, it is found that the forces exerted 

by the wheel on the machine are equivalent to a force-couple system 

consisting of a force F 5 (160 N)j applied at C and a couple 

MC 5 (14.7 N?m)k, where the unit vectors form a triad that rotates 

with the wheel. (a) Determine the distance from the axis of rotation 

to the mass center of the wheel and the products of inertia Ixy and Izx.
(b) If only two corrective masses are to be used to balance the wheel 

statically and dynamically, what should these masses be and at which 

of the points A, B, D, or E should they be placed?

B

A

y

x

z

24 in.

12 in.

ω

Fig. P18.66

x

y

A B

C

D
E

182 mm

182 mm

75 mm 75 mm

Fig. P18.69 and P18.70
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 18.71 Knowing that the assembly of Prob. 18.65 is initially at rest (v 5 0) 

when a couple of moment M0 5 M0j is applied to shaft CD, determine 

(a) the resulting angular acceleration of the assembly, (b) the dynamic 

reactions at C and D immediately after the couple is applied.

 18.72 Knowing that the plate of Prob. 18.66 is initially at rest (v 5 0) when 

a couple of moment M0 5 (0.75 ft?lb)j is applied to it, determine 

(a) the resulting angular acceleration of the plate, (b) the dynamic 

reactions A and B immediately after the couple has been applied. 

 18.73 The assembly of Prob. 18.67 is initially at rest (v 5 0) when a couple 

M0 is applied to axle AB. Knowing that the resulting angular accel-

eration of the assembly is α 5 (150 rad/s2)i, determine (a) the couple 

M0, (b) the dynamic reactions at A and B immediately after the 

couple is applied.

 18.74 The shaft of Prob. 18.68 is initially at rest (v 5 0) when a couple M0 

is applied to it. Knowing that the resulting angular acceleration of the 

shaft is α 5 (20 rad/s2)i, determine (a) the couple M0, (b) the dynamic 

reactions at A and B immediately after the couple is applied.

 18.75 The assembly shown weighs 12 lb and consists of 4 thin 16-in.-

diameter semicircular aluminum plates welded to a light 40-in.-long 

shaft AB. The assembly is at rest (v 5 0) at time t 5 0 when a couple 

M0 is applied to it as shown, causing the assembly to complete one 

full revolution in 2 s. Determine (a) the couple M0, (b) the dynamic 

reactions at A and B at t 5 0.

 18.76 For the assembly of Prob. 18.75, determine the dynamic reactions at 

A and B at t 5 2 s.

 18.77 The sheet-metal component shown is of uniform thickness and has a 

mass of 600 g. It is attached to a light axle supported by bearings at 

A and B located 150 mm apart. The component is at rest when it  is 

subjected to a couple M0 as shown. If the resulting angular acceleration 

is α 5 (12 rad/s2)k, determine (a) the couple M0, (b) the dynamic 

reactions A and B immediately after the couple has been applied. 

y

z

A

B

x

G

75 mm

75 mm

75 mm

75 mm

75 mm

M0

Fig. P18.77

 18.78 For the sheet-metal component of Prob. 18.77, determine (a) the 

angular velocity of the component 0.6 s after the couple M0 has been 

applied to it, (b) the magnitude of the dynamic reactions at A and 

B at that time. 

A

z

y

x

B
C

M0

4 in.

8 in.
8 in.

8 in.
8 in. 4 in.

Fig. P18.75
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18.79 The blade of an oscillating fan and the rotor of its motor have a total 

mass of 300 g and a combined radius of gyration of 75 mm. They 

are supported by bearings at A and B, 125 mm apart, and rotate at 

the rate v1 5 1800 rpm. Determine the dynamic reactions at A and 

B when the motor casing has an angular velocity v2 5 (0.6 rad/s)j.

 18.80 The blade of a portable saw and the rotor of its motor have a total 

weight of 2.5 lb and a combined radius of gyration of 1.5 in. Knowing 

that the blade rotates as shown at the rate v1 5 1500 rpm, determine 

the magnitude and direction of the couple M that a worker must exert 

on the handle of the saw to rotate it with a constant angular velocity 

v2 5 2(2.4 rad/s)j.

y

z x

ω1

Fig. P18.80

 18.81 The flywheel of an automobile engine, which is rigidly attached to 

the crankshaft, is equivalent to a 400-mm-diameter, 15-mm-thick 

steel plate. Determine the magnitude of the couple exerted by the 

flywheel on the horizontal crankshaft as the automobile travels 

around an unbanked curve of 200-m radius at a speed of 90 km/h, 

with the flywheel rotating at 2700 rpm. Assume the automobile to 

have (a) a rear-wheel drive with the engine mounted longitudinally, 

(b) a front-wheel drive with the engine mounted transversely. 

(Density of steel 5 7860 kg/m3.)

 18.82 Each wheel of an automobile has a mass of 22 kg, a diameter of 

575 mm, and a radius of gyration of 225 mm. The automobile travels 

around an unbanked curve of radius 150 m at a speed of 95 km/h. 

Knowing that the transverse distance between the wheels is 1.5 m, 

determine the additional normal force exerted by the ground on each 

outside wheel due to the motion of the car.

 18.83 The uniform, thin 5-lb disk spins at a constant rate v2  5  6 rad/s 

about an axis held by a housing attached to a horizontal rod that 

rotates at the constant rate v1 5 3 rad/s. Determine the couple that 

represents the dynamic reaction at the support A.

 18.84 The essential structure of a certain type of aircraft turn indicator is 

shown. Each spring has a constant of 500 N/m, and the 200-g 

uniform disk of 40-mm radius spins at the rate of 10 000 rpm. The 

springs are stretched and exert equal vertical forces on yoke AB 
when the airplane is traveling in a straight path. Determine the angle 

through which the yoke will rotate when the pilot executes a 

horizontal turn of 750-m radius to the right at a speed of 800 km/h. 

Indicate whether point A will move up or down.

ω1

x

y

z

125 mm

B

A

Fig. P18.79

4 in.

O

A

ω1

ω2

x

y

z

Fig. P18.83

A

C D

B

100 mm

ω

Fig. P18.84
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18.85 A slender rod is bent to form a square frame of side 6 in. The frame 

is attached by a collar at A to a vertical shaft that rotates with a 

constant angular velocity v. Determine the value of v for which 

line AB forms an angle β 5 488 with the horizontal x axis.

A

y

x
z

B 3 in.

3 in.

6 in.

β

ω

Fig. P18.85

 18.86 A uniform square plate with side a 5 225 mm is hinged at points A
and B to a clevis that rotates with a constant angular velocity v
about a vertical axis. Determine (a) the constant angle β that the 

plate forms with the horizontal x axis when v 5 12 rad/s, (b) the 

largest value of v for which the plate remains vertical (β 5 90°).

18.87 A uniform square plate with side a 5 300 mm is hinged at points A
and B to a clevis that rotates with a constant angular velocity v
about a vertical axis. Determine (a) the value of v for which the 

plate forms a constant angle β 5 60° with the horizontal x axis, 

(b) the largest value of v for which the plate remains vertical 

(β 5 90°).

18.88 The 2-lb gear A is constrained to roll on the fixed gear B but is free 

to rotate about axle AD. Axle AD has a length of 20 in., a negligible 

weight, and is connected by a clevis to the vertical shaft DE that 

rotates as shown with a constant angular velocity v1. Assuming that 

gear A can be approximated by a thin disk with a radius of 4 in., 

determine the largest allowable value of v1 if gear A is not to lose 

contact with gear B.

 18.89 Determine the force F exerted by gear B on gear A of Prob. 18.88 

when shaft DE rotates with the constant angular speed of 

v1 5 4 rad/s. (Hint: The force F must be perpendicular to the line 

drawn from D to C.)

B C

D

E
ω1

ω2

r = 4 in.

L = 20 in.

A

30°

Fig. P18.88

x

y

z

A

a a

B

G

β

ω

Fig. P18.86 and P18.87
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18.90 and 18.91 The slender rod AB is attached by a clevis to arm BCD
that rotates with a constant angular velocity v about the centerline 

of its vertical portion CD. Determine the magnitude of the angular 

velocity v.

A

B
C

D

30°

100 mm

300 mm

ω

Fig. P18.90    

A

B C

D

100 mm

ω

300 mm

30°

Fig. P18.91

18.92 The essential structure of a certain type of aircraft turn indicator is 

shown. Springs AC and BD are initially stretched and exert equal 

vertical forces at A and B when the airplane is traveling in a straight 

path. Each spring has a constant of 600 N/m and the uniform disk 

has a mass of 250 g and spins at the rate of 12 000 rpm. Determine 

the angle through which the yoke will rotate when the pilot executes 

a horizontal turn of 800-m radius to the right at a speed of 720 km/h. 

Indicate whether point A will move up or down.

 18.93 The 10-oz disk shown spins at the rate v1 5 750 rpm, while axle 

AB rotates as shown with an angular velocity v2 of magnitude 

6 rad/s. Determine the dynamic reactions at A and B.

A

B

x

y

z

ω2

ω1

C
r = 2 in.

L = 8 in.

Fig. P18.93 and P18.94

 18.94 The 10-oz disk shown spins at the rate v1 5 750 rpm, while axle 

AB rotates as shown with an angular velocity v2. Determine the 

maximum allowable magnitude of v2 if the dynamic reactions at A
and B are not to exceed 0.25 lb each.

A

C D

B

120 mm

50 mm

ω

Fig. P18.92
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18.95 Two disks each have a mass of 5 kg and a radius 300 mm. They 

spin as shown at the rate of v1 5 1200 rpm about a rod AB of 

negligible mass that rotates about the horizontal z axis at the rate 

of v2 5 60 rpm. (a) Determine the dynamic reactions at points C
and D. (b) Solve part (a) assuming that the direction of spin of 

disk A is reversed.

 18.96 Two disks each have a mass of 5 kg and a radius of 300 mm. They 

spin as shown at the rate of v1 5 1200 rpm about a rod AB of 

negligible mass that rotates about the horizontal z axis at the rate 

v2. Determine the maximum allowable value of v2 if the magni-

tudes of the dynamic reactions at points C and D are not to exceed 

350 N each.

 18.97 A stationary horizontal plate is attached to the ceiling by means of 

a fixed vertical tube. A wheel of radius a and mass m is mounted 

on a light axle AC that is attached by means of a clevis at A to a 

rod AB fitted inside the vertical tube. The rod AB is made to rotate 

with a constant angular velocity V causing the wheel to roll on the 

lower face of the stationary plate. Determine the minimum angular 

velocity V for which contact is maintained between the wheel and 

the plate. Consider the particular cases (a) when the mass of the 

wheel is concentrated in the rim, (b) when the wheel is equivalent 

to a thin disk of radius a.

 18.98 Assuming that the wheel of Prob. 18.97 weighs 8 lb, has a radius 

a 5 4 in., and a radius of gyration of 3 in., and that R 5 20 in., deter-

mine the force exerted by the plate on the wheel when V 5 25 rad/s.

 18.99 A thin disk of mass m 5 4 kg rotates with an angular velocity 

v2 with respect to arm ABC, which itself rotates with an angular 

velocity v1 about the y axis. Knowing that v1 5 5 rad/s and 

v2 5 15 rad/s and that both are constant, determine the force-couple 

system representing the dynamic reaction at the support at A. 

A B

x

y
450 mm

150 mm

225 mm

z

ω1 C

ω2

Fig. P18.99

 18.100 An experimental Fresnel-lens solar-energy concentrator can rotate 

about the horizontal axis AB that passes through its mass center G. It 

is supported at A and B by a steel framework that can rotate about the 

vertical y axis. The concentrator has a mass of 30 Mg, a radius of 

gyration of 12 m about its axis of symmetry CD, and a radius of gyra-

tion of 10 m about any transverse axis through G. Knowing that the 

angular velocities v1 and v2 have constant magnitudes equal to 

0.20 rad/s and 0.25 rad/s, respectively, determine for the position 

θ 5 608 (a) the forces exerted on the concentrator at A and B, 
(b) the couple M2k applied to the concentrator at that instant.

B

R

C
m

a
A

Stationary plate

Fixed
tube

Rotating
rod

D

Ω

Fig. P18.97

x

y

z

A

C

B

G

D

90° − θ

θ

ω1

ω2

16 m

16 m

Fig. P18.100

ω1

ω1

x

y

A

D

C

B

0.9 m

0.3 m

0.6 m
0.9 m

ω2
z

Fig. P18.95 and P18.96
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 18.101 A 6-lb homogeneous disk of radius 3 in. spins as shown at the con-

stant rate v1 5 60 rad/s. The disk is supported by the fork-ended 

rod AB, which is welded to the vertical shaft CBD. The system is 

at rest when a couple M0 5 (0.25 ft?lb)j is applied to the shaft for 

2 s and then removed. Determine the dynamic reactions at C and D 
after the couple has been removed.

 18.102 A 6-lb homogeneous disk of radius 3 in. spins as shown at the con-

stant rate v1 5 60 rad/s. The disk is supported by the fork-ended rod 

AB, which is welded to the vertical shaft CBD. The system is at rest 

when a couple M0 is applied as shown to the shaft for 3 s and then 

removed. Knowing that the maximum angular velocity reached by the 

shaft is 18 rad/s, determine (a) the couple M0, (b) the dynamic reac-

tions at C and D after the couple has been removed.

 18.103 A 2.5-kg homogeneous disk of radius 80 mm rotates with an angular 

velocity v1 with respect to arm ABC, which is welded to a shaft DCE
rotating as shown at the constant rate v2 5 12 rad/s. Friction in the 

bearing at A causes v1 to decrease at the rate of 15 rad/s2. Determine 

the dynamic reactions at D and E at a time when v1 has decreased 

to 50 rad/s.

A
ω1

y

z x

E

C

B
D

80 mm

ω2

60 mm

150 mm

150 mm

120 mm

Fig. P18.103 and P18.104

 18.104 A 2.5-kg homogeneous disk of radius 80 mm rotates at the constant 

rate v1 5 50 rad/s with respect to arm ABC, which is welded to a 

shaft DCE. Knowing that at the instant shown, shaft DCE has an 

angular velocity v2 5 (12 rad/s)k and an angular acceleration 

α2 5 (8 rad/s2)k, determine (a) the couple that must be applied to 

shaft DCE to produce that acceleration, (b) the corresponding 

dynamic reactions at D and E. 

 18.105 For the disk of Prob. 18.99, determine (a) the couple M1 j that 

should be applied to arm ABC to give it an angular acceleration 

α1 5 2(7.5 rad/s2)j when v1 5 5 rad/s, knowing that the disk rotates 

at the constant rate v2 5 15 rad/s, (b) the force-couple system rep-

resenting the dynamic reaction at A at that instant. Assume that ABC 

has a negligible mass.

  *18.106 A slender homogeneous rod AB of mass m and length L is made to 

rotate at a constant rate v2 about the horizontal z axis, while frame 

CD is made to rotate at the constant rate v1 about the y axis. Express 

as a function of the angle θ (a) the couple M1 required to maintain the 

rotation of the frame, (b) the couple M2 required to maintain the 

rotation of the rod, (c) the dynamic reactions at the supports C and D.

C

Dz
x

B

ω1

3 in.

M0

4 in.

5 in.

4 in.

A

y

Fig. P18.101 and P18.102

θ

A

G

B

D

L

C

ω2

M1

M2

z
x

ω1

y

Fig. P18.106
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*18.3 Motion of a Gyroscope 1305

*18.3  MOTION OF A GYROSCOPE
A gyroscope consists essentially of a rotor that can spin freely about its 

geometric axis. When mounted in a Cardan’s suspension (Fig. 18.15), a 

gyroscope can assume any orientation, but its mass center must remain 

fixed in space. Because a gyroscope can measure its orientation in space 

and maintain that orientation, it has become an indispensable part of 

modern navigational equipment. In this section, we examine the motion 

of a gyroscope as a practical example of analyzing the motion of a rigid 

body in three dimensions.

18.3A Eulerian Angles
In order to define the position of a gyroscope at a given instant, let us 

select a fixed frame of reference OXYZ with the origin O located at the 

mass center of the gyroscope and the Z axis directed along the line defined 

by the bearings A and A9 of the outer gimbal. We consider a reference 

position of the gyroscope in which the two gimbals and a given diameter 

DD9 of the rotor are located in the fixed YZ plane (Fig. 18.15a). The 

gyroscope can be brought from this reference position into any arbitrary 

position (Fig. 18.15b) by means of the following steps. 

1. A rotation of the outer gimbal through an angle f about the axis AA9. 

2. A rotation of the inner gimbal through θ about BB9. 

3. A rotation of the rotor through c about CC9. 

The angles f, θ, and c are called the Eulerian angles; they completely 

characterize the position of the gyroscope at any given instant. Their 

derivatives f
.
, θ

.
, and c

.
 define, respectively, the rate of precession, the rate 

of nutation, and the rate of spin of the gyroscope at the instant considered. 

Precession is the revolution of the axis BB9 about the Z-axis, and nutation 

is the back-and-forth motion of CC9 as the object precesses.

In order to compute the components of the angular velocity and of 

the angular momentum of the gyroscope, we will use a rotating system 

of axes Oxyz attached to the inner gimbal, with the y axis along BB9 and 

the z axis along CC9 (Fig. 18.16). These axes are principal axes of inertia 

for the gyroscope. Although they follow it in its precession and nutation, 

they do not spin with c
.
; for that reason, they are more convenient to use 

than axes actually attached to the gyroscope. The angular velocity v of 

the gyroscope with respect to the fixed frame of reference OXYZ now can 

be expressed as the sum of three partial angular velocities that correspond 

to the precession, the nutation, and the spin of the gyroscope, respectively. 

Denoting the unit vectors along the rotating axes by i, j, and k and the 

unit vector along the fixed Z axis by K, we have

 v 5 f
.
K 1 θ

.
j 1 c

.
k (18.33)

Since the vector components obtained for v in Eq. (18.33) are not 

orthogonal (Fig. 18.16), we resolve the unit vector K into components 

along the x and z axes; we obtain

 K 5 2 sin θ i 1  cos θ k (18.34)

(a)

(b)

Y
B

A'

B'

C'

D'

CX

C'

O

φ

θ

ψ

Z

Y
O

A

A

B

A'

B'

C'D'

C

D

D

Z

Fig. 18.15 (a) Reference position of a gyroscope; 
(b) arbitrary position of the gyroscope by 
rotation through the three Eulerian angles.

y

z
θ

C'

φK

θ j
.

x

O

A

B

A'

B'

C

ψ k
.

.

Z

Fig. 18.16 Precession f
.
, nutation θ̇ , and spin 

c
.
 of a gyroscope.
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1306 Kinetics of Rigid Bodies in Three Dimensions

Then, substituting for K into Eq. (18.33), we have

v 5 2 ḟ sin θ i 1 θ̇ j 1 (c
.
 1 ḟ cos θ)k (18.35)

The coordinate axes are principal axes of inertia, so we can obtain the 

components of the angular momentum HO by multiplying the components 

of v by the moments of inertia of the rotor about the x, y, and z axes, 

respectively. Denoting the moment of inertia of the rotor about its spin 

axis by I, its moment of inertia about a transverse axis through O by I9, 
and neglecting the mass of the gimbals, we have

HO 5 2I9ḟ sin θ i 1 I9θ̇ j 1 I(c
.
 1 ḟ  cos θ)k (18.36)

Recalling that the rotating axes are attached to the inner gimbal and 

thus do not spin with c
.
, we express their angular velocity as the sum

 V 5 f
.
K 1 θ

. 
j (18.37)

or substituting for K from Eq. (18.34), we have

V 5 2f
.

  sin θ i 1 θ
.
 j 1 f

.
 cos θ k (18.38)

Substituting for HO and V from Eqs. (18.36) and (18.38) into the equation 

gives

oMO 5 ( ḢO)Oxyz 1 V 3 HO (18.28)

We now obtain the three differential equations

oMx 5 2I9(f̈ sin θ 1 2θ̇ḟ cos θ) 1 Iθ̇  (c
.
 1 ḟ cos θ)

 oMy 5 I9(θ̈ 2 ḟ 2 sin θ cos θ) 1 Iḟ  sin θ (c
.
 1 ḟ  cos θ) (18.39)

oMz 5 I 

d

dt
 (c

.
1 f

.
 cos θ)

Equations (18.39) define the motion of a gyroscope subjected to a 

given system of forces when the mass of its gimbals is neglected. We can 

also use them to define the motion of an axisymmetric body (or body of 

revolution) attached at a point on its axis of symmetry and to define the 

motion of an axisymmetric body about its mass center. The gimbals of 

the gyroscope helped us visualize the Eulerian angles, but it is clear that 

we can use these angles to define the position of any rigid body with 

respect to axes centered at a point of the body—regardless of the way in 

which the body is actually supported.

Because Eqs. (18.39) are nonlinear, it is not possible to express the 

Eulerian angles f, θ, and c as analytical functions of time t in general, 

and you may need to use numerical methods of solution. However, as you 

will see in the rest of this section, several particular cases of interest can 

be analyzed easily.

v 5 2 ḟ sin θ i 1 θ̇ j 1 (c
.

1 ḟ cos θ)k

HO 5 2I9ḟ sin θ i 1 I9θ̇ j 1 I(II c
.

1 ḟ  cos θ)k

Photo 18.5 A gyroscope can be used 
for measuring orientation and is capable of 
maintaining the same absolute direction in 
space.
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*18.3 Motion of a Gyroscope 1307

*18.3B  Steady Precession of a 
Gyroscope

Let us now investigate the particular case of gyroscopic motion in which 

the angle θ, the rate of precession f
.
, and the rate of spin c

.
 remain 

constant. We propose to determine the forces that must be applied to the 

gyroscope to maintain this motion, which is known as the steady 
precession of a gyroscope.

Instead of applying the general equations (18.39), we determine the 

sum of the moments of the required forces by computing the rate of 

change of the angular momentum of the gyroscope in the particular case 

considered. We first note that the angular velocity v of the gyroscope, its 

angular momentum HO, and the angular velocity V of the rotating frame 

of reference (Fig. 18.17) reduce, respectively, to

 v 5 2ḟ  sin θ i 1 vzk (18.40)

HO 5 2I9ḟ  sin θ i 1 Ivzk (18.41)

V 5 2ḟ  sin θ i 1 ḟ  cos θ k (18.42)

where vz 5 c
.

1 f
.

  cos θ is the rectangular component along the spin axis 

of the total angular velocity of the gyroscope.

Since θ, f
.
, and c

.
 are constant, the vector HO is constant in magnitude 

and direction with respect to the rotating frame of reference. Therefore its 

rate of change 1H. O2Oxyz with respect to that frame is zero. Thus, Eq. (18.28) 

reduces to

 oMO 5 V 3 HO (18.43)

which yields, after substitutions from Eqs. (18.41) and (18.42),

oMO 5 (Ivz 2 I9ḟ  cos θ)ḟ  sin θj (18.44)

The mass center of the gyroscope is fixed in space, so using 

Eq. (18.1), we have oF 5 0. Thus, the forces that must be applied to the 

gyroscope to maintain its steady precession reduce to a couple of moment 

equal to the right-hand side of Eq. (18.44). Note that this couple should 
be applied about an axis perpendicular to the precession axis and to the 
spin axis of the gyroscope (Fig. 18.18).

In the particular case when the precession axis and the spin axis are 

at a right angle to each other, we have θ 5 90°, and Eq. (18.44) reduces to

 oMO 5 Ic
.
f
.
j (18.45)

Thus, if we apply a couple MO to the gyroscope about an axis perpen-

dicular to its axis of spin, the gyroscope precesses about an axis perpen-

dicular to both the spin axis and the couple axis. The sense of the 

precession is such that the vectors representing the spin, the couple, and 

the precession, respectively, form a right-handed triad (Fig. 18.19). The 

relationship of this triad also can be represented by writing Eq. (18.45) as 

the vector equation of

oMO 5 F
.

3 I C
.
 (18.459)

oMO 5 (IvII z 2 I9ḟ  cos θ)ḟ  sin θjθ

Ω = φK
.

–φ sin θ i
.

ω
ωzk

x

y

z

O

θ

ψ k
.

Z

Fig. 18.17 Kinematic quantities used to 
determine the steady rate of precession of a 
gyroscope.

θ

Z

y

x

z

O
B

B'

φK
.

ψ k
.

ΣΜO

Fig. 18.18 To maintain a gyroscope in 
steady precession, a couple must be applied 
about an axis perpendicular to the precession 
and spin axis.

z

y

x

O

φK
.

ψ k
.

MO

Precession axis

Couple axis

Spin axis

Z

Fig. 18.19 A right-handed triad of the spin, 
couple, and precession axes.

bee87342_ch18_1264-1331.indd   1307bee87342_ch18_1264-1331.indd   1307 11/28/14   10:56 AM11/28/14   10:56 AM

UPLOADED BY AHMAD T JUNDI



1308 Kinetics of Rigid Bodies in Three Dimensions

Because of the relatively large couples required to change the 

orientation of their axles, gyroscopes are used as stabilizers in torpedoes 

and ships. Spinning bullets and shells remain tangent to their trajectory 

because of gyroscopic action. Also, a bicycle is easier to keep balanced 

at high speeds because of the stabilizing effect of its spinning wheels. 

However, gyroscopic action is not always welcome; it must be taken into 

account in the design of bearings supporting rotating shafts subjected to 

forced precession. The reactions exerted on an airplane by its propellers, 

which changes the direction of flight, also must be taken into consideration 

and compensated for whenever possible.

*18.3C  Motion of an Axisymmetric 
Body Under no Force

We can now analyze the motion of an axisymmetric body about its mass 

center under no force except its own weight. Examples of such motion 

are furnished by projectiles (if air resistance is neglected) and by satellites 

and space vehicles after the burnout of their launching rockets.

The sum of the moments of the external forces about the mass center 

G of the body is zero, so Eq. (18.2) yields H
.

G 5 0. It follows that the 

angular momentum HG of the body about G is constant. Thus, the direction 

of HG is fixed in space and can be used to define the Z axis, or axis of 

precession (Fig. 18.20). Let us select a rotating system of axes Gxyz with 

the z axis along the axis of symmetry of the body, the x axis in the plane 

defined by the Z and z axes, and the y axis pointing away from you 

(Fig. 18.21). This gives us

Hx 5 2HG sin θ   Hy 5 0   Hz 5 HG cos θ (18.46)

where θ represents the angle formed by the Z and z axes and HG denotes 

the constant magnitude of the angular momentum of the body about G. 

Since the x, y, and z axes are principal axes of inertia for the body considered, 

we have

 Hx 5 I9vx   Hy 5 I9vy   Hz 5 Ivz (18.47)

where I denotes the moment of inertia of the body about its axis of 

symmetry and I9 denotes its moment of inertia about a transverse axis 

through G. It follows from Eqs. (18.46) and (18.47) that

 vx 5 2
HG sin θ

I9
      vy 5 0      vz 5

HG cos θ

I
 (18.48)

The second of these relations shows that the angular velocity v has no 

component along the y axis, i.e., along an axis perpendicular to the Z–z
plane. Thus, the angle θ formed by the Z and z axes remains constant and 

the body is in steady precession about the Z axis.

Dividing the first of the relations in Eqs. (18.48) by the third, and 

observing from Fig. 18.21 that 2vx /vz 5 tan γ, we obtain the following 

relation between the angles γ and θ that the vectors v and HG, respec-

tively, form with the axis of symmetry of the body.

tan γ 5
I

I9
 tan θ (18.49)tan γ 5

I

I9
tan θ

x

z

θ

γ

ω

G

HG

Fixed direction

Z

Fig. 18.20 For an axisymmetric body under 
no force other than its own weight, the 
angular momentum has a constant direction.

x

z

φK
.

ψk
.

ωzk

ω xi

θ

γ

ω

G

Z

Fig. 18.21 The angular velocity of an 
axisymmetric body expressed in terms of 
body-fixed coordinates xyz.
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*18.3 Motion of a Gyroscope 1309

Two particular cases of motion of an axisymmetric body under no 

force involve no precession. 

 1. If the body is set to spin about its axis of symmetry, we have vx 5 0 

and, by Eq. (18.47), Hx 5 0. Thus, the vectors v and HG have the same 

orientation, and the body keeps spinning about its axis of symmetry 

(Fig. 18.22a). 

 2. If the body is set to spin about a transverse axis, we have vz 5 0 and, 

by Eq. (18.47), Hz 5 0. Again v and HG have the same orientation, and 

the body keeps spinning about the given transverse axis (Fig. 18.22b).

ω ω

G

    = z

HG

Fixed direction

G

z

HG

Fixed direction

(a) (b)

90°

Z Z

Fig. 18.22 (a) A body spinning about its axis of symmetry; (b) a body 
spinning about a transverse axis.

Space cone

Body cone

φK
.

γθ

G

z
ω

ψ k
.

Z

Fig. 18.23 Space cone and body cone for an 
elongated body (I , I9) in direct precession.

Z

φK
.

ψk
.

z
θ

γ

ω

G
Body cone

Space cone

Fig. 18.24 Space cone and body cone for a 
flattened body (I . I9) in retrograde 
precession.

Considering now the general case represented in Fig. 18.21, recall 

from Sec. 15.6A that we can represent the motion of a body about a fixed 

point—or about its mass center—by the motion of a body cone rolling on 

a space cone. In the case of steady precession, the two cones are circular, 

since the angles γ and θ 2 γ that the angular velocity v forms, respec-

tively, with the axis of symmetry of the body and with the precession axis 

are constant. Two cases should be distinguished.

 1. I , I9. This is the case of an elongated body, such as the space vehicle 

of Fig. 18.23. From Eq. (18.49), we have γ , θ. The vector v lies 

inside the angle ZGz; the space cone and the body cone are tangent 

externally; and the spin and the precession are both observed as coun-

terclockwise from the positive z axis. The precession is said to be direct.
 2. I . I9. This is the case of a flattened body, such as the satellite of 

Fig. 18.24. From Eq. (18.49), we have γ . θ. Since the vector v must 

lie outside the angle ZGz, the vector c
.
k has a sense opposite to that of 

the z axis; the space cone is inside the body cone; and the precession 

and the spin have opposite senses. The precession is said to be 

retrograde.
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1310 Kinetics of Rigid Bodies in Three Dimensions

Sample Problem 18.6

A space satellite with mass m can be modeled as two thin disks of equal 

mass. The disks have a radius of a 5 800 mm and are rigidly connected 

by a light rod with a length of 2a. Initially, the satellite is spinning freely 

about its axis of symmetry at the rate v0 5 60 rpm. A meteorite with a 

mass of m0 5 m/1000 is traveling with a velocity v0 of 2000 m/s relative 

to the satellite, strikes the satellite, and becomes embedded at C. Determine 

(a) the angular velocity of the satellite immediately after impact, (b) the 

precession axis of the ensuing motion, (c) the rates of precession and spin 

of the ensuing motion.

STRATEGY: Since an impact occurs, use the principle of impulse and 

momentum. Then you can use the relations in this section to determine 

the gyroscopic motion of the satellite.

MODELING: Choose the meteorite and the satellite as your system. 

The linear and angular momenta of the system before and after the impact 

are shown in Fig. 1.

m0v0

Iω0 m⎯v
HG 

a

z z

x
y

x
yG

G=

Fig. 1 Momenta before and after the 
impact.

ANALYSIS: 

Moments of Inertia. Note that the axes shown are principal axes of 

inertia for the satellite. Thus, you have

I 5 Iz 5
1
2 ma2    I9 5 Ix 5 Iy 5 2[

1
4(

1
2 m)a2 1 (

1
2 m)a2] 5

5
4 ma2

Principle of Impulse and Momentum. Since no external force acts 

on the system, the momenta before and after impact are equal (Fig. 1). 

Taking moments about G, you have

 2aj 3 m0v0k 1 Iv0k 5 HG

 HG 5 2m0v0ai 1 Iv0k (1)

v0

ω0

2a

a
A

B

x

z

y

C
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*18.3 Motion of a Gyroscope 1311

Angular Velocity After Impact. Substitute the values obtained for 

the components of HG in Eq. (1) and for the moments of inertia into

Hx 5 Ixvx   Hy 5 Iyvy   Hz 5 Izvz

The result is

  2m0v0a 5 I9vx 5
5
4 ma2vx          0 5 I9vy         Iv0 5 Ivz

  vx 5 2
4

5
 
m0v0

ma
     vy 5 0    vz 5 v0  (2)

For the satellite considered, you have v0 5 60 rpm 5 6.283 rad/s, 

m0/m 5 1/1000, a 5 0.800 m, and v0 5 2000 m/s. You obtain

vx 5 22 rad/s   vy 5 0   vz 5 6.283 rad/s

v 5 2v2
x 1 v2

z 5 6.594 rad/s      tan γ 5
2vx

vz
5 10.3183

v 5 63.0 rpm  γ 5 17.78 b

Precession Axis. In free motion, the direction of the angular momen-

tum HG is fixed in space, so the satellite precesses about this direction. 

The angle θ formed by the precession axis and the z axis is (Fig. 2)

 tan θ 5
2Hx

Hz
5

m0v0a

Iv0

5
2m0v0

mav0

5 0.796      θ 5 38.58 b

Rates of Precession and Spin. Sketch the space and body cones 

for the free motion of the satellite (Fig. 3). Using the law of sines, com-

pute the rates of precession and spin.

v

sin θ
5

f
.

sin γ
5

c
.

sin (θ 2 γ)

ḟ  5 30.8 rpm   ψ̇ 5 35.9 rpm b

REFLECT and THINK: If you applied the principle of impulse and 

momentum in the z-direction, you would find that PDt 5 mv where PDt 
is the impulse the meteorite applies to the satellite. In this problem, we 

were interested in the three-dimensional rotation of the satellite and 

modeled it as a rigid body. In Chap. 12, we were concerned with the orbits 

of satellites over the earth and modeled the satellite as a particle. As 

engineers, how we model a system depends on what type of problem we 

are trying to solve. 

ω

θ γ
Body
cone

Space
cone

φK
.

ψk
.

Fig. 3 Space and body 
cones for the satellite.

ω
θ

γ

HG

z

x

y

G

Fig. 2 Angles between 
the z-axis and the 
angular velocity and the 
angular momentum.
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13121312

In this section, we analyzed the motion of gyroscopes and of other axisymmetric 
bodies with a fixed point O. In order to define the position of these bodies at any 

given instant, we introduced the three Eulerian angles f, θ, and c (Fig. 18.15) and 

noted that their time derivatives define, respectively, the rate of precession, the rate 

of nutation, and the rate of spin (Fig. 18.16). The problems you encountered in this 

section fall into one of the following categories.

1. Steady precession. This is the motion of a gyroscope or other axisymmetric body 

with a fixed point located on its axis of symmetry in which the angle θ, the rate of 

precession f
.
, and the rate of spin c

.
 all remain constant.

 a. Using the rotating frame of reference Oxyz shown in Fig. 18.17, which 

precesses with the body, but does not spin with it, we obtained the expressions for 

the angular velocity v of the body, its angular momentum HO, and the angular velocity 

V of the frame Oxyz as

 v 5 2ḟ  sin θ i 1 vzk (18.40)

 HO 5 2I9ḟ  sin θ i 1 I vzk (18.41)

 V 5 2ḟ  sin θ i 1 ḟ  cos θ k (18.42)

where I 5 moment of inertia of body about its axis of symmetry

 I9 5 moment of inertia of body about a transverse axis through O
 vz 5 rectangular component of v along z axis 5 c

.
 1 f

.
 cos θ

 b. The sum of the moments about O of the forces applied to the body is 

equal to the rate of change of its angular momentum, as expressed by Eq. (18.28). 

But, since θ and the rates of change f
.
 and c

.
 are constant, it follows from Eq. (18.41) that 

HO remains constant in magnitude and direction when viewed from the frame Oxyz. 

Thus, its rate of change is zero with respect to that frame, and you have

 oMO 5 V 3 HO (18.43)

where V and HO are defined by Eqs. (18.42) and (18.41), respectively. Equation 

(18.43) shows that the moment resultant at O of the forces applied to the body is 

perpendicular to both the axis of precession and the axis of spin (Fig. 18.18).

 c. Keep in mind that the method described applies not only to gyroscopes, 

where the fixed point O coincides with the mass center G, but also to any axisymmetric 

body with a fixed point O located on its axis of symmetry. This method, therefore, 

can be used to analyze the steady precession of a top on a rough floor.

 d. When an axisymmetric body has no fixed point but is in steady precession 
about its mass center G, you should draw a free-body diagram and a kinetic diagram 

showing that the system of the external forces exerted on the body (including the 

body’s weight) is equivalent to the vector ma applied at G and the couple vector H
.

G. 

SOLVING PROBLEMS 
ON YOUR OWN
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1313 1313

You can use Eqs. (18.40) through (18.42), replacing HO with HG, and express the 

moment of the couple as

H
.

G 5 V 3 HG

You can then use the free-body and kinetic diagrams to write as many as six independent 

scalar equations.

2. Motion of an axisymmetric body under no force, except its own weight. We 

have oMG 5 0 and thus H
.

G 5 0; it follows that the angular momentum HG is constant 

in magnitude and direction (Sec. 18.3C). The body is in steady precession with the 

precession axis GZ directed along HG (Fig. 18.20). Using the rotating frame Gxyz and 

denoting by γ the angle that v forms with the spin axis Gz (Fig. 18.21), we obtained 

the relation between γ and the angle θ formed by the precession and spin axes as

 tan γ 5
I

I9
 tan θ (18.49)

The precession is said to be direct if I , I9 (Fig. 18.23) and retrograde if I . I9 
(Fig. 18.24).

 a. In many problems dealing with the motion of an  axisymmetric body under 

no force, you will be asked to determine the precession axis and the rates of precession 

and spin of the body when given the magnitude of its angular velocity v and the 

angle γ that it forms with the axis of symmetry Gz (Fig. 18.21). From Eq. (18.49), 

determine the angle θ that the precession axis GZ forms with Gz and resolve v into 

its two oblique components f
.
K and c

.
k. Using the law of sines, you then can determine 

the rate of precession f
.
 and the rate of spin c

.
.

 b. In other problems, the body is subjected to a given impulse and you will 

first determine the resulting angular momentum HG. Using Eqs. (18.10), you can 

calculate the rectangular components of the angular velocity v, its magnitude v, and 

the angle γ that it forms with the axis of symmetry. You then determine the precession 

axis and the rates of precession and spin as described previously [Sample Prob. 18.6].

3. General motion of an axisymmetric body with a fixed point O located on its 
axis of symmetry, and subjected only to its own weight. This is a motion in which 

the angle θ is allowed to vary. At any given instant you should take into account the 

rate of precession f
.
, the rate of spin c

.
, and the rate of nutation θ

.
—none of which 

will remain constant. An example of such a motion is the motion of a top, which is 

discussed in Probs. 18.137 and 18.138. The rotating frame of reference Oxyz that you 

will use is still the one shown in Fig. 18.18, but this frame now rotates about the 

y axis at the rate θ

.
. Equations (18.40), (18.41), and (18.42), therefore, should be 

replaced by 

 v 5 2f
.
 sin θ i 1 θ̇ j 1 (c

.
 1  f

.
 cos θ) k (18.409)

 HO 5 2I9ḟ  sin θ i 1 I9θ̇ j 1 I(c
.
 1 f

.
 cos θ) k (18.419)

 V 5 2f
.
 sin θ i 1 θ̇ j 1 ḟ  cos θ k (18.429)
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Since substituting these expressions into Eq. (18.44) would lead to nonlinear differential 

equations, it is preferable, whenever feasible, to apply the following conservation 

principles.

a. Conservation of energy. Denoting the distance between the fixed point O
and the mass center G of the body by c and the total energy by E, you have

T 1 V 5 E:    
1
2(I9v2

x 1 I9v2
y 1 Iv2

z ) 1 mgc cos θ 5 E

Then substitute the expressions obtained in Eq. (18.409) for the components of v. 

Note that c is positive or negative depending upon the position of G relative to O. 

Also, c 5 0 if G coincides with O; the kinetic energy is then conserved.

b. Conservation of the angular momentum about the axis of precession.
Since the support at O is located on the Z axis and the weight of the body and the Z
axis are both vertical and thus are parallel to each other, it follows that oMZ 5 0. 

Thus, HZ remains constant. We can express this by writing that the scalar product K?HO

is constant, where K is the unit vector along the Z axis.

c. Conservation of the angular momentum about the axis of spin. Since the 

support at O and the center of gravity G are both located on the z axis, it follows that 

oMz 5 0 and, thus, that Hz remains constant. Thus, the coefficient of the unit 

vector k in Eq. (18.419) is constant. Note that this last conservation principle cannot 

be applied when the body is restrained from spinning about its axis of symmetry, but 

in that case, the only variables are θ and f.
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 18.107 A uniform thin disk with a 6-in. diameter is attached to the end of 

a rod AB of negligible mass that is supported by a ball-and-socket 

joint at point A. Knowing that the disk is observed to precess about 

the vertical axis AC at the constant rate of 36 rpm in the sense 

indicated and that its axis of symmetry AB forms an angle β 5 608 

with AC, determine the rate at which the disk spins about rod AB.

 18.108 A uniform thin disk with a 6-in. diameter is attached to the end of 

a rod AB of negligible mass that is supported by a ball-and-socket 

joint at point A. Knowing that the disk is spinning about its axis of 

symmetry AB at the rate of 2100 rpm in the sense indicated and that 

AB forms an angle β 5 458 with the vertical axis AC, determine the 

two possible rates of steady precession of the disk about the axis AC.

 18.109 The 85-g top shown is supported at the fixed point O. The radii 

of gyration of the top with respect to its axis of symmetry and 

with respect to a transverse axis through O are 21 mm and 45 mm, 

respectively. Knowing that c 5 37.5 mm and that the rate of spin 

of the top about its axis of symmetry is 1800 rpm, determine the 

two possible rates of steady precession corresponding to θ 5 308.

 18.110 The top shown is supported at the fixed point O and its moments 

of inertia about its axis of symmetry and about a transverse axis 

through O are denoted, respectively, by I and I9. (a) Show that the 

condition for steady precession of the top is

(Ivz 2 I9ḟ cos θ) ḟ 5 Wc

  where  ḟ̇ is the rate of precession and vz is the rectangular component 

of the angular velocity along the axis of symmetry of the top. 
(b) Show that if the rate of spin ċ of the top is very large compared 

with its rate of precession ḟ, the condition for steady precession is 
Iċḟ < Wc. (c) Determine the percentage error introduced when this 

last relation is used to approximate the slower of the two rates of 

precession obtained for the top of Prob. 18.109.

 18.111 A solid aluminum sphere of radius 4 in. is welded to the end of a 

10-in.-long rod AB of negligible mass that is supported by a ball-

and-socket joint at A. Knowing that the sphere is observed to precess 

about a vertical axis at the constant rate of 60 rpm in the sense 

indicated and that rod AB forms an angle β 5 208 with the vertical, 

determine the rate of spin of the sphere about line AB.

 18.112 A solid aluminum sphere of radius 4 in. is welded to the end of a 

10-in.-long rod AB of negligible mass that is supported by a ball-

and-socket joint at A. Knowing that the sphere spins as shown about 

line AB at the rate of 600 rpm, determine the angle β for which the 

sphere will precess about a vertical axis at the constant rate of 

60 rpm in the sense indicated.

Problems

24 in.

y•

A

b

B

C

f
•

Fig. P18.107 and P18.108

θ
z

c

G

O

Z

Fig. P18.109 and P18.110

B

A

ψ•

β

10 in.

4 in.

G

Fig. P18.111 and P18.112
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 18.113 A homogeneous cone with a height h and a base with a diameter d , h 

is attached as shown to a cord AB. The cone spins about its axis BC 

at the constant rate c
.
 and precesses about the vertical through A at the 

constant rate  ḟ. Determine the angle β for which the axis BC of the 

cone is aligned with cord AB (θ 5 β). 

 18.114 A homogeneous cone with a height of h 5 12 in. and a base with a 

diameter of d 5 6 in. is attached as shown to a cord AB. Knowing 

that the angles that cord AB and the axis BC of the cone form with 

the vertical are, respectively, β 5 45° and θ 5 30° and that the cone 

precesses at the constant rate ḟ 5 8 rad/s in the sense indicated, 

determine (a) the rate of spin ċ of the cone about its axis BC, (b) the 

length of cord AB.

 18.115 A solid cube of side c 5 80 mm is attached as shown to cord AB. 

It is observed to spin at the rate ċ 5 40 rad/s about its diagonal BC 
and to precess at the constant rate ḟ 5 5 rad/s about the vertical 

axis AD. Knowing that β 5 308, determine the angle θ that the 

diagonal BC forms with the vertical. (Hint: The moment of inertia 

of a cube about an axis through its center is independent of the 

orientation of that axis.)

D

A

B

C

c

c

β

θ
ψ•

φ
•

Fig. P18.115 and P18.116

 18.116 A solid cube of side c 5 120 mm is attached as shown to a cord 

AB of length 240 mm. The cube spins about its diagonal BC and 

precesses about the vertical axis AD. Knowing that θ 5 258 and 

β 5 408, determine (a) the rate of spin of the cube, (b) its rate of 

precession. (See hint of Prob. 18.115.)

 18.117 A high-speed photographic record shows that a certain projectile was 

fired with a horizontal velocity v of 2000 ft/s and with its axis of 

symmetry forming an angle β 5 38 with the horizontal. The rate of 

spin c
.
 of the projectile was 6000 rpm, and the atmospheric drag was 

equivalent to a force D of 25 lb acting at the center of pressure CP 
located at a distance c 5 6 in. from G. (a) Knowing that the projec-

tile has a weight of 45 lb and a radius of gyration of 2 in. with respect 

to its axis of symmetry, determine its approximate rate of steady 

precession. (b) If it is further known that the radius of gyration of 

the projectile with respect to a transverse axis through G is 8 in., 

determine the exact values of the two possible rates of precession.

f
•

A

h

d

C

D q

b

y•

B

Fig. P18.113 and P18.114

DG

ψ•

c

CP

β

Fig. P18.117
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18.118 If the earth were a sphere, the gravitational attraction of the sun, 

moon, and planets would at all times be equivalent to a single force 

R acting at the mass center of the earth. However, the earth is 

actually an oblate spheroid and the gravitational system acting on 

the earth is equivalent to a force R and a couple M. Knowing that 

the effect of the couple M is to cause the axis of the earth to precess 

about the axis GA at the rate of one revolution in 25 800 years, 

determine the average magnitude of the couple M applied to the earth. 

Assume that the average density of the earth is 5.51 g/cm3, that 

the average radius of the earth is 6370 km, and that  I 5
2
5 mR2.

(Note: This forced precession is known as the precession of the 

equinoxes and is not to be confused with the free precession 

discussed in Prob. 18.123.)

 18.119 Show that for an axisymmetric body under no force, the rates of 

precession and spin can be expressed, respectively, as

f
.

5
HG

I9

and

c
.

5
HG cos θ(I9 2 I)

II9

where HG is the constant value of the angular momentum of the body.

 18.120 (a) Show that for an axisymmetric body under no force, the rate of 

precession can be expressed as

f
.

5
Iv2

I9 cos θ

where v2 is the rectangular component of v along the axis of sym-

metry of the body. (b) Use this result to check that the condition 

(18.44) for steady precession is satisfied by an axisymmetric body 

under no force.

 18.121 Show that the angular velocity vector v of an axisymmetric body 

under no force is observed from the body itself to rotate about the 

axis of symmetry at the constant rate

n 5
I9 2 I

I9
 v2

  where v2 is the rectangular component of v along the axis of sym-

metry of the body.

 18.122 For an axisymmetric body under no force, prove (a) that the rate of 

retrograde precession can never be less than twice the rate of 

spin of the body about its axis of symmetry, (b) that in Fig. 18.24 the 

axis of symmetry of the body can never lie within the space cone.

 18.123 Using the relation given in Prob. 18.121, determine the period of pre-

cession of the north pole of the earth about the axis of symmetry of 

the earth. The earth may be approximated by an oblate spheroid of 

axial moment of inertia I and of transverse moment of inertia 

I9 5 0.9967I. (Note: Actual observations show a period of precession 

of the north pole of about 432.5 mean solar days; the difference 

between the observed and computed periods is due to the fact that 

the earth is not a perfectly rigid body. The free precession considered 

here should not be confused with the much slower precession of the 

equinoxes, which is a forced precession. See Prob. 18.118.)

A

S

G

Axis of
precession

23.45°
N

R
M

ω

Fig. P18.118 
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 18.124 A coin is tossed into the air. It is observed to spin at the rate of 

600 rpm about an axis GC perpendicular to the coin and to precess 

about the vertical direction GD. Knowing that GC forms an angle of 

158 with GD, determine (a) the angle that the angular velocity v of the 

coin forms with GD, (b) the rate of precession of the coin about GD.

 18.125 The angular velocity vector of a football that has just been kicked 

is horizontal, and its axis of symmetry OC is oriented as shown. 

Knowing that the magnitude of the angular velocity is 200 rpm and 

that the ratio of the axis and transverse moments of inertia is 

I/I ¿ 5
1
3, determine (a) the orientation of the axis of precession OA, 

(b) the rates of precession and spin.

A

C

O

β

ω
15°

Fig. P18.125

 18.126 A space station consists of two sections A and B of equal masses 

that are rigidly connected. Each section is dynamically equivalent 

to a homogeneous cylinder with a length of 15 m and a radius of 

3 m. Knowing that the station is precessing about the fixed direction 

GD at the constant rate of 2 rev/h, determine the rate of spin of the 

station about its axis of symmetry CC9.

G

A

C

C'

B

D3 m
40°

15 m

15 m

Fig. P18.126 and P18.127

 18.127 If the connection between sections A and B of the space station of 

Prob. 18.126 is severed when the station is oriented as shown and if 

the two sections are gently pushed apart along their common axis of 

symmetry, determine (a) the angle between the spin axis and the new 

precession axis of section A, (b) the rate of precession of section A, 

(c) its rate of spin.

 18.128 Solve Sample Prob. 18.6, assuming that the meteorite strikes the 

satellite at C with a velocity v0 5 (2000 m/s)i.

C D
15°

G

Fig. P18.124
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 18.129 An 800-lb geostationary satellite is spinning with an angular velocity 

v0 5 (1.5 rad/s)j when it is hit at B by a 6-oz meteorite traveling 

with a velocity v0 5 2(1600 ft/s)i 1 (1300 ft/s)j 1 (4000 ft/s)k rela-

tive to the satellite. Knowing that b 5 20 in. and that the radii of 

gyration of the satellite are kx 5 kz 5 28.8 in. and ky 5 32.4 in.,

determine the precession axis and the rates of precession and spin 

of the satellite after the impact. 

 18.130 Solve Prob. 18.129, assuming that the meteorite hits the satellite at 

A instead of B. 

 18.131 A homogeneous rectangular plate of mass m and sides c and 2c is 

held at A and B by a fork-ended shaft of negligible mass that is 

supported by a bearing at C. The plate is free to rotate about AB,

and the shaft is free to rotate about a horizontal axis through C. 

Knowing that, initially, θ0 5 408, θ̇0 5 0, and ḟ0 5 10 rad/s, 

determine for the ensuing motion (a) the range of values of θ,

(b) the minimum value of ḟ, (c) the maximum value of θ̇.

C

θφ
•

θ
•

c

c

A

B

c

Fig. P18.131 and P18.132

 18.132 A homogeneous rectangular plate of mass m and sides c and 2c is 

held at A and B by a fork-ended shaft of negligible mass that is 

supported by a bearing at C. The plate is free to rotate about AB, 
and the shaft is free to rotate about a horizontal axis through C. 
Initially the plate lies in the plane of the fork (θ0 5 0) and the shaft 

has an angular velocity ḟ0 5 10 rad/s. If the plate is slightly 

disturbed, determine for the ensuing motion (a) the minimum value 

of ḟ, (b) the maximum value of θ̇.

 18.133 A homogeneous square plate with a mass m and side c is held at points 

A and B by a frame of negligible mass that is supported by bearings 

at points C and D. The plate is free to rotate about AB, and the 

frame is free to rotate about the vertical CD. Knowing that, initially, 

θ0 5 458,  θ̇0 5 0, and ḟ0 5 8 rad/s, determine for the ensuing motion 

(a) the range of values of θ, (b) the minimum value of ḟ, (c) the 

maximum value of θ̇.

 18.134 A homogeneous square plate with a mass m and side c is held at 

points A and B by a frame of negligible mass that is supported by 

bearings at points C and D. The plate is free to rotate about AB, and 

the frame is free to rotate about the vertical CD. Initially, the plate 

lies in the plane of the frame (θ0 5 908), and the frame has an 

angular velocity of ḟ 5 8 rad/s. If the plate is slightly disturbed, 

determine for the ensuing motion (a) the minimum value of ḟ, 

(b) the maximum value of θ̇.

y

42 in.

G

b

B

A

x

z

Fig. P18.129

θ

θ

•

90°

B

D

G

A
c

C

φ•

Fig. P18.133 and P18.134
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 18.135 A homogeneous disk with a radius of 9 in. is welded to a rod AG
with a length of 18 in. and of negligible weight that is connected by 

a clevis to a vertical shaft AB. The rod and disk can rotate freely 

about a horizontal axis AC, and shaft AB can rotate freely about a 

vertical axis. Initially, rod AG is horizontal (θ0 5 908) and has no 

angular velocity about AC. Knowing that the maximum value ḟm of 

the angular velocity of shaft AB in the ensuing motion is twice its 

initial value ḟ0, determine (a) the minimum value of θ, (b) the initial 

angular velocity ˙ f0 of shaft AB. 

 18.136 A homogeneous disk with a radius of 9 in. is welded to a rod AG
with a length of 18 in. and of negligible weight that is connected by 

a clevis to a vertical shaft AB. The rod and disk can rotate freely 

about a horizontal axis AC, and shaft AB can rotate freely about a 

vertical axis. Initially, rod AG is horizontal (θ0 5 908) and has no 

angular velocity about AC. Knowing that the smallest value of θ in 

the ensuing motion is 30°, determine (a) the initial angular velocity 

of shaft AB, (b) its maximum angular velocity. 

  *18.137 The top shown is supported at the fixed point O. Denoting by f, 

θ, and c the Eulerian angles defining the position of the top with 

respect to a fixed frame of reference, consider the general motion 

of the top in which all Eulerian angles vary.

 (a) Observing that oMZ 5 0 and oMz 5 0, and denoting 

by I and I9, respectively, the moments of inertia of the top about 

its axis of symmetry and about a transverse axis through O, 

derive the two first-order differential equations of motion

 I9ḟ sin2 θ 1 I(ċ 1 ḟ cos θ) cos θ 5 α (1)

 I(ċ 1 ḟ cos θ) 5 β (2)

  where α and β are constants depending upon the initial conditions. 

These equations express that the angular momentum of the top is 

conserved about both the Z and z axes, i.e., that the rectangular 

component of HO along each of these axes is constant.

   (b) Use Eqs. (1) and (2) to show that the rectangular component 

vz of the angular velocity of the top is constant and that the  rate of 

precession ḟ depends upon the value of the angle of nutation θ.

  *18.138 (a) Applying the principle of conservation of energy, derive a 

third differential equation for the general motion of the top of 

Prob. 18.137. 

   (b) Eliminating the derivatives ḟ and ċ from the equation 

obtained and from the two equations of Prob. 18.137, show that the 

rate of nutation θ̇ is defined by the differential equation θ̇2 5 f(θ), 
where

 f(θ) 5
1

I9
 a2E 2

β
2

I
2 2mgc cos θb 2 aα 2 β cos θ

I9 sin θ
b2

 (1)

   (c) Further show, by introducing the auxiliary variable 

x 5 cos θ, that the maximum and minimum values of θ can 

be obtained by solving for x the cubic equation

 a2E 2
β

2

I
2 2mgcxb(1 2 x2) 2

1

I9
 (α 2 βx)2 5 0 (2)

18 in.

9 in.θ

A

C

G

B

φ•

Fig. P18.135 and P18.136

Z

θ
z

c

G

O

Fig. P18.137 and P18.138
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*18.139 A solid cone of height 180 mm with a circular base of radius 60 mm 

is supported by a ball and socket at A. The cone is released from 

the position θ0 5 30° with a rate of spin ċ0 5 300 rad/s, a rate of 

precession f
.
0  5  20 rad/s, and a zero rate of nutation. Determine 

(a) the maximum value of θ in the ensuing motion, (b) the 

corresponding values of the rates of spin and precession. [Hint: Use 

Eq. (2) of Prob. 18.138; you can either solve this  equation numerically 

or reduce it to a quadratic equation, since one of its roots 

is known.]

  *18.140 A solid cone of height 180 mm with a circular base of radius 60 mm 

is supported by a ball and socket at A. The cone is released from 

the position θ0 5 30° with a rate of spin ċ0 5 300 rad/s, a rate of 

precession f
.
0  5  24 rad/s, and a zero rate of nutation. Determine 

(a) the maximum value of θ in the ensuing motion, (b) the 

corresponding values of the rates of spin and precession, (c) the 

value of θ for which the sense of the precession is reversed. (See hint 

of Prob. 18.139.)

  *18.141 A homogeneous sphere of mass m and radius a is welded to a rod 

AB of negligible mass, which is held by a ball-and-socket support 

at A. The sphere is released in the position β 5 0 with a rate of

  precession f
.

5 217 g/11a with no spin or nutation. Determine the 

largest value of β in the ensuing motion.

  *18.142 A homogeneous sphere of mass m and radius a is welded to a rod 

AB of negligible mass, which is held by a ball-and-socket support 

at A. The sphere is released in the position β 5 0 with a rate of 

precession f
.
 5 f

.
0 with no spin or nutation. Knowing that the 

largest value of β in the ensuing motion is 308, determine (a) the 

rate of precession f
.
0 of the sphere in its initial position, (b) the rates 

of precession and spin when β 5 308.

  *18.143 Consider a rigid body of arbitrary shape that is attached at its mass 

center O and subjected to no force other than its weight and the 

reaction of the support at O.

   (a) Prove that the angular momentum HO of the body about the 

fixed point O is constant in magnitude and direction, that 

the kinetic energy T of the body is constant, and that the projec-

tion along HO of the angular velocity v of the body is constant.

   (b) Show that the tip of the vector v describes a curve on a 

fixed plane in space (called the invariable plane), which is perpen-

dicular to HO and at a distance 2T/HO from O.
   (c) Show that with respect to a frame of reference attached to the 

body and coinciding with its principal axes of inertia, the tip of the 

vector v appears to describe a curve on an ellipsoid of equation

Ixvx
2 1 Iyv

2
y 1 Izvz

2 5 2T 5 constant

  The ellipsoid (called the Poinsot ellipsoid) is rigidly attached to the 

body and is of the same shape as the ellipsoid of inertia, but of a 

different size.

β 2a

a

ψ•

z

B

A

φ
•

Z

Fig. P18.141 and P18.142 

180 mm

r = 60 mm

Z
z

A

B

θ
ψ•

φ•

Fig. P18.139 and P18.140
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y

z

2T/HO

O

HO

ω

O

ω

Fig. P18.143
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  *18.144 Referring to Prob. 18.143, (a) prove that the Poinsot ellipsoid is tangent 

to the invariable plane, (b) show that the motion of the rigid body 

must be such that the Poinsot ellipsoid appears to roll on the invariable 

plane. [Hint: In part a, show that the normal to the  Poinsot ellipsoid 

at the tip of v is parallel to HO. It is recalled that the direction of the 

normal to a surface of equation F(x, y, z) 5 constant at a point P is 

the same as that of grad F at point P.]

  *18.145 Using the results obtained in Probs. 18.143 and 18.144, show that for 

an axisymmetric body attached at its mass center O and under no force 

other than its weight and the reaction at O, the Poinsot ellipsoid is an 

ellipsoid of revolution and the space and body cones are both circular 

and are tangent to each other. Further show that (a) the two cones are 

tangent externally, and the precession is direct, when I , I9, where I and 

I9 denote, respectively, the axial and transverse moment of inertia of 

the body, (b) the space cone is inside the body cone, and the precession 

is retrograde, when I . I9.

  *18.146 Refer to Probs. 18.143 and 18.144.

   (a) Show that the curve (called polhode) described by the tip 

of the vector v with respect to a frame of reference coinciding with 

the principal axes of inertia of the rigid body is defined by the 

equations

   Ixvx
2 1 Iyv

2
y 1 Izvz

2 5 2T 5 constant (1)

I2
xv

2
x 1 I2

yv
2
y 1 Iz

2vz
2 5 H2

O 5 constant (2)

  and that this curve can, therefore, be obtained by intersecting the 

Poinsot ellipsoid with the ellipsoid defined by Eq. (2).

   (b) Further show, assuming Ix . Iy . Iz, that the polhodes 

obtained for various values of HO have the shapes indicated in the 

figure.

 (c) Using the result obtained in part b, show that a rigid body 

under no force can rotate about a fixed centroidal axis if, and only 

if, that axis coincides with one of the principal axes of inertia of the 

body, and that the motion will be stable if the axis of rotation coin-

cides with the major or minor axis of the Poinsot ellipsoid 

(z or x axis in the figure) and unstable if it coincides with the inter-

mediate axis (y axis).

z

x y

Fig. P18.146

O

HO

ω

Fig. P18.144
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This chapter was devoted to the kinetic analysis of the motion of rigid bodies 

in three dimensions.

Fundamental Equations of Motion for a Rigid Body
We first noted that the two fundamental equations derived in Chap. 14 for the 

motion of a system of particles,

oF 5 ma (18.1)

oMG 5 H
.

G (18.2)

provide the foundation of our analysis, just as they did in Chap. 16 in the case 

of the plane motion of rigid bodies. The computation of the angular momen-

tum HG of the body and of its derivative H
.

G, however, are now considerably 

more involved.

Angular Momentum of a Rigid Body 
in Three Dimensions
In Sec. 18.1A, we saw that we can express the rectangular components of the 

angular momentum HG of a rigid body in terms of the components of its 

angular velocity v and of its centroidal moments and products of inertia:

 Hx 5 1 I x vx 2  I xyvy 2  I xzvz

 Hy 5 2 I yx vx 1  I y vy 2  I yz vz (18.7)

 Hz 5 2 I zx vx 2  I zy vy 1  I z vz

If we use principal axes of inertia Gx9y9z9, these relations reduce to

 Hx9 5  I x9vx9   Hy9 5  I y9vy9   Hz9 5  I z9vz9 (18.10)

We observed that, in general, the angular momentum HG and the angular 
velocity v do not have the same direction (Fig. 18.25). They do, however, 

have the same direction if v is directed along one of the principal axes of 

inertia of the body.

G

Y

O
X

Z

y

x

z

ω

HG

Fig. 18.25

Review and Summary
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Angular Momentum About a Given Point
Recalling that the system of the momenta of the particles forming a rigid body 

can be reduced to the vector mv attached at G and the couple HG (Fig. 18.26), 

we noted that, once we have determined the linear momentum mv and the 

angular momentum HG of a rigid body, we can obtain the angular momentum 

HO of the body about any given point O from

HO 5 r 3 mv 1 HG (18.11)

Rigid Body with a Fixed Point
In the particular case of a rigid body constrained to rotate about a fixed 
point O, we can obtain the components of the angular momentum HO of the 

body about O directly from the components of its angular velocity and from 

its moments and products of inertia with respect to axes through O. 

 Hx 5 1Ix vx 2 Ixyvy 2 Ixzvz

 Hy 5 2Iyxvx 1 Iy vy 2 Iyzvz (18.13)

 Hz 5 2Izxvx 2 Izyvy 1 Iz vz

Principle of Impulse and Momentum
The principle of impulse and momentum for a rigid body in three-dimensional 

motion [Sec. 18.1B] is expressed by the same fundamental formula that was 

used in Chap. 17 for a rigid body in plane motion as

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.14)

However, the systems of the initial and final momenta should now be repre-

sented as shown in Fig. 18.26, and HG should be computed from the relations 

in Eqs. (18.7) or (18.10) [Sample Probs. 18.1 and 18.2].

HG

G

Z

X

Y

O

m⎯v

⎯r

Fig. 18.26

Kinetic Energy of a Rigid Body in Three Dimensions
The kinetic energy of a rigid body in three-dimensional motion can be 

divided into two parts [Sec. 18.1C]: one associated with the motion of its 

mass center G and the other with its motion about G. Using principal 

centroidal axes x9, y9, z9, we wrote

 T 5
1
2 mv  

2 1
1
2(I x¿v

2
x¿ 1 I y¿v

2
y¿ 1 I z¿v

2
z¿) (18.17)

where  v   5 velocity of mass center

 v 5 angular velocity

 m 5 mass of rigid body

 I x9, Iy9, Iz9 5 principal centroidal moments of inertia
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We also noted that, in the case of a rigid body constrained to rotate about a 
fixed point O, we can express the kinetic energy of the body as

T 5
1
2(Ix9v

2
x9 1 Iy9v

2
y9 1 Iz9v

2
z9) (18.20)

where the x9, y9, and z9 axes are the principal axes of inertia of the body 

about O. These results make it possible to extend the application of the 

principle of work and energy and the principle of conservation of energy to 

the three-dimensional motion of a rigid body.

Using a Rotating Frame to Write the Equations of 
Motion of a Rigid Body in Space
Section 18.2 was devoted to applying the fundamental equations

 oF 5 ma (18.1)

 oMG 5 H
.

G (18.2)

to the motion of a rigid body in three dimensions. We first recalled [Sec. 18.2A] 

that HG represents the angular momentum of the body relative to a centroidal 

frame GX9Y9Z9 of fixed orientation (Fig. 18.27) and that H
.

G in Eq. (18.2)

G

Y

O X

Z

Y'

y

X'

x

z

Z '

ω

HG

Fig. 18.27

represents the rate of change of HG with respect to that frame. We noted that, 

as the body rotates, its moments and products of inertia with respect to the 

frame GX9Y9Z9 change continually. Therefore, it is more convenient to use a 

rotating frame Gxyz when resolving v into components and computing the 

moments and products of inertia that are used to determine HG from Eqs. (18.7) 

or (18.10). However, since H
.

G in Eq. (18.2) represents the rate of change of 

HG with respect to the frame GX9Y9Z9 of fixed orientation, we must use the 

method of Sec. 15.5A to determine its value. Recalling Eq. (15.31), we wrote

H
.

G 5 1H. G2Gxyz 1 V 3 HG (18.22)

where HG 5  angular momentum of body with respect to frame GX9Y9Z9 of 

fixed orientation

 1H. G2Gxyz 5  rate of change of HG with respect to rotating frame Gxyz to be 

computed from relations in Eq. (18.7)

 V 5 angular velocity of the rotating frame Gxyz

Substituting for H
.

G from Eq. (18.22) into Eq. (18.2), we obtained

 oMG 5 1H. G2Gxyz 1 V 3 HG (18.23)
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If the rotating frame is actually attached to the body, its angular velocity V
is identically equal to the angular velocity v of the body. In many applications, 

however, it is advantageous to use a frame of reference that is not attached to 

the body but rotates in an independent manner [Sample Prob. 18.5].

Euler’s Equations of Motion 
Setting V 5 v in Eq. (18.23), using principal axes, and writing this equation 

in scalar form, we obtained Euler’s equations of motion [Sec. 18.2B]. Then 

we extended Newton’s second law to the three-dimensional motion of a rigid 

body, showing that the system of the external forces acting on the rigid body 

is not only equipollent but actually equivalent to the inertial terms of the body 

represented by the vector ma and the couple H
.

G (Fig. 18.28). You can solve 

problems involving the three-dimensional motion of a rigid body by considering 

the free-body and kinetic diagrams represented in Fig. 18.28 and writing 

appropriate scalar equations relating the components or moments of the 

external forces and inertial terms [Sample Probs. 18.3 and 18.5].

=G

F1

F2

F3

F4

⎯am

G

HG
.

Fig. 18.28

Rigid Body with a Fixed Point
In the case of a rigid body constrained to rotate about a fixed point O, we 

can use an alternative method of solution involving the moments of the forces 

and the rate of change of the angular momentum about point O. We wrote 

[Sec. 18.2C]

 oMO 5 (H
.

O)Oxyz 1 V 3 HO (18.28)

You can use this approach to solve some types of problems involving the 

rotation of a rigid body about a fixed axis [Sec. 18.2D]; for example, an 

unbalanced rotating shaft [Sample Prob. 18.4].

Motion of a Gyroscope
In Section 18.3, we considered the motion of gyroscopes and other 

axisymmetric bodies. We introduced the Eulerian angles f, θ, and c to define 

the position of a gyroscope (Fig. 18.29), and we observed that their derivatives 

ϕ
.
, θ

.
, and c

.
 represent, respectively, the rates of precession, nutation, and spin

of the gyroscope [Sec. 18.3A]. Expressing the angular velocity v in terms of 

these derivatives, we wrote

 v 5 2 f
.
 sin θi 1 θ

.
j 1 (c

.
 1 f

.
 cos θ)k (18.35)

φ

θ

ψ

Z

Y
O

A

B

A'

B'

C'D'

C

D

Fig. 18.29
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where the unit vectors are associated with a frame Oxyz attached to the inner 

gimbal of the gyroscope (Fig. 18.30). These vectors rotate, therefore, with the 

angular velocity

V 5 2f
.
 sin θi 1 θ

.
 j 1 f

.
 cos θk (18.38)

Denoting the moment of inertia of the gyroscope with respect to its spin 

axis z by I and its moment of inertia with respect to a transverse axis through 

O by I9, we wrote

HO 5 2I9f
.
 sin θi 1 I9θ

.
j 1 I(c

.
 1 f

.
 cos θ)k (18.36)

Substituting for HO and V into Eq. (18.28) led us to the differential equations 

defining the motion of a gyroscope.

Steady Precession
In the particular case of the steady precession of a gyroscope [Sec. 18.3B], 

the angle θ, the rate of precession f
.
, and the rate of spin c

.
 remain constant. 

We saw that such a motion is possible only if the moments of the external 

forces about O satisfy the relation

 oMO 5 (Ivz 2 I9f
.
 cos θ)f

.
 sin θj (18.44)

i.e., if the external forces reduce to a couple of moment equal to the right-hand 

side of Eq. (18.44) and applied about an axis perpendicular to the precession 

axis and to the spin axis (Fig. 18.31). This chapter ended with a discussion 

of the motion of an axisymmetric body  spinning and precessing under no force 

[Sec. 18.3C; Sample Prob. 18.6].

θ

Z

y

x

z

O
B

B'

φK
.

ψk
.

ΣΜO

Fig. 18.31

y

z
θ

Z

O

A

B

A'

B'
C'

C

ψk
.

φK
.

θ j
.

x

Fig. 18.30
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 18.147 Three 25-lb rotor disks are attached to a shaft that rotates at 

720 rpm. Disk A is attached eccentrically so that its mass center is 
1
4 in. from the axis of rotation, while disks B and C are attached so 

that their mass centers coincide with the axis of rotation. Where 

should 2-lb weights be bolted to disks B and C to balance the system 

dynamically?

y

z

x

A

G

B

C

4 in.

4 in.

in.

6 in.

6 in.

1
4

Fig. P18.147

18.148 A homogeneous disk of mass m 5 5 kg rotates at the constant rate

v1 5 8 rad/s with respect to the bent axle ABC, which itself rotates 

at the constant rate v2 5 3 rad/s about the y axis. Determine the 

angular momentum HC of the disk about its center C.

 18.149 A rod of uniform cross section is used to form the shaft shown. 

Denoting by m the total mass of the shaft and knowing that the shaft 

rotates with a constant angular velocity v, determine (a) the angular 

momentum HG of the shaft about its mass center G, (b) the angle 

formed by HG and the axis AB, (c) the angular momentum of the 

shaft about point A.

A

B

r

r

r

r

2r

2r

G

xz

ω

y

Fig. P18.149

 18.150 A uniform rod of mass m and length 5a is bent into the shape shown 

and is suspended from a wire attached at point B. Knowing that the 

rod is hit at point A in the negative y direction and denoting 

the corresponding impulse by 2(F Dt)j, determine immediately 

after the impact (a) the  velocity of the mass center G, (b) the angular 

velocity of the rod.

Review Problems

Fig. P18.148

z

y

x

A

B

300 mm400 mm
ω1

ω2

r = 250 mm

C

y

z
x

A
B

D

E

G

C

a

a a

a

a
2
a
2

Fig. P18.150
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18.151 A four-bladed airplane propeller has a mass of 160 kg and a radius of 

gyration of 800 mm. Knowing that the propeller rotates at 1600 rpm 

as the airplane is traveling in a circular path of 600-m radius at 

540 km/h, determine the magnitude of the couple exerted by the 

propeller on its shaft due to the rotation of the airplane.

 18.152 A 2.4-kg piece of sheet steel with dimensions 160 3 640 mm was bent 

to form the component shown. The component is at rest 

(v 5 0) when a couple M0 5 (0.8 N?m)k is applied to it. Determine 

(a) the angular acceleration of the component, (b) the dynamic reac-

tions at A and B immediately after the couple is applied.

x
z

y

A

B

G

160 mm

160 mm

80 mm
80 mm

M0

160 mm

160 mm

Fig. P18.152

 18.153 A homogeneous disk of weight W 5 6 lb rotates at the constant rate 

v1 5 16 rad/s with respect to arm ABC, which is welded to a shaft 

DCE rotating at the constant rate v2 5 8 rad/s. Determine the 

dynamic reactions at D and E.

D B

C

A

x

y

z

ω1

ω2

r = 8 in.

12 in.

12 in.

9 in.

9 in.

E

Fig. P18.153

 18.154 A 48-kg advertising panel of length 2a 5 2.4 m and width 2b 5 1.6 m 

is kept rotating at a constant rate v1 about its horizontal axis by a 

small electric motor attached at A to frame ACB. This frame itself 

is kept rotating at a constant rate v2 about a vertical axis by a second 

motor attached at C to the column CD. Knowing that the panel and 

the frame complete a full revolution in 6 s and 12 s, respectively, 

express, as a function of the angle θ, the dynamic reaction exerted 

on column CD by its support at D.

A

B

C

D

G

a

a

b

b

y

z

x
ω1

ω2

θ

Fig. P18.154

600 m

Fig. P18.151
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18.155 A 2500-kg satellite is 2.4 m high and has octagonal bases of sides 

1.2 m. The coordinate axes shown are the principal centroidal axes 

of inertia of the satellite, and its radii of gyration are kx 5 kz 5 0.90 m 

and ky 5 0.98 m. The satellite is equipped with a main 500-N thruster 

E and four 20-N thrusters A, B, C, and D that can expel fuel in the 

positive y direction. The satellite is spinning at the rate of 36 rev/h 

about its axis of symmetry Gy, which maintains a fixed direction in 

space, when thrusters A and B are activated for 2 s. Determine (a) the 

precession axis of the satellite, (b) its rate of precession, (c) its rate 

of spin.

y

z
x

C
D

B

E

1.2 mA

ω0

2.4 m

Fig. P18.155

 18.156 The space capsule has no angular velocity when the jet at A is activated 

for 1 s in a direction parallel to the x axis. Knowing that the capsule 

has a mass of 1000 kg, that its radii of gyration are kz 5 ky 5 1.00 m 

and kz 5 1.25 m, and that the jet at A produces a thrust of 50 N, 

determine the axis of precession and the rates of precession and spin 

after the jet has stopped.

2 m

1.25 m

1.25 m

2 m

y

x

z

B

A

G

Fig. P18.156
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18.157 A homogeneous disk of mass m is connected at A and B to a fork-

ended shaft of negligible mass that is supported by a bearing at C. 

The disk is free to rotate about its horizontal  diameter AB and the 

shaft is free to rotate about a vertical axis through C. Initially the 

disk lies in a vertical plane (θ0 5 90°) and the shaft has an angular 

velocity f
.
0 5 8 rad/s. If the disk is slightly disturbed, determine 

for the ensuing motion (a) the minimum value of f
.
, (b) the maximum 

value of θ
.
.

φ•

C

G

θ
•

A

B

θ

Fig. P18.157

 18.158 The essential features of the gyrocompass are shown. The rotor spins at 

the rate c
.
 about an axis mounted in a single gimbal, which may rotate 

freely about the vertical axis AB. The angle formed by the axis of the 

rotor and the plane of the meridian is denoted by θ, and the latitude 

of the position on the earth is denoted by l. We note that line OC is 

parallel to the axis of the earth, and we denote by ve the angular 

velocity of the earth about its axis.

   (a) Show that the equations of motion of the gyrocompass are

I9θ̈ 1 Ivzve cos l sin θ 2 I9v2
e cos2 l sin θ cos θ 5 0

Iv
.

z 5 0

  where vz is the rectangular component of the total angular velocity 

v along the axis of the rotor, and I and I9 are the moments of inertia 

of the rotor with respect to its axis of symmetry and a transverse 

axis through O, respectively.

   (b) Neglecting the term containing v2
e, show that for small 

values of θ, we have

θ̈ 1
Ivzve cos l

I9
 θ 5 0

  and that the axis of the gyrocompass oscillates about the north–south 

direction.

θ

λ

N

A

C

S

B

O
ψ•

ωe

Fig. P18.158
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The Wind Damper inside of a building helps protect against 

typhoons and earthquakes by reducing the effects of wind and 

vibrations on the building. Mechanical systems may undergo 

free vibrations or they may be subject to forced vibrations. The 

vibrations are damped when there is energy dissipation and 

undamped otherwise. This chapter is an introduction to many 

fundamental concepts in vibration analysis.

Mechanical Vibrations

19
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Introduction

 19.1 VIBRATIONS WITHOUT 
DAMPING

19.1A Simple Harmonic Motion and 
Free Vibrations of Particles

19.1B Simple Pendulum 
(Approximate Solution)

19.1C Simple Pendulum (Exact 
Solution)

 19.2 FREE VIBRATIONS OF 
RIGID BODIES

 19.3 APPLYING THE 
PRINCIPLE OF 
CONSERVATION OF 
ENERGY

 19.4 FORCED VIBRATIONS

 19.5 DAMPED VIBRATIONS
19.5A Damped Free Vibrations
19.5B Damped Forced Vibrations
19.5C Electrical Analogs

Objectives
• Define, compare, and contrast simple harmonic 

motion, undamped free and forced vibrations, and 
damped free and forced vibrations. 

• Using Newton's second law, determine the differential 
equation of motion of a particle or a rigid body 
undergoing vibratory motion. 

• Using the conservation of energy, determine the 
differential equation of motion of a particle or a 
rigid body undergoing vibratory motion.

• Calculate the natural circular frequency, period, and 
natural frequency for a system undergoing simple 
harmonic motion.

• Calculate the maximum amplitude and the 
magnifi cation factor for a body undergoing forced 
vibrations.

• Compare and contrast the vibration responses of 
underdamped, critically damped, and overdamped 
systems.

Introduction
A mechanical vibration is the motion of a particle or body that oscillates 

about a position of equilibrium. Most vibrations in machines and structures 

are undesirable because of the increased stresses and energy losses that 

accompany them. Appropriate design therefore aims to eliminate or reduce 

vibrations as much as possible. The analysis of vibrations has become 

increasingly important in recent years owing to the current trend toward 

higher-speed machines and lighter structures. There is every reason to 

expect that this trend will continue and that an even greater need for 

vibration analysis will develop in the future.

The analysis of vibrations is a very extensive subject to which entire 

texts have been devoted. Our present study is limited to the simplest types 

of vibrations––namely, the vibrations of a body or a system of bodies with 

one degree of freedom.

A mechanical vibration generally results when a system is displaced 

from a position of stable equilibrium. The system tends to return to this 

position under the action of restoring forces (either elastic forces, as in 

the case of a mass attached to a spring, or gravitational forces, as in the 

case of a pendulum). But the system generally reaches its original position 

with an acquired velocity that carries it beyond that position. Since the 

process can be repeated indefinitely, the system keeps moving back and 

forth across its position of equilibrium. The time interval required for the 

system to complete a full cycle of motion is called the period of the 

vibration. The number of cycles per unit time defines the frequency, and 

the maximum displacement of the system from its position of equilibrium 

is called the amplitude of the vibration.
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1334 Mechanical Vibrations

When the motion is maintained by the restoring forces only, the 

vibration is said to be a free vibration. When a periodic force is applied 

to the system, the resulting motion is described as a forced vibration. If 

we can neglect the effects of friction, the vibrations are said to be 

undamped. However, all vibrations are actually damped to some degree. 

If a free vibration is only slightly damped, its amplitude slowly decreases 

until, after a certain time, the motion comes to a stop. But if damping is 

large enough to prevent any true vibration, the system then slowly regains 

its original position. A damped forced vibration is maintained as long as 

the periodic force that produces the vibration is applied. The amplitude of 

the vibration, however, is affected by the magnitude of the damping forces.

In this chapter, we first examine vibrations without damping, studying 

vibrations of particles, rigid bodies, and forced vibrations. Then we will 

look at damped vibrations, including both free and forced vibrations.

19.1  VIBRATIONS WITHOUT 
DAMPING

The first step in analyzing vibrations is to formulate an equation of motion 

for the simple case of a particle in free vibration. We will modify this 

equation as we consider more complicated situations, such as damped and 

forced vibrations.

19.1A  Simple Harmonic Motion and 
Free Vibrations of Particles

Consider a body with a mass m attached to a spring with a constant k
(Fig. 19.1a). At the moment, we are concerned only with the motion of 

its mass center, so we will refer to this body as a particle. When the 

particle is in static equilibrium, the forces acting on it are its weight W
and the force T exerted by the spring, which has a magnitude T 5 kδst, 

where δst denotes the static elongation of the spring from its unstretched 

length. We therefore have

W 5 kδst

Suppose now that the particle is displaced through a distance xm

from its equilibrium position and released with no initial velocity. If we 

have chosen xm to be smaller than δst, the particle moves back and forth 

through its equilibrium position; a vibration with an amplitude xm is 

generated. Note that we can also produce a vibration by imparting an 

initial velocity to the particle when it is in its equilibrium position x 5 0 

or, more generally, by starting the particle from any given position x 5 x0 

with a given initial velocity v0.

To analyze the vibration, let us consider the particle in a position P 

at some arbitrary time t (Fig. 19.1b). Denoting the displacement OP
measured from the equilibrium position O (positive downward) by x, we 

note that the forces acting on the particle are its weight W and the force T
exerted by the spring. In this position, the spring force has a magnitude 

T 5 k(δst 1 x). Recalling that W 5 kδst, we find that the magnitude of 

the resultant F of the two forces (positive downward) is

F 5 W 2 k1δst 1 x2 5 2kx (19.1)

Fig. 19.1 (a) At the equilibrium position, the 
spring force is equal to the weight; (b) the 
block at position P with its free-body diagram 
and kinetic diagram.

Unstretched

Equilibrium

(a)

(b)

W

W

T = kdst

T = k(dst + x)

− xm

+ xm

x

P

O

+

=

ma = mx..

dst
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19.1 Vibrations without Damping 1335

Thus, the resultant of the forces exerted on the particle is proportional to 

the displacement OP measured from the equilibrium position. Recalling 

the sign convention, we note that F is always directed toward the 

equilibrium position O. Substituting for F into the fundamental equation 

F 5 ma and recalling that a is the second derivative ẍ of x with respect 

to t, we have

Equation of motion for 
simple harmonic motion

 mẍ 1 kx 5 0 (19.2)

Note that we use the same sign convention for the acceleration ẍ and for 

the displacement x, namely, positive downward. By measuring the 

displacement from the static equilibrium point, we get a homogeneous 

differential equation; that is, the right-hand side is equal to zero. 

The motion defined by Eq. (19.2) is called simple harmonic motion. 

It is characterized by the fact that the acceleration is proportional to the 
displacement and in the opposite direction. We can verify that each of 

the functions

x1 5  sin 12k/m  t2 and x2 5  cos 12k/m  t2
satisfies Eq. (19.2). These functions, therefore, constitute two particular 
solutions of the differential equation (19.2). We can obtain the general 
solution of Eq. (19.2) by multiplying each of the particular solutions by 

an arbitrary constant and adding. Thus, the general solution is

x 5 C1x1 1 C2x2 5 C1 sin a
B

k
m

 tb 1 C2 cos a
B

k
m

 tb (19.3)

Note that x is a periodic function of the time t and therefore represents 

a vibration of the particle P. The coefficient of t in the expression we have 

obtained is referred to as the natural circular frequency of the vibration 

and is denoted by vn. We have

 Natural circular frequency 5 vn 5
B

k
m

 (19.4)

Substituting for 2k/m into Eq. (19.3) gives 

 x 5 C1 sin vnt 1 C2 cos vnt (19.5)

This is the general solution of the differential equation

 ẍ 1 v2
n x 5 0 (19.6)

that we can obtain from Eq. (19.2) by dividing both terms by m and 

observing that k/m 5 v2
n. Differentiating both sides of Eq. (19.5) twice 

with respect to t, we obtain the expressions for the velocity and the accel-

eration at time t as

 v 5 ẋ 5 C1vn cos vnt 2 C2vn sin vnt (19.7)

a 5 ẍ 5 2C1v
2
n sin vnt 2 C2v

2
n cos vnt (19.8)

The values of the constants C1 and C2 depend upon the initial 
conditions of the motion. For example, we have C1 5 0 if the particle is 

displaced from its equilibrium position and released at t 5 0 with no 

mẍmm 1 kx 5 0

Natural circular frff equency 5 vn 5
B

k
mB

ẍ 1 v2
n x 5 0
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1336 Mechanical Vibrations

initial velocity. Also, we have C2 5 0 if the particle starts from O at 

t 5 0 with a given initial velocity. In general, substituting t 5 0 and the 

initial values x0 and v0 of the displacement and the velocity into 

Eqs. (19.5) and (19.7), we find that C1 5 v0 /vn and C2 5 x0.

We can write these expressions for the displacement, velocity, and 

acceleration of a particle in a more compact form if we note that Eq. (19.5) 

says that the displacement x 5 OP is the sum of the x components of two 

vectors C1 and C2, respectively, with magnitudes of C1 and C2 that are 

directed as shown in Fig. 19.2a. As t varies, both vectors rotate clockwise; 

we also note that the magnitude of their resultant OQ
¡

 is equal to the 

maximum displacement xm. Thus, we can obtain the simple harmonic 

motion of P along the x axis by projecting on this axis the motion of a 

point Q describing an auxiliary circle of radius xm with a constant angular 

velocity vn. This explains the name natural circular frequency given 

to vn. Denoting the angle formed by the vectors OQ
¡

 and C1 by f, we have

 OP 5 OQ sin (vnt 1 f) (19.9)

This leads to new expressions for the displacement, velocity, and accelera-

tion of P:

 x 5 xm sin (vnt 1 f) (19.10)

v 5 ẋ 5 xmvn cos (vnt 1 f) (19.11)

a 5 ẍ  5 2xm v
2
n sin (vnt 1 f) (19.12)

The displacement-time curve is represented by a sine curve 

(Fig. 19.2b); the maximum value xm of the displacement is called the 

amplitude of the vibration, and the angle f that defines the initial position 

of Q on the circle is called the phase angle. As we can see from Fig. 19.2, 

a full cycle occurs every 2π rad. The corresponding value of t is denoted 

by τn. This is called the period of the free vibration and is measured in 

seconds. We have

Period 5 τn 5
2π

vn
 (19.13)

x 5 xm sin (vnt 1 f)

Period 5 τnττ 5
2π

vn

(a) (b)

C1

− xm

+ xm

x
m

+

O

Q
P

t

C2
f

t

x
wnt

wnt

Fig. 19.2 (a) Auxiliary circle of simple harmonic motion: the resultant OQ rotates 
at constant angular velocity vn; (b) the graph of displacement versus time is a sine 
curve.
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19.1 Vibrations without Damping 1337

The number of cycles described per unit of time is denoted by fn and is 

known as the natural frequency of the vibration. We have

Natural frequency 5 fn 5
1

τn
5

vn

2π
 (19.14)

The unit of frequency is called a hertz (Hz). It also follows from 

Eq. (19.14) that a frequency of 1 s21 or 1 Hz corresponds to a circular 

frequency of 2π rad/s. In problems involving angular velocities expressed 

in revolutions per minute (rpm), we have 1 rpm 5
1

60 s
21 5

1
60 Hz, or 

1 rpm 5 (2π /60) rad/s.

Recall that we defined vn in Eq. (19.4) in terms of the constant k
of the spring and the mass m of the particle. Thus, the period and the 

frequency are independent both of the initial conditions and of the 

amplitude of the vibration. Also, τn and fn depend on the mass rather than 

on the weight of the particle and thus are independent of the value of g.

We can represent the velocity-time and acceleration-time curves 

using sine curves of the same period as the displacement-time curve—but 

with different amplitudes and different phase angles. From Eqs. (19.11) 

and (19.12), the maximum values of the magnitudes of the velocity and 

acceleration are

 vm 5 xmvn  am 5 xmv2
n (19.15)

The point Q describes the auxiliary circle with a radius xm at the constant 

angular velocity vn, so its velocity and acceleration are equal, respectively, 

to the expressions of Eq. (19.15). Recalling Eqs. (19.11) and (19.12), we 

can find the velocity and acceleration of P at any instant by projecting 

vectors of magnitudes vm 5 xmvn and am 5 xmv2
n on the x axis. These two 

vectors represent the velocity and acceleration of Q, respectively, at the 

same instant (Fig. 19.3).

These results are not limited to the solution of the problem of a mass 

attached to a spring. We can use them to analyze the rectilinear motion 

of a particle whenever the resultant F of the forces acting on the particle 

is proportional to the displacement x and directed toward O. In such a 

case, we can write the fundamental equation of motion F 5 ma in the 

form of Eq. (19.6), which is characteristic of a simple harmonic motion. 

Observing that the coefficient of x must be equal to v2
n, we can easily 

determine the natural circular frequency vn of the motion. Substituting the 

value obtained for vn into Eqs. (19.13) and (19.14), we then obtain the 

period τn and the natural frequency fn of the motion.

19.1B  Simple Pendulum 
(Approximate Solution)

Many of the vibrations encountered in engineering applications can be 

represented using simple harmonic motion. Many others can be approximated 

by a simple harmonic motion—provided that their amplitude remains 

small. Consider, for example, a simple pendulum consisting of a bob with 

Natural frff equency 5 fnff 5
1

τnττ
5

vn

2π

vm 5 xmvn  am 5 xmv2
n

Fig. 19.3 Auxiliary circle of simple harmonic 
motion showing the maximum values of 
velocity and acceleration.

O

P

x

x
am = xmω n

2

vm = xmωn

ωnt

ωnt + φ

a

v

φ

Q

Q0

xm
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1338 Mechanical Vibrations

a mass m attached to a cord of length l that can oscillate in a vertical plane 

(Fig. 19.4a). At a given time t, the cord forms an angle θ with the vertical. 

The forces acting on the bob are its weight W and the force T exerted by 

the cord (Fig. 19.4b). Resolving the vector ma into tangential and normal 

components, with mat directed to the right (i.e., in the direction corresponding 

to increasing values of θ), and observing that at 5 lα 5 lθ
$

, we have

oFt 5 mat: 2W sin θ 5 mlθ̈

Noting that W 5 mg and dividing through by ml, we obtain

 θ̈ 1
g

l
  sin θ 5 0 (19.16)

For oscillations of small amplitude, we can replace sin θ by θ, which is 

expressed in radians, obtaining

 θ̈ 1
g

l
  θ 5 0 (19.17)

Comparison with Eq. (19.6) shows that the differential equation (19.17) is 

that of a simple harmonic motion with a natural circular frequency vn equal 

to (g/l)1/2. Thus, we can express the general solution of Eq. (19.17) as

θ 5 θm sin (vnt 1 f)

where θm is the amplitude of the oscillations and f is a phase angle. 

Substituting the value obtained for vn into Eq. (19.13), we get the expression 

for the period of the small oscillations of a pendulum of length l as

 τn 5
2π

vn
5 2π

B

l
g

 (19.18)

*19.1C  Simple Pendulum (Exact Solution)
Formula (19.18) is only approximate. To obtain an exact expression for 

the period of the oscillations of a simple pendulum, we must return to 

Eq. (19.16). Multiplying both terms by 2θ
.
 and integrating from an initial 

position corresponding to the maximum deflection (that is, θ 5 θm and 

θ
.
 5 0, we have

adθ

dt
b2

5
2g

l
(cos θ 2 cos θm)

We replace θ cos θ by 1 2 2 sin2 (θ/2) and cos θm by a similar expres-

sion, solve for dt, and integrate over a quarter period from t 5 0, θ 5 0 

to t 5 τn /4, θ 5 θm. This gives 

τn 5 2
B

l
g

 #
θm

0

  

dθ

2sin2(θm/2) 2 sin2(θ/2)

Fig. 19.4 (a) A simple pendulum consists of 
a bob of mass m at the end of a cord of 
length l; (b) free-body diagram and kinetic 
diagram of the simple pendulum.

=

l

m

W

T

q

ma n

ma t

(a)

(b)
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19.1 Vibrations without Damping 1339

The integral on the right-hand side is known as an elliptic integral; it 

cannot be expressed in terms of the usual algebraic or trigonometric func-

tions. However, setting

sin (θ/2) 5 sin (θm/2) sin f

we can write

 τn 5 4 

B

l
g #

π/2

0

df

21 2 sin2(θm/2) sin2 f
 (19.19)

We can calculate this integral, commonly denoted by K, by using a 

numerical method of integration. It also can be found using computer 

programs such as Maple, Mathematica, or Matlab or in tables of elliptic 
integrals for various values of θm /2.†

In order to compare this result with that of the preceding section, 

we write Eq. (19.19) in the form

 τn 5
2K

π
 a2π 

B

l
g
b (19.20)

Formula (19.20) shows that we can obtain the actual value of the period 

of a simple pendulum by multiplying the approximate value given in 

Eq. (19.18) by the correction factor 2K/π. Values of the correction factor 

are given in Table 19.1 for various values of the amplitude θm. Note that 

for ordinary engineering computations, the correction factor can be omitted 

as long as the amplitude does not exceed 10°.

†See, for example, Standard Mathematical Tables and Formulae, CRC Press, Cleveland, 

Ohio.

Table 19.1  Correction Factor for the Period of a Simple 
Pendulum

θm 0° 10° 20° 30° 60° 90° 120° 150° 180°

K 1.571 1.574 1.583 1.598 1.686 1.854 2.157 2.768 `

2K/π 1.000 1.002 1.008 1.017 1.073 1.180 1.373 1.762 `
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1340 Mechanical Vibrations

Sample Problem 19.1

A 50-kg block moves between vertical guides as shown. The block is 

pulled 40 mm down from its equilibrium position and released. For each 

spring arrangement, determine the period of the vibration, the maximum 

velocity of the block, and the maximum acceleration of the block.

STRATEGY: You first need to calculate the equivalent spring constant 

for each arrangement of the springs. Then you can use the information in 

this section to determine the motion.

MODELING and ANALYSIS: 

a. Springs Attached in Parallel. First determine the constant k of 

a single spring equivalent to the two springs by finding the magnitude of 
the force P required to cause a given deflection δ (Fig. 1). Since for a 

deflection δ the magnitudes of the forces exerted by the springs are, 

respectively, k1δ and k2δ, you have

P 5 k1δ 1 k2δ 5 1k1 1 k22δ

k1d k2d

d

P

Fig. 1 Springs in parallel 
elongated a distanced δ.

Thus, the constant k of the single equivalent spring is

k 5
P

δ
5 k1 1 k2 5 4 kN/m 1 6 kN/m 5 10 kN/m 5 104 N/m

Since m 5 50 kg, Eq. (19.4) yields

Period of Vibration: 

v2
n 5

k
m

5
104 N/m

50 kg
   vn 5 14.14 rad/s

 τn 5 2πyvn τn 5 0.444 s b

Maximum Velocity: 

 vm 5 xmvn 5 (0.040 m)(14.14 rad/s)

vm 5 0.566 m/s  vm 5 0.566 m/s  D b

Maximum Acceleration: 

am 5 xmv2
n 5 (0.040 m)(14.14 rad/s)2

 am 5 8.00 m/s2 am 5 8.00 m/s2  D b

k1 = 4 kN/m

k2 = 6 kN/m

(a)

(b)
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19.1 Vibrations without Damping 1341

b. Springs Attached in Series. In this case, determine the constant k 

of a single spring equivalent to the two springs by finding the total 
elongation δ of the springs under a given static load P (Fig. 2). 

l1 + d1

l2 + d2

l1

l2

d

P

Fig. 2 Springs in series elongated 
a distance δ.

To facilitate the computation, you can use an arbitrary static load with a 

magnitude of P 5 12 kN (this number is chosen since it has four and six 

as divisors). You obtain

δ 5 δ1 1 δ2 5
P

k1

1
P

k2

5
12 kN

4 kN/m
1

12 kN

6 kN/m
5 5 m

k 5
P

δ
5

12 kN

5 m
5 2.4 kN/m 5 2400 N/m

Period of Vibration:  

 v2
n 5

k
m

5
2400 N/m

50 kg
 vn 5 6.93 rad/s

 τn 5
2π

vn
 τn 5 0.907 s b

Maximum Velocity:  

     vm 5 xmvn 5 (0.040 m)(6.93 rad/s)

 vm 5 0.277 m/s vm 5 0.277 m/s  D b

Maximum Acceleration:  

            am 5 xmv2
n 5 (0.040 m)(6.93 rad/s)2

    am 5 1.920 m/s2 am 5 1.920 m/s2 D b

REFLECT and THINK: The problem did not ask you to determine the 

expression for combining springs in series, but from this analysis, it is 

clear that δ 5
P
k1

1
P
k2

5
P
k  or 

1
k 5

1
k1

1
1
k2

. Thus, for springs in series, 
1
k 5

1
k1

1
1
k2

, and for springs in parallel, k 5 k1 1 k2.
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13421342

T his chapter deals with mechanical vibrations, i.e., with the motion of a particle 

or body oscillating about a position of equilibrium. In this first section, we saw 

that a free vibration of a particle occurs when the particle is subjected to a force 

proportional to its displacement and in the opposite direction, such as the force exerted 

by a spring (Fig. 19.1). The resulting motion, called simple harmonic motion, is 

characterized by the differential equation as

mẍ 1 kx 5 0 (19.2)

where x is the displacement of the particle from the equilibrium point, ẍ is its accel-

eration, m is its mass, and k is the constant of the spring. We found the solution of 

this differential equation to be

x 5 xm sin (vnt 1 f) (19.10)

where xm 5 amplitude of the vibration

 vn 5 2k/m 5 natural circular frequency (rad/s)

 f 5 phase angle (rad)

We defined the period of the vibration as the time τn 5 2π/vn needed for the particle 

to complete one cycle. The natural frequency is the number of cycles per second, 

fn 5 1/τn 5 vn/2π, expressed in Hz or s–1. Differentiating Eq. (19.10) twice yields 

the velocity and the acceleration of the particle at any time. We found the maximum 

values of the velocity and acceleration to be

 vm 5 xmvn   am 5 xmv2
n (19.15)

To determine the parameters in Eq. (19.10), you can follow these steps:

1. Draw a free-body diagram showing the forces exerted on the particle when 

the particle is at a distance x from its position of equilibrium. The resultant of these 

forces is proportional to x, and its direction is opposite to the positive direction of x 

[Eq. (19.1)].

2. Write the differential equation of motion by equating mẍ to the resultant of the 

forces found in Step 1. Note that once you have chosen a positive direction for x, you 

should use the same sign convention for the acceleration ẍ. After transposition, you 

will obtain an equation of the form of Eq. (19.2).

SOLVING PROBLEMS 
ON YOUR OWN
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1343 1343

3.  Determine the natural circular frequency vn by dividing the coefficient of x by 

the coefficient of ẍ in this equation and taking the square root of the result. Make 

sure that vn is expressed in rad/s.

4. Determine the amplitude xm and the phase angle f by substituting the value 

obtained for vn and the initial values of x and ẍ into Eq. (19.10) and the equation 

obtained by differentiating Eq. (19.10) with respect to t.
 You can now use Eq. (19.10) and the two equations obtained by differentiating 

Eq. (19.10) twice with respect to t to find the displacement, velocity, and acceleration 

of the particle at any time. Equations (19.15) yield the maximum velocity vm and the 

maximum acceleration am.

5. For the small oscillations of a simple pendulum, the angle θ that the cord of the 

pendulum forms with the vertical satisfies the differential equation

θ̈ 1
g

l
 θ 5 0 (19.17)

where l is the length of the cord and θ is expressed in radians [Sec. 19.1B]. This 

equation defines again a simple harmonic motion, and its solution is of the same form 

as Eq. (19.10) as

θ 5 θm sin (vnt 1 f)

where the natural circular frequency vn 5 2g/l is expressed in rad/s. The determina-

tion of the various constants in this expression is carried out in a manner similar to 

that described previously. Remember that the velocity of the bob is tangent to the path 

and that its magnitude is v 5 lθ
.
, whereas the acceleration of the bob has a tangential 

component at with a magnitude of at 5 lθ̈  and a normal component an directed toward 

the center of the path and with a magnitude of an 5 lθ
.
2. 
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1344

19.1 A particle moves in simple harmonic motion. Knowing that the 

maximum velocity is 200 mm/s and the maximum acceleration is 

4 m/s2, determine the amplitude and frequency of the motion.

 19.2 A particle moves in simple harmonic motion. Knowing that the ampli-

tude is 15 in. and the maximum acceleration is 15 ft/s2, determine the 

maximum velocity of the particle and the frequency of its motion.

 19.3 Determine the amplitude and maximum acceleration of a particle 

that moves in simple harmonic motion with a maximum velocity of 

4 ft/s and a frequency of 6 Hz.

 19.4 A 32-kg block is attached to a spring and can move without friction 

in a slot as shown. The block is in its equilibrium position when it 

is struck by a hammer that imparts to the block an initial velocity 

of 250 mm/s. Determine (a) the period and frequency of the resulting 

motion, (b) the amplitude of the motion and the maximum 

acceleration of the block.

 19.5 A 12-kg block is supported by the spring shown. If the block is 

moved vertically downward from its equilibrium position and 

released, determine (a) the period and frequency of the resulting 

motion, (b) the maximum velocity and acceleration of the block if 

the amplitude of its motion is 50 mm.

5 kN/m

12 kg

 Fig. P19.5

 19.6 An instrument package A is bolted to a shaker table as shown. The 

table moves vertically in simple harmonic motion at the same 

 frequency as the variable-speed motor that drives it. The package is 

to be tested at a peak acceleration of 150 ft/s2. Knowing that the 

amplitude of the shaker table is 2.3 in., determine (a) the required 

speed of the motor in rpm, (b) the maximum velocity of the table.

 19.7 A simple pendulum consisting of a bob attached to a cord oscillates 

in a vertical plane with a period of 1.3 s. Assuming simple harmonic 

motion and knowing that the maximum velocity of the bob is 

0.4 m/s, determine (a) the amplitude of the motion in degrees, (b) the 

maximum tangential acceleration of the bob.

19.8 A simple pendulum consisting of a bob attached to a cord of length 

l 5 800 mm oscillates in a vertical plane. Assuming simple harmonic 

motion and knowing that the bob is released from rest when θ 5 6°, 

determine (a) the frequency of oscillation, (b) the maximum velocity 

of the bob.

Problems

32 kg

k = 12 kN/m

 Fig. P19.4

A

 Fig. P19.6

l

m

q

 Fig. P19.7 and P19.8
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19.9 A 10-lb block A rests on a 40-lb plate B that is attached to an 

unstretched spring with a constant of k 5 60 lb/ft. Plate B is slowly 

moved 2.4 in. to the left and released from rest. Assuming that 

block A does not slip on the plate, determine (a) the amplitude and 

frequency of the resulting motion, (b) the corresponding smallest 

allowable value of the coefficient of static friction.

 19.10 A 5-kg fragile glass vase is surrounded by packing material in a 

cardboard box of negligible weight. The packing material has 

negligible damping and a force-deflection relationship as shown. 

Knowing that the box is dropped from a height of 1 m and the 

impact with the ground is perfectly plastic, determine (a) the 

amplitude of vibration for the vase, (b) the maximum acceleration 

the vase experiences in g’s.

0
0

50

100

150

200

250

10
Deflection (mm)

F
or

ce
 (N

)

20 30

1 m

 Fig. P19.10 

 19.11 A 3-lb block is supported as shown by a spring of constant 

k 5 2 lb/in. that can act in tension or compression. The block is in 

its equilibrium position when it is struck from below by a hammer 

that imparts to the block an upward velocity of 90 in./s. Determine 

(a) the time required for the block to move 3 in. upward, 

(b) the corresponding velocity and acceleration of the block.

 19.12 In Prob. 19.11, determine the position, velocity, and acceleration of 

the block 0.90 s after it has been struck by the hammer.

 19.13 The bob of a simple pendulum of length l 5 40 in. is released from 

rest when θ 5 5°. Assuming simple harmonic motion, determine 

1.6 s after release (a) the angle θ, (b) the magnitudes of the velocity 

and acceleration of the bob.

l

m

q

 Fig. P19.13

B

A

k

 Fig. P19.9

m

k

A

 Fig. P19.1  1
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 19.14 A 150-kg electromagnet is at rest and is holding 100 kg of scrap 

steel when the current is turned off and the steel is dropped. 

Knowing that the cable and the supporting crane have a total 

stiffness equivalent to a spring of constant 200 kN/m, determine 

(a) the frequency, the amplitude, and the maximum velocity of 

the resulting motion, (b) the minimum tension that will occur in the 

cable during the motion, (c) the velocity of the magnet 0.03 s after 

the current is turned off. 

19.15 A 5-kg collar C is released from rest in the position shown and slides 

without friction on a vertical rod until it hits a spring with a constant 

of k 5 720 N/m that it compresses. The velocity of the collar is 

reduced to zero, and the collar reverses the direction of its motion and 

returns to its initial position. The cycle is then repeated. Determine 

(a) the period of the motion of the collar, (b) the velocity of the collar 

0.4 s after it was released. (Note: This is a periodic motion, but it is 

not simple harmonic motion.)

k

C

0.5 m

Fig. P19.15

 19.16 A small bob is attached to a cord of length 1.2 m and is released 

from rest when θA 5 58. Knowing that d 5 0.6 m, determine 

(a) the time required for the bob to return to point A, (b) the 

amplitude θC.

d

C
B A

qC qA

1.2 m

Fig. P19.16

 19.17 A 25-kg block is supported by the spring arrangement shown. If the 

block is moved vertically downward from its equilibrium position 

and released, determine (a) the period and frequency of the resulting 

motion, (b) the maximum velocity and acceleration of the block if 

the amplitude of the motion is 30 mm.

A

B

Fig. P19.14

8 kN/m

12 kN/m

16 kN/m

25 kg

 Fig. P19.1  7
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 19.18 A 11-lb block is attached to the lower end of a spring whose upper 

end is fixed and vibrates with a period of 7.2 s. Knowing that the 

constant k of a spring is inversely proportional to its length (e.g., if 

you cut a 10 lb/in. spring in half, the remaining two springs each 

have a spring constant of 20 lb/in.), determine the period of a 7-lb 

block that is attached to the center of the same spring if the upper 

and lower ends of the spring are fixed.

 19.19 Block A has a mass m and is supported by the spring arrangement 

as shown. Knowing that the mass of the pulley is negligible and that 

the block is moved vertically downward from its equilibrium position 

and released, determine the frequency of the motion.

 19.20 A 13.6-kg block is supported by the spring arrangement shown. If 

the block is moved from its equilibrium position 44 mm vertically 

downward and released, determine (a) the period and frequency of 

the resulting motion, (b) the maximum velocity and acceleration of 

the block.

13.6 kg

3.5 kN/m

2.1 kN/m

2.8 kN/m

 Fig. P19.20

19.21 and 19.22 A 50-kg block is supported by the spring arrangement 

shown. The block is moved vertically downward from its equilib-

rium position and released. Knowing that the amplitude of the 

resulting motion is 60 mm, determine (a) the period and frequency 

of the motion, (b) the maximum velocity and maximum acceleration 

of the block.

50 kg

24 kN/m

12 kN/m12 kN/m

 Fig. P19.21   

50 kg

24 kN/m

24 kN/m

 Fig. P19.22

 19.23 Two springs with constants k1 and k2 are connected in series to a 

block A that vibrates in simple harmonic motion with a period of 

5 s. When the same two springs are connected in parallel to the 

same block, the block vibrates with a period of 2 s. Determine the 

ratio k1 / k2 of the two spring constants.

2k

m Ak

 Fig. P19.19

A

k1

k2

k1k2

A

 Fig. P19.23
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 19.24 The period of vibration of the system shown is observed to be 0.8 s. 

If block A is removed, the period is observed to be 0.7 s. Determine 

(a) the mass of block C, (b) the period of vibration when both 

blocks A and B have been removed. 

3 kg

3 kg A

B

C

 Fig. P19.24

 19.25 The 100-lb platform A is attached to springs B and D, each of which 

has a constant k 5 120 lb/ft. Knowing that the frequency of vibra-

tion of the platform is to remain unchanged when an 80-lb block is 

placed on it and a third spring C is added between springs B and D, 

determine the required constant of spring C.

 19.26 The period of vibration for a barrel floating in salt water is found to 

be 0.58 s when the barrel is empty and 1.8 s when it is filled with 

55 gallons of crude oil. Knowing that the density of the oil is 

900 kg/m3, determine (a) the mass of the empty barrel, (b) the density 

of the salt water, ρsw. [Hint: The force of the water on the bottom of 

the barrel can be modeled as a spring with constant k 5 ρswgA.]

 19.27 From mechanics of materials, it is known that for a simply supported 

beam of uniform cross section, a static load P applied at the center 

will cause a deflection of δA 5 PL3/48EI, where L is the length of 

the beam, E is the modulus of elasticity, and I is the moment of 

inertia of the cross-sectional area of the beam. Knowing that 

L 5 15 ft, E 5 30 3 106 psi, and I 5 2 3 1023 ft4, determine 

(a) the equivalent spring constant of the beam, (b) the frequency of 

vibration of a 1500-lb block attached to the center of the beam. 

Neglect the mass of the beam and assume that the load remains in 

contact with the beam.

dA

L
2

A
L
2

P

 Fig. P19.27

 19.28 From mechanics of materials it is known that when a static load P 

is applied at the end B of a uniform metal rod fixed at end A, the 

length of the rod will increase by an amount δ 5 PL/AE, where L 

is the length of the undeformed rod, A is its cross- sectional area, 

and E is the modulus of elasticity of the metal. Knowing that 

L 5 450 mm and E 5 200 GPa and that the diameter of the rod is 

8 mm, and neglecting the mass of the rod, determine (a) the 

equivalent spring constant of the rod, (b) the frequency of the 

vertical vibrations of a block of mass m 5 8 kg attached to end B 
of the same rod.

B C D

A

 Fig. P19.25

572 mm

 Fig. P19.26

A

B

m

L

A

B

L

P

d

(a) (b)

 Fig. P19.28
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 19.29 Denoting by δst the static deflection of a beam under a given load, 

show that the frequency of vibration of the load is

f 5
1

2π
 

B

g

δst

  Neglect the mass of the beam, and assume that the load remains in 

contact with the beam.

 19.30 A 40-mm deflection of the second floor of a building is measured 

directly under a newly installed 3500-kg piece of rotating machinery 

that has a slightly unbalanced rotor. Assuming that the deflection of 

the floor is proportional to the load it supports, determine (a) the 

equivalent spring constant of the floor system, (b) the speed in rpm 

of the rotating machinery that should be avoided if it is not to coincide 

with the natural frequency of the floor-machinery system.

 19.31 If h 5 700 mm and d 5 500 mm and each spring has a constant 

k 5 600 N/m, determine the mass m for which the period of small 

oscillations is (a) 0.50 s, (b) infinite. Neglect the mass of the rod and 

assume that each spring can act in either tension or compression.

 19.32 The force–deflection equation for a nonlinear spring fixed at one 

end is F 5 1.5x1/2 where F is the force, expressed in newtons, 

applied at the other end and x is the deflection expressed in meters. 

(a) Determine the deflection x0 if a 4-oz block is suspended from 

the spring and is at rest. (b) Assuming that the slope of the force–

deflection curve at the point corresponding to this loading can be 

used as an equivalent spring constant, determine the frequency of 

vibration of the block if it is given a very small downward displace-

ment from its equilibrium position and released.

 *19.33 Expanding the integrand in Eq. (19.19) of Sec. 19.1C into a series of 

even powers of sin f and integrating, show that the period of a simple 

pendulum of length l may be approximated by the formula

τ 5 2π 

B

l
g

 a1 1
1
4 sin2 

θm

2
b

  where θm is the amplitude of the oscillations.

 *19.34 Using the formula given in Prob. 19.33, determine the amplitude θm 
for which the period of a simple pendulum is 

1
2 percent longer than 

the period of the same pendulum for small oscillations.

 *19.35 Using the data of Table 19.1, determine the period of a simple 

pendulum of length l 5 750 mm (a) for small oscillations, (b) for 

oscillations of amplitude θm 5 60°, (c) for oscillations of amplitude 

θm 5 90°.

 *19.36 Using the data of Table 19.1, determine the length in inches of a 

simple pendulum that oscillates with a period of 2 s and an ampli-

tude of 90°.

A

d

B

m

h

 Fig. P19.31
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1350 Mechanical Vibrations

19.2  FREE VIBRATIONS OF 
RIGID BODIES

The analysis of the vibrations of a rigid body (or of a system of rigid 

bodies) possessing a single degree of freedom is similar to the analysis of 

the vibrations of a particle. We choose an appropriate variable, such as a 

distance x or an angle θ, to define the position of the body or system of 

bodies and write an equation relating this variable and its second derivative 

with respect to t. If the equation is of the same form as Eq. (19.6), i.e., 

if we have

 ẍ 1 v2
n x 5 0  or  θ̈ 1 v2

nθ 5 0 (19.21)

the vibration is a simple harmonic motion. We can obtain the period and 

natural frequency of the vibration by identifying vn and substituting its 

value into Eqs. (19.13) and (19.14).

In general, a simple way to obtain one of Eqs. (19.21) is to use 

Newton’s second law. To do this, first draw free-body and kinetic diagrams 

for the system displaced in the positive direction. The acceleration in your 

kinetic diagram needs to be in the same positive direction you defined for 

the displacement. From your drawn diagrams, it is straightforward to write 

the appropriate equation of motion. Recall that the goal should be the 

determination of the coefficient of the variable x or θ—not the determina-

tion of the variable itself or of the derivative ẍ or θ̈. Setting this coefficient 

equal to v2
n, we obtain the natural circular frequency vn from which we 

can determine τn and fn.

This method can be used to analyze vibrations that are truly 

represented by a simple harmonic motion or by vibrations of small 

amplitude that can be approximated by a simple harmonic motion. As 

an example, let us determine the period of the small oscillations of a 

square plate with a side 2b that is suspended from the midpoint O of 

one of its sides (Fig. 19.5a). We consider the plate in an arbitrary 

position defined by the angle θ that the line OG forms with the vertical. 

Then we draw free-body and kinetic diagrams to express that the weight 

W of the plate and the components Rx and Ry of the reaction at O are 

equivalent to the vectors mat and man and to the couple  Iα (Fig. 19.5b). 

Since the angular velocity and angular acceleration of the plate are equal 

to θ
.
 and θ̈ , respectively, the magnitudes of the two vectors mat and 

man are mbθ̈  and mbθ
.
2, respectively, and the moment of the couple is 

 I θ̈ . In previous applications of this method (Chap. 16), we tried 

whenever possible to assume the correct sense for the acceleration. 

Here, however, we must assume the same positive sense for θ and θ̈  in 

order to obtain an equation of the form in Eq. (19.21). Consequently, 

we assume the angular acceleration θ̈  is positive counterclockwise—

even though this assumption is obviously unrealistic. Equating moments 

about O, we have

 2W(b sin θ) 5 (mbθ̈ )b 1  I θ̈

Noting that

 I 5
1
12 m[(2b)2 1 (2b)2] 5 

2
3 mb2

 and W 5 mg

(a)

O

G

W

θ

O

A

G

b

b

b

2b

5b
3

Ry

R x

=

m⎯a t

(b)

O

G

m⎯a n

⎯Iα

t

n

Fig. 19.5 (a) A square plate of side 2b 
suspended from the midpoint of one of its 
sides; (b) free-body diagram and kinetic 
diagram for the plate.
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19.2 Free Vibrations of Rigid Bodies 1351

we obtain

 θ̈ 1
3

5
 

g

b
 sin θ 5 0 (19.22)

For oscillations of small amplitude, we can replace sin θ by θ, expressed 

in radians, which gives

 θ̈ 1
3

5
 

g

b
 θ 5 0 (19.23)

Comparison with Eq. (19.21) shows that this equation is that of a simple 

harmonic motion and that the natural circular frequency vn of the 

oscillations is equal to (3g/5b)1/2. Substituting into Eq. (19.13), we find 

that the period of the oscillations is

 τn 5
2π

vn
5 2π

B

5b

3g
 (19.24)

This result is valid only for oscillations of small amplitude. A more 

accurate description of the motion of the plate is obtained by comparing 

Eqs. (19.16) and (19.22). Note that the two equations are identical if we 

choose l equal to 5b/3. This means that the plate oscillates as a simple 

pendulum with a length of l 5 5b/3, and we can use the results of 

Sec. 19.1C to correct the value of the period given in Eq. (19.24). Point A of 

the plate located on line OG at a distance l 5 5b/3 from O is defined as 

the center of oscillation corresponding to O (Fig. 19.5a).
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1352 Mechanical Vibrations

Sample Problem 19.2

A cylinder with weight W and radius r is suspended from a looped cord 

as shown. One end of the cord is attached directly to a rigid support, and 

the other end is attached to a spring with a constant k. Determine the 

period and natural frequency of the vibrations of the cylinder.

STRATEGY: First choose a coordinate to describe the motion, and then 

use Newton’s second law to determine the equations of motion.

MODELING: Choose the cylinder to be your system, and model it as 

a rigid body. The system of external forces acting on the cylinder consists 

of the weight W and of the forces T1 and T2 exerted by the cord. Draw 

free-body and kinetic diagrams (Fig. 1) to express that this system is 

equivalent to the system represented by the vector ma attached at G and 

the couple  Iα. 

ANALYSIS: 

Kinematics of Motion. Express the linear displacement and the 

acceleration of the cylinder in terms of the angular displacement θ. 

Choosing the positive sense clockwise and measuring the displacements 

from the equilibrium position (Fig. 2), you have

 x 5 rθ   δ 5 2x 5 2rθ

 α 5 θ̈i   a 5 rα 5 rθ̈    a 5 rθ̈w (1)

Equations of Motion. Newton’s second law gives you (Fig. 1)

1ioMA 5 mad' 1 Iα:  Wr 2 T2(2r) 5 mar 1 Ia (2)

When the cylinder is in its position of equilibrium, the tension in the cord 

is T0 5
1
2W. Note that for an angular displacement θ, the magnitude of T2 

is

 T2 5 T0 1 kδ 5 
1
2 W 1 kδ 5 

1
2 W 1 k(2rθ) (3)

Substituting from Eqs. (1) and (3) into Eq. (2) and recalling that  I 5
1
2  
mr 2, 

you have

Wr 2 (
1
2 W 1 2krθ)(2r) 5 m(rθ̈ )r 1 

1
2 mr2

θ̈

θ̈ 1
8

3
 

k
m

 θ 5 0

The motion is simple harmonic, and you have

v2
n 5

8

3
 
k
m

  vn 5
B

8

3
 
k
m

 τn 5
2π

vn
 τn 5 2π

B

3

8
 

m

k
 b

 fn 5
vn

2π
 fn 5

1

2πB

8

3
 

k
m

 b

REFLECT and THINK: If the cylinder had been smooth, it would not 

have rotated when displaced downward. Also note that the answers you 

obtained are independent of r.

B

r

B

B

d

q

α

⎯a
⎯x

Fig. 2 Linear and angular 
displacements and linear and 
angular accelerations of the 
cylinder.

A

2r

A GG

W

T1 T2

⎯am
⎯Iα=

y

x

Fig. 1 Free-body diagram and 
kinetic diagram for the cylinder.
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19.2 Free Vibrations of Rigid Bodies 1353

Sample Problem 19.3

A circular disk weighs 20 lb, has a radius of 8 in., and is suspended from 

a wire as shown. The disk is rotated (thus twisting the wire) and then 

released; the period of the torsional vibration is observed to be 1.13 s. 

A gear is then suspended from the same wire, and the period of torsional 

vibration for the gear is observed to be 1.93 s. Assuming that the moment 

of the couple exerted by the wire is proportional to the angle of twist, 

determine (a) the torsional spring constant of the wire, (b) the centroidal 

moment of inertia of the gear, (c) the maximum angular velocity reached 

by the gear if it is rotated through 90° and released.

STRATEGY: Use Newton’s second law to obtain the equation of motion. 

From this, you can find the circular natural frequency in terms of the 

torsional spring constant and the centroidal moment of inertia. You can 

determine the torsional spring constant for the wire from the analysis of 

the disk. Then you can use that to describe the motion of the gear.

MODELING: Choose the disk (or gear) as your system, and model it 

as a rigid body. The kinematic variables are shown in Fig. 1, and the free-

body and kinetic diagrams are shown in Fig. 2. 

O

M = Kθ
O=

⎯Iα =⎯Iθ  
..

y

x

Fig. 2 Free-body diagram and 
kinetic diagram for the disk (or gear).

ANALYSIS: 

a. Vibration of Disk. Denoting the angular displacement of the disk 

by θ (Fig. 1), you can express that the magnitude of the couple exerted 

by the wire is M 5 Kθ, where K is the torsional spring constant of the 

wire. Applying Newton’s second law, you have

1loMO 5  Iα:  1Kθ 5 2I  θ̈

  θ̈ 1
K

I
 θ 5 0

The motion is simple harmonic, so you have

 v2
n 5

K

I
     τn 5

2π

vn
     τn 5 2π

B

I

K
 (1)

For the disk,

τn 5 1.13 s     I 5
1
2 mr2 5

1

2
 a 20 lb

32.2 ft/s2
b a 8

12
 ftb2

5 0.138 lb?ft?s2

8 in.

O
q

α = q
..

Fig. 1 Angular displacement 
and acceleration for the disk 
(or gear).

(continued)

bee87342_ch19_1332-1411.indd   1353bee87342_ch19_1332-1411.indd   1353 11/28/14   1:21 PM11/28/14   1:21 PM

UPLOADED BY AHMAD T JUNDI



1354 Mechanical Vibrations

Substituting into Eq. (1), you obtain

 
1.13 5 2π

B

0.138

K
    
     

K 5 4.27 lb?ft/rad b

b. Vibration of Gear. The period of vibration of the gear is 1.93 s 

and K 5 4.27 lb?ft/rad, so Eq. (1) yields

1.93 5 2π
B

I

4.27
          I gear 5 0.403 lb?ft?s2 b

c. Maximum Angular Velocity of Gear. Because it is simple har-

monic motion, you have

θ 5 θm sin vnt   v 5 θmvn cos vnt   vm 5 θmvn

Recalling that θm 5 90° 5 1.571 rad and τ 5 1.93 s, you have

vm 5 θmvn 5 θm 
a2π

τ
b 5 (1.571 rad) a 2π

1.93 s
b

vm 5 5.11 rad/s b

REFLECT and THINK: A torsional spring is often used experimentally 

to measure the mass moment of inertia of different objects. It is common 

engineering practice to use one situation to determine the dynamic 

characteristics of a system and then to use those parameters to analyze a 

slightly different situation.
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1355 1355

In this section, you saw that a rigid body, or a system of rigid bodies, whose position 

can be defined by a single coordinate x or θ, executes a simple harmonic motion 

if the differential equation obtained by applying Newton’s second law is of the form

 ẍ 1 v2
nx 5 0  or  θ̈ 1 v2

nθ 5 0 (19.21)

Your goal should be to determine vn, from which you can obtain the period τn and 

the natural frequency fn. Taking into account the initial conditions, you can then write 

an equation of the form

 x 5 xm sin (vnt 1 f) (19.10)

where you should replace x by θ if a rotation is involved. To solve the problems in 

this section, you should follow these steps:

1. Choose a coordinate that measures the displacement of the body from its 

equilibrium position. You will find that many of the problems in this section involve 

the rotation of a body about a fixed axis and that the angle measuring the rotation of 

the body from its equilibrium position is the most convenient coordinate to use. In 

problems involving the general plane motion of a body, where a coordinate x (and 

possibly a coordinate y) is used to define the position of the mass center G of the 

body and a coordinate θ is used to measure its rotation about G, kinematic relations 

will allow you to express x (and y) in terms of θ [Sample Prob. 19.2].

2. Draw a free-body diagram and a kinetic diagram to express that the system of 

the external forces is equivalent to the vector ma and the couple  Iα where a 5 ẍ  and 

α 5 θ̈ . Be sure that each applied force or couple is drawn in a direction consistent 

with the assumed displacement and that the senses of a and α are those in which the 

coordinates x and θ are increasing.

3. Write the differential equations of motion by equating the sums of the compo-

nents of the external forces and the inertial terms in the x and y directions and the 

sums of their moments about a given point. If necessary, use the kinematic relations 

developed in Step 1 to obtain equations involving only the coordinate θ. If θ is a small 

angle, replace sin θ by θ and cos θ by 1 if these functions appear in your equations. 

Eliminating any unknown reactions, you will obtain an equation of the type of 

Eqs. (19.21). Note that, in problems involving a body rotating about a fixed axis, you 

can immediately obtain such an equation by equating the moments of the external 

forces and inertial terms about the fixed axis.

SOLVING PROBLEMS 
ON YOUR OWN

(continued)
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1356

4. Comparing the equation you have obtained with one of Eqs. (19.21), you can 

identify v2
n and thus determine the natural circular frequency vn. Remember that the 

object of your analysis is not to solve the differential equation you have obtained but 
to identify v2

n.

5. Determine the amplitude and the phase angle f by substituting the value 

obtained for vn and the initial values of the coordinate and its first derivative into 

Eq. (19.10) and the equation obtained by differentiating Eq. (19.10) with respect to t. 
From Eq. (19.10) and the two equations obtained by differentiating Eq. (19.10) twice 

with respect to t and using the kinematic relations developed in Step 1, you will be 

able to determine the position, velocity, and acceleration of any point of the body at 

any given time.

6. In problems involving torsional vibrations, the torsional spring constant K is 

expressed in N?m/rad or lb?ft/rad. The product of K and the angle of twist θ, where 

θ is expressed in radians, yields the moment of the restoring couple, which should be 

equated to the inertial terms in the system. [Sample Prob. 19.3].
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1357

 19.37 The uniform rod shown has mass 6 kg and is attached to a spring 

of constant k 5 700 N/m. If end B of the rod is depressed 10 mm 

and released, determine (a) the period of vibration, (b) the maximum 

velocity of end B. 

C
A B

800 mm
b = 500 mm

Fig. P19.37

 19.38 A belt is placed around the rim of a 500-lb flywheel and attached 

as shown to two springs, each of constant k 5 85 lb/in. If end C of 

the belt is pulled 1.5 in. down and released, the period of vibration 

of the flywheel is observed to be 0.5 s. Knowing that the initial 

tension in the belt is sufficient to prevent slipping, determine 

(a) the maximum angular velocity of the  flywheel, (b) the centroidal 

radius of gyration of the flywheel. 

 19.39 A 6-kg uniform cylinder can roll without sliding on a horizontal 

surface and is attached by a pin at point C to the 4-kg horizontal 

bar AB. The bar is attached to two springs, each having a constant 

of k 5 5 kN/m, as shown. Knowing that the bar is moved 12 mm to 

the right of the equilibrium position and released, determine (a) the 

period of vibration of the system, (b) the magnitude of the maximum 

velocity of bar AB.

 19.40 A 6-kg uniform cylinder is assumed to roll without sliding on a 

horizontal surface and is attached by a pin at point C to the 4-kg 

horizontal bar AB. The bar is attached to two springs, each having 

a constant of k 5 3.5 kN/m, as shown. Knowing that the coefficient 

of static friction between the cylinder and the surface is 0.5, 

determine the maximum amplitude of the motion of point C that is 

compatible with the assumption of rolling.

 19.41 A 15-lb slender rod AB is riveted to a 12-lb uniform disk as shown. 

A belt is attached to the rim of the disk and to a spring that holds 

the rod at rest in the position shown. If end A of the rod is moved 

0.75 in. down and released, determine (a) the period of vibration, 

(b) the maximum velocity of end A. 

Problems

18 in.

C

BA

Fig. P19.38

kk

A B
C

Fig. P19.39 and P19.40

D

A

C

B

36 in.

10 in.

k = 30 lb/in.

Fig. P19.41
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 19.42 A 30-lb uniform cylinder can roll without sliding on a 15° incline. 

A belt is attached to the rim of the cylinder, and a spring holds the 

cylinder at rest in the position shown. If the center of the cylinder 

is moved 2 in. down the incline and released, determine (a) the 

period of vibration, (b) the maximum acceleration of the center of 

the cylinder.

 19.43 A square plate of mass m is held by eight springs, each of constant k. 

Knowing that each spring can act in either tension or compression, 

determine the frequency of the resulting vibration if (a) the plate is 

given a small vertical displacement and released, (b) the plate is 

rotated through a small angle about G and released.

G

l

l

Fig. P19.43

 19.44 Two small weights w are attached at A and B to the rim of a uniform 

disk of radius r and weight W. Denoting by τ0 the period of small 

oscillations when β 5 0, determine the angle β for which the period 

of small oscillations is 2τ0.

r

A B

C

b b

Fig. P19.44 and P19.45

 19.45 Two 40-g weights are attached at A and B to the rim of a 1.5-kg 

uniform disk of radius r 5 100 mm. Determine the frequency of 

small oscillations when β 5 60°.

 19.46 A three-blade wind turbine used for research is supported on a shaft 

so that it is free to rotate about O. One technique to determine the 

centroidal mass moment of inertia of an object is to place a known 

weight at a known distance from the axis of rotation and to measure 

the frequency of oscillations after releasing it from rest with a small 

initial angle. In this case, a weight of Wadd 5 50 lb is attached to 

one of the blades at a distance R 5 20 ft from the axis of rotation. 

Knowing that when the blade with the added weight is displaced 

slightly from the vertical axis, and the system is found to have a 

period of 7.6 s, determine the centroidal mass moment of inertia of 

the three-blade rotor.

O

B

A

k = 30 lb/in.

15°

5 in.

Fig. P19.42

R

Wadd

O

Fig. P19.46
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 19.47 A connecting rod is supported by a knife-edge at point A; the period 

of its small oscillations is observed to be 0.87 s. The rod is then 

inverted and supported by a knife edge at point B and the period of 

its small oscillations is observed to be 0.78 s. Knowing that 

ra 1 rb 5 10 in., determine (a) the location of the mass center G, 

(b) the centroidal radius of gyration k.

 19.48 A semicircular hole is cut in a uniform square plate that is attached 

to a frictionless pin at its geometric center O. Determine (a) the 

period of small oscillations of the plate, (b) the length of a simple 

pendulum that has the same period.

125 mm 125 mm

250 mm

250 mm

250 mm

O

Fig. P19.48

 19.49 A uniform disk of radius r 5 250 mm is attached at A to a 650-mm 

rod AB of negligible mass that can rotate freely in a vertical plane 

about B. Determine the period of small oscillations (a) if the disk is 

free to rotate in a bearing at A, (b) if the rod is riveted to the disk 

at A.

 19.50 A small collar of mass 1 kg is rigidly attached to a 3-kg uniform 

rod of length L 5 750 mm. Determine (a) the distance d to maxi-

mize the frequency of oscillation when the rod is given a small 

initial displacement, (b) the corresponding period of oscillation.

C

B

A

d

L

Fig. P19.50

 19.51 A thin homogeneous wire is bent into the shape of an isosceles 

triangle of sides b, b, and 1.6b. Determine the period of small oscil-

lations if the wire (a) is suspended from point A as shown, (b) is 

suspended from point B.

A

B

G

rb

ra

Fig. P19.47

A

B

r = 250 mm

q

Fig. P19.49

A

B

b

1.6 b

Fig. P19.51
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 19.52 A compound pendulum is defined as a rigid body that oscillates 

about a fixed point O, called the center of suspension. Show that the 

period of oscillation of a compound pendulum is equal to the period 

of a simple pendulum of length OA, where the distance from A to

the mass center G is GA 5 k  

2/ r. Point A is defined as the center of 

oscillation and coincides with the center of percussion defined in 

Prob. 17.66.

O

G

A

⎯r

Fig. P19.52 and P19.53

 19.53 A rigid slab oscillates about a fixed point O. Show that the smallest 

period of oscillation occurs when the distance r from point O to the 

mass center G is equal to k.

 19.54 Show that if the compound pendulum of Prob. 19.52 is suspended 

from A instead of O, the period of oscillation is the same as before 

and the new center of oscillation is located at O.

 19.55 The 8-kg uniform bar AB is hinged at C and is attached at A to a 

spring of constant k 5 500 N/m. If end A is given a small displace-

ment and released, determine (a) the frequency of small oscillations, 

(b) the smallest value of the spring constant k for which oscillations 

will occur.

C

G

k

250 mm
40 mm

B

A

Fig. P19.55

 19.56 Two uniform rods each have a mass m and length l and are welded 

together to form an L-shaped assembly. The assembly is constrained 

by two springs, each with a constant k, and is in equilibrium in a 

vertical plane in the position shown. Determine the frequency of 

small oscillations of the system.

A

B

C

k

k

l

l

Fig. P19.56
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 19.57 A uniform disk with radius r and mass m can roll without slipping 

on a cylindrical surface and is attached to bar ABC with a 

length L and negligible mass. The bar is attached at point A to a 

spring with a constant k and can rotate freely about point B in the 

vertical plane. Knowing that end A is given a small displacement 

and released, determine the frequency of the resulting vibration in 

terms of m, L, k, and g.

 19.58 A 1300-kg sports car has a center of gravity G located a distance h 

above a line connecting the front and rear axles. The car is suspended 

from cables that are attached to the front and rear axles as shown. 

Knowing that the periods of oscillation are 4.04 s when L 5 4 m 

and 3.54 s when L 5 3 m, determine h and the centroidal radius of 

gyration.

L

hG

O

Fig. P19.58

 19.59 A 6-lb slender rod is suspended from a steel wire that is known to 

have a torsional spring constant K 5 1.5 ft?lb/rad. If the rod is 

rotated through 180° about the vertical and released, determine 

(a) the period of oscillation, (b) the maximum velocity of end A of 

the rod. 

 19.60 A uniform disk of radius r 5 250 mm is attached at A to a 650-mm 

rod AB of negligible mass that can rotate freely in a vertical 

plane about B. If the rod is displaced 2° from the position shown and 

released, determine the magnitude of the maximum velocity of 

point A, assuming that the disk is (a) free to rotate in a bearing at A, 

(b) riveted to the rod at A.

A

B

r = 250 mm

q

Fig. P19.60

 19.61 Two uniform rods, each of mass m and length l, are welded together 

to form the T-shaped assembly shown. Determine the frequency of 

small oscillations of the assembly.

C

B

r

L
2

L
2

A k

Fig. P19.57

A

B

C D
l
2

l
2

l

Fig. P19.61

B

G

A

4 in.

4 in.

Fig. P19.59
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1362

 19.62 A homogeneous wire bent to form the figure shown is attached to 

a pin support at A. Knowing that r 5 220 mm and that point B is 

pushed down 20 mm and released, determine the magnitude of the 

velocity of B, 8 s later.

 19.63 A horizontal platform P is held by several rigid bars that are con-

nected to a vertical wire. The period of oscillation of the platform 

is found to be 2.2 s when the platform is empty and 3.8 s when an 

object A of unknown moment of inertia is placed on the platform 

with its mass center directly above the center of the plate. Knowing 

that the wire has a torsional constant K 5 27 N?m/rad, determine 

the centroidal moment of inertia of object A.

P

A

Fig. P19.63

 19.64 A uniform disk of radius r 5 120 mm is welded at its center to two 

elastic rods of equal length with fixed ends at A and B. Knowing 

that the disk rotates through an 8° angle when a 500-mN?m couple 

is applied to the disk and that it oscillates with a period of 1.3 s 

when the couple is removed, determine (a) the mass of the disk,

(b) the period of vibration if one of the rods is removed.

19.65 A 5-kg uniform rod CD of length l 5 0.7 m is welded at C to two 

elastic rods, which have fixed ends at A and B and are known to 

have a combined torsional spring constant K 5 24 N?m/rad. Deter-

mine the period of small oscillations, if the equilibrium position of 

CD is (a) vertical as shown, (b) horizontal.

D

A

C

B

l

Fig. P19.65

A
B

r

Fig. P19.62

A

B

Fig. P19.64
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1363

19.66 A uniform equilateral triangular plate with a side b is suspended 

from three vertical wires of the same length l. Determine the period 

of small oscillations of the plate when (a) it is rotated through a 

small angle about a vertical axis through its mass center G, (b) it is 

given a small horizontal displacement in a direction perpendicular 

to AB.

b

l
B

GA
C

Fig. P19.66

 19.67 A period of 6.00 s is observed for the angular oscillations of a 4-oz 

gyroscope rotor suspended from a wire as shown. Knowing that a 

period of 3.80 s is obtained when a 1.25-in.-diameter steel sphere is 

suspended in the same fashion, determine the centroidal radius of 

gyration of the rotor. (Specific weight of steel 5 490 lb/ft3.)

Fig. P19.67

 19.68 The centroidal radius of gyration ky of an airplane is determined by 

suspending the airplane by two 12-ft-long cables as shown. The 

airplane is rotated through a small angle about the vertical through 

G and then released. Knowing that the observed period of oscillation 

is 3.3 s, determine the centroidal radius of gyration ky.

10 ft

12 ft

10 ft
y

x
z

D

G

A

B

C

Fig. P19.68
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1364 Mechanical Vibrations

19.3  APPLYING THE PRINCIPLE 
OF CONSERVATION OF 
ENERGY

Conservation of energy provides an alternative method to determine the 

natural frequency of a system. Usually, velocity kinematics are easier than 

acceleration kinematics, so using energy is sometimes easier than using 

Newton’s second law directly. We saw in Sec. 19.1A that, when a particle 

with mass m is in simple harmonic motion, the resultant F of the forces 

exerted on the particle has a magnitude proportional to the displacement 

x measured from the position of equilibrium O and is directed toward O; 

we have F 5 2kx. Referring to Sec. 13.2A, we note that F is a conservative 
force and that the corresponding potential energy is V 5

1
2kx2, where V is 

assumed equal to zero in the equilibrium position x 5 0. The velocity of 

the particle is equal to x
.
, so its kinetic energy is T 5

1
2 
mx

.2. We can state 

that the total energy of the particle is conserved by writing

T 1 V 5 constant       
1
2 mx

.2 1
1
2 kx2 5 constant

Dividing through by m/2 and recalling from Sec. 19.1A that k/m 5 v2
n, 

where vn is the natural circular frequency of the vibration, we have

 ẋ2 1 v2
nx2 5 constant (19.25)

Equation (19.25) is characteristic of a simple harmonic motion, since we 

can obtain it from Eq. (19.6) by multiplying both terms by 2x
.
 and 

integrating.

Once we have established that the motion of the system is a simple 

harmonic motion or that it can be approximated by a simple harmonic 

motion, the principle of conservation of energy provides a convenient way 

for determining the period of vibration of a rigid body or of a system of 

rigid bodies possessing a single degree of freedom. Choosing an appropriate 

variable, such as a distance x or an angle θ, we consider two particular 

positions of the system:

 1. The displacement of the system is maximum. We have T1 5 0, and 

we can express V1 in terms of the amplitude xm or θm (choosing V 5 0 

in the equilibrium position).

 2. The system passes through its equilibrium position. We have V2 5 0, 

and we can express T2 in terms of the maximum velocity x
.
m or the 

maximum angular velocity θ
.

m.

We then express that the total energy of the system is conserved and 

write T1 1 V1 5 T2 1 V2. Recalling from Eq. (19.15) that for simple 

harmonic motion the maximum velocity is equal to the product of the 

amplitude and of the natural circular frequency vn, we find that we can 

solve this equation for vn.

As an example, let us consider again the square plate of Sec. 19.2 

and determine the period of its motion with this new approach. In the 

position of maximum displacement (Fig. 19.6a), we have

T1 5 0  V1 5 W(b 2 b cos θm) 5 Wb(1 2 cos θm)
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19.3 Applying the Principle of Conservation of Energy  1365

or since 1 2  cos θm 5 2 sin 
21θm/22 < 21θm/222 5 θ

2
m/2 for oscillations of 

small amplitude,

 T1 5 0   V1 5 
1
2Wbθ 

2
m (19.26)

As the plate passes through its position of equilibrium (Fig. 19.6b), its 

velocity is maximum, and we have

T2 5
1
2 mv 

2
m 1

1
2 Iv2

m 5
1
2 mb2

θ
.
2
m 1

1
2 Iθ

.
2
m    V2 5 0

or recalling from Sec. 19.2 that  I 5
2

3
 mb2, 

 T2 5
1
2(

5
3 mb2)θ

.
2 
m       V2 5 0 (19.27)

Substituting from Eqs. (19.26) and (19.27) into T1 1 V1 5 T2 1 V2 and 

noting that the maximum velocity θ
.
m is equal to the product θmvn, we 

have

 
1
2 Wbθ

2
m 5

1
2 (

5
3 mb2)θ

2
mv2

n (19.28)

This give us v2
n 5 3g/5b and

 τn 5
2π

vn
5 2π 

B

5b

3g
 

(19.29)

as obtained earlier in Sec. 19.2.

O

O

G1

G2

b

b

(b)

(a)

W

W
Datum

q = 0

qm b cos qm

qm
.

Datum

.

Fig. 19.6 A square plate: (a) in the position of 
maximum displacement; (b) as it passes through 
its equilibrium position.
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1366 Mechanical Vibrations

Sample Problem 19.4

Determine the period of small oscillations of a cylinder with radius r that 

rolls without slipping inside a curved surface with radius R.

STRATEGY: Since the cylinder rolls without slipping, you can apply 

the principle of conservation of energy between position 1, where θ 5 θm, 

and position 2, where θ 5 0.

MODELING: Chose the cylinder to be your system and model it as a rigid 

body. Denote the angle that line OG forms with the vertical by θ (Fig. 1).

ANALYSIS: Position 1.
Kinetic Energy. The velocity of the cylinder is zero, so T1 5 0.

Potential Energy. Choose a datum as shown in Fig. 1 and denote the 

weight of the cylinder by W. Then you have

V1 5 Wh 5 W(R 2 r)(1 2 cos θ)

For small oscillations, 11 2  cos θ2 5 2 sin 
21θ/22 < θ

2/2, so you have

V1 5 W(R 2 r) 

θ
2
m

2

Position 2. Denote the angular velocity of line OG as the cylinder 

passes through position 2 by θ
.
m, and observe that point C is the instanta-

neous center of rotation of the cylinder (Fig. 2). Then

vm 5 (R 2 r)θ
.
m        vm 5

vm

r
5

R 2 r
r

 θ
.
m

Kinetic Energy.

 T2 5
1
2 mv 

2
m 1

1
2 Iv2

m

 5
1
2 m(R 2 r)2

θ
.
2
m 1

1
2(

1
2 mr2)aR 2 r

r
b2

θ
.
2
m

 5
3
4 m(R 2 r)2

θ
.
2
m

Potential Energy.

V2 5 0

Conservation of Energy.
 T1 1 V1 5 T2 1 V2

0 1 W(R 2 r)
θ

2
m

2
5

3
4 m(R 2 r)2

θ
.
2
m 1 0

Since θ
.
m 5 vnθm and W 5 mg, you have

  mg(R 2 r)
θ

2
m

2
5

3
4 m(R 2 r)2(vnθm)2    v2

n 5
2

3
 

g

R 2 r

 τn 5
2π

vn
                                 τn 5 2π

B

3

2
 
R 2 r

g
 b

REFLECT and THINK: This answer makes sense, because as the radius 

R increases, the period also increases. In the limit as R goes to infinity, the 

period also goes to infinity, that is, the system would not oscillate. This is 

the case of a cylinder on a horizontal surface. The small angle approximation, 11 2  cos θ2 5 2 sin 
21θ/22 < θ

2/2, is often used in problems like this one.

r

R

qm
R

r

R – r (R – r) cos qm

O

G

G

h
Position 1

Position 2
W

W

Datum

Fig. 1 The cylinder in positions 1 
and 2.

⎯vm
wm r

G

C

O

Position 2

qm
.

Fig. 2 Kinematic 
quantities to describe 
the motion of the 
disk.
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1367 1367

In the problems that follow, you will be asked to use the principle of conservation 
of energy to determine the period or natural frequency of the simple harmonic 

motion of a particle or rigid body. Assuming that you choose an angle θ to define the 

position of the system (with θ 5 0 in the equilibrium position), as you will in most 

of the problems in this section, you will express that the total energy of the system 

is conserved using T1 1 V1 5 T2 1 V2 between position 1 of maximum displacement 1θ1 5 θm, θ
.
1 5 02 and position 2 of maximum velocity 1θ.2 5 θ

.
m
, θ2 5 02. It follows 

that T1 and V2 are both zero, and the energy equation reduces to V1 5 T2, where V1 

and T2 are homogeneous quadratic expressions in θm and θ
.
m, respectively. Recalling 

that for a simple harmonic motion, θ
.
m 5 θmvn, and substituting this product into the 

energy equation, after reduction you obtain an equation that you can solve for v2
n. 

Once you have determined the natural circular frequency vn, you can obtain the period 

τn and the natural frequency fn of the vibration.

The steps that you should take are as follows:

1. Calculate the potential energy V1 of the system in its position of maximum 
displacement. Draw a sketch of the system in its position of maximum displacement 

and express the potential energy of all the forces involved in ter ms of the maximum 

displacement xm or θm.

 a. The potential energy associated with the weight W of a body is Vg 5 Wy, 
where y is the elevation of the center of gravity G of the body above its equilibrium 

position. If the problem you are solving involves the oscillation of a rigid body about 

a horizontal axis through a point O located at a distance b from G (Fig. 19.6), express 

y in terms of the angle θ that the line OG forms with the vertical: y 5 b(1 2 cos θ). 

For small values of θ, you can replace this expression with y 5
1
2bθ

2 [Sample 

Prob. 19.4]. Therefore, when θ reaches its maximum value θm and for oscillations of 

small amplitude, you can express Vg as

Vg 5
1

2
 Wbθ

2
m

Note that if G is located above O in its equilibrium position (instead of below O, as 

we have assumed), the vertical displacement y is negative and should be approximated 

as y 5 2
1
2 
bθ

2, which results in a negative value for Vg. In the absence of other forces, 

the equilibrium position is unstable, and the system does not oscillate. (See, for 

instance, Prob. 19.89.)

SOLVING PROBLEMS 
ON YOUR OWN

(continued)
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1368

b. The potential energy associated with the elastic force exerted by a 
spring is Ve 5 1

2  
kx2, where k is the constant of the spring and x is its deflection. In 

problems involving the rotation of a body about an axis, you generally have x 5 aθ, 

where a is the distance from the axis of rotation to the point of the body where the 

spring is attached and θ is the angle of rotation. Therefore, when x reaches its 

maximum value xm and θ reaches its maximum value θm, you can express Ve as

Ve 5
1
2 kx2

m 5
1
2 ka2

θ
2
m

 c. The potential energy V1 of the system in its position of maximum 
displacement is obtained by adding the various potential energies that you have 

computed. It is equal to the product of a constant and θ
2
m.

2. Calculate the kinetic energy T2 of the system in its position of maximum 
velocity. Note that this position is also the equilibrium position of the system.

 a. If the system consists of a single rigid body, the kinetic energy T2 of the 

system is the sum of the kinetic energy associated with the motion of the mass 

center G of the body and the kinetic energy associated with the rotation of the body 

about G. Therefore, you can write

T2 5
1
2 mv 

2
m 1

1
2  Iv2

m

Assuming that the position of the body has been defined by an angle θ, express vm 

and vm in terms of the rate of change θ
.
m of θ as the body passes through its equilib-

rium position. The kinetic energy of the body is thus expressed as the product of a 

constant and θ
.
m
2. Note that if θ measures the rotation of the body about its mass center, 

as was the case for the plate of Fig. 19.6, then vm 5 θ
.
m. In other cases, however, the 

kinematics of the motion should be used to derive a relation between vm and θ
.
m 

[Sample Prob. 19.4].

 b. If the system consists of several rigid bodies, repeat the previous computa-

tion for each of the bodies using the same coordinate θ and add the results.

3. Equate the potential energy V1 of the system to its kinetic energy T2,

V1 5 T2

and recalling the first of Eqs. (19.15), replace θ
.
m in the right-hand term with the 

product of the amplitude θm and the circular frequency vn. Since both terms now 

contain the factor θ
2
m, you can cancel this factor and solve the resulting equation for 

the circular frequency vn.
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1369

 19.69 Two blocks each have a mass 1.5 kg and are attached to links that 

are pin-connected to bar BC as shown. The masses of the links and 

bar are negligible, and the blocks can slide without friction. Block D is 

attached to a spring of constant k 5 720 N/m. Knowing that block 

A is at rest when it is struck horizontally with a mallet and given an 

initial velocity of 250 mm/s, determine the magnitude of the 

maximum displacement of block D during the resulting motion.

19.70 Two small spheres, A and C, each have a mass m and are attached to 

rod AB that is supported by a pin and bracket at B and by a spring CD with 

constant k. Knowing that the mass of the rod is negligible and that the 

system is in equilibrium when the rod is horizontal, determine the 

frequency of the small oscillations of the system.

l
2

l
2

k
D

C B

A

Fig. P19.70

 19.71 A 14-oz sphere A and a 10-oz sphere C are attached to the ends of a 

rod AC of negligible weight that can rotate in a vertical plane about 

an axis at B. Determine the period of small oscillations of the rod.

 19.72 Determine the period of small oscillations of a small particle that 

moves without friction inside a cylindrical surface of radius R.

R

Fig. P19.72

 19.73 The inner rim of an 85-lb flywheel is placed on a knife edge, and the 

period of its small oscillations is found to be 1.26 s. Determine the 

centroidal moment of inertia of the flywheel.

14 in.

Fig. P19.73

Problems

450 mm

k
D

C

B
A

600 mm

Fig. P19.69

A

C

B

8 in.

5 in.

Fig. P19.71
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1370

19.74 A connecting rod is supported by a knife edge at point A; the period 

of its small oscillations is observed to be 1.03 s. Knowing that the 

distance ra is 6 in., determine the centroidal radius of gyration of 

the connecting rod.

 19.75 A uniform rod AB can rotate in a vertical plane about a horizontal 

axis at C located at a distance c above the mass center G of the rod. 

For small oscillations determine the value of c for which the 

frequency of the motion will be maximum.

A

C

B

G l

c

Fig. P19.75

 19.76 A homogeneous wire of length 2l is bent as shown and allowed to 

oscillate about a frictionless pin at B. Denoting by τ0 the period of 

small oscillations when β 5 0, determine the angle β for which the 

period of small oscillations is 2τ0. 

 19.77 A uniform disk of radius r and mass m can roll without slipping on 

a cylindrical surface and is attached to bar ABC of length L and 

negligible mass. The bar is  attached to a spring of constant k and 

can rotate freely in the vertical plane about point B. Knowing that 

end A is given a small displacement and  released, determine the 

frequency of the resulting oscillations in terms of m, L, k, and g.

B

A

C

r

k

L
2

L
2

Fig. P19.77

A

B

G

rb

ra

Fig. P19.74

A

B

C

bb

ll

Fig. P19.76
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 19.78 Two uniform rods, each of weight W 5 1.2 lb and length l 5 8 in., 

are welded together to form the assembly shown. Knowing that the 

constant of each spring is k 5 0.6 lb/in. and that end A is given a 

small displacement and released, determine the frequency of the 

resulting motion.

 19.79 A 15-lb uniform cylinder can roll without sliding on an incline and 

is attached to a spring AB as shown. If the center of the cylinder is 

moved 0.4 in. down the incline and released, determine (a) the 

period of vibration, (b) the maximum velocity of the center of the 

cylinder.

A

B
k = 4.5 lb/in.

β = 14°

4 in.

Fig. P19.79

 19.80 A 3-kg slender rod AB is bolted to a 5-kg uniform disk. A spring of 

constant 280 N/m is attached to the disk and is unstretched in the 

position shown. If end B of the rod is given a small displacement and 

released, determine the period of vibration of the system.

 19.81 A slender 10-kg bar AB with a length of l 5 0.6 m is connected to 

two collars of negligible weight. Collar A is attached to a spring 

with a constant of k 5 1.5 kN/m and can slide on a horizontal rod, 

while collar B can slide freely on a vertical rod. Knowing that the 

system is in equilibrium when bar AB is vertical and that collar A 

is given a small displacement and released, determine the period of 

the resulting vibrations.

l

B

A

k

Fig. P19.81 and P19.82

 19.82 A slender 5-kg bar AB with a length of l 5 0.6 m is connected to 

two collars, each of mass 2.5 kg. Collar A is attached to a spring 

with a constant of k 5 1.5 kN/m and can slide on a horizontal rod, 

while collar B can slide freely on a vertical rod. Knowing that the 

system is in equilibrium when bar AB is vertical and that collar A 

is given a small displacement and released, determine the period of 

the resulting vibrations.

A

B DC

k k

l
2

l
2

l

Fig. P19.78

A

B

80 mm

300 mm

Fig. P19.80
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13721372

 19.83 An 800-g rod AB is bolted to a 1.2-kg disk. A spring of constant 

k 5 12 N/m is attached to the center of the disk at A and to the wall 

at C. Knowing that the disk rolls without sliding, determine the 

period of small oscillations of the system.

 19.84 Three identical 3.6-kg uniform slender bars are connected by pins 

as shown and can move in a vertical plane. Knowing that bar BC is 

given a small displacement and released, determine the period of 

vibration of the system.

750 mm

750 mm

A D

B C

Fig. P19.84

 19.85 A 14-oz sphere A and a 10-oz sphere C are attached to the ends of 

a 20-oz rod AC that can rotate in a vertical plane about an axis at 

B. Determine the period of small oscillations of the rod.

 19.86 A 10-lb uniform rod CD is welded at C to a shaft of negligible mass 

that is welded to the centers of two 20-lb uniform disks A and B. 
Knowing that the disks roll without sliding, determine the period of 

small oscillations of the system.

 19.87 and 19.88 Two uniform rods AB and CD, each of length l and 

mass m, are attached to gears as shown. Knowing that the mass of 

gear C is m and that the mass of gear A is 4m, determine the period 

of small oscillations of the system.

2r
r

DB

A
C

l

Fig. P19.87   

2r

A

B

D

r C

l

l

Fig. P19.88

 19.89 An inverted pendulum consisting of a rigid bar ABC of length l and 

mass m is supported by a pin and bracket at C. A spring of 

constant k is attached to the bar at B and is undeformed when the 

bar is in the vertical position shown. Determine (a) the frequency 

of small oscillations, (b) the smallest value of a for which these 

oscillations will occur.

A
C

B

r = 250 mm k

600 mm

Fig. P19.83

A

C

B

8 in.

5 in.

Fig. P19.85

3 ft1 ft

A

C

D

1 ft

B

Fig. P19.86 
A

B

C

k

a

l

Fig. P19.89
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 19.90 Two 12-lb uniform disks are attached to the 20-lb rod AB as shown. 

Knowing that the constant of the spring is 30 lb/in. and that the 

disks roll without sliding, determine the frequency of vibration of 

the system.

A C D B

8 in. 8 in.

Fig. P19.90

 19.91 The 20-lb rod AB is attached to two 8-lb disks as shown. Knowing 

that the disks roll without sliding, determine the frequency of small 

oscillations of the system. 

 19.92 A half section of a uniform cylinder of radius r and mass m rests 

on two casters A and B, each of which is a uniform cylinder of 

radius r/4 and mass m/8. Knowing that the half cylinder is rotated 

through a small angle and released and that no slipping occurs, 

determine the frequency of small oscillations.

A B

r

r
4

Fig. P19.92

 19.93 The motion of the uniform rod AB is guided by the cord BC and by 

the small roller at A. Determine the frequency of oscillation when 

the end B of the rod is given a small horizontal displacement and 

released.

 19.94 A uniform rod of length L is supported by a ball-and-socket joint at 
A and by a vertical wire CD. Derive an expression for the period of 

oscillation of the rod if end B is given a small  horizontal displace-

ment and then released.

b

h

L

C B

D

A

Fig. P19.94

 19.95 A section of uniform pipe is suspended from two vertical cables 

attached at A and B. Determine the frequency of oscillation when 

the pipe is given a small rotation about the centroidal axis OO9 and 

released.

A B

6 in. 6 in.

4 in.

18 in.

Fig. P19.91

BA

C

L

l

Fig. P19.93

A B

O

O'

a
2

a
2

l

Fig. P19.95 
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19.96 Three collars each have a mass m and are connected by pins to bars 

AC and BC, each having length l and negligible mass. Collars A and 

B can slide without friction on a horizontal rod and are connected 

by a spring of constant k. Collar C can slide without friction on a 

vertical rod and the system is in equilibrium in the position shown. 

Knowing that collar C is given a small displacement and released, 

determine the frequency of the resulting motion of the system.

l

l

A Bk

C

Fig. P19.96

 *19.97 A thin plate of length l rests on a half cylinder of radius r. Derive 

an expression for the period of small oscillations of the plate.

r

l

Fig. P19.97 

 *19.98 As a submerged body moves through a fluid, the particles of the 

fluid flow around the body and thus acquire kinetic energy. In the 

case of a sphere moving in an ideal fluid, the total kinetic energy 

acquired by the fluid is 
1
4rVv2, where ρ is the mass density of the 

fluid, V is the volume of the sphere, and v is the velocity of the 

sphere. Consider a 500-g hollow spherical shell of radius 80 mm 

that is held submerged in a tank of water by a spring of constant 

500 N/m. (a) Neglecting fluid friction, determine the period of 

vibration of the shell when it is displaced vertically and then released. 

(b) Solve part a, assuming that the tank is accelerated upward at the 

constant rate of 8 m/s2.Fig. P19.98
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19.4 Forced Vibrations 1375

19.4 FORCED VIBRATIONS
From the point of view of engineering applications, the most important 

vibrations are the forced vibrations of a system. These vibrations occur 

when a system is subjected to a periodic force or when it is elastically 

connected to a support that has an alternating motion.

Consider first the case of a body of mass m suspended from a spring 

and subjected to a periodic force P with a magnitude of P 5 Pm sin vf t, 
where vf is the circular frequency of P and is referred to as the forced 
circular frequency of the motion (Fig. 19.7). This force may be an actual 

external force applied to the body, or it may be a result of the rotation of 

some unbalanced part of the body (see Sample Prob. 19.5). Denoting the 

displacement of the body measured from its equilibrium position by x, the 

equation of motion is obtained from the free-body diagram and kinetic 

diagram in Fig. 19.7 as

1woF 5 ma: Pm sin vf t 1 W 2 k(δst 1 x) 5 mẍ

Recalling that W 5 kδst, we have

 mẍ 1 kx 5 Pm  sin  vf 
t (19.30)

Next we consider the case of a body with a mass m suspended from 

a spring attached to a moving support whose displacement δ is equal to 

δm sin vf t (Fig. 19.8). Measuring the displacement x of the body from the 

position of static equilibrium corresponding to vf t 5 0, we find that the 

total elongation of the spring at time t is δst 1 x 2 δm sin vf t. The equation 

of motion is thus

 1woF 5 ma:  W 2 k(δst 1 x 2 δm sin vf t) 5 mẍ

Again recalling that W 5 kδst, we have

 mẍ 1 kx 5 kδm sin vf t (19.31)

Note that Eqs. (19.30) and (19.31) are of the same form and that a solution 

of the first equation will satisfy the second if we set Pm 5 kδm.

A differential equation such as Eq. (19.30) or (19.31), possessing a 

right-hand side different from zero, is said to be nonhomogeneous. We can 

obtain its general solution by adding a particular solution of the given 

equation to the general solution of the corresponding homogeneous
equation (with the right-hand side equal to zero). We can obtain a particular 
solution of Eq. (19.30) or (19.31) by trying a solution of the form

xpart 5 xm sin vf t (19.32)

Substituting xpart for x into Eq. (19.30), we find

2mvf
2xm sin vf t 1 kxm sin vf t 5 Pm sin vf t

We can solve this equation for the amplitude as

xm 5
Pm

k 2 mv2
f

mẍ 1 kx 5 Pm sin vfv t

mẍ 1 kx 5 kδmδδ  sin vfv t

=
Equilibrium

P
W

T = k(dst + x)

P = Pm sin wf t

ma = mx..

x

Fig. 19.7 Free-body diagram and kinetic 
diagram of a block suspended from a spring 
and subjected to a periodic force.

=
Equilibrium

W

ma = mx..

x

dm

T = k(dst + x
             −dm sin wf t)  

dm sin wf t

wf t
wf t = 0

Fig. 19.8 Free-body diagram and kinetic 
diagram of a block suspended from a spring 
attached to a harmonically moving support.
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1376 Mechanical Vibrations

Recall from Eq. (19.4) that k/m 5 v2
n, where vn is the natural circular 

frequency of the system. Then we have

 xm 5
Pm/k

1 2 (vf 
 /vn)2

 (19.33)

If we define the frequency ratio, r, as r 5 vf  /vn, we can write this equation 

as

xm 5
Pm/k

1 2 r 2

In a similar way, substituting from Eq. (19.32) into Eq. (19.31), we obtain

xm 5
δm

1 2 (vf 
/vn)2

 (19.339)

or

xm 5
δm

1 2 r2

The homogeneous equation corresponding to Eq. (19.30) or (19.31) 

is Eq. (19.2), which defines the free vibration of the body. We found its 

general solution, called the complementary function, in Sec. 19.1A:

xcomp 5 C1 sin vnt 1 C2 cos vnt (19.34)

Adding the particular solution of Eq. (19.32) to the complementary 

 function of Eq. (19.34), we obtain the general solution of Eqs. (19.30) 

and (19.31) as

 x 5 C1 sin vnt 1 C2 cos vnt 1 xm sin vf t (19.35)

Note that this vibration consists of two superposed vibrations. The 

first two terms in Eq. (19.35) represent a free vibration of the system. The 

frequency of this vibration is the natural frequency of the system, which 

depends only upon the constant k of the spring and the mass m of the 

body, and the constants C1 and C2 can be determined from the initial 

conditions. This free vibration is also called a transient vibration, since 

in actual practice, it is soon damped out by friction forces (Sec. 19.5B).

The last term in Eq. (19.35) represents the steady-state vibration 

produced and maintained by the impressed force or impressed support 

movement. Its frequency is the forced frequency imposed by this force 

or movement, and its amplitude xm, defined by Eq. (19.33) or (19.339), 

depends upon the frequency ratio r 5 vf  /vn. Dividing the amplitude xm 

of the steady-state vibration by Pm /k in the case of a periodic force, or by 

δm in the case of an oscillating support, we obtain the magnification 
factor. From Eqs. (19.33) and (19.339), we obtain

 Magnification factor 5
xm

Pm/k
5

xm

δm
5

1

1 2 (vf  
/vn)2

 (19.36)

xm 5
Pm/k

1 2 (vfv /vn)2

xm 5
δmδδ

1 2 (vfv /ff vn)2

Magnififf cation faff ctor 5
xm

Pm/k
5

xm

δmδδ
5

1

1 2 (vfv /vn)2

Photo 19.1 A seismometer operates by 
measuring the amount of electrical energy 
needed to keep a mass centered in the 
housing in the presence of strong ground 
vibration.
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19.4 Forced Vibrations 1377

In Fig. 19.9, we have plotted the magnification factor against the 

frequency ratio vf  /vn. Note that when vf 5 vn, the amplitude of the forced 

vibration becomes infinite. The impressed force or impressed support 

movement is said to be in resonance with the given system. Actually, the 

amplitude of the vibration remains finite because of damping forces 

(Sec. 19.5B); nevertheless, such a situation should be avoided, and the 

forced frequency should not be chosen too close to the natural frequency 

of the system. Also note that for vf , vn, the coefficient of sin vf  t in 

Eq. (19.35) is positive, whereas for vf . vn, this coefficient is negative. 

In the first case, the forced vibration is in phase with the impressed force 

or impressed support movement, while in the second case, it is 180° out 
of phase.

Finally, observe that we can obtain the velocity and acceleration of 

the steady-state vibration by differentiating the last term of Eq. (19.35) 

twice with respect to t. The maximum values are given by expressions 

similar to those of Eqs. (19.15) of Sec. 19.1A, except that these expres-

sions now involve the amplitude and the circular frequency of the forced 

vibration:

vm 5 xmvf  am 5 xmvf
2 (19.37)vm 5 xmvfv  f am 5 xmvfv2

4

3

2

1

0

321

– 1

– 2

– 3

wf
wn

xm

Pm/k

xm

dm

or

Fig. 19.9 For an undamped system, 
the magnification factor becomes 
infinite at a forcing frequency equal to 
the natural frequency.
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1378 Mechanical Vibrations

Sample Problem 19.5

A motor weighing 350 lb is supported by four springs, each having a 

constant of 750 lb/in. The unbalance of the rotor is equivalent to a weight 

of 1 oz located 6 in. from the axis of rotation. The motor is constrained 

to move vertically. Determine (a) the speed in rpm at which resonance 

will occur, (b) the amplitude of the vibration of the motor at a speed of 

1200 rpm.

STRATEGY: You can determine the resonance speed directly from the 

given data since you know vn 5 2k/m. To find the vibration amplitude 

at a speed of 1200 rpm, you can use Eq. (19.33).

MODELING: Choose the motor to be your system, and model it as a 

single degree-of-freedom particle undergoing forced oscillation.

ANALYSIS: 

a. Resonance Speed. The resonance speed is equal to the natural 

circular frequency vn (in rpm) of the free vibration of the motor. The mass 

of the motor, M, and the equivalent constant of the supporting springs are

 M 5
350 lb

32.2 ft/s2
5 10.87 lb? s2/ft

 k 5 4(750 lb/in.) 5 3000 lb/in. 5 36,000 lb/ft

 vn 5
B

k

M
5
B

36,000

10.87
5 57.5 rad/s 5 549 rpm

Resonance speed 5 549 rpm b

b. Amplitude of Vibration at 1200 rpm. The angular velocity 

of the motor and the mass m of the equivalent 1-oz weight are

 v 5 1200 rpm 5 125.7 rad/s

 m 5 (1 oz)
1 lb

16 oz
 

1

32.2 ft/s2
5 0.001941 lb? s2/ft

To find the equivalent of an applied force, you can draw a free-body 

diagram and kinetic diagram (Fig. 1).

mg
(M − m)g

k(x+d st)

r PP w t

mrw2

x

(M − m)x.. mx..

Fig. 1 Free-body diagram and kinetic diagram 
for the system.
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19.4 Forced Vibrations 1379

Applying Newton’s second law in the vertical direction gives 

21M 2 m2g 2 mg 2 k1x 1 δst2 5 1M 2 m2ẍ 1 mẍ 2 mr v2
 sin vt

Recognizing that Mg 5 kδst, this equation simplifies to 

Mẍ 1 kx 5 mrv2 sin vt

Thus, the rotating unbalanced mass is equivalent to an applied force 

Pm 5 mr v2 5 (0.001941 lb?s2/ft)(
6
12 ft)(125.7 rad/s)2 5 15.33 lb

The static deflection that would be caused by a constant load Pm is

Pm

k
5

15.33 lb

3000 lb/in.
5 0.00511 in.

The forced circular frequency vf of the motion is the angular velocity of 

the motor,

vf 5 v 5 125.7 rad/s

Substituting the values of Pm /k, vf, and vn into Eq. (19.33), we obtain

xm 5
Pm/k

1 2 (vf 
/vn)2

5
0.00511 in.

1 2 (125.7/57.5)2
5 20.001352 in.

xm 5 0.001352 in. (out of phase) b

REFLECT and THINK: In problems involving an unbalanced mass, the 

result of the imbalance is equivalent to an applied force of Pm 5 mrv2. 

In this problem, since vf . vn, the vibration is 180° out of phase with 

the force due to the unbalance of the rotor. For example, when the 

unbalanced mass is directly below the axis of rotation, the position of the 

motor is xm 5 0.001352 in. above the position of equilibrium.
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In this section, we analyzed the forced vibrations of a mechanical system. These 

vibrations occur either when the system is subjected to a periodic force P (Fig. 19.7) 

or when it is elastically connected to a support that has an alternating motion 

(Fig. 19.8). In the first case, the motion of the system is defined by the differential 

equation

 mẍ 1 kx 5 Pm sin vf t (19.30)

where the right-hand side represents the magnitude of the force P at a given instant. 

In the second case, the motion is defined by the differential equation

 mẍ 1 kx 5 kδm sin vf t (19.31)

where the right-hand side is the product of the spring constant k and the displacement 

of the support at a given instant. 

 You will be concerned only with the steady-state motion of the system, which 

is defined by a particular solution of Eqs. (19.30) and (19.31), of the form

 xpart 5 xm sin vf t (19.32)

1. If the forced vibration is caused by a periodic force P with an amplitude Pm

and circular frequency vf, the amplitude of the vibration is

xm 5
Pm/k

1 2 (vf 
/vn)2

 (19.33)

where vn is the natural circular frequency of the system, vn 5 2k/m, and k is the 

spring constant. Note that the circular frequency of the vibration is vf and that the 

amplitude xm does not depend upon the initial conditions. For vf 5 vn, the denomina-

tor in Eq. (19.33) is zero, and xm is infinite (Fig. 19.9); the impressed force P is said 

to be in resonance with the system. Also, for vf , vn, xm is positive and the vibration 

is in phase with P, whereas for vf . vn, xm is negative and the vibration is out of 
phase.

 a. In the problems that follow, you may be asked to determine one of the 

parameters in Eq. (19.33) when the others are known. We suggest that you keep 

Fig. 19.9 in front of you when solving these problems. For example, if you are asked 

to find the frequency at which the amplitude of a forced vibration has a given value, 

but you do not know whether the vibration is in or out of phase with respect to the 

impressed force, you should note from Fig. 19.9 that there can be two frequencies 

satisfying this requirement. One frequency corresponds to a positive value of xm and 

to a vibration in phase with the impressed force, and the other corresponds to a 

negative value of xm and to a vibration out of phase with the impressed force.

SOLVING PROBLEMS 
ON YOUR OWN
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1381 1381

b. Once you have obtained the amplitude xm of the motion of a component 

of the system from Eq. (19.33), you can use Eqs. (19.37) to determine the maximum 

values of the velocity and acceleration of that component:

 vm 5 xmvf   am 5 xmvf
2 (19.37)

 c. When the impressed force P is due to the unbalance of the rotor of a 
motor, its maximum value is Pm 5 mrv2

f , where m is the mass of the rotor, r is the 

distance between its mass center and the axis of rotation, and vf is equal to the angular 

velocity v of the rotor expressed in rad/s [Sample Prob. 19.5].

2. If the forced vibration is caused by the simple harmonic motion of a support 
with an amplitude δm and a circular frequency vf, the amplitude of the vibration is

 xm 5
δm

1 2 (vf 
/vn)2

 (19.339)

where vn is the natural circular frequency of the system and vn 5 2k/m. Again, 

note that the circular frequency of the vibration is vf and that the amplitude xm does 

not depend upon the initial conditions.

 a. Be sure to read our comments in paragraphs 1, 1a, and 1b, since they apply 

equally well to a vibration caused by the motion of a support.

 b. If the maximum acceleration am of the support is specified, rather than 

its maximum displacement δm, remember that, since the motion of the support is a 

simple harmonic motion, you can use the relation am 5 δmv2
f to determine δm; then 

substitute this value into Eq. (19.339).
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19.99 A 4-kg collar can slide on a frictionless horizontal rod and is 

attached to a spring with a constant of 450 N/m. It is acted upon by 

a periodic force with a magnitude of P 5 Pm sin vf t, where 

Pm 5 13 N. Determine the amplitude of the motion of the collar if 

(a) vf 5 5 rad/s, (b) vf 5 10 rad/s.

 19.100 A 4-kg collar can slide on a frictionless horizontal rod and is 

attached to a spring with constant k. It is acted upon by a periodic 

force of magnitude P 5 Pm sin vf t, where Pm 5 9 N and 

vf 5 5 rad/s. Determine the value of the spring constant k knowing 

that the motion of the collar has an amplitude of 150 mm and is (a) 

in phase with the applied force, (b) out of phase with the applied force.

 19.101 A collar with mass m that slides on a frictionless horizontal rod is 

attached to a spring with constant k and is acted upon by a periodic 

force with a magnitude of P 5 Pm sin vf t. Determine the range of 

values of vf for which the amplitude of the vibration exceeds three times 

the static deflection caused by a constant force with a magnitude of Pm.

 19.102 A 64-lb block is attached to a spring with a constant of k 5 1 kip/ft 

and can move without friction in a vertical slot as shown. It is acted 

upon by a periodic force with a magnitude of P 5 Pm sin vf t, where 

vf 5 10 rad/s. Knowing that the amplitude of the motion is 0.75 in., 

determine Pm.

 19.103 A small 20-kg block A is attached to the rod BC of negligible mass 

that is supported at B by a pin and bracket and at C by a spring of 

constant k 5 2 kN/m. The system can move in a vertical plane and 

is in equilibrium when the rod is horizontal. The rod is acted upon 

at C by a periodic force P of magnitude P  5  Pm sin vf t, where 

Pm 5 6 N. Knowing that b  5 200 mm, determine the range of 

values of vf for which the amplitude of vibration of block A exceeds 

3.5 mm.

A k

b

B

800 mm

C

P = Pm sin wf t

Fig. P19.103

 19.104 An 8-kg uniform disk of radius 200 mm is welded to a vertical shaft 

with a fixed end at B. The disk rotates through an angle of 3° when 

a static couple of magnitude 50 N?m is applied to it. If the disk is 

acted upon by a periodic torsional couple of magnitude T 5 Tm sin vf t, 
where Tm 5 60 N?m, determine the range of values of vf for which 

the amplitude of the vibration is less than the angle of rotation 

caused by a static couple of magnitude Tm.

Problems

64 lb

k = 1 kip/ft

P = Pm sin wf t

Fig. P19.102

P = Pm sin wf t

Fig. P19.99, P19.100 and P19.101

B

T = Tm sin ωf t
A

Fig. P19.104
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 19.105 An 18-lb block A slides in a vertical frictionless slot and is con-

nected to a moving support B by means of a spring AB of constant 

k 5 10 lb/in. Knowing that the displacement of the support is 

δ 5 δm sin vf t, where δm 5 6 in., determine the range of values of 

vf for which the amplitude of the fluctuating force exerted by the 

spring on the block is less than 30 lb.

A

B
d = dm sin wf t

Fig. P19.105

 19.106 A beam ABC is supported by a pin connection at A and by rollers 

at B. A 120-kg block placed on the end of the beam causes a static 

deflection of 15 mm at C. Assuming that the support at A undergoes 

a vertical periodic displacement δ 5 δm sin vf t, where δm 5 10 mm 

and vf 5 18 rad/s, and the support at B does not move, determine 

the maximum acceleration of the block at C. Neglect the weight of 

the beam and assume that the block does not leave the beam.

A B C

d = dm sin wf t
3 m6 m

Fig. P19.106

 19.107 A small 2-kg sphere B is attached to the bar AB of negligible mass 

that is supported at A by a pin and bracket and connected at C to a 

moving support D by means of a spring of constant k 5 3.6 kN/m. 

Knowing that support D undergoes a vertical displacement 

δ 5 δm sin vf t, where δm 5 3 mm and vf 5 15 rad/s, determine 

(a) the magnitude of the maximum angular velocity of bar AB, 

(b) the magnitude of the maximum acceleration of sphere B.

kA C

D

B
200 mm 200 mm

d = dmsin wf t

Fig. P19.107
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19.108 The crude-oil pumping rig shown is driven at 20 rpm. The inside 

diameter of the well pipe is 2 in., and the diameter of the pump rod 

is 0.75 in. The length of the pump rod and the length of the column 

of oil lifted during the stroke are essentially the same, and equal to 

6000 ft. During the downward stroke, a valve at the lower end of 

the pump rod opens to let a quantity of oil into the well pipe, and 

the column of oil is then lifted to obtain a discharge into the con-

necting pipeline. Thus, the amount of oil pumped in a given time 

depends upon the stroke of the lower end of the pump rod. Knowing 

that the upper end of the rod at D is essentially sinusoidal with a 

stroke of 45 in. and the specific weight of crude oil is 

56.2 lb/ft3, determine (a) the output of the well in ft3/min if the shaft 

is rigid, (b) the output of the well in ft3/min if the stiffness of the 

rod is 2210 N/m, the equivalent mass of the oil and shaft is 290 kg, 

and damping is negligible.

A O

EB

D

C

x

x

y (input)

c kModel

meq

Fig. P19.108

 19.109 A simple pendulum of length l is suspended from collar C
that is forced to move horizontally according to the relation

xC 5 δm sin vf t. Determine the range of values of vf for 

which the amplitude of the motion of the bob is less than δm.
(Assume that δm is small compared with the length l of the 

pendulum.)

 19.110 The 2.75-lb bob of a simple pendulum of length l 5 24 in. is suspended 

from a 3-lb collar C. The collar is forced to move according to the 

relation xC 5 δm sin vf t, with an amplitude δm 5 0.4 in. and a 

frequency ff 5 0.5 Hz. Determine (a) the amplitude of the motion of 

the bob, (b) the force that must be applied to collar C to maintain the 

motion.

C

xC = dm sin wf t

l

x

Fig. P19.109 and P19.110
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19.111 An 18-lb block A slides in a vertical frictionless slot and is con-

nected to a moving support B by means of a spring AB of constant 

k 5 8 lb/ft. Knowing that the acceleration of the support is 

a 5 am sin vf t, where am 5 5 ft/s2 and vf 5 6 rad/s, determine 

(a) the maximum displacement of block A, (b) the amplitude of the 

fluctuating force exerted by the spring on the block.

A

B
a = am sin wf t

Fig. P19.111

 19.112 A variable-speed motor is rigidly attached to a beam BC. When the 

speed of the motor is less than 600 rpm or more than 1200 rpm, a 

small object placed at A is observed to remain in contact with the 

beam. For speeds between 600 and 1200 rpm, the object is observed 

to “dance” and actually to lose contact with the beam. Determine 

the speed at which resonance will occur. 

 19.113 A motor of mass M is supported by springs with an equivalent 

spring constant k. The unbalance of its rotor is equivalent to a 

mass m located at a distance r from the axis of rotation. Show that 

when the angular velocity of the motor is vf, the amplitude xm of 

the motion of the motor is

xm 5
r(m/M)(vf 

/vn)2

1 2 (vf 
/vn)2

where vn 5 1k/M.

 19.114 As the rotational speed of a spring-supported 100-kg motor is 

increased, the amplitude of the vibration due to the unbalance of its 

15-kg rotor first increases and then decreases. It is observed that as 

very high speeds are reached, the amplitude of the vibration 

approaches 3.3 mm. Determine the distance between the mass cen-

ter of the rotor and its axis of rotation. (Hint: Use the formula 

derived in Prob. 19.113.)

 19.115 A motor of weight 40 lb is supported by four springs, each of 

constant 225 lb/in. The motor is constrained to move vertically, and 

the amplitude of its motion is observed to be 0.05 in. at a speed of 

1200 rpm. Knowing that the weight of the rotor is 9 lb, determine 

the distance between the mass center of the rotor and the axis of 

the shaft.

 19.116 A motor weighing 400 lb is supported by springs having a total 

constant of 1200 lb/in. The unbalance of the rotor is equivalent to 

a 1-oz weight located 8 in. from the axis of rotation. Determine the 

range of allowable values of the motor speed if the amplitude of the 

vibration is not to exceed 0.06 in.

B C

A

Fig. P19.112

Fig. P19.115
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 19.117 A 180-kg motor is bolted to a light horizontal beam. The unbalance 

of its rotor is equivalent to a 28-g mass located 150 mm from the 

axis of rotation, and the static deflection of the beam due to the weight 

of the motor is 12 mm. The amplitude of the vibration due to the 

unbalance can be decreased by adding a plate to the base of the 

motor. If the amplitude of vibration is to be less than 60 μm for motor 

speeds above 300 rpm, determine the required mass of the plate.

 19.118 The unbalance of the rotor of a 400-lb motor is equivalent to a 3-oz 

weight located 6 in. from the axis of rotation. In order to limit to 

0.2 lb the amplitude of the fluctuating force exerted on the founda-

tion when the motor is run at speeds of 100 rpm and above, a pad 

is to be placed between the motor and the foundation. Determine 

(a) the maximum allowable spring constant k of the pad, (b) the 

corresponding amplitude of the fluctuating force exerted on the 

foundation when the motor is run at 200 rpm.

Fig. P19.118

19.119 A counter-rotating eccentric mass exciter consisting of two  rotating 

100-g masses describing circles of radius r at the same speed but in 

opposite senses is placed on a machine element to induce a steady-

state  vibration of the element. The total mass of the system is 

300 kg, the constant of each spring is k  5  600 kN/m, and the 

rotational speed of the exciter is 1200 rpm. Knowing that the ampli-

tude of the total fluctuating force exerted on the foundation is 160 N, 

determine the radius r.

k k

Fig. P19.119

19.120 A 360-lb motor is supported by springs of total constant 12.5 kips/ft. 

The unbalance of the rotor is equivalent to a 0.9-oz weight located 

7.5 in. from the axis of rotation. Determine the range of speeds of 

the  motor for which the amplitude of the fluctuating force exerted 

on the foundation is less than 5 lb.

Fig. P19.117
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 19.121 Figures (1) and (2) show how springs can be used to support a block 

in two different situations. In Fig. (1), they help decrease the amplitude 

of the fluctuating force transmitted by the block to the foundation. 

In Fig. (2), they help decrease the amplitude of the fluctuating 

displacement transmitted by the foundation to the block. The ratio of 

the transmitted force to the impressed force or the ratio of the 

transmitted displacement to the impressed displacement is called the 

transmissibility. Derive an equation for the transmissibility for each 

situation. Give your answer in terms of the ratio vf /vn of the 

frequency vf of the impressed force or impressed displacement to the 

natural frequency vn of the spring-mass system. Show that in order 

to cause any reduction in transmissibility, the ratio vf /vn must be 

greater than 12.

P = Pm sin wf t

y = dm sin wf t

(1) (2)

Fig. P19.121

 19.122 A vibrometer used to measure the amplitude of vibrations consists 

essentially of a box containing a mass-spring system with a known 

natural frequency of 120 Hz. The box is rigidly attached to a surface 

that is moving according to the equation y 5 δm sin vf t. If the 

amplitude zm of the motion of the mass relative to the box is used as 

a measure of the amplitude δm of the vibration of the surface, 

determine (a) the percent error when the frequency of the vibration 

is 600 Hz, (b) the frequency at which the error is zero.

y = dm sin wf t

Fig. P19.122 and P19.123

 19.123 A certain accelerometer consists essentially of a box containing a 

mass-spring system with a known natural frequency of 2200 Hz. 

The box is rigidly attached to a surface that is moving according to 

the equation y 5 δm sin vf t. If the amplitude zm of the motion of 

the mass relative to the box times a scale factor vn
2 is used as a 

measure of the maximum acceleration αm 5 δmvf
2 of the vibrating 

surface, determine the percent error when the frequency of the 

vibration is 600 Hz.
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 19.124 Block A can move without friction in the slot as shown and is acted 

upon by a vertical periodic force of magnitude P 5 Pm sin vf t, 
where vf 5 2 rad/s and Pm 5 20 N. A spring of constant k is 

attached to the bottom of block A and to a 22-kg block B. Determine 

(a) the value of the constant k that will prevent a steady-state 

vibration of block A, (b) the corresponding amplitude of the vibration 

of block B.

 19.125 A 60-lb disk is attached with an eccentricity e 5 0.006 in. to 

the midpoint of a vertical shaft AB that revolves at a constant angu-

lar velocity vf . Knowing that the spring constant k for horizontal 

movement of the disk is 40,000 lb/ft, determine (a) the angular 

velocity vf at which resonance will occur, (b) the deflection r of the 

shaft when vf 5 1200 rpm.

A

B

e

r
G

Fig. P19.125

19.126 A small trailer and its load have a total mass of 250 kg. The trailer 

is supported by two springs, each of constant 10 kN/m, and is pulled 

over a road, the surface of which can be approximated by a sine 

curve with an amplitude of 40 mm and a wavelength of 5 m (i.e., 

the distance between successive crests is 5 m and the vertical 

distance from crest to trough is 80 mm). Determine (a) the speed at 

which resonance will occur, (b) the amplitude of the vibration of the 

trailer at a speed of 50 km/h.

B

A

C

k

P = Pm sin wf t

Fig. P19.124

5 m

v

Fig. P19.126
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19.5 Damped Vibrations 1389

19.5 DAMPED VIBRATIONS
The vibrating systems considered in the first part of this chapter were 

assumed free of damping. Actually, all vibrations are damped to some 

degree by friction forces. These forces can be caused by dry friction, or 

Coulomb friction, between rigid bodies; by fluid friction when a rigid body 

moves in a fluid; or by internal friction between the molecules of a 

seemingly elastic body. A type of damping of special interest is the viscous 
damping caused by fluid friction at low and moderate speeds. We will first 

consider free vibrations with viscous damping and then examine the effect 

of viscous damping on forced vibrations.

*19.5A Damped Free Vibrations
Viscous damping is characterized by the fact that the friction force is 

directly proportional and opposite in direction to the velocity of the 

moving body. As an example, let us again consider a body with mass m 

suspended from a spring of constant k, assuming that the body is attached 

to the plunger of a dashpot (Fig. 19.10). The magnitude of the friction 

force exerted on the plunger by the surrounding fluid is equal to cx
.
, where 

the constant c, expressed in N?s/m or lb?s/ft and known as the coefficient 
of viscous damping, depends upon the physical properties of the fluid and 

the construction of the dashpot. Examining the free-body and kinetic 

diagrams, the equation of motion is

1woF 5 ma: W 2 k(δst 1 x) 2 cẋ  5 mẍ

Recalling that W 5 kδst, we have

 mẍ 1 cx
.

1 kx 5 0 (19.38)

If we substitute x 5 elt into Eq. (19.38) and divide through by elt, 

we obtain

Characteristic
equation

 ml2 1 cl 1 k 5 0 (19.39)

and obtain the roots

 l 5 2
c

2m
6
B
a c

2m
b2

2
k
m

 (19.40)

Defining the critical damping coefficient cc as the value of c that makes 

the radical in Eq. (19.40) equal to zero, we have

 a cc

2m
b2

2
k
m

5 0      cc 5 2m 

B

k
m

5 2mvn (19.41)

where vn is the natural circular frequency of the system in the absence of 

damping. We can distinguish three different cases of damping, depending 

upon the value of the coefficient c.

mẍ 1 cxcc
.

1 kx 5 0

ml2 1 cl 1 k 5 0

=Equilibrium

W

T = k(dst + x)

ma = mx..

x

cx.

Fig. 19.10 Free-body diagram and kinetic 
diagram of a spring-mass-damper system.
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1390 Mechanical Vibrations

 1. Overdamped: c . cc . The roots l1 and l2 of the characteristic 

equation (19.39) are real and distinct, and the general solution of the 

differential equation (19.38) is

 x 5 C1e
l1t 1 C2el2t (19.42)

  This solution corresponds to a nonvibratory motion. Since l1 and l2 are 

both negative, x approaches zero as t increases indefinitely. However, 

the system actually regains its equilibrium position after a finite time.

 2. Critically damped: c 5 cc . The characteristic equation has a double 

root l 5 2cc /2m 5 2vn, and the general solution of Eq. (19.38) is

 x 5 (C1 1 C2t)e2vnt (19.43)

  This motion is again nonvibratory. Critically damped systems are of 

special interest in engineering applications because they regain their 

equilibrium position in the shortest possible time without oscillation.

 3. Underdamped: c , cc. The roots of Eq. (19.39) are complex and 

conjugate, and the general solution of Eq. (19.38) is of the form

 x 5 e2(c/2m)t(C1 sin vdt 1 C2 cos vdt) (19.44)

  where vd is defined by the relation

v2
d 5

k
m

2 a c

2m
b2

  Substituting k /m 5 v2
n and recalling Eq. (19.41), we have

 vd 5 vnB
1 2 a c

cc
b2

 (19.45)

  where the constant c/cc is known as the damping factor or the damping 
ratio. This quantity is often denoted by z. Even though the motion does 

not actually repeat itself, the constant vd is commonly referred to as the 

damped circular frequency. In terms of the damping ratio, the damped 

circular frequency is

 vd 5 vn21 2 z2 (19.459)

  A substitution similar to the one used in Sec. 19.1A enables us to write 

the general solution of Eq. (19.38) in the form

 x 5 x0e2(c/ 2m)t sin (vdt 1 f) (19.46)

  or

 x 5 x0e
2zvnt

 sin 1vdt 1 f2 (19.469)

  The motion defined by Eq. (19.46) is vibratory with diminishing 

amplitude (Fig. 19.11). The time interval τd 5 2π/vd separating two 

successive points where the curve defined by Eq. (19.46) touches one 

of the limiting curves shown in Fig. 19.11 is commonly referred to as 

the period of the damped vibration. Recalling Eq. (19.45), we observe 

that vd , vn and, thus, that τd is larger than the period of vibration τn 

of the corresponding undamped system.

bee87342_ch19_1332-1411.indd   1390bee87342_ch19_1332-1411.indd   1390 11/28/14   1:21 PM11/28/14   1:21 PM

UPLOADED BY AHMAD T JUNDI



19.5 Damped Vibrations 1391

*19.5B Damped Forced Vibrations
If the system considered in the preceding section is subjected to a periodic 

force P of magnitude P 5 Pm sin vf t, the equation of motion becomes

mẍ  1 cẋ  1 kx 5 Pm sin vf t (19.47)

We can obtain the general solution of Eq. (19.47) by adding a particular 

solution of Eq. (19.47) to the complementary function or general solution 

of the homogeneous equation (19.38). The complementary function is 

given by Eq. (19.42), (19.43), or (19.44), depending upon the type of 

damping considered. It represents a transient motion that is eventually 

damped out.

Our interest in this section is centered on the steady-state vibration 

represented by a particular solution of Eq. (19.47) of the form

xpart 5 xm sin (vf t 2 f) (19.48)

Substituting xpart for x into Eq. (19.47), we obtain

2mvf
2xm sin (vf t 2 f) 1 cvf xm cos (vf t 2 f) 1 kxm sin (vf t 2 f)

 5 Pm sin vf t

Making vf t 2 f successively equal to 0 and to π/2 gives

cvf xm 5 Pm sin f (19.49)

 (k 2 mvf
2)xm 5 Pm cos f (19.50)

mẍ 1 cẋ 1 kx 5 Pm sin vfv t

O

x

x1

x2

t3t2t1

x3 x4

t4

t

x0

− x0

c
t−

2mx0 e

td

Fig. 19.11 The free response of a viscously damped system decays 
exponentially and oscillates with a frequency vd.

Photo 19.2 The automobile suspension 
shown consists essentially of a spring and a 
shock absorber, which will cause the body of 
the car to undergo damped forced vibrations 
when the car is driven over an uneven road.
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1392 Mechanical Vibrations

Squaring both sides of Eqs. (19.49) and (19.50) and adding, we have

 [(k 2 mvf
2)2 1 (cvf)

2] x2
m 5 P 2

m (19.51)

Solving Eq. (19.51) for xm and dividing Eqs. (19.49) and (19.50) by the 

result, we obtain, respectively,

xm 5
Pm

2(k 2 mv2
f )2 1 (cvf)

2
    tan f 5

cvf

k 2 mv2
f

 (19.52)

Recalling from Eq. (19.4) that k /m 5 v2
n, where vn is the circular 

frequency of the undamped free vibration, and from Eq. (19.41) that 

2mvn 5 cc, where cc is the critical damping coefficient of the system, we 

have

xm

Pm/k
5

xm

δm
5

1

2[1 2 (vf 
/vn)2]2 1 [2(c/cc)(vf 

/vn)]2
 (19.53)

 tan f 5
2(c/cc)(vf 

/vn)

1 2 (vf 
/vn)2

 (19.54)

Defining the frequency ratio r 5 vf /vn, we c an write the steady-state 

response of a viscously damped system in terms of the frequency ratio 

and the damping ratio as 

 
xm

Pm/k
5

xm

δst

5
1

211 2 r222 1 12zr22 (19.539)

 tan f 5
2zr

1 2 r2
 (19.549)

We can use these equations to determine the amplitude of the steady-

state vibration produced by an impressed force of magnitude 

P 5 Pm sin vf t or by an impressed support movement δ 5 δm sin vf t. 
Using these same parameters, Eq. (19.54) defines the phase difference 

f between the impressed force or impressed support movement and the 

resulting steady-state vibration of the damped system. The magnifica-

tion factor has been plotted against the frequency ratio in Fig. 19.12 

for various values of the damping ratio. Note that we can keep the 

amplitude of a forced vibration small by choosing a large coefficient 

of viscous damping c or by keeping the natural and forced frequencies 

far apart.

xm

Pm/k
5

xm

δmδδ
5

1

2[1 2 (vfv /ff vn)2]2 1 [2(c/cc)(vfv /ff vn)]22

tan f 5
2(c/cc)(vfv /ff vn)

1 2 (vfv /ff vn)2

xm

Pm/k
5

xm

δsδδ t

5
1

211 2 r2rr 22 1 12zr222

tanf 5
2zr

1 2 r2rr

Photo 19.3 This truck is experiencing 
damped forced vibration in the vehicle 
dynamics test.
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19.5 Damped Vibrations 1393

*19.5C Electrical Analogs
Oscillating electrical circuits are characterized by differential equations of 

the same type as those just discussed. Their analysis is therefore similar 

to that of a mechanical system, and the results obtained for a given 

vibrating system can be readily extended to the equivalent circuit. 

Conversely, any result obtained for an electrical circuit also applies to the 

corresponding mechanical system.

Consider an electrical circuit consisting of an inductor of induc-

tance L, a resistor of resistance R, and a capacitor of capacitance C, 

connected in series with a source of alternating voltage E 5 Em sin vf t 
(Fig. 19.13). Elementary circuit theory† says that if i denotes the current 

in the circuit and q denotes the electric charge on the capacitor, the drop 

in potential is L(di/dt) across the inductor, Ri across the resistor, and 

q/C across the capacitor. The algebraic sum of the applied voltage and 

of the drops in potential around the circuit loop must be zero, so we 

have

 Em sin vf 
t 2 L

di

dt
2 Ri 2

q

C
5 0 (19.55)

wf
wn

xm

Pm/k

xm

dm

1

0
0 1 2 3

2

3

4

5

c
cc

= 0

c
cc

= 0.125

c
cc

= 0.25

c
cc

= 1.00

c
cc

= 0.50

or

Fig. 19.12 Graph of magnification factor as a function of frequency ratio for 
several values of the damping ratio.

†See C. R. Paul, S. A. Nasar, and L. E. Unnewehr, Introduction to Electrical Engineering, 

2nd ed., McGraw-Hill, New York, 1992. 

E = Em sin ω f t

L

R

C

Fig. 19.13 An electrical circuit with 
inductance L, resistance R, capacitance C, and 
a source of alternating voltage E.
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1394 Mechanical Vibrations

Rearranging the terms and recalling that at any instant the current i is 

equal to the rate of change q
.
 of the charge q, we have

Lq̈ 1 Rq
.

1
1

C
 q 5 Em sin vf 

t (19.56)

We can verify that Eq. (19.56), which defines the oscillations of the elec-

trical circuit of Fig. 19.13, is of the same type as Eq. (19.47), which 

characterizes the damped forced vibrations of the mechanical system of 

Fig. 19.10. By comparing the two equations, we can construct a table of 

the analogous mechanical and electrical expressions.

Table 19.2 can be used to extend the results obtained earlier for 

various mechanical systems to their electrical analogs. For instance, we 

can determine the amplitude im of the current in the circuit of Fig. 19.13 

by noting that it corresponds to the maximum value vm of the velocity in 

the analogous mechanical system. Recalling from the first of Eqs. (19.37) 

that vm 5 xmvf, substituting for xm from Eq. (19.52), and replacing the 

constants of the mechanical system by the corresponding electrical expres-

sions, we have

 im 5
vf 

Em

B
a 1

C
2 Lv2

f b
2

1 (Rvf)
2

  im 5
Em

B
R2 1 aLvf 2

1

Cvf
b2

 (19.57)

The radical term in this expression is known as the impedance of the 

electrical circuit.

The analogy between mechanical systems and electrical circuits 

holds for transient as well as steady-state oscillations. The oscillations of 

the circuit shown in Fig. 19.14, for instance, are analogous to the damped 

free vibrations of the system of Fig. 19.10. As far as the initial conditions 

are concerned, we should note that closing the switch S when the charge 

on the capacitor is q 5 q0 is equivalent to releasing the mass of the 

mechanical system with no initial velocity from the position x 5 x0. Also 

note that, if a battery of constant voltage E is introduced in the electrical 

circuit of Fig. 19.14, closing the switch S is equivalent to suddenly 

applying a force of constant magnitude P to the mass of the mechanical 

system of Fig. 19.10.

Lq̈ 1 Rq
.

1
1

C
q 5 EmE sin vfv t

Table 19.2  Characteristics of a Mechanical System and 
of Its Electrical Analog

Mechanical System Electrical Circuit

m Mass L  Inductance

c  Coefficient of viscous damping R  Resistance

k  Spring constant 1/C Reciprocal of capacitance

x  Displacement q  Charge

v  Velocity i  Current

P  Applied force E  Applied voltage

S

L

R

C

Fig. 19.14 An LRC circuit with switch S.
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19.5 Damped Vibrations 1395

This discussion would be of questionable value if its only result 

were to make it possible for mechanics students to analyze electrical 

circuits without learning the elements of circuit theory. We hope that this 

discussion will instead encourage students to apply to the solution of 

problems in mechanical vibrations the mathematical techniques they may 

learn in later courses in circuit theory. The chief value of the concept of 

electrical analogs, however, resides in its application to experimental 
methods for determining the characteristics of a given mechanical system. 

Indeed, an electrical circuit is much more easily constructed than is a 

mechanical model, and the fact that we can modify its characteristics by 

varying the inductance, resistance, or capacitance of its various components 

makes the use of the electrical analog particularly convenient.

To determine the electrical analog of a given mechanical system, we 

focus our attention on each moving mass in the system and observe which 

springs, dashpots, or external forces are applied directly to it. We can then 

construct an equivalent electrical loop to match each of these mechanical 

units; the various loops obtained in this way will together form the desired 

circuit. Consider, for instance, the mechanical system of Fig. 19.15. The 

mass m1 is acted upon by two springs with constants k1 and k2 and by two 

dashpots characterized by the coefficients of viscous damping c1 and c2. 

The electrical circuit should therefore include a loop consisting of an 

inductor of inductance L1 proportional to m1; of two capacitors of 

capacitance C1 and C2 inversely proportional to k1 and k2, respectively; 

and of two resistors of resistance R1 and R2, proportional to c1 and c2, 

respectively. Since the mass m2 is acted upon by the spring k2 and the 

dashpot c2, as well as by the force P 5 Pm sin vf t, the circuit should also 

include a loop containing the capacitor C2, the resistor R2, the new inductor 

L2, and the voltage source E 5 Em sin vf t (Fig. 19.16).

To check that the mechanical system of Fig. 19.15 and the electrical 

circuit of Fig. 19.16 actually satisfy the same differential equations, we 

first derive the equations of motion for m1 and m2. Denoting the 

displacements of m1 and m2 from their equilibrium positions by x1 and x2, 

respectively, we observe that the elongation of the spring k1 (measured 

from the equilibrium position) is equal to x1, while the elongation of the 

spring k2 is equal to the relative displacement x2 2 x1 of m2 with respect 

to m1. The equations of motion for m1 and m2 are therefore

 m1ẍ1 1 c1ẋ 1 1 c2(ẋ 1 2 ẋ2) 1 k1x1 1 k2(x1 2 x2) 5 0 (19.58)

 m2 ẍ2 1 c2(ẋ2 2 ẋ1) 1 k2(x2 2 x1) 5 Pm sin vf t (19.59)

Now consider the electrical circuit of Fig. 19.16; we denote the current in 

the first and second loops by i1 and i2, respectively, and by q1 and q2 the 

integrals ∫i1 dt and ∫i2 dt. Noting that the charge on the capacitor C1 is q1 

and the charge on C2 is q1 2 q2, we can state that the sum of the potential 

differences in each loop is zero and obtain 

 L1q̈1 1 R1q
.
1 1 R2(q

.
1 2 q

.
2) 1

q1

C1

1
q1 2 q2

C2

5 0 (19.60)

 L2q̈2 1 R2(q
.
2 2 q

.
1) 1

q2 2 q1

C2

5 Em sin vf 
t (19.61)

We easily check that Eqs. (19.60) and (19.61) reduce to Eqs. (19.58) and 

(19.59), respectively, after performing the substitutions indicated in Table 19.2.

P = Pm sin wf t

k1 c1

x1

x2

c2k2

m1

m2

Fig. 19.15 Model of a two-degree-of-
freedom harmonically excited system.

E = Em sin ω f t

C1

C2

R1

R2

i1

i2

L1

L2

Fig. 19.16 An electrical circuit analogous to 
the mechanical system in Fig. 19.15.
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13961396

In this section, we developed a more realistic model of a vibrating system by includ-

ing the effect of the viscous damping caused by fluid friction. We represented 

viscous damping in Fig. 19.10 by the force exerted on the moving body by a plunger 

moving in a dashpot. This force is equal in magnitude to cx
.
, where the constant c, 

expressed in N?s/m or lb?s/ft, is known as the coefficient of viscous damping. Keep 

in mind that the same sign convention should be used for x, x
.
, and ẍ

1. Damped free vibrations. The differential equation defining this motion was found 

to be

 mẍ  1 cẋ  1 kx 5 0 (19.38)

To obtain the solution of this equation, calculate the critical damping coefficient cc, 

using the formula

 cc 5 2m1k/m 5 2mvn (19.41)

where vn is the natural circular frequency of the undamped system.

 a. If c . cc (overdamped), the solution of Eq. (19.38) is

 x 5 C1e
l1t 1 C2el2t (19.42)

where

 l1,2 5 2
c

2m
6
B
a c

2m
b2

2
k
m

 (19.40)

and where the constants C1 and C2 can be determined from the initial conditions x(0) 

and x
. 102. This solution corresponds to a nonvibratory motion.

 b. If c 5 cc (critically damped), the solution of Eq. (19.38) is

 x 5 (C1 1 C2t)e2vnt (19.43)

which also corresponds to a nonvibratory motion. Critically damped systems are of 

special interest in engineering applications because they regain their equilibrium 

position in the shortest possible time without oscillation.

 c. If c , cc (underdamped), the solution of Eq. (19.38) is

 x 5 x0e2(c/ 2m)t sin (vdt 1 f) (19.46)

or in terms of the damping ratio z 5 c/ccr ,

 x 5 x0e
2zvnt

 sin 1vdt 1 f2 (19.469)

SOLVING PROBLEMS 
ON YOUR OWN
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1397 1397

where

vd 5 vnB
1 2 a c

cc
b2

 (19.45)

or

vd 5 vn21 2 z2 (19.459)

and where x0 and f can be determined from the initial conditions x(0) and x
. 102. This 

solution corresponds to oscillations of decreasing amplitude and of period 

τd 5 2π/vd (Fig. 19.11).

2. Damped forced vibrations. These vibrations occur when a system with viscous 

damping is subjected to a periodic force P with a magnitude of P 5 Pm sin vf t 
or when it is elastically connected to a support with an alternating motion of 

δ 5 δm sin vf t. In the first case, the motion is defined by the differential equation

 mẍ  1 cẋ  1 kx 5 Pm sin vf t (19.47)

and in the second case, by a similar equation obtained by replacing Pm with kδm. You 

will be concerned only with the steady-state motion of the system, which is defined 

by a particular solution of these equations of the form

 xpart 5 xm sin (vf t 2 f) (19.48)

where

 
xm

Pm/k
5

xm

δm
5

1

2[1 2 (vf 
/vn)2]2 1 [2(c/cc)(vf 

/vn)]2
 (19.53)

and

 tan f 5
2(c/cc)(vf 

/vn)

1 2 (vf 
/vn)2

 (19.54)

The expression given in Eq. (19.53) is referred to as the magnification factor and has 

been plotted against the frequency ratio vf /vn in Fig. 19.12 for various values of the 

damping ratio c/cc. Eqs. (19.53) and (19.54) can be written in terms of the damping 

ratio z and frequency ratio r as shown in Eqs. (19.539) and (19.549). In the problems 

that follow, you may be asked to determine one of the parameters in Eqs. (19.53) and 

(19.54) when the others are known. 
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19.127 Show that in the case of heavy damping (c . cc), a body never 

passes through its position of equilibrium O if it is (a) released with 

no initial velocity from an arbitrary position, (b) started from O with 

an arbitrary initial velocity.

19.128 Show that in the case of heavy damping (c . cc), a body released from 

an arbitrary position with an arbitrary initial velocity cannot pass 

more than once through its equilibrium position.

19.129 In the case of light damping (c , cc), the displacements x1, x2, x3, 

shown in Fig. 19.11 may be assumed equal to the maximum dis-

placements. Show that the ratio of any two successive maximum 

displacements xn and xn11 is a constant and that the natural loga-

rithm of this ratio, called the logarithmic decrement, is

ln 

xn

xn11

5
2π(c/cc)

21 2 (c/cc)
2

 19.130 In practice, it is often difficult to determine the logarithmic  decrement 

of a system with light damping defined in Prob. 19.129 by measuring 

two successive maximum displacements. Show that the logarithmic 

decrement can also be expressed as (1/k) ln(xn /xn1k), where k is the 

number of cycles between readings of the maximum displacement.

 19.131 In an underdamped system (c , cc), the period of vibration is com-

monly defined as the time interval τd 5 2π/vd corresponding to two 

successive points where the displacement–time curve touches one of 

the limiting curves shown in Fig. 19.11. Show that the interval of time 

(a) between a maximum positive displacement and the following maxi-

mum negative displacement is 
1
2τd, (b) between two successive zero 

displacements is 
1
2td, (c) between a maximum positive displacement 

and the following zero displacement is greater than 
1
4τd.

 19.132 A loaded railroad car weighing 30,000 lb is rolling at a constant 

velocity v0 when it couples with a spring and dashpot bumper system 

(Fig. 1). The recorded displacement–time curve of the loaded 

railroad car after coupling is as shown (Fig. 2). Determine (a) the 

damping constant, (b) the spring constant. (Hint: Use the definition 

of logarithmic decrement given in 19.129.)

Problems

v0

k

c

0.6

0.5

0.4

0.3

D
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pl
ac

em
en

t 
(i

n.
)

Time (s)

0.2

0.1

0.2

(1) (2)

0.4

0.12 in.

0.5 in.

0.41 s

0.6 0.8 1
0

−0.1

−0.2

−0.3

Fig. P19.132
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 19.133 A torsional pendulum has a centroidal mass moment of inertia of 

0.3 kg?m2 and when given an initial twist and released is found to 

have a frequency of oscillation of 200 rpm. Knowing that when this 

pendulum is immersed in oil and when given the same initial 

condition it is found to have a frequency of oscillation of 180 rpm, 

determine the damping constant for the oil. 

 19.134 The barrel of a field gun weighs 1500 lb and is returned 

into firing position after recoil by a recuperator of constant

c 5 1100 lb?s/ft. Determine (a) the constant k that should be used 

for the recuperator to return the barrel into firing position in the 

shortest possible time without any oscillation, (b) the time needed 

for the barrel to move back two-thirds of the way from its 

maximum-recoil position to its firing position.

 19.135 A 2-kg block is supported by a spring with a constant of 

k 5 128 N/m and a dashpot with a coefficient of viscous damping 

of c 5 0.6 N?s/m. The block is in equilibrium when it is struck from 

below by a hammer that imparts to the block an upward velocity of 

0.4 m/s. Determine (a) the logarithmic decrement, (b) the maximum 

upward displacement of the block from equilibrium after two cycles.

 19.136 A 4-kg block A is dropped from a height of 800 mm onto a 9-kg 

block B that is at rest. Block B is supported by a spring of constant 

k 5 1500 N/m and is attached to a dashpot of damping coefficient 

c 5 230 N?s/m. Knowing that there is no rebound, determine the 

maximum distance the blocks will move after the impact.

 19.137 A 0.9-kg block B is connected by a cord to a 2.4-kg block A that is 

suspended as shown from two springs, each with a constant of 

k 5 180 N/m, and a dashpot with a damping coefficient of 

c 5 7.5 N?s/m. Knowing that the system is at rest when the cord 

connecting A and B is cut, determine the minimum tension that will 

occur in each spring during the resulting motion.

A

k k

c

B

Fig. P19.137 and P19.138

 19.138 A 0.9-kg block B is connected by a cord to a 2.4-kg block A that is 

suspended as shown from two springs, each with a constant of 

k 5 180 N/m, and a dashpot with a damping coefficient of 

c 5 60 N?s/m. Knowing that the system is at rest when the cord con-

necting A and B is cut, determine the velocity of block A after 0.1 s.

2 kg

k = 128 N/m c = 0.6 N⋅s/m

Fig. P19.135

A

B

k c

800 mm

Fig. P19.136
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 19.139 A machine element weighing 800 lb is supported by two springs, each 

having a constant of 200 lb/in. A periodic force of maximum value 

30  lb is applied to the element with a frequency of 2.5 cycles per 

second. Knowing that the coefficient of damping is 8 lb?s/in., 

determine the amplitude of the steady-state vibration of the element.

 19.140 In Prob. 19.139, determine the required value of the coefficient of 

damping if the amplitude of the steady-state vibration of the element 

is to be 0.15 in.

 19.141 In the case of the forced vibration of a system, determine the range 

of values of the damping factor c/cc for which the magnification fac-

tor will always decrease as the frequency ratio vf /vn increases.

 19.142 Show that for a small value of the damping factor c/cc, the maximum 

amplitude of a forced vibration occurs when vf  < vn and that the 

corresponding value of the magnification factor is 
1
2 (c/cc).

 19.143 A counter-rotating eccentric mass exciter consisting of two rotat-

ing 14-oz weights describing circles of 6-in. radius at the same 

speed but in opposite senses is placed on a machine element to 

induce a steady-state vibration of the element and to determine 

some of the dynamic characteristics of the element. At a speed of 

1200 rpm, a stroboscope shows the eccentric masses to be exactly 

under their respective axes of rotation and the element to be pass-

ing through its position of static equilibrium. Knowing that the 

amplitude of the motion of the element at that speed is 0.6 in. and 

that the total weight of the system is 300 lb, determine (a) the 

combined spring constant k, (b) the damping factor c/cc.

Fig. P19.143

 19.144 A 36-lb motor is bolted to a light horizontal beam that has a static 

deflection of 0.075 in. due to the weight of the motor. Knowing that 

the unbalance of the rotor is equivalent to a weight of 0.64 oz located 

6.25 in. from the axis of rotation, determine the amplitude of the vibra-

tion of the motor at a speed of 900 rpm, assuming (a) that no damping 

is present, (b) that the damping factor c/cc is equal to 0.055.

 19.145 A 45-kg motor is bolted to a light horizontal beam that has a static 

deflection of 6 mm due to the weight of the motor. The unbalance 

of the motor is equivalent to a mass of 110 g located 75 mm from 

the axis of rotation. Knowing that the amplitude of the vibration of 

the motor is 0.25 mm at a speed of 300 rpm, determine (a) the 

damping factor c/cc, (b) the coefficient of damping c.

Fig. P19.139

Fig. P19.144 and P19.145
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 19.146 The unbalance of the rotor of a 180-kg motor is equivalent to a mass 

of 85 g located 150 mm from the axis of rotation. The pad that is 

placed between the motor and the foundation is equivalent to a 

spring with a constant of k 5 7.5 kN/m in parallel with a dashpot 

with constant c. Knowing that the magnitude of the maximum 

acceleration of the motor is 9 mm/s2 at a speed of 100 rpm, determine 

the damping factor c/cc.

 19.147 A machine element is supported by springs and is connected to a 

dashpot as shown. Show that if a periodic force of magnitude 

P 5 Pm sin vf t is applied to the element, the amplitude of the fluc-

tuating force transmitted to the foundation is

Fm 5 PmB

1 1 [2(c/cc)(vf  
/vn)]2

[1 2 (vf  
/vn)2]2 1 [2(c/cc)(vf  

/vn)]2

 19.148 A 91-kg machine element supported by four springs, each of constant 

k 5 175 N/m, is subjected to a periodic force of frequency 

0.8 Hz and amplitude 89 N. Determine the amplitude of the 

fluctuating force transmitted to the foundation if (a) a dashpot with 

a coefficient of damping c 5 365 N?s/m is connected to the machine 

element and to the ground, (b) the  dashpot is removed.

 19.149 A simplified model of a washing machine is shown. A bundle of 

wet clothes forms a weight wb of 20 lb in the machine and causes 

a rotating unbalance. The rotating weight is 40 lb (including wb) and 

the radius of the washer basket e is 9 in. Knowing the washer 

has an equivalent spring constant k 5 70 lb/ft and damping ratio 

z 5 c/cc 5 0.05 and during the spin cycle the drum rotates at 

250 rpm, determine the amplitude of the motion and the magnitude 

of the force transmitted to the sides of the washing machine.

e

k/2 c/2

k/2

W

wb

c/2

Frictionless
support

Fig. P19.149

  *19.150 For a steady-state vibration with damping under a harmonic force, 

show that the mechanical energy dissipated per cycle by the dashpot 

is E 5 πcx2
mvf , where c is the coefficient of damping, xm is the 

amplitude of the motion, and vf is the circular frequency of the 

harmonic force.

  *19.151 The suspension of an automobile can be approximated by the simpli-

fied spring-and-dashpot system shown. (a) Write the differential 

equation defining the vertical displacement of the mass m when 

the system moves at a speed v over a road with a sinusoidal cross 

section of amplitude δm and wave length L. (b) Derive an expres-

sion for the amplitude of the vertical displacement of the mass m.

Fig. P19.146

P = Pm sin wf t

Fig. P19.147 and P19.148

k c

m

δm

L

Fig. P19.151
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*19.152 Two blocks A and B, each of mass m, are supported as shown by three 

springs of the same constant k. Blocks A and B are connected by a 

dashpot and block B is connected to the ground by two dashpots, 

each dashpot having the same coefficient of damping c. Block A is 

subjected to a force of magnitude P 5 Pm sin vf t. Write the differential 

equations defining the displacements xA and xB of the two blocks 

from their equilibrium positions.

 19.153 Express in terms of L, C, and E the range of values of the resistance 

R for which oscillations will take place in the circuit shown when 

switch S is closed.

L

R

C

E
S

Fig. P19.153

 19.154 Consider the circuit of Prob. 19.153 when the capacitor C is removed. 

If switch S is closed at time t 5 0, determine (a) the final value of 

the current in the circuit, (b) the time t at which 

the current will have reached (1 2 1/e) times its final value. (The 

desired value of t is known as the time constant of the circuit.)

 19.155 and 19.156 Draw the electrical analogue of the mechanical system 

shown. (Hint: Draw the loops corresponding to the free bodies m
and A.)

m

A

c

k

P = Pm sin wf t

Fig. P19.155 and 
P19.157

 19.157 and 19.158 Write the differential equations defining (a) the 

displacements of the mass m and of the point A, (b) the charges on 

the capacitors of the electrical analogue.

A

B

P = Pm sin wf t

xA

xB

Fig. P19.152

k1

k2

c1

c2

m2

m1

Fig. P19.156 and P19.158
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This chapter was devoted to the study of mechanical vibrations, i.e., to the 

analysis of the motion of particles and rigid bodies oscillating about a position 

of equilibrium. In the first part of the chapter [Secs. 19.1 through 19.4], we 

considered vibrations without damping, while the second part was devoted to 

damped vibrations [Sec. 19.5].

Free Vibrations of a Particle
In Sec. 19.1, we considered the free vibrations of a particle, i.e., the motion 

of a particle P subjected to a restoring force proportional to the displacement 

of the particle—such as the force exerted by a spring. If the displacement x
of the particle P is measured from its equilibrium position O (Fig. 19.17), the 

resultant F of the forces acting on P (including its weight) has a magnitude 

kx and is directed toward O. Applying Newton’s second law F 5 ma and 

recalling that a 5 ẍ, we wrote the differential equation

mẍ  1 kx 5 0 (19.2)

or, setting v2
n 5 k/m,

 ẍ  1 v2
nx 5 0 (19.6)

The motion defined by this equation is called simple harmonic motion.
 The solution of Eq. (19.6), which represents the displacement of the 

particle P, was expressed as

 x 5 xm sin (vnt 1 f) (19.10)

where xm 5 amplitude of the vibration

 vn 5 2k/m 5 natural circular frequency

f 5 phase angle

The period of the vibration (i.e., the time required for a full cycle) and its 

natural frequency (i.e., the number of cycles per second) were expressed as

Period 5 τn 5
2π

vn
 (19.13)

Natural frequency 5 fn 5
1

τn
5

vn

2π
 (19.14)

We obtained the velocity and acceleration of the particle by differentiating 

Eq. (19.10), and their maximum values were found to be

vm 5 xmvn  am 5 xmv2
n (19.15)

Since all of the above parameters depend directly upon the natural circular 

frequency vn and thus upon the ratio k /m, it is essential in any given problem 

to calculate the value of the constant k. This can be done by determining the 

Review and Summary

− xm

+ xm

x

P

O

+

Equilibrium

Fig. 19.17
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relation between the restoring force and the corresponding displacement of 

the particle [Sample Prob. 19.1].

 It was also shown that we can represent the oscillatory motion of 

particle P by the projection on the x axis of the motion of a point Q describing 

an auxiliary circle of radius xm with the constant angular velocity vn

(Fig. 19.18). Then we can obtain the instantaneous values of the velocity and 

acceleration of P by projecting on the x axis the vectors vm and am representing, 

respectively, the velocity and acceleration of Q.

O

P

x

x
am = xmωn2

vm = xmωn

ωnt

ωnt + φ

a

v

φ

Q

Q0

xm

Fig. 19.18

Simple Pendulum
Although the motion of a simple pendulum is not truly a simple harmonic 

motion, we can use the formulas given previously with v2
n 5 g/l to calculate 

the period and natural frequency of the small oscillations of a simple pendulum 

[Sec. 19.1B]. Large-amplitude oscillations of a simple pendulum were 

discussed in Sec. 19.1C.

Free Vibrations of a Rigid Body
We can analyze the free vibrations of a rigid body by choosing an appropriate 

variable, such as a distance x or an angle θ, to define the position of the body. 

We then draw a free-body diagram and kinetic diagram to express the 

equivalence of the external forces and inertial terms and write an equation 

relating the selected variable and its second derivative [Sec. 19.2]. If the 

equation obtained is of the form

 ẍ  1 v2
nx 5 0  or  θ̈ 1 v2

nθ 5 0 (19.21)

the vibration considered is a simple harmonic motion, and its period and 

natural frequency can be obtained by identifying vn and substituting its value 

into Eqs. (19.13) and (19.14) [Sample Probs. 19.2 and 19.3].

Using the Principle of Conservation of Energy
We can use the principle of conservation of energy as an alternative method 

for determining the period and natural frequency of the simple harmonic 

motion of a particle or rigid body [Sec. 19.3]. Choosing again an appropriate 
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variable, such as θ, to define the position of the system, we express that the 

total energy of the system is conserved, using T1 1 V1 5 T2 1 V2, between 

the position of maximum displacement (θ1 5 θm) and the position of maximum 

velocity (θ
.
2 5 θ

.
m). If the motion considered is simple harmonic, the two sides 

of the equation obtained consist of homogeneous quadratic expressions in θm 

and θ
.
m, respectively. Substituting θ

.
m 5 θmvn in this equation, we can factor 

out θ
2
m and solve for the circular frequency vn [Sample Prob. 19.4]. It is 

important to note that if the motion can be approximated only by a simple 

harmonic motion, such as for the small oscillations of a body under gravity, 

we must approximate the potential energy by a quadratic expression in θm 

[Sample Prob. 19.4].

Forced Vibrations
In Sec. 19.4, we considered the forced vibrations of a mechanical system. 

These vibrations occur when the system is subjected to a periodic force 

(Fig. 19.19) or when it is elastically connected to a support that has an 

alternating motion (Fig. 19.20). Denoting the forced circular frequency by vf, 

we found that in the first case, the motion of the system was defined by the 

differential equation

 mẍ  1 kx 5 Pm sin vf t (19.30)

and that in the second case, it was defined by the differential equation

 mẍ  1 kx 5 kδm sin vf t (19.31)

We can obtain the general solution of these equations by adding a particular 

solution of the form

 xpart 5 xm sin vf t (19.32)

to the general solution of the corresponding homogeneous equation. The 

particular solution of Eq. (19.32) represents a steady-state vibration of the 

x
Equilibrium

P = Pm sin wf t

Fig. 19.19

Equilibrium
x

dm
dm sin wf t

wf t
wf t = 0

Fig. 19.20
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system, whereas the solution of the homogeneous equation represents a 

transient free vibration that can generally be neglected.

 Dividing the amplitude xm of the steady-state vibration by Pm /k in the 

case of a periodic force or by δm in the case of an oscillating support, we 

defined the magnification factor of the vibration and found that

Magnification factor 5
xm

Pm/k
5

xm

δm
5

1

1 2 (vf 
/vn)2

 (19.36)

According to Eq. (19.36), the amplitude xm of the forced vibration becomes 

infinite when vf 5 vn, i.e., when the forced frequency is equal to the natural 

frequency of the system. The impressed force or impressed support movement 

is then said to be in resonance with the system [Sample Prob. 19.5]. (Actually, 

the amplitude of the vibration remains finite, due to damping forces.)

Damped Free Vibrations
In Sec. 19.5, we considered the damped vibrations of a mechanical system. 

First, we analyzed the damped free vibrations of a system with viscous 
damping [Sec. 19.5A]. We found that the motion of such a system was 

defined by the differential equation

 mẍ  1 cẋ  1 kx 5 0 (19.38)

where c is a constant called the coefficient of viscous damping. Defining the 

critical damping coefficient cc as

 cc 5 2m 

B

k
m

5 2mvn (19.41)

where vn is the natural circular frequency of the system in the absence of 

damping, we distinguished three different cases of damping, namely, 

(1) overdamped, when c . cc; (2) critically damped, when c 5 cc; and 

(3) underdamped, when c , cc. In the first two cases, the system when 

disturbed tends to regain its equilibrium position without any oscillation. In 

the third case, the motion is vibratory with diminishing amplitude. For an 

underdamped system, the transient response is

 x 5 x0e2(c/ 2m)t sin (vdt 1 f) (19.46)

where

 vd 5 vnB
1 2 a c

cc
b2

 (19.45)

Damped Forced Vibrations
In Sec. 19.5B, we considered the damped forced vibrations of a mechanical 

system. These vibrations occur when a system with viscous damping is 

subjected to a periodic force P of magnitude P 5 Pm sin vf t or when it is 

elastically connected to a support with an alternating motion of δ 5 δm sin vf 
t.

In the first case, the motion of the system was defined by the differential 

equation

 mẍ  1 cẋ  1 kx 5 Pm sin vf t (19.47)

and in the second case, by a similar equation obtained by replacing Pm by kδm 

in (19.47).
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 The steady-state vibration of the system is represented by a particular 

solution of Eq. (19.47) of the form

 xpart 5 xm sin (vf t 2 f) (19.48)

Dividing the amplitude xm of the steady-state vibration by Pm  /k in the case of 

a periodic force or by δm in the case of an oscillating support, we obtained 

the following expression for the magnification factor as

 
xm

Pm/k
5

xm

δm
5

1

2[1 2 (vf  
/vn)2]2 1 [2(c/cc)(vf 

/vn)]2
 (19.53)

or

xm

Pm/k
5

xm

δst
5

1

211 2 r222 1 12zr22
where vn 5 2k/m 5 natural circular frequency of undamped system

 cc 5 2m vn 5 critical damping coefficient

 c/cc 5 z 5 damping ratio

 r 5 v/vn 5 frequency ratio

We also found that the phase difference f between the impressed force or 

support movement and the resulting steady-state vibration of the damped 

system was defined by the relation

 tan f 5
2(c/cc)(vf  

/vn)

1 2 (vf 
/vn)

2
 (19.54)

or

  tan f 5
2zr

1 2 r2
 (19.549)

Electrical Analogs
This chapter ended with a discussion of electrical analogs [Sec. 19.5C] in 

which we showed that the vibrations of mechanical systems and the oscillations 

of electrical circuits are defined by the same differential equations. Electrical 

analogs of mechanical systems therefore can be used to study or predict the 

behavior of these systems.
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19.159 An automobile wheel-and-tire assembly of total weight 47 lb is 

attached to a mounting plate of negligible weight that is suspended 

from a steel wire. The torsional spring constant of the wire is known 

to be K 5 0.40 lb?in/rad. The wheel is rotated through 90° about 

the vertical and then released. Knowing that the period of oscillation 

is observed to be 30 s, determine the centroidal mass moment of 

inertia and the centroidal radius of gyration of the wheel-and-tire 

assembly.

19.160 The period of vibration of the system shown is observed to be 0.6 s. 

After cylinder B has been removed, the period is observed to be 0.5 s. 

Determine (a) the weight of cylinder A, (b) the  constant of the 

spring.

A

B3 lb

 Fig. P19.160

19.161 Disks A and B weigh 30 lb and 12 lb, respectively, and a small 5-lb 

block C is attached to the rim of disk B. Assuming that no slipping 

occurs between the disks, determine the period of small oscillations 

of the system.

rA = 8 in.

rB = 6 in.

A

B

C

Fig. P19.161

Review Problems

Fig. P19.159
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19.162 The block shown is depressed 1.2 in. from its equilibrium position 

and released. Knowing that after 10 cycles the maximum displacement 

of the block is 0.5 in., determine (a) the damping factor c/c, (b) the 

value of the coefficient of viscous damping. (Hint: See Problems 19.129 

and 19.130.)

 19.163 An 0.8-lb ball is connected to a paddle by means of an elastic cord 

AB of constant k 5 5 lb/ft. Knowing that the paddle is moved 

vertically according to the relation δ 5 δm sin vf t, where δm 5 8 in., 

determine the maximum allowable circular frequency vf if the cord 

is not to become slack.

Fig. P19.163

A

B

d = dm sin wf t

 19.164 A 3-kg slender rod AB is bolted to a 5-kg uniform disk. A dashpot 

with a damping coefficient of c 5 9 N?s/m is attached to the disk 

as shown. Determine (a) the differential equation of motion for small 

oscillations, (b) the damping factor c/cc.

A

B

100 mm

400 mm

c = 9 N.s/m

Fig. P19.164

 19.165 A 4-lb uniform rod is supported by a pin at O and a spring at A and 

is connected to a dashpot at B. Determine (a) the differential equa-

tion of motion for small oscillations, (b) the angle that the rod will 

form with the horizontal 5 s after end B has been pushed 0.9 in. 

down and released.

9 lb

c

k = 8 lb/ft

Fig. P19.162

A
O

B

k = 5 lb/ft c = 0.5 lb⋅s/ft

18 in.6 in.

Fig. P19.165
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 19.166 A 400-kg motor supported by four springs, each of constant 

150 kN/m, and a dashpot of constant c 5 6500 N?s/m is constrained 

to move vertically. Knowing that the unbalance of the rotor is 

equivalent to a 23-g mass located at a distance of 100 mm from the 

axis of rotation, determine for a speed of 800 rpm (a) the amplitude 

of the fluctuating force transmitted to the foundation, (b) the 

amplitude of the vertical motion of the motor.

19.167 The compressor shown has a mass of 250 kg and operates at 

2000 rpm. At this operating condition, the force transmitted to the 

ground is excessively high and is found to be mrv2
f, where mr is the 

unbalance and vf is the forcing frequency. To fix this problem, it is 

proposed to isolate the compressor by mounting it on a square concrete 

block separated from the rest of the floor as shown. The density of 

concrete is 2400 kg/m3 and the spring constant for the soil is found to 

be 80 3 106 N/m. The geometry of the compressor leads to 

choosing a block that is 1.5 m by 1.5 m. Determine the depth h that 

will reduce the force transmitted to the ground by 75 percent.

Asphalt fillerAsphalt filler

Concrete block

h

Floor

1.5 m

Floor

clay soil

Compressor

Fig. P19.167

19.168 A small ball of mass m attached at the midpoint of a tightly stretched 

elastic cord of length l can slide on a horizontal plane. The ball is 

given a small displacement in a direction perpendicular to the cord 

and released. Assuming the tension T in the cord to remain constant, 

(a) write the differential equation of motion of the ball, (b) deter-

mine the period of vibration.

2
l

2
l

x
TT

Fig. P19.168

Fig. P19.166
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19.169 A certain vibrometer used to measure vibration amplitudes consists 

essentially of a box containing a slender rod to which a mass m is 

attached; the natural frequency of the mass–rod system is known to 

be 5 Hz. When the box is rigidly attached to the casing of a motor 

rotating at 600 rpm, the mass is observed to vibrate with an ampli-

tude of 0.06 in. relative to the box. Determine the amplitude of the 

vertical motion of the motor.

Fig. P19.169

 19.170 If either a simple or a compound pendulum is used to determine 

experimentally the acceleration of gravity g, difficulties are encoun-

tered. In the case of the simple pendulum, the string is not truly 

weightless, while in the case of the compound pendulum, the exact 

location of the mass center is difficult to establish. In the case of a 

compound pendulum, the difficulty can be eliminated by using a 

reversible, or Kater, pendulum. Two knife edges A and B are placed 

so that they are obviously not at the same distance from the mass 

center G, and the distance l is measured with great precision. The 

position of a counterweight D is then adjusted so that the period of 

oscillation τ is the same when either knife edge is used. Show that 

the period τ obtained is equal to that of a true simple pendulum of 

length l and that g 5 4π
2l/τ2.

D

l

G

B

A

Fig. P19.170
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A1

Fundamentals of Engineering
 Examination

Engineers are required to be licensed when their work directly affects the 

public health, safety, and welfare. The intent is to ensure that engineers 

have met minimum qualifications involving competence, ability, experi-

ence, and character. The licensing process involves an initial exam, called 

the Fundamentals of Engineering Examination; professional experience; 

and a second exam, called the Principles and Practice of Engineering.
Those who successfully complete these requirements are licensed as a 

Professional Engineer. The exams are developed under the auspices of the 

National Council of Examiners for Engineering and Surveying.
 The first exam, the Fundamentals of Engineering Examination, can 

be taken just before or after graduation from a four-year accredited engineer-

ing program. The exam stresses subject material in a typical undergraduate 

engineering program, including statics. The topics included in the exam 

cover much of the material in this book. The following is a list of the main 

topic areas, with references to the appropriate sections in this book. Also 

included are problems that can be solved to review this material.

Concurrent Force Systems (2.1–2.2; 2.4)
Problems: 2.31, 2.35, 2.36, 2.37, 2.77, 2.83, 2.92, 2.94, 2.97

Vector Forces (3.1–3.2)
Problems: 3.17, 3.18, 3.26, 3.33, 3.37, 3.39

Equilibrium in Two Dimensions (2.3; 4.1–4.2)
Problems: 4.1, 4.13, 4.14, 4.17, 4.31, 4.33, 4.67, 4.77

Equilibrium in Three Dimensions (2.5; 4.3)
Problems: 4.99, 4.101, 4.103, 4.108, 4.115, 4.117, 4.127, 4.129, 

4.135

Centroids of Areas and Volumes (5.1–5.2; 5.4)
Problems: 5.9, 5.16, 5.30, 5.35, 5.41, 5.55, 5.62, 5.96, 5.102, 5.103, 

5.125

Analysis of Trusses (6.1–6.2)
Problems: 6.3, 6.4, 6.32, 6.43, 6.44, 6.53

Equilibrium of Two-Dimensional Frames (6.3)
Problems: 6.75, 6.81, 6.85, 6.93, 6.94

Shear and Bending Moment (7.1–7.3)
Problems: 7.22, 7.30, 7.36, 7.41, 7.45, 7.49, 7.71, 7.79

Friction (8.1–8.2; 8.4)
Problems: 8.11, 8.18, 8.19, 8.30, 8.49, 8.52, 8.103, 8.104, 8.105

Moments of Inertia (9.1–9.4)
Problems: 9.6, 9.31, 9.32, 9.33, 9.72, 9.74, 9.80, 9.83, 9.98, 9.103

APPENDIX
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A2 Appendix

Kinematics (11.1–11.2; 11.4–11.5; 15.1–15.4)
Problems: 11.3, 11.10, 11.34, 11.35, 11.97, 11.102, 15.4, 15.6, 

15.28, 15.39, 15.61, 15.63, 15.82, 15.111, 15.112

Force, Mass, and Acceleration (12.1; 16.1–16.2)
Problems: 12.5, 12.6, 12.11, 12.23, 12.36, 12.44, 12.45, 12.50, 

16.1, 16.3, 16.9, 16.26, 16.27, 16.50, 16.60, 16.63, 16.78, 16.84

Work and Energy (13.1–13.2; 13.8; 17.1)
Problems: 13.3, 13.6, 13.13, 13.17, 13.40, 13.42, 13.47, 13.64, 

13.66, 13.68, 17.1, 17.2, 17.16, 17.20

Impulse and Momentum (13.3–13.4; 17.2–17.3)
Problems: 13.119, 13.120, 13.129, 13.134, 13.146, 13.155, 13.163, 

13.169, 17.53, 17.58, 17.70, 17.72, 17.96, 17.97, 17.104

Vibration (19.1; 19.2–19.4)
Problems: 19.1, 19.2, 19.11, 19.18, 19.23, 19.28, 19.50, 19.55, 

19.64, 19.79, 19.99, 19.101, 19.105, 19.116

Friction (Problems involving friction occur in each of the above 

subjects.)
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AN1

Answers to Problems

CHAPTER 2

 2.1 1391 N a 47.8°.

 2.2 906 lb a 26.6°.

 2.4 8.03 kips d 3.88.

 2.5 (a) 101.4 N. (b) 196.6 N.

 2.6 (a) 853 lb. (b) 567 lb.

 2.8 (a) TAC 5 2.60 kN. (b) R 5 4.26 kN.

 2.9 (a) TAC 5 2.66 kN c 34.3°.

 2.10 (a) 37.18. (b) 73.2 N.

 2.11 (a) 392 lb. (b) 346 lb.

 2.13 (a) 368 lb y . (b) 213 lb.

 2.14 (a) 21.1 Nw. (b) 45.3 N.

 2.15 414 lb c 72.0°.

 2.16 1391 N a 47.8°.

 2.17 8.03 kips d 3.8°.

 2.19 104.4 N b 86.7°.

 2.21 (29 lb) 21.0 lb, 20.0 lb; (50 lb)214.00 lb, 48.0 lb; (51 lb) 

24.0 lb, 245.0 lb.

 2.23 (80 N) 61.3 N, 51.4 N; (120 N) 41.0 N, 112.8 N; 

(150 N)2122.9 N, 86.0 N.

 2.24 (40 lb) 20.0 lb, 234.6 lb; (50 lb) 238.3 lb, 232.1 lb; 

(60 lb) 54.4 lb, 25.4 lb.

 2.26 (a) 523 lb. (b) 428 lb.

 2.27 (a) 621 N. (b) 160.8 N.

 2.28 (a) 610 lb. (b) 500 lb.

 2.29 (a) 2190 N. (b) 2060 N.

 2.31 38.6 lb a 36.6°. 

 2.32 251 N b 85.3°. 

 2.34 654 N c 21.5°.

 2.35 309 N d 86.6°.

 2.36 474 N c 32.5°.

 2.37 203 lb a 8.46°.

 2.39 (a) 21.78. (b) 229 N.

 2.40 (a) 26.5 N. (b) 623 N.

 2.42 (a) 56.38. (b) 204 lb.

 2.43 (a) 352 lb. (b) 261 lb.

 2.44 (a) 5.22 kN. (b) 3.45 kN

 2.46 (a) 305 N. (b) 514 N.

 2.48 (a) 1244 lb. (b) 115.4 lb.

 2.49 TCA 5 134.6 N; TCB 5 110.4 N.

 2.50 179.3 N < P < 669 N.

 2.51 FA 5 1303 lb; FB 5 420 lb. 

 2.53 FC 5 6.40 kN; FD 5 4.80 kN.

 2.54 FB 5 15.00 kN; FC 5 8.00 kN.

 2.55 (a) TACB 5 269 lb. (b) TCD 5 37.0 lb.

 2.57 (a) α 5 35.08; TAC 5 4.91 kN; TBC 5 3.44 kN, (b) α 5 55.08; 

TAC 5 TBC 5 3.66 kN.

 2.58 (a) 784 N. (b) α 5 71.08.

 2.59 (a) α 5 5.008. (b) 104.6 lb.

 2.61 1.250 m.

 2.62 75.6 mm.

 2.63 (a) 10.98 lb. (b) 30.0 lb.

 2.65 27.48  #   α  #   222.68.

 2.67 (a) 300 lb. (b) 300 lb. (c) 200 lb. (d) 200 lb. (e) 150.0 lb.

 2.68 (a) 200 lb. (b) 150.0 lb.

 2.69 (a) 1293 N. (b) 2220 N.

 2.71 (a) 220 N, 544 N, 126.8 N. (b) 68.58,  25.08,  77.88.

 2.72 (a) 2237 N, 258 N, 282 N. (b) 121.88,  55.08,  51.1°.

 2.73 (a) 2175.8 N, 2257 N, 251 N. (b) 116.18,  130.08,  51.18.

 2.74 (a) 350 N, 2169.0 N, 93.8 N. (b) 28.98,  115.08,  76.48.

 2.75 (a) 220.5 lb, 43.3 lb, 214.33 lb. (b) 114.28, 30.08, 106.78.

 2.77 (a) 21861 lb, 3360 lb, 677 lb. (b) 118.58,  30.58,  80.08.

 2.79 (a) 770 N; 71.88;  110.58;  28.08.

 2.81 (a) 140.38. (b) Fx 5 79.9 lb, Fz 5 120.1 lb; F 5 226 lb.

 2.82 (a) 118.28. (b) Fx 5 36.0 lb, Fy 5 290.0 lb;

F 5 110.0 lb.

 2.84 (a) Fx 5 507 N, Fy 5 919 N, Fz 5 582 N. (b) 61.08.

 2.85 240 N; 2255 N; 160.0 N.

 2.87 21.260 kips; 1.213 kips; 0.970 kips.

 2.88 20.820 kips; 0.978 kips; 20.789 kips.

 2.89 192.0 N; 288 N; 2216 N.

 2.91 515 N; θx 5 70.28; θy 5 27.68; θz 5 71.58

 2.92 515 N; θx 5 79.88; θy 5 33.48; θz 5 58.68.

 2.94 913 lb; θx 5 50.68; θy 5 117.68; θz 551.88.

 2.95 748 N; θx 5120.18; θy 5 52.58; θz 5128.08.

 2.96 TAB 5 490 N; TAD 5 515 N.

 2.97 130.0 lb.

 2.99 13.98 kN.

 2.101 926 N ↑.

 2.103 TDA 5 14.42 lb; TDB 5 TDC 5 13.00 lb.

 2.104 TDA 5 14.42 lb; TDB 5 TDC 5 13.27 lb.

 2.106 TAB 5 571 lb; TAC 5 830 lb; TAD 5 528 lb.

 2.107 960 N.

 2.108 0 #  Q , 300 N.

 2.109 845 N.

 2.110 768 N.

 2.112 2000 lb.

 2.113 TAB 5 30.8 lb; TAC 5 62.5 lb.

 2.115 TAB 5 510 N; TAC 5 56.2 N; TAD 5 536 N.

 2.116 TAB 5 1340 N; TAC 5 1025 N; TAD 5 915 N.

 2.117 TAB 5 1431 N; TAC 5 1560 N; TAD 5 183.0 N.

 2.118 TAB 5 1249 N; TAC 5 490 N; TAD 5 1647 N.

 2.119 TAB 5 974 lb; TAC 5 531 lb; TAD 5 533 lb.

 2.121 378 N.

 2.123 TBAC 5 76.7 lb; TAD 5 26.9 lb; TAE 5 49.2 lb.

 2.124 (a) 305 lb. (b) TBAC 5 117.0 lb; TAD 5 40.9 lb.

 2.125 (a) 1155 N. (b) 1012 N.

 2.127 21.8 kN c 73.4°.

 2.128 (102 lb) 248.0 lb, 90.0 lb; (106 lb) 56.0 lb, 90.0 lb;

(200 lb) 2160.0 lb, 2120.0 lb

 2.130 (a) 172.7 lb. (b) 231 lb.

 2.131 (a) 312 N. (b) 144.0 N.

 2.133 (a) 56.4 lb; 2103.9 lb; 220.5 lb. (b) 62.08,  150.08,  99.88.

 2.135 940 N; 65.78,  28.28,  76.48.

 2.136 P 5 131.2 N; Q 5 29.6 N.

 2.137 (a) 125.0 lb. (b) 45.0 lb.
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AN2 Answers to Problems

 3.84 (a) F 5 30.0 lbw; M 5 150.0 lb.in. l. (b) B 5 50.0 lb ← ; 

C 5 50.0 lb y .

 3.86 FA 5 168.0 N d 50.0°; FC 5 192.0 N d50.0°.

 3.87 F 5 900 Nw; x 5 50.0 mm.

 3.89 (a) F 5 48.0 lb a 65.0°; M 5 490 lb.in. i.

  (b) F 5 48.0 lb a 65.0° applied 17.78 in. to the left of B.

 3.90 (a) 48.0 N intersecting line AB 144.0 mm to the right of A.

  (b) 77.78 or 215.728.

 3.91 (0.227 lb)i 1 (0.1057 lb)k; 63.6 in. to the right of B.

 3.93 F 5 2(250 kN)j; M 5 (15.00 kN?m)i 1 (7.50 kN?m)k. 

 3.95 F 5 2(122.9 N)j 2 (86.0 N)k; M 5 (22.6 N?m)i 1 

(15.49 N?m)j 2 (22.1 N?m)k.

 3.96 F 5 (5.00 N)i 1 (150.0 N)j 2 (90.0 N)k; M 5 (77.4 N?m)i 1 

(61.5 N?m)j 1 (106.8 N?m)k.

 3.97 F 5 (36.0 lb)i 2 (28.0 lb)j 2 (6.00 lb)k; M 5 2(157.0 lb?ft)i 1
(22.5 lb?ft)j 2 (240 lb?ft)k.

 3.98 F 5 2(28.5 N)i 1 (106.3 N)k; M 5 (12.35 N?m)i 2 

(19.16 N?m)j 2 (5.13 N?m)k.

 3.99 F 5 2(128.0 lb)i 2 (256 lb)j 1 (32.0 lb)k; M 5 (4.10 kip?ft)i 
1 (16.38 kip?ft)k.

 3.101 (a) Loading a: 500 Nw; 1000 N?m i.

  Loading b: 500 Nx; 500 N?m l. 

  Loading c: 500 Nw; 500 N?m i. 

  Loading d: 500 Nw; 1100 N?m i. 

  Loading e: 500 Nw; 1000 N?m i. 

  Loading f: 500 Nw; 200 N?m i. 

  Loading g: 500 Nw; 2300 N?m l. 

  Loading h: 500 Nw; 600 N?m l.

  (b) Loadings a and e are equivalent.

 3.102 Equivalent to case f of problem 3.101.

 3.104 Equivalent force-couple system at D.

 3.105 (a) 2.00 ft to the right of C. (b) 2.31 ft to the right of C.

 3.106 (a) 39.6 in. to the right of D. (b) 33.1 in.

 3.108 44.7 lb b 26.6°; 10.61 in. to the left of C and 5.30 in. below C.

 3.110 (a) 224 N c 63.4°. (b) 130.0 mm to the left of B and 260 mm 

below B.

 3.111 (a) 269 N c 68.2°. (b) 120.0 mm to the left of B and 300 mm 

below B.

 3.113 773 lb d 79.0°; 9.54 ft to the right of A.

 3.114 (a) 29.9 lb b 23.0°. (b) AB: 10.30 in. to the left of B; 

BC: 4.36 in. below B. 

 3.115 (a) 60.2 lb?in. l. (b) 200 lb?in.l. (C) 20.0 lb?in. i.

 3.116 (a) 0.365 m above G. (b) 0.227 m to the right of G.

 3.117 (a) 0.299 m above G. (b) 0.259 m to the right of G.

 3.118 (a) R 5 F d  tan 
211a2/2bx2; M 5 2Fb21x 2 x3/a22/2a4 1 4b2x2 l.

  (b) 0.369 m.

 3.119 R 5 2(300 N)i 2 (240 N)j 1 (25.0 N)k; 

  M 5 2(3.00 N?m)i 1 (13.50 N?m)j 1 (9.00 N?m)k.

 3.120 R 5 (420 N)j 2 (339 N)k; M 5 (1.125 N?m)i 1 (163.9 N?m)j 2 

(109.9 N?m)k.

 3.122 (a) 60.08. (b) (20.0 lb)i 2 (34.6 lb)j; (520 lb?in.)i. 
 3.124 R 5 2(420 N)i 2 (50.0 N)j 2 (250 N)k; M 5 (30.8 N?m)j 2 

(22.0 N?m)k. 

 3.125 (a) B 5 2(75.0 N)k, C 5 2(25.0 N)i 1 (37.5 N)k.

  (b) Ry 5 0, Rz 5 237.5 N. (c) when the slot is vertical.

 3.126 A5(1.600 lb)i 2(36.0 lb)j 1 (2.00 lb)k,

  B 5 2(9.60 lb)i 1 (36.0 lb)j 1 (2.00 lb)k.

 3.127 1035 N; 2.57 m from OG and 3.05 m from OE.

 3.128 2.32 m from OG and 1.165 m from OE. 
 3.129 405 lb; 12.60 ft to the right of AB and 2.94 ft below BC.

 3.130 a 5 0.722 ft; b 5 20.6 ft.

 3.133 (a) P23; θx 5 θy 5 θz 5 54.78. (b) 2a
  (c) Axis of the wrench is diagonal OA.

CHAPTER 3

 3.1 (a) 196.2 N?m i. (b) 199.0 N b 59.5°.

 3.2 (a) 196.2 N?m i. (b) 321 N d 35.0°. (c) 231 Nx at point D.

 3.4 (a) 41.7 N?m l. (b) 147.4 N a 45.0°. 

 3.5 (a) 41.7 N?m l. (b) 334 N. (c) 176.8 N a 58.0°.

 3.6 115.7 lb?in.

 3.7 115.7 lb?in.

 3.9 (a) 292 N?m i. (b) 292 N?m i.

 3.11 116.2 lb?ft l.

 3.12 128.2 lb?ft l.

 3.13 140.0 N?m l.

 3.17 (a) l 5 20.677i 2 0.369j 2 0.636k.

   (b) l 5 20.0514i 1 0.566j 1 0.823k.

 3.18 1.184 m.

 3.20 (a) 9i 1 22j 1 21k. (b) 22i 1 11k. (c) 0.

 3.22 (2400 lb?ft)j 1 (1440 lb?ft)k.

 3.23 (7.50 N?m)i 2 (6.00 N?m)j 2(10.39 N?m)k.

 3.25 (225.4 lb?ft)i 2 (12.60 lb?ft)j 2(12.60 lb?ft)k.

 3.26 (1200 N?m)i 2 (1500 N?m)j 2 (900 N?m)k.

 3.27 7.37 ft.

 3.28 100.8 mm.

 3.29 144.8 mm.

 3.30 5.17 ft.

 3.32 2.36 m.

 3.33 1.491 m.

 3.35 P?Q 5 25; P?S 5 15; Q?S 5 238.

 3.37 77.98.

 3.39 (a) 59.08. (b) 144.0 lb.

 3.40 (a) 70.58. (b) 60.0 lb

 3.41 (a) 52.98. (b) 326 N.

 3.43 26.88.

 3.44 33.38.

 3.45 (a) 67.0. (b) 111.0.

 3.46 2.

 3.47 Mx 5 78.9 kN?m, My 5 13.15 kN?m, Mz 5 29.86 kN?m.

 3.48 3.04 kN.

 3.49 f 5 24.68; d 5 34.6 in.

 3.51 1.252 m.

 3.52 1.256 m.

 3.53 283 lb.

 3.55 1207 lb?ft.

 3.57 290.0 N?m.

 3.58 2111.0 N?m.

 3.59 12.28 N?m.

 3.60 29.50 N?m.

 3.61 a P/22.

 3.64 13.06 in.

 3.65 12.69 in.

 3.67 0.249 m.

 3.68 0.1198 m.

 3.70 (a) 7.33 N?m l. (b) 91.6 mm.

 3.71 6.19 N?m i.

 3.73 1.125 in.

 3.74 (a) 26.7 N. (b) 50.0 N. (c) 23.5 N.

 3.76 M 5 604 lb?in.; θx 5 72.88, θy 5 27.38, θz 5 110.58.

 3.77 M 5 1170 lb?in.; θx 5 81.28, θy 5 13.708, θz 5 100.48.

 3.78 M 5 3.22 N?m; θx 5 90.08, θy 5 53.18, θz 5 36.98.

 3.79 M 5 2.72 N?m; θx 5 134.9°, θy 5 58.0°; θz 5 61.9°.

 3.80 M 5 2150 lb?ft; θx 5 113.08, θy 5 92.78, θz 5 23.28.

 3.82 (a) FA 5 560 lb c 20.0°; MA 5 7720 lb?ft i.

  (b) FB5 560 lb c 20.0°; MB 5 4290 lb?ft i.

 3.83 FA 5 389 N c 60.0°; FC 5 651 N c 60.0°.
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Answers to Problems AN3

 4.48 (a) D 5 20.0 lbw; MD 5 20.0 lb?ft l.

  (b) D 5 10.00 lbw; MD 5 30.0 lb?ft i.

 4.50 (a) A 5 78.5 Nx; MA 5 125.6 N?m l. 

  (b) A 5 111.0 Nx; MA 5 125.6 N?m l.

  (c) A 5 157.0 Nx; MA 5 251 N?m l.

 4.51 θ 5  sin 
2112M cot α/W l2.

 4.52 θ 5  tan 
21(Q/3P).

 4.53 (a) T 5 (W/2)/(1 2 tan θ). (b) 39.88.

 4.54 (a) θ 5 2 cos 
21C14 1WP 6 2W 2

P 2 1 82D. (b) 65.18.

 4.55 (a) θ 5 2 sin 
211W/2P2. (b) 29.08.

 4.57 141.18.

 4.59 (1) completely constrained; determinate; A 5 C 5 196.2 Nx.

  (2) completely constrained; determinate; B 5 0, 

C 5 D 5 196.2 Nx.

  (3) completely constrained; indeterminate; Ax5 294 N y ; 

Dx5 294 ← .

  (4) improperly constrained; indeterminate; no equilibrium.

  (5) partially constrained; determinate; equilibrium; 

C 5 D 5 196.2 Nx.

  (6) completely constrained; determinate; 

B 5 294 N y , D 5 491 N b 53.1°.

  (7) partially constrained; no equilibrium.

  (8) completely constrained; indeterminate; B 5 196.2 Nx, 

Dy5 196.2 Nx.

 4.61 T 5 289 lb; A 5 577 lb a   60.08.

 4.62 A 5 400 Nx; B 5 500 N c 53.1°.

 4.63 a $  138.6 mm.

 4.65 B 5 501 N b 56.3°; C 5 324 N c 31.0°. 

 4.66 A 5 82.5 lb a  14.048; T 5 100.0 lb. 

 4.67 B 5 888 N c 41.3°; D 5 943 N b 45.0°.

 4.69 (a) 499 N. (b) 457 N b 26.6°.

 4.71 (a) 5.63 kips. (b) 4.52 kips d4.76°.

 4.72 (a) 24.9 lb d30.0°. (b) 15.34 lb a  30.08.

 4.73 A 5 778 Nw; C 5 1012 N b 77.9°. 

 4.75 A 5 170.0 N b 33.9°; C 5 160.0 N a  28.18. 

 4.77 T 5 100.0 lb; B 5 111.1 lb c 30.3°.

 4.78 (a) 400 N. (b) 458 N a  49.18.

 4.79 (a) 2P b 60.0°. (b) 1.239P c 36.2°.

 4.80 (a) 1.55 P b 30.0°. (b) 1.086 P a  22.98.

 4.81 A 5 163.1 N c 74.1°; B 5 258 N b 65.0°.

 4.83 60.0 mm.

 4.84 tan θ 5 2 tan β.

 4.85 (a) 49.18. (b) A 5 45.3 N z; B 5 90.6 N a  60.08.

 4.86 32.58.

 4.88 (a) 225 mm. (b) 23.1 N. (c) 12.21 N y . 

 4.90 (a) 59.48. (b) A 5 8.45 lb y ; B 5 13.09 lb b 49.8°. 

 4.91 A 5 (120.0 N)j 1 (133.3 N)k; D 5 (60.0 N)j 1 (166.7 N)k.

 4.93 (a) 96.0 lb. (b) A 5 (2.40 lb)j; B 5 (214 lb)j.
 4.94 A 5 (22.9 lb)i 1 (8.50 lb)j; B 5 (22.9 lb)i 1 (25.5 lb)j; 

C 5 2(45.8 lb)i.
 4.95 (a) 78.5 N. (b) A 5 2(27.5 N)i 1 (58.9 N)j; B 5 (106.0 N)i 1 

(58.9 N)j.
 4.97 TA 5 21.0 lb; TB 5 TC 5 17.50 lb. 

 4.99 (a) 121.9 N. (b) 246.2 N. (c) 100.9 N.

 4.100 (a) 95.6 N. (b) 27.36 N. (c) 88.3 N.

 4.101 TA 5 23.5 N; TC 5 11.77 N; TD 5 105.9 N.

 4.102 (a) 0.480 in. (b) TA 5 23.5 N; TC 5 0; TD 5 117.7 N.

 4.103 (a) TA 5 6.00 lb; TB 5 TC 5 9.00 lb. (b) 15.00 in.

 4.105 TBD 5 1100 lb; TBE 5 1100 lb; A 5 (1200 lb)i 2 (560 lb)j. 
 4.106 TBD 5 780 N; TBE 5 390 N; A 5 2(195.0 N)i 1 (1170 N)j 1 

(130.0 N)k.

 4.107 TBD 5 525 N; TBE 5 105.0 N; A 5 2(105.0 N)i 1 (840 N)j 1 

(140.0 N)k.

 3.134 (a) P; θx 5 90.08, θy 5 90.08, θz 5 0. (b) 5a/2.

  (c) Axis of the wrench is parallel to the z-axis at x 5 a, y 5 2a.

 3.136 (a) 2(21.0 lb) j. (b) 0.571 in. (c) At x 5 0, z 5 1.667 in; 

and is parallel to the y axis.

 3.137 (a) 2(84.0 N)j 2 (80.0 N)k. (b) 0.477 m. (c) x 5 0.526 m, 

y 5 0, z 5 20.1857 m. 

 3.140 (a) 3P (2i 2 20j 2 k)/25. (b) 20.0988a.

  (c) x 5 2.00a, y 5 0, z 5 21.990a.

 3.141 R 5 (20.0 N)i 1 (30.0 N)j 2 (10.00 N)k; y 5 20.540 m, 

z 5 20.420 m.

 3.143 FA 5 (M/b)i 1 R [1 1 (a/b)]k; FB 5 2(M/b)i 2 (a R/b)k.

 3.147 (a) 20.5 N?m l. (b) 68.4 mm.

 3.148 760 N?m l.

 3.150 43.68.

 3.151 23.0 N?m.

 3.153 M 5 4.50 N?m; θx 5 90.08, θy 5 177.18, θz 5 87.18.

 3.154 F 5 260 lb d67.4°; Mc 5 200 lb.in i.

 3.156 (a) 135.0 mm. (b) F2 5 (42.0 N)i 1 (42.0 N)j 2 (49.0 N)k;

  M2 5 2(25.9 N?m)i 1 (21.2 N?m)j
 3.158 (a) B 5 (2.50 lb)i, C 5 (0.1000 lb)i 2 (2.47 lb)j 2(0.700 lb)k. 

(b) Ry5 22.47 lb; Mx5 1.360 lb?ft. 

CHAPTER 4

 4.1 42.0 Nx.

 4.2 0.264 m.

 4.4 (a) 245 lbx. (b) 140.0 lb.

 4.5 (a) 34.0 kNx. (b) 4.96 kN ↑.

 4.6 (a) 81.1 kN. (b) 134.1 kN ↑.

 4.7 (a) A 5 20.0 lbw; B 5 150.0 lb ↑. (b) A 5 10.00 lbw; 

B 5 140.0 lbx.

 4.9 1.250 kN #  Q #  27.5 kN.

 4.12 6.00 kips #  P #  27.0 kips.

 4.13 150.0 mm #  d #  400 mm. 

 4.14 2.00 in. #  a #  10.00 in.

 4.15 (a) 600 N. (b) 1253 N a  69.88.

 4.17 (a) 80.8 lbw. (b) 216 lb a  22.08.

 4.18 232 lb.

 4.19 (a) 2.00 kN. (b) 2.32 kN a  46.48.

 4.22 (a) 400 N. (b) 458 N a  49.18.

 4.23 (a) A 5 44.7 lb b 26.6°; B 5 30.0 lb ↑. 

(b) A 5 30.2 lb b 41.4°; B 5 34.6 lb b 60.0°.

 4.24 (a) A 5 20.0 lbx; B 5 50.0 lb b 36.9°. 

(b) A 5 23.1 lb a  60.08; B 5 59.6 lb b 30.2°. 

 4.25 (a) 190.9 N. (b) 142.3 N a  18.438.

 4.26 (a) 324 N. (b) 270 N y .

 4.28 (a) A 5 225 Nx; C 5 641 N d 20.6°. 

(b) A 5 365 N a 60.08; C 5 884 N d 22.0°. 

 4.31 T 5 2P/3; C 5 0.577P y .

 4.32 T 5 0.586P; C 5 0.414P y .

 4.33 (a) 117.0 lb. (b) 129.8 lb c 56.3°.

 4.34 (a) 195.0 lb. (b) 225 lb c 45.0°.

 4.35 (a) 1432 N. (b) 1100 Nx. (c) 1400 N ← .

 4.36 TBE 5 196.2 N; A 5 73.6 N y ; D 5 73.6 N ← .

 4.39 (a) 600 N. (b) A 5 4.00 kN ← ; B 5 4.00 kN y .

 4.40 (a) 105.1 N. (b) A 5 147.2 N↑; B 5 105.1 N ← .

 4.41 (a) A 5 20.2 lbx; B 5 30.0 lb b 60.0°. (b) 16.21 lbw. 

 4.42 5.44 lb #  P #  17.23 lb. 

 4.43 (a) E 5 8.80 kipsx; ME 5 36.0 kip?ft i.

  (b) E 5 4.80 kipsx; ME 5 51.0 kip?ft i.

 4.45 Tmax 5 2240 N; Tmin 5 1522 N.

 4.46 C 5 1951 N b88.5°; MC 5 75.0 N?m i.

 4.47 1.232 kN #  T #  1.774 kN.
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AN4 Answers to Problems

 5.17 Y  5 (r1 1 r2)(cos α)/(π 2 2α).

 5.19 0.520.

 5.20 459 N.

 5.21 0.235 in3 for A1, 20.235 in3 for A2.

 5.23 (a) b(c2 2 y2)/2. (b) y 5 0; Qx 5 bc2/2.

 5.24 X 5 40.9 mm, Y  5 25.3 mm.

 5.26 X 5 3.38 in., Y  5 2.93 in.

 5.29 (a) 125.3 N. (b) 137.0 N a 56.7°.

 5.30 120.0 mm.

 5.31 99.5 mm.

 5.32 (a) 0.513a. (b) 0.691a.

 5.34 x 5 
2
3 
a, y 5 

2
3 
h.

 5.35 x 5 a/2, y 5 2h/5.

 5.37 x 5 a(3 2 4 sin α)/6 (1 2 α), y 5 0.

 5.39 x 5 2a/3(4 2 π), y 5 2b/3(4 2 π).

 5.40 x 5 a/4, y 5 3b/10.

 5.41 x 5 3a/5, y 5 12b/35.

 5.43 x 5 17a/130, y 5 11b/26.

 5.44 x 5 a, y 5 17b/35.

 5.45 2a /5.

 5.46 2222r/3π.

 5.48 x 5 29.27a, y 5 3.09a.

 5.49 x 5 L/π, y 5 πa/8.

 5.51 x 5 y 5 1.027 in.

 5.52 (a) V 5 401 3 103 mm3; A 5 34.1 3 103 mm2.

  (b) V 5 492 3 103 mm3; A 5 41.9 3 103 mm2.

 5.53 (a) V 5 248 in3; A 5 547 in2.

  (b) V 5 72.3 in3; A 5 169.6 in2.

 5.54 (a) V 5 2.26 3 106 mm3; A 5 116.3 3 103 mm2.

  (b) V 5 1.471 3 106 mm3; A 5 116.3 3 103 mm2.

 5.55 V 5 3470 mm3; A 5 2320 mm2.

 5.58 308 in2.

 5.60 31.9 liters.

 5.62 V 5 3.96 in3, W 5 1.211 lb.

 5.63 14.52 in2.

 5.64 0.0305 kg.

 5.66 (a) R 5 6000 Nw, x 5 3.60 m.

  (b) A 5 6000 Nx, MA 5 21.6 kN?m l.

 5.67 (a) R 5 7.60 kNw, x 5 2.57 m.

  (b) A 5 4.35 kNx, B 5 3.25 kNx.

 5.69 A 5 900 lbx; MA 5 9200 lb?in. l.

 5.70 B 5 1360 lbx; C 5 2360 lbx.

 5.71 A 5 105.0 Nx; B 5 270 Nx.

 5.73 A 5 3.00 kNx; MA 5 12.60 kN?m l.

 5.74 (a) 0.536 m. (b) A 5 B 5 761 Nx.

 5.76 B 5 3770 lbx; C 5 429 lbx.

 5.77 (a) 900 lb/ft. (b) 7200 lbx.

 5.78 wA 5 10.00 kN/m; wB 5 50 kN/m.

 5.80 (a) H 5 10.11 kips y, V 5 37.8 kipsx. 

(b) 10.48 ft to the right of A.

  (c) R 5 10.66 kips d 18.43°.

 5.81 (a) H 5 44.1 kN y, V 5 228 kNx. 

(b) 1.159 m to the right of A.

  (c) R 5 59.1 kN d 41.6°.

 5.82 6.98%.

 5.84 12.00 in.

 5.85 4.00 in.

 5.87 T 5 6.72 kN z ; A 5 141.2 kN z.

 5.88 A 5 1197 N b 53.1°; B 5 1511 N b 53.1°.

 5.89 3570 N.

 5.90 6.00 ft.

 5.92 0.683 m.

 4.108 TAD 5 2.60 kN; TAE 5 2.80 kN; C 5 (1.800 kN)j 1 (4.80 kN)k. 

 4.109 TAD 5 5.20 kN; TAE 5 5.60 kN; C 5 (9.60 kN)k.

 4.110 TBD 5 TBE 5 176.8 lb; C 5 2(50.0 lb)j 1 (216.5 lb)k.

 4.113 FCD 5 19.62 N; A 5 2(19.22 N)i 1 (45.1 N)j; 
B 5 (49.1 N)j.

 4.115 A 5 2(56.3 lb)i; B 5 2(56.2 lb)i 1 (150.0 lb)j 2 (75.0 lb)k; 

FCE 5 202 lb.

 4.116 (a) 116.6 lb. (b) A 5 2 (72.7 lb)j 2 (38.1 lb)k; 

B 5 (37.5 lb)j.
 4.117 (a) 345 N. (b) A 5 (114.4 N)i 1 (377 N)j 1 (141.5 N)k;

  B 5 (113.2 N)j 1 (185.5 N)k.

 4.119 FCD 5 19.62 N; B 5 2(19.22 N)i 1 (94.2 N)j;
  MB 5 2(40.6 N?m)i 2 (17.30 N?m)j.
 4.120 A 5 2(112.5 lb)i 1 (150.0 lb)j 2 (75.0 lb)k;

  MA 5 (600 lb?ft)i 1 (225 lb?ft)j; FCE 5 202 lb.

 4.121 (a) 5.00 lb. (b) C 5 2(5.00 lb)i 1 (6.00 lb)j 2 (5.00 lb)k;

  MC 5 (8.00 lb?in.)j 2 (12.00 lb?in)k.

 4.122 TCF 5 200 N; TDE 5 450 N; A 5 (160.0 N)i 1 (270 N)k;

  MA 5 2(16.20 N?m)i.
 4.123 TBD 5 2.18 kN; TBE 5 3.96 kN; TCD 5 1.500 kN.

 4.124 TBD 5 0; TBE 5 3.96 kN; TCD 5 3.00 kN.

 4.127 A 5 (120.0 lb)j 2 (150.0 lb)k; B 5 (180.0 lb)i 1 (150.0 lb)k;

  C 5 2(180.0 lb)i 1 (120.0 lb)j.
 4.128 A 5 (20.0 lb)j 1 (25.0 lb)k; B 5 (30.0 lb)i 2 (25.0 lb)k;

  C 5 2(30.0 lb)i 2 (20.0 lb)j.
 4.129 TBE 5 975 N; TCF 5 600 N; TDG 5 625 N;

  A 5 (2100 N)i 1 (175.0 N)j 2 (375 N)k.

 4.131 TB 5 20.366 P; TC 5 1.219 P; TD 5 20.853 P;

  F 5 20.345 Pi 1 Pj 2 0.862 Pk.

 4.133 360 N.

 4.135 85.3 lb.

 4.136 181.7 lb.

 4.137 (45.0 lb)j.
 4.138 343 N.

 4.140 (a) x 5 4.00 ft, y 5 8.00 ft. (b) 10.73 lb.

 4.141 (a) x 5 0, y 5 16.00 ft. (b) 11.31 lb.

 4.142 (a) 1761 lbx. (b) 689 lb x.

 4.143 (a) 150.0 lb. (b) 225 lb d 32.3°.

 4.145 (a) 130.0 N. (b) 224 d 2.05°.

 4.146 T 5 80.0 N; A 5 160.0 N c 30.0°; C 5 160.0 N b 30.0°.

 4.148 A 5 680 N a 28.1°; B 5 600 N z.

 4.149 A 5 63.6 lb c 45.0°; C 5 87.5 lb b 59.0°.

 4.151 TA 5 5.63 lb; TB 5 16.88 lb; TC 5 22.5 lb.

 4.153 (a) A 5 0.745 P a 63.4°; C 5 0.471 P b 45.0°.

  (b) A 5 0.812 P a 60.0°; C 5 0.503 P d 36.2°.

  (c) A 5 0.448 P b 60.0°; C 5 0.652 P a 69.9°.

  (d) improperly constrained; no equilibrium.

 CHAPTER 5

 5.1 X 5 42.2 mm, Y  5 24.2 mm.

 5.2 X 5 1.045 in., Y  5 3.59 in.

 5.3 X 5 2.84 mm, Y  5 24.8 mm.

 5.4 X 5 52.0 mm, Y  5 65.0 mm.

 5.5 X 5 3.27 in., Y  5 2.82 in.

 5.6 X 5 210.00 mm, Y  5 87.5 mm.

 5.9 X 5 Y  5 16.75 mm.

 5.10 X 5 10.11 in., Y  5 3.88 in.

 5.11 X 5 30.0 mm, Y  5 64.8 mm.

 5.13 X 5 3.20 in., Y  5 2.00 in.

 5.14 X 5 0, Y  5 1.372 m.

 5.16 Y 5 a2

3
bar3

2 2 r3
1

r2
2 2 r2

1

ba 2 cos α

π 2 2α
b.
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Answers to Problems AN5

 6.12 FAB 5 FFH 5 1500 lb C; FAC 5 FCE 5 FEG 5 FGH 5 1200 lb T;

  FBC 5 FFG 5 0; FBD 5 FDF 5 1000 lb C;

  FBE 5 FEF 5 500 lb C; FDE 5 600 lb T.

 6.13 FAB 5 6.24 kN C; FAC 5 2.76 kN T; FBC 5 2.50 kN C;

  FBD 5 4.16 kN C; FCD 5 1.867 kN T; FCE 5 2.88 kN T;

  FD 5 3.75 kN C; FDF 5 0; FEF 5 1.200 kN C.

 6.15 FAB 5 FFG 5 7.50 kips C; FAC 5 FEG 5 4.50 kips T;

  FBC 5 FEF 5 7.50 kips T; FBD 5 FDF 5 9.00 kips C;

  FCD 5 FDE 5 0; FCE 5 9.00 kips T.

 6.17 FAB 5 47.2 kN C; FAC 5 44.6 kN T; FBC 5 10.50 kN C;

  FBD 5 47.2 kN C; FCD 5 17.50 kN T; FCE 5 30.6 kN T;

  FDE 5 0.

 6.18 FAB 5 2250 N C; FAC 5 1200 N T; FBC 5 750 N T;

  FBD 5 1700 N C; FBE 5 400 N C; FCE 5 850 N C;

  FCF 5 1600 N T; FDE 5 1500 N T; FEF 5 2250 N T.
 6.19 FAB 5 FFH 5 7.50 kips C; FAC 5 FGH 5 4.50 kips T;

  FBC 5 FFG 5 4.00 kips T; FBD 5 FDF 5 6.00 kips C;

  FBE 5 FEF 5 2.50 kips T; FCE 5 FEG 5 4.50 kips T; FDE 5 0.

 6.21 FAB 5 9.90 kN C; FAC 5 7.83 kN T; FBC 5 0; FBD 5 7.07 kN C;

FBE 5 2.00 kN C; FCE 5 7.83 kN T; FDE 5 1.000; kN T;

  FDF 5 5.03 kN C; FDG 5 0.559 kN C; FEG 5 5.59 kN T.

 6.22 FAB 5 3610 lb C; FAC 5 4110 lb T; FBC 5 768 lb C;

  FBD 5 3840 lb C; FCD 5 1371 lb T; FCE 5 2740 lb T;

  FDE 5 1536 lb C. 

 6.23 FDF 5 4060 lb C; FDG 5 1371 lb T; FEG 5 2740 lb T;

  FFG 5 768 lb C; FFH 5 4290 lb C; FGH 5 4110 lb T.

 6.24 FAB 5 FDF 5 2.29 kN T; FAC 5 FEF 5 2.29 kN C; FBC 5 

  FDE 5 0.600 kN C; FBD 5 2.21 kN T; FBE 5 FEH 5 0; 

FCE 5 2.21 kN C; FCH 5 FEJ 5 1.200 kN C.

 6.27 FAB 5 FBC 5 FCD 5 36.0 kips T; FAE 5 57.6 kips T; 

  FAF 5 45.0 kips C; FBF 5 FBG 5 FCG 5 FCH 5 0; FDH 5

  FFG 5 FGH 5 39.0 kips C; FEF 5 36.0 kips C.

 6.28 FAB 5 128.0 kN T; FAC 5 136.7 kN C; FBD 5 FDF 5 

FFH 5 128.0 kN T;

  FCE 5 FEG 5 136.7 kN C; FGH 5 192.7 kN C; 
  FBC 5 FBE 5 FDE 5 FDG 5 FFG 5 0.

 6.29 Truss of Prob. 6.33a is the only simple truss.

 6.30 Trusses of Prob. 6.32b and Prob. 6.33b are simple trusses.

 6.32 (a) AI, BJ, CK, DI, EI, FK, GK. 

  (b) FK, IO.

 6.34 (a) BC, HI, IJ, JK. (b) BF, BG, CG, CH.

 6.35 FAB 5 FAD 5 244 lb C; FAC 5 1040 lb T; FBC 5 FCD 5 

  500 lb C; FBD 5 280 lb T.

 6.36 FAB 5 FAD 5 861 N C; FAC 5 676 N C; FBC 5 FCD 5 

  162.5 N T; FBD 5 244 N T.

 6.37 FAB 5 FAD 5 2810 N T; FAC 5 5510 N C; FBC 5 FCD 5 

  1325 N T; FBD 5 1908 N C.

 6.38 FAB 5 FAC 5 1061 lb C; FAD 5 2500 lb T; FBC 5 2100 lb T;

  FBD 5 FCD 5 1250 lb C; FBE 5 FCE 5 1250 lb C;

  FDE 5 1500 lb T.

 6.39 FAB 5 840 N C; FAC 5 110.6 N C; FAD 5 394 N C;

  FAE 5 0; FBC 5 160.0 N T; FBE 5 200 N T; FCD 5 225 N T;

  FCE 5 233 N C; FDE 5 120.0 N T.

 6.40 FAB 5 FAE 5 FBC 5 0; FAC 5 995 N T; FAD 5 1181 N C;

  FBE 5 600 N T; FCD 5 375 N T; FCE 5 700 N C; FDE 5 360 N T.

 6.43 FDF 5 5.45 kN C; FDG 5 1.000 kN T; FEG 5 4.65 kN T.

 6.44 FGI 5 4.65 kN T; FHI 5 1.800 kN C; FHJ 5 4.65 kN C.

 6.45 FBD 5 36.0 kips C; FCD 5 45.0 kips C.

 6.46 FDF 5 60.0 kips C; FDG 5 15.00 kips C.

 6.49 FCD 5 20.0 kN C; FDF 5 52.0 kN C.

 6.50 FCE 5 36.0 kN T; FEF 5 15.00 kN C.

 6.51 FDE 5 25.0 kips T; FDF 5 13.00 kips C.

 5.93 0.0711 m.

 5.94 208 lb.

 5.96 (a) 0.548 L. (b) 223.

 5.97 (a) b/10 to the left of base of cone.

  (b) 0.1136b to the right of base of cone.

 5.98 (a) 20.402 a. (b) h/a 5 2/5 or 2/3.

 5.99 27.8 mm above base of cone.

 5.100 18.28 mm.

 5.102 20.0656 in.

 5.103 2.57 in.

 5.104 219.02 mm.

 5.106 X 5 125.0 mm, Y  5 167.0 mm, Z 5 33.5 mm.

 5.107 X 5 0.295 m, Y  5 0.423 m, Z 5 1.703 m.

 5.109 X 5 Z 5 4.21 in., Y  5 7.03 in.

 5.110 X 5 180.2 mm, Y  5 38.0 mm, Z 5 193.5 mm.

 5.111 X 5 17.00 in., Y  5 15.68 in., Z 5 14.16 in.

 5.113 X 5 46.5 mm, Y  5 27.2 mm, Z 5 30.0 mm.

 5.114 X 5 0.909 m, Y  5 0.1842 m, Z 5 0.884 m.

 5.116 X 5 0.410 m, Y  5 0.510 m, Z 5 0.1500 m.

 5.117 X 5 0, Y  5 10.05 in., Z 5 5.15 in.

 5.118 X 5 61.1 mm from the end of the handle.

 5.119 Y  5 0.526 in. above the base.

 5.121 Y  5 421 mm above the floor.

 5.122 (x1) 5 21a/88; (x2) 5 27a/40.

 5.123 (x1) 5 21h/88; (x2) 5 27h/40.

 5.124 (x1) 5 2h/9; (x2) 5 2 h/3.

 5.125 x 5 2.34 m; y 5 z 5 0.

 5.128 x 5 1.297a; y 5 z 5 0.

 5.129 x 5 z 5 0; y 5 0.374b.

 5.132 (a) x 5 z 5 0, y 5 2121.9 mm. (b) x 5 z 5 0, 

y 5 290.2 mm.

 5.134 x 5 0, y 5 5h/16, z 5 2b/4.

 5.135 x 5 a/2, y 5 8h/25, z 5 b/2.

 5.136 V 5 688 ft3; x 5 15.91 ft.

 5.137 X 5 5.67 in., Y  5 5.17 in.

 5.138 X 5 92.0 mm, Y  5 23.3 mm.

 5.139 (a) 5.09 lb. (b) 9.48 lb b 57.5°.

 5.141 x 5 2L/5, y 5 12h/25.

 5.143 A 5 2860 lbx; B 5 740 lbx.

 5.144 wBC 5 2810 N/m; wDE 5 3150 N/m.

 5.146 2(2h2 2 3b2)/2 (4h 2 3b).

 5.148 X 5 Z 5 0, Y  5 83.3 mm above the base.

CHAPTER 6

 6.1 FAB 5 900 lb T; FAC 5 780 lb C; FBC 5 720 lb T.

 6.2 FAB 5 1.700 kN T; FAC 5 2.00 kN T; FBC 5 2.50 kN T.

 6.3 FAB 5 720 lb T; FAC 5 1200 lb C; FBC 5 780 lb C.

 6.4 FAB 5 FBC 5 0; FAD 5 FCF 5 7.00 kN C; FBD 5 FBF 5 

34.0 kN C; FBE 5 8.00 kN T; FDE 5 FEF 5 30.0 kN T.

 6.6 FAC 5 80.0 kN T; FCE 5 45.0 kN T; FDE 5 51.0 kN C;
  FBD 5 51.0 kN C; FCD 5 48.0 kN T; FBC 19.00 kN C.

 6.8 FAB 5 20.0 kN T; FAD 5 20.6 kN C; FBC 5 30.0 kN T;

  FBD 5 11.18 kN C; FCD 5 10.00 kN T.

 6.9 FAB 5 FDE 5 8.00 kN C; FAF 5 FFG 5 FGH 5 FEH 5 6.93 kN T;

  FBC 5 FCD 5 FBG 5 FDG 5 4.00 kN C;

  FBF 5 FDH 5 FCG 5 4.00 kN T.

 6.11 FAB 5 FFH 5 1500 lb C; FAC 5 FCE 5 FEG 5 FGH 5 1200 lb T;

  FBC 5 FFG 5 0; FBD 5 FDF 5 1200 lb C; FBE 5 FEF 5

60.0 lb C; FDE 5 72.0 lb T.
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AN6 Answers to Problems

 6.101 Ax 5 13.00 kN z, Ay 5 4.00 kNw; Bx 5 36.0 kN y.

  By 5 6.00 kNx; Ex 5 23.0 kN z, Ey 5 2.00 kNw.

 6.102 Ax 5 2025 N z, Ay 5 1800 kNw; Bx 5 4050 N y,

  By 5 1200 N x; Ex 5 2025 N z, Ey 5 600 N x.

 6.103 Ax 5 1110 lb z, Ay 5 600 lbx; Bx 5 1110 lb z,

  By 5 800 lbw; Dx 5 2220 lb y, Dy 5 200 lbx.

 6.104 Ax 5 660 lb z, Ay 5 240 lbx; Bx 5 660 lb z, By 5 320 lbw;

  Dx 5 1320 lb y, Dy 5 80.0 lbx.

 6.107 (a) Ax 5 200 kN y, Ay 5 122.0 kNx. 

(b) Bx 5 200 kN z, By 5 10.00 kNw.

 6.108 (a) Ax 5 205 kN y, Ay 5 134.5 kNx.

(b) Bx 5 205 kN z. By 5 5.50 kNx.

 6.109 B 5 98.5 lb a 24.0°; C 5 90.6 lb b 6.34°.

 6.110 B 5 25.0 lb x; C 5 79.1 lb b 18.43°.

 6.112 FAF 5 P/4 C; FBG 5 FDG 5 P/22 C; FEH 5 P/4 T. 

 6.113 FAG 5 22P/6 C; FBF 5 222P/3 C; FDI 5 22P/3 C;

  FEH 5 22P/6 T.

 6.115 FAF 5 M0/4a C; FBG 5 FDG 5 M0/22a T;

  FEH 5 3M0/4a C.

 6.116 FAF 5 M0/6a T; FBG 5 22M0/6a T; FDG 5 22M0/3a T;

  FEH 5 M0/6a C.

 6.117 A 5 P/15x; D 5 2P/15x; E 5 8P/15x;

  H 5 4P/15x.

 6.118 E 5 P/5w; F 5 8P/5 x; G 5 4P/5w; H 5 2P/5x.

 6.120 (a) A 5 2.06P a 14.04°; B 5 2.06 b 14.04°; frame is rigid.

  (b) Frame is not rigid. (c) A 5 1.25P b 36.9°.

  B 5 1.031P a 14.04°; frame is rigid.

 6.122 (a) 2860 Nw. (b) 2700 N d 68.5°.

 6.123 564 lb y.

 6.124 275 lb y.

 6.125 764 N z.

 6.127 (a) 746 Nw. (b) 565 N c 61.3°.

 6.129 832 lb?in. l.

 6.130 360 lb?in. l.

 6.131 195.0 kN?m i.

 6.132 40.5 kN?m l.

 6.133 (a) 160.8 N?m l. (b) 155.9 N?m l.

 6.134 (a) 117.8 N?m l. (b) 47.9 N?m l.

 6.137 18.43 N?m i.

 6.138 208 N?m i.

 6.139 FAE 5 800 N T; FDG 5 100.0 N C.

 6.140 P 5 120.0 Nw; Q 5 110.0 N z.

 6.141 F 5 3290 lb c 15.12°; D 5 4550 lb z.

 6.143 D 5 30.0 kN z; F 5 37.5 kN c 36.9°.

 6.144 D 5 150.0 kN z; F 5 96.4 kN c 13.50°.

 6.145 (a) 475 lb. (b) 528 lb b 63.3°.

 6.147 44.8 kN.

 6.148 8.45 kN.

 6.149 140.0 N.

 6.151 315 lb.

 6.152 (a) 312 lb. (b) 135.0 lb?in.i.

 6.153 (a) 4.91 kips C. (b) 10.69 kips C.

 6.154 (a) 2.86 kips C. (b) 9.43 kips C.

 6.155 (a) 9.29 kN b 44.4°. (b) 8.04 kN c 34.4°.

 6.159 (a) (90.0 N?m)i. (b) A 5 0; MA 5 2(48.0 N?m)i,
  B 5 0; MB 5 2(72.0 N?m)i.
 6.160 (a) 27.0 mm. (b) 40.0 N?m i.

 6.163 Ex 5 100.0 kN y, Ey 5 154.9 kNx; Fx 5 26.5 kN y.

  Fy 5 118.1 kNw; Hx 5 126.5 kN z, Hy 5 36.8 kNw.

 6.164 FAB 5 4.00 kN T; FAD 5 15.00 kN T;

  FBD 5 9.00 kN C; FBE 5 5.00 kN T;

  FCD 5 16.00 kN C; FDE 5 4.00 kN C.

 6.52 FEG 5 16.00 kips T; FEF 5 6.40 kips C.

 6.53 FDF 5 91.4 kN T; FDE 5 38.6 kN C.

 6.54 FCD 5 64.2 kN T; FCE 5 92.1 kN C.

 6.55 FCE 5 7.20 kN T; FDE 5 1.047 kN C; FDF 5 6.39 kN C.

 6.56 FEG 5 3.46 kN T; FGH 5 3.78 kN C; FHJ 5 3.55 kN C.

 6.59 FAD 5 3.38 kips C; FCD 5 0; FCE 5 14.03 kips T.

 6.60 FDG 5 18.75 kips C; FFG 5 14.03 kips T; FFH 5 17.43 kips T.

 6.61 FDG 5 3.75 kN T; FFI 5 3.75 kN C.

 6.62 FGJ 5 11.25 kN T; FIK 5 11.25 kN C.

 6.65 (a) CJ. (b) 1.026 kN T.

 6.66 (a) IO. (b) 2.05 kN T.

 6.67 FBE 5 10.00 kips T; FDE 5 0; FEF 5 5.00 kips T.

 6.68 FBE 5 2.50 kips T; FDE 5 1.500 kips C; FDG 5 2.50 kips T.

 6.69 (a) improperly constrained. (b) completely constrained, 

determinate. (c) completely constrained, indeterminate.

 6.70 (a) completely constrained, determinate. (b) partially 

constrained. (c) improperly constrained.

 6.71 (a) completely constrained, determinate. (b) completely 

constrained, indeterminate. (c) improperly constrained.

 6.72 (a) partially constrained. (b) completely constrained. 

determinate. (c) completely constrained, indeterminate.

 6.75 FBD 5 375 N C; Cx 5 205 Nz; Cy 5 360 Nw.

 6.76 FBD 5 780 lb T; Cx 5 720 lb z, Cy 5 140.0 lbw.

 6.77 (a) 125.0 N b 36.9°. (b) 125.0 N d 36.9°.

 6.78 Ax 5 120.0 lb y, Ay 5 30.0 lbx; Bx 5 120.0 lb z, 

By 5 80.0 lbw; C 5 30.0 lbw; D 5 80.0 lbx.

 6.79 Ax 5 18.00 kN z, Ay 5 20.0 kNw; B 5 9.00 kN y; 

  Cx 5 9.00 kN y, Cy 5 20.0 kNx.

 6.80 A 5 20.0 kNw, B 5 18.00 kN z; Cx 5 18.00 kN y, 

Cy 5 20.0 kNx.

 6.81 A 5 150.0 lb y; Bx 5 150.0 lb z, By 5 60.0 lbx;

  C 5 20.0 lbx; D 5 80.0 lbw.

 6.83 (a) Ax 5 2700 N y, Ay 5 200 Nx; Ex 5 2700 N z, 

Ey 5 600 Nx.

  (b) Ax 5 300 N y, Ay 5 200 Nx; Ex 5 300 N z, 

Ey 5 600 Nx.

 6.85 (a) Ax 5 300 N z, Ay 5 660 Nx; Ex 5 300 N y,

  Ey 5 90.0 Nx. (b) Ax 5 300 N z, Ay 5 150.0 Nx;

  Ex 5 300 N y, Ey 5 600 N x.

 6.87 (a) Ax 5 80.0 lb z, Ay 5 40.0 lbx; Bx 5 80.0 lb y, 

By 5 60.0 lbx. (b) Ax 5 0, Ay 5 40.0 lbx; Bx 5 0, By 5 60.0 lb x.

 6.88 (a) and (c) Bx 5 32.0 lb y, By 5 10.00 lbx;

  Fx 5 32.0 lb z, Fy 5 38.0 lbx. (b) Bx 5 32.0 lb z,

  By 5 34.0 lbx; Fx 5 32.0 lb y, Fy 5 14.00 lbx. 
 6.89 (a) and (c) Bx 5 24.0 lb z, By 5 7.50 lbw; Fx 5 24.0 lb y,

  Fy 5 7.50 lbx. (b) Bx 5 24.0 lb z, By 5 10.50 lbx; 

  Fx 5 24.0 lb y, Fy 5 10.50 lbw. 
 6.91 Dx 5 13.60 kN y, Dy 5 7.50 kNx; Ex 5 13.60 kN z,

  Ey 5 2.70 kNw.

 6.92 Ax 5 45.0 N z, Ay 5 30.0 Nw; Bx 5 45.0 N y,

  By 5 270 Nx.

 6.93 (a) Ex 5 2.00 kips z, Ey 5 2.25 kipsx.

  (b) Cx 5 4.00 kips z, Cy 5 5.75 kipsx.

 6.94 (a) Ex 5 3.00 kips z, Ey 5 1.500 kipsx.

  (b) Cx 5 3.00 kips z, Cy 5 6.50 kipsx.

 6.95 (a) A 5 982 lbx; B 5 935 lbx; C 5 733 lbx.

  (b) D B 5 1291 lb; D C 5 272.7 lb.

 6.96 (a) 572 lb. (b) A 5 1070 lbx; B 5 709 lbx; C 5 870 lbx.

 6.99 B 5 152.0 lbw; Cx 5 60.0 lb z, Cy 5 200 lbx;

  Dx 5 60.0 lb y, 42.0 lbx.

 6.100 B 5 108.0 lbw; Cx 5 90.0 lb z, Cy 5 150.0 lb x;

  Dx 5 90.0 lb y, Dy 5 18.00 lbx.
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Answers to Problems AN7

 7.55 (a) 54.5°. (b) 675 N?m.

 7.56 (a) 1.236. (b) 0.1180 wa2.

 7.57 (a) 40.0 mm. (b) 1.600 N?m.

 7.58 (a) 0.840 m. (b) 1.680 N?m.

 7.59 0.207 L.

 7.62 (a) 0.414 wL; 0.0858 wL2. (b) 0.250 wL; 0.250 wL2.

 7.69 (a) ZV Zmax 5 15.00 kN; ZM Zmax 5 42.0 kN?m.

 7.70 (b) ZV Zmax 5 17.00 kN; ZM Zmax 5 17.00 kN?m.

 7.77 (b) 75.0 kN?m, 4.00 m from A.

 7.78 (b) 1.378 kN?m, 1.050 m from A.

 7.79 (b) 26.4 kN?m, 2.05 m from A.

 7.80 (b) 5.76 kN?m, 2.40 m from A.

 7.81 (b) 14.40 kip?ft, 6.00 ft from A.

 7.82 (b) 16.20 kip?ft, 13.50 ft from A.

 7.86 (a) V 5 (w0/6L)(L2 2 3x2); M 5 (w0/6L)(L2x 2 x3). 

  (b) 0.0642 w0 L
2A a 5 0.577L.

 7.87 (a) V 5 (w0 L/4)[3(x/L)2 2 4(x/L) 1 1]; 

M 5 (w0L2/4) [(x/L)3 2 2(x/L)2 1 (x/L)].

  (b) w0L2/27, at x 5 L/3.

 7.89 (a) P 5 4.00 kNw; Q 5 6.00 kNw. (b) MC 5 2900 N?m.

 7.90 (a) P 5 2.50 kNw; Q 5 7.50 kNw. (b) MC 5 2900 N?m.

 7.91 (a) P 5 1.350 kipsw; Q 5 0.450 kipsw. (b) Vmax 5 2.70 kips

  at A; Mmax 5 6.345 kip?ft, 5.40 ft from A.

 7.92 (a) P 5 0.540 kipsw; Q 5 1.860 kipsw.

  (b) Vmax 5 3.14 kips at B; Mmax 5 7.00 kip?ft, 6.88 ft from A.

 7.93 (a) Ex 5 10.00 kN y, Ey 5 7.00 kNx. (b) 12.21 kN.

 7.94 1.667 m.

 7.95 (a) 838 lb b 17.35°. (b) 971 lb a 34.5°.

 7.96 (a) 2670 lb d 2.10°. (b) 2810 lb a 18.65°.

 7.97 (a) dB 5 1.733 m; dD 5 4.20 m. (b) 21.5 kN a 3.81°.

 7.98 (a) 2.80 m. (b) A 5 32.0 kN b 38.7°; E 5 25.0 kN y.

 7.101 196.2 N.

 7.102 157.0 N.

 7.103 (a) 240 lb. (b) 9.00 ft.

 7.104 a 5 7.50 ft; b 5 17.50 ft

 7.107 (a) 1775 N. (b) 60.1 m.

 7.109 (a) 50,200 kips. (b) 3580 ft.

 7.110 3.75 ft.

 7.111 (a) 56,400 kips. (b) 4284 ft.

 7.112 (a) 6.75 m. (b) TAB 5 615 N; TBC 5 600 N.

 7.114 (a) 23LD/8. (b) 12.25 ft.

 7.115 h 5 27.6 mm; θA 5 25.5°; θC 5 27.6°.

 7.116 (a) 4.05 m. (b) 16.41 m. (c) Ax 5 5890 N z, Ay 5 5300 Nx.

 7.117 (a) 58,900 kips, (b) 29.2°.

 7.118 (a) 16.00 ft to the left of B. (b) 2000 lb.

 7.125 Y 5 h[1 2 cos(πx/L)]; Tmin 5 w0L2/hπ
2;

  Tmax 5 (w0L/π)21L2/h2
π

22 1 1

 7.127 (a) 12.36 ft. (b) 15.38 lb.

 7.128 (a) 412 ft. (b) 875 lb.

 7.129 (a) 35.6 m. (b) 49.2 kg.

 7.130 49.86 ft.

 7.133 (a) 5.89 m. (b) 10.89 N y.

 7.134 10.05 ft.

 7.135 (a) 56.3 ft. (b) 2.36 lb/ft.

 7.136 (a) 30.2 m. (b) 56.6 kg.

 7.139 31.8 N.

 7.140 29.8 N.

 7.143 (a) a 5 79.0 ft; b 5 60.0 ft. (b) 103.9 ft.

 7.144 (a) a 5 65.8 ft; b 5 50.0 ft. (b) 86.6 ft.

 7.145 119.1 N y.

 7.146 177.6 N y. 

 7.147 3.50 ft.

 6.165 FAB 5 7.83 kN C; FAC 5 7.00 kN T; FBC 5 1.886 kN C;

  FBD 5 6.34 kN C; FCD 5 1.491 kN T; FCE 5 5.00 kN T;

  FDE 5 2.83 kN C; FDF 5 3.35 kN C; FEF 5 2.75 kN T;

  FEG 5 1.061 kN C; FEH 5 3.75 kN T; FFG 5 4.24 kN C;

  FGH 5 5.30 kN C.

 6.166 FAB 5 8.20 kips T; FAG 5 4.50 kips T; FFG 5 11.60 kips C.

 6.168 Ax 5 900 lb z; Ay 5 75.0 lbx; B 5 825 lbw;

  Dx 5 900 lb y; Dy 5 750 lbx.

 6.170 Bx 5 700 N z, By 5 200 Nw; Ex 5 700 N y,

  Ey 5 500 Nx.

 6.171 Cx 5 78.0 lb y, Cy 5 28.0 lbx; Fx 5 78.0 lb z,

  Fy 5 12.00 lbx.

 6.172 A 5 327 lb y; B 5 827 lb z; D 5 621 lbx; E 5 246 lbx. 

 6.174 (a) 21.0 kN z. (b) 5 52.5 kN z.

CHAPTER 7

 7.1 F 5 720 lb y; V 5 140.0 lbx; M 5 1120 lb?in. l (On JC).

 7.2 F 5 120.0 lb z; V 5 30.0 lbw; M 5 120.0 lb?in. l.

 7.3 F 5 125.0 N a 67.4°; V 5 300 N c 22.6°;

M 5 156.0 N?m. i.

 7.4 F 5 2330 N a 67.4°; V 5 720 N c 22.6°; M 5 374 N?m. i.

 7.7 F 5 23.6 lb a 76.0°; V 5 29.1 lb a 14.04°; 

M 5 540 lb?in. i.

 7.8 (a) 30.0 lb at C. (b) 33.5 lb at B and D. (c) 960 lb?in. at C.

 7.9 F 5 103.9 N b 60.0°; V 5 60.0 N a 30.0°;

  M 5 18.71 N?m i (On AJ).

 7.10 F 5 60.0 N d 30.0°; V 5 103.9 c 60.0°;

  M 5 10.80 N?m l (On BK).

 7.11 F 5 194.6 N c 60.0°; V 5 257 N a 30.0°;

  M 5 24.7 N?m i (On AJ).

 7.12 45.2 N?m for θ 5 82.9°.

 7.15 F 5 250 N c 36.9°; V 5 120.0 N a 53.1;

  M 5 120.0 N?m l (On BJ).

 7.16 F 5 560 N z; V 5 90.0 Nw; M 5 72.0 N?m i (On AK).

 7.17 150.0 lb?in. at D.

 7.18 105.0 lb?in. at E.

 7.19 F 5 200 N c 36.9°; V 5 120.0 N a 53.1°; 

M 5 120.0 N?m l (On BJ).

 7.20 F 5 520 N z; V 5 120.0 Nw; M 5 96.0 N?mi (On AK).

 7.23 0.0557 Wr (On AJ).

 7.24 0.1009 Wr for θ 5 57.3°.

 7.25 0.289 Wr (On BJ).

 7.26 0.417 Wr (On BJ).

 7.29 (b) ZV Zmax 5 wL/4; ZM Zmax 5 3wL2/32.

 7.30 (b) ZV Zmax 5 w0L/2; ZM Zmax 5 w0L2/6.

 7.31 (b) ZV Zmax 5 2P/3; ZM Zmax 5 2PL/9.

 7.32 (b) ZV Zmax 5 2P; ZM Zmax 5 3Pa.

 7.35 (b) ZV Zmax 5 40.0 kN; ZM Zmax 5 55.0 kN?m.

 7.36 (b) ZV Zmax 5 50.5 kN; ZM Zmax 5 39.8 kN?m.

 7.39 (b) ZV Zmax 5 64.0 kN; ZM Zmax 5 92.0 kN?m.

 7.40 (b) ZV Zmax 5 40.0 kN; ZM Zmax 5 40.0 kN?m.

 7.41 (b) ZV Zmax 5 18.00 kips; ZM Zmax 5 48.5 kip?ft.

 7.42 (b) ZV Zmax 5 15.30 kips; ZM Zmax 5 46.8 kip?ft.

 7.45 (b) ZV Zmax 5 6.00 kips; ZM Zmax 5 12.00 kip?ft.

 7.46 (b) ZV Zmax 5 4.00 kips; ZM Zmax 5 6.00 kip?ft.

 7.47 (b) ZV Zmax 5 6.00 kN; ZM Zmax 5 9.00 kN?m.

 7.48 (b) ZV Zmax 5 6.00 kN; ZM Zmax 5 9.00 kN?m.

 7.49 ZV Zmax 5 180.0 N; ZM Zmax 5 36.0 N?m.

 7.50 ZV Zmax 5 800 N; ZM Zmax 5 180.0 N?m.

 7.51 ZV Zmax 5 90.0 lb; ZM Zmax 5 1400 lb?in.

 7.52 ZV Zmax 5 165.0 lb; ZM Zmax 5 1625 lb?in.
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AN8 Answers to Problems

 8.55 9.13 N z.

 8.56 (a) 28.1°. (b) 728 N a 14.04°.

 8.57 (a) 50.4 lbw. (b) 50.4 lbw.

 8.59 143.4 N.

 8.60 1.400 lb.

 8.62 (a) 197.0 lb y. (b) Base will not move.

 8.63 (a) 280 lb z. (b) Base moves.

 8.64 (b) 283 N z.

 8.65 0.442.

 8.66 0.1103.

 8.67 0.1013.

 8.71 693 lb?ft.

 8.72 35.8 N?m.

 8.73 9.02 N?m.

 8.74 (a) Screw A. (b) 14.06 lb?in.

 8.77 0.226.

 8.78 4.70 kips.

 8.79 450 N.

 8.80 412 N.

 8.81 334 N.

 8.82 376 N.

 8.84 TAB 5 77.5 lb; TCD 5 72.5 lb. TEF 5 67.8 lb.

 8.86 (a) 4.80 kN. (b) 1.375°.

 8.88 22.0 lb z.

 8.89 1.948 lbw.

 8.90 18.01 lb z.

 8.92 0.1670.

 8.93 3.75 lb.

 8.98 10.87 lb.

 8.99 0.0600 in.

 8.100 154.4 N.

 8.101 300 mm.

 8.102 (a) 1.288 kN. (b) 1.058 kN.

 8.103 2.34 ft.

 8.104 (a) 0.329. (b) 2.67 turns.

 8.105 14.23 kg # m # 175.7 kg.

 8.106 (a) 0.292. (b) 310 N.

 8.109 31.8 N?m l.

 8.110 (a) TA 5 8.40 lb; TB 5 19.60 lb. (b) 0.270.

 8.111 (a) TA 5 11.13 lb; TB 5 20.9 lb. (b) 91.3 lb?in. i.

 8.112 35.1 N?m.

 8.113 (a) 27.0 N?m. (b) 675 N.

 8.114 (a) 39.0 N?m. (b) 844 N.

 8.117 4.49 in.

 8.118 (a) 11.66 kg. (b) 38.6 kg. (c) 34.4 kg.

 8.119 (a) 9.46 kg. (b) 167.2 kg. (c) 121.0 kg.

 8.120 (a) 10.39 lb. (b) 58.5 lb.

 8.121 (a) 28.9 lb. (b) 28.9 lb.

 8.124 5.97 N.

 8.125 9.56 N.

 8.126 0.350.

 8.128 (a) 30.3 lb?in. l. (b) 3.78 lbw.

 8.129 (a) 17.23 lb?in. i. (b) 2.15 lbx.

 8.133 (a) 51.0 N?m. (b) 875 N.

 8.134 (a) 353 N z. (b) 196.2 N z.

 8.136 (a) 136.0 lb y. (b) 30.0 lb y. (c) 12.86 lb y.

 8.137 6.35 # L/a # 10.81.

 8.138 151.5 N?m.

 8.140 0.225.

 8.141 313 lb y.

 8.143 6.44 N?m.

 8.144 (a) 0.238. (b) 218 Nw.

 7.148 5.71 ft.

 7.151 0.394 m and 10.97 m.

 7.152 0.1408.

 7.153 (a) 0.338. (b) 56.5°; 0.755 wL.

 7.154 (On AJ) F 5 750 Nx; V 5 400 N z; M 5 130.0 N?m l.

 7.156 (On BJ) F 5 12.50 lb a 30.0°; V 5 21.7 lb b 60.0°;

  M 5 75.0 lb?in.i.

 7.157 (a) (On AJ) F 5 500 N z; V 5 500 Nx; M 5 300 N?m i.

  (b) (On AK) F 5 970 Nx; V 5 171.0 Nz; M 5 446 N?m i.

 7.158 (a) 40.0 kips. (b) 40.0 kip·ft.

 7.161 (a) 18.00 kip·ft, 3.00 ft from A.

  (b) 34.1 kip·ft, 2.25 ft from A.

 7.163 (a) 2.28 m. (b) Dx 5 13.67 kN y; Dy 5 7.80 kNx.

  (c) 15.94 kN.

 7.164 (a) 138.1 m. (b) 602 N.

 7.165 (a) 4.22 ft. (b) 80.3°.

CHAPTER 8

 8.1 Block is in equilibrium, F 5 30.1 N b 20.0°.

 8.2 Block moves up, F 5 151.7 N c 20.0°.

 8.3 Block moves, F 5 36.1 lb c 30.0°.

 8.4 Block is in equilibrium, F 5 36.3 lb c 30.0°.

 8.5 (a) 83.2 lb. (b) 66.3 lb.

 8.7 (a) 29.7 N z. (b) 20.9 N y.

 8.9 74.5 N.

 8.10 17.91° # θ # 66.4°.

 8.11 31.0°.

 8.12 46.4°.

 8.13 Package C does not move; FC 5 10.16 N Q.

  Package A and B move; FA 5 7.58 N Q; FB 5 3.03 N Q.

 8.14 All packages move; FA 5 FC 5 7.58 N Q; FB 5 3.03 N Q.

 8.17 (a) 75.0 lb. (b) Pipe will slide.

 8.18 (a) P 5 36.0 lb y. (b) hmax 5 40.0 in.

 8.19 P 5 8.34 lb.

 8.20 P 5 7.50 lb.

 8.21 (a) 0.300 Wr. (b) 0.349 Wr.
 8.22 M 5 Wrμs (1 1 μs)/(1 1 μs

2).

 8.23 (a) 136.4°. (b) 0.928 W.

 8.25 0.208.

 8.27 664 Nw.

 8.29 (a) Plate in equilibrium. (b) Plate moves downward.

 8.30 10.00 lb , P , 36.7 lb.

 8.32 0.860.

 8.34 0.0533.

 8.35 (a) 1.333. (b) 1.192. (c) 0.839.

 8.36 (b) 2.69 lb.

 8.37 (a) 2.94 N. (b) 4.41 N.

 8.39 30.6 N?m l.

 8.40 18.90 N?m l.

 8.41 135.0 lb.

 8.43 (a) System slides; P 5 62.8 N. (b) System rotates about B;

  P 5 73.2 N.

 8.44 35.8°.

 8.45 20.5°.

 8.46 1.225 W.

 8.47 46.4° # θ # 52.4° and 67.6° # θ # 79.4°.

 8.48 (a) 283 N z. (b) Bx 5 413 N z; By 5 480 Nw.

 8.49 (a) 107.0 N z. (b) Bx 5 611 N z; By 5 480 Nw.

 8.52 (a) 15.26 kips. (b) 5.40 kips.

 8.53 (a) 6.88 kips. (b) 5.40 kips.

 8.54 9.86 kN z.
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Answers to Problems AN9

 9.81  I x9 5 1033 in4;  I y9 5 2020 in4;  I x9y9 5 2873 in4.

 9.83  I x9 5 0.236 in4;  I y9 5 1.244 in4;  I x9y9 5 0.1132 in4.

 9.85 20.2° and 110.2°; 1.754a4; 0.209a4.

 9.86 25.1° and 115.1°;  Imax 5 8.32 3 106 mm4;  Imin 5 2.08 3 106 mm4.

 9.87 29.7° and 119.7°; 2530 in4; 524 in4.

 9.89 223.7° and 66.3°; 1.257 in4; 0.224 in4.

 9.91 (a)  I x9 5 0.482a4;  I y9 5 1.482a4;  I x9y9 5 20.589a4.

  (b)  I x9 5 1.120a4;  I y9 5 0.843a4; 0.760a4.

 9.92  I x9 5 2.12 3 106 mm4;  I y9 5 8.28 3 106 mm4;

   I x9y9 5 20.532 3 106 mm4.

 9.93  I x9 5 1033 in4;  I y9 5 2020 in4;  I x9y9 5 2873 in4.

 9.95  I x9 5 0.236 in4;  I y9 5 1.244 in4;  I x9y9 5 0.1132 in4.

 9.97 20.2°; 1.754a4; 0.209a4.

 9.98 23.9°; 8.33 3 106 mm4; 1.465 3 106 mm4.

 9.99 33.4°; 22.1 3 103 in4; 2490 in4.

 9.100 29.7°; 2530 in4; 524 in4.

 9.103 (a) 21.146 in4. (b) 29.1° clockwise. (c) 3.39 in4.

 9.104 23.8° clockwise; 0.524 3 106 mm4; 0.0917 3 106 mm4.

 9.105 19.54° counterclockwise; 4.34 3 106 mm4; 0.647 3 106 mm4.

 9.106 (a) 25.3°. (b) 1459 in4; 40.5 in4.

 9.107 (a) 88.0 3 106 mm4. (b) 96.3 3 106 mm4; 39.7 3 106 mm4.

 9.111 (a)  IAA9 5  IBB9 5 ma2/24. (b) ma2/12.

 9.112 (a) m (r1
2 1 r2

2)/4. (b) m (r1
2 1 r2

2)/2.

 9.113 (a) 0.0699 mb2. (b) m(a2 1 0.279 b2)/4.

 9.114 (a) mb2/7. (b) m(7a2 1 10b2)/70.

 9.117 (a) 5ma2/18. (b) 3.61 ma2.

 9.118 (a) 0.994 ma2. (b) 2.33 ma2.

 9.119 m(3a2 1 4L2)/12.

 9.120 1.329 mh2.

 9.121 (a) 0.241 mh2. (b) m(3a2 1 0.1204 h2).

 9.122 m(b2 1 h2)/10.

 9.124 ma2/3; a/23.

 9.126 Ix 5 Iy 5 ma2/4; Iz 5 ma2/2.

 9.127 1.160 3 1026 lb?ft?s2; 0.341 in.

 9.128 837 3 1029 kg?m2; 6.92 mm.

 9.130 2 mr2/3; 0.816r.
 9.131 (a) 2.30 in. (b) 20.6 3 1023 lb?ft?s2; 2.27 in.

 9.132 (a) πpl2 [6a2t(5a2/3l2 1 2a/l 1 1) 1 d2l/4]. (b) 0.1851.

 9.133 (a) 27.5 mm to the right of A. (b) 32.0 mm.

 9.135 Ix 5 7.11 3 1023 kg?m2; Iy 5 16.96 3 1023 kg?m2;

  Iz 5 15.27 3 1023 kg?m2.

 9.136 Ix 5 175.5 3 1023 kg?m2; Iy 5 309.1023 kg?m2;

  Iz 5 154.4 3 1023 kg?m2.

 9.138 Ix 5 334 3 1026 lb?ft?s2; Iy 5 Iz 5 1.356 3 1023 lb?ft?s2.

 9.139 Ix 5 344 3 1026 lb?ft?s2; Iy 5 132.1 3 1026 lb·ft?s2;

  Iz 5 453 3 1026 lb·ft?s2.

 9.141 (a) 13.99 3 1023 kg?m2. (b) 20.6 3 1023 kg?m2.

  (c) 14.30 3 1023 kg?m2.

 9.142 Ix 5 28.3 3 1023 kg?m2; Iy 5 183.8 3 1023 kg?m2;

  kx 5 42.9 mm; ky 5 109.3 mm.

 9.143 30.5 3 1023 lb?ft?s2.

 9.145 (a) 26.4 3 1023 kg?m2. (b) 31.2 3 1023 kg?m2.

  (c) 8.58 3 1023 kg?m2.

 9.147 Ix 5 0.0392 lb?ft?s2; Iy 5 0.0363 lb?ft?s2;

  Iz 5 0.0304 lb?ft?s2.

 9.148 Ix 5 0.323 kg?m2; Iy 5 Iz 5 0.419 kg?m2.

 9.149 Ixy 5 2.50 3 1023 kg?m2; Iyz 5 4.06 3 1023 kg?m2;

  Izx 5 8.81 3 1023 kg?m2.

 9.150 Ixy 5 286 3 1026 kg?m2; Iyz 5 Izx 5 0.

 9.151 Ixy 5 21.726 3 1023 lb?ft?s2; Iyz 5 0.507 3 1023 lb?ft?s2;

  Izx 5 22.12 3 1023 lb?ft?s2.

 9.152 Ixy 5 2538 3 1026 lb?ft?s2; Iyz 5 2171.4 3 1026 lb?ft?s2;

  Izx 5 1120 3 1026 lb?ft?s2.

CHAPTER 9

 9.1 a3b/30.

 9.2 3a3b/10.

 9.3 b3h/12.

 9.4 a3b/6.

 9.6 ab3/6.

 9.8 3ab3/10.

 9.9 ab3/15.

 9.10 ab3/15.

 9.11 0.1056 ab3.

 9.12 3.43 a3b.

 9.15 3a3/35; b29/35.

 9.16 0.0945ah3; 0.402h.

 9.17 3a3b/35; a29/35.

 9.18 31a3h/20; a293/35.

 9.21 20a4; 1.826a.

 9.22 4ab(a2 1 4b2)/3; 21a2 1 4b22/3.

 9.23 64a4/15; 1.265a.

 9.25 (π/2)(R2
4 2 R1

4); (π/4)(R2
4 2 R1

4).

 9.26 (b) for t/Rm 51, 210.56 %; for t/Rm 5 1/2, 22.99%;

  for t/Rm 51/10; 20.1250 %.

 9.28 bh (12h2 1 b2)/48; 2112h2 1 b22/24.

 9.31 390 3 103 mm4; 21.9 mm.

 9.32 46.0 in4; 1.599 in.

 9.33 64.3 3 103 mm4; 8.87 mm.

 9.34 46.5 in4; 1.607 in.

 9.37 JB 5 1800 in4; JD 5 3600 in4.

 9.39 3000 mm2; 325 3 103 mm4.

 9.40 24.6 3 106 mm4.

 9.41  I x 5 13.89 × 106 mm4;  I y 5 20.9 3 106 mm4. 

 9.42  I x 5 479 × 103 mm4;  I y 5 149.7 3 103 mm4.

 9.43  I x 5 191.3 in4;  I y 5 75.2 in4.

 9.44  I x 5 18.13 in4;  I y 5 4.51 in4.

 9.47 (a) 11.57 3 106 mm4. (b) 7.81 3 106 mm4.

 9.48 (a) 12.16 3 106 mm4. (b) 9.73 3 106 mm4.

 9.49  Ix 5 186.7 3 106 mm4; kx 5 118.6 mm;  Iy 5 167.7 3 106 mm4.

  ky 5 112.4 mm.

 9.50  I x 5 44.5 in4; kx 5 2.16 in.;  Iy 5 27.7 in4; ky 5 1.709 in.

 9.51  I x 5 250 in4; kx 5 4.10 in.;  Iy 5 141.9 in4; ky 5 3.09 in.

 9.52  I x 5 260 3 106 mm4; kx 5 144.6 mm;  Iy 5 17.53 mm4;

  ky 5 37.6 mm.

 9.54  I x 5 745 3 106 mm4;  Iy 5 91.3 3 106 mm4.

 9.55  I x 5 3.55 3 106 mm4;  Iy 5 49.8 3 106 mm4.

 9.57 h/2.

 9.58 15h/14.

 9.59 3πr/16.

 9.60 4h/7.

 9.63 5a/8.

 9.64 80.0 mm.

 9.67 a4/2.

 9.68 b2h2/4.

 9.69 a2b2/6.

 9.71 21.760 3 106 mm4.

 9.72 2.40 3 106 mm4.

 9.74 20.380 in4.

 9.75 471 3 103 mm4.

 9.76 29010 in4.

 9.78 2.54 3 106 mm4.

 9.79 (a)  I x9 5 0.482a4;  I y9 5 1.482a4;  I x9y9 5 20.589a4.

  (b)  I x9 5 1.120a4;  I y9 5 0.843a4;  I x9y9 5 0.760a4.

 9.80  I x9 5 2.12 3 106 mm4;  I y9 5 8.28 3 106 mm4;

   I x9y9 5 20.532 3 106 mm4.
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AN10 Answers to Problems

 10.19 85.2 lb·ft i.

 10.20 22.8 lb d 70.0°.

 10.23 38.7°.

 10.24 68.0°.

 10.27 36.4°.

 10.28 67.1°.

 10.30 25.0°.

 10.31 39.7° and 69.0°.

 10.32 390 mm.

 10.33 330 mm.

 10.35 38.7°.

 10.36 52.4°.

 10.37 22.6°.

 10.38 51.1°.

 10.39 59.0°.

 10.40 78.7°, 324°, 379°.

 10.43 12.03 kN R.

 10.44 20.4°.

 10.45 2370 lb a.

 10.46 2550 lb a.

 10.48 300 N?m, 81.8 N?m.

 10.49 η 5 1/(1 1 μ cot α).

 10.50 η 5 tan θ/tan (θ 1 fs).

 10.52 37.6 N, 31.6 N.

 10.53 A 5 250 Nx; MA 5 450 N?m l.

 10.54 1050 Nx.

 10.57 0.833 in.w.

 10.58 0.625 in. y.

 10.60 25.0°.

 10.61 39.7° and 69.0°.

 10.62 390 mm.

 10.69 θ 5 245.0°, unstable; θ 5 135.0°, stable. 

 10.70 θ 5 263.4°, unstable; θ 5 116.6°, stable.

 10.71 θ 5 90.0° and θ 5 270°, unstable; θ 5 22.0° and 

θ 5 158.0°, stable.

 10.72 θ 5 0 and θ 5 180.0°, unstable; θ 5 75.5° and 

θ 5 284°, stable.

 10.73 59.0°, stable.

 10.74 78.7°, stable; 324°, unstable; 379°, stable.

 10.77 357 mm.

 10.78 252 mm.

 10.80 9.39° and 90.0°, stable; 34.2°, unstable.

 10.81 17.11°, stable; 72.9°, unstable.

 10.83 49.1°.

 10.86 16.88 m.

 10.87 54.8°.

 10.88 37.4°.

 10.89 P , kl/2.

 10.91 k . 6.94 lb/in.

 10.92 15.00 in.

 10.93 P , 2kL/9.

 10.94 P , kL/18.

 10.96 P , 160.0 N.

 10.98 P , 764 N.

 10.100 (a) P , 10.00 lb. (b) P , 20.0 lb.

 10.101 60.0 lbw.

 10.102 600 lb?in. i.

 10.103 500 Nx.

 10.105 M 5 7Pa cos θ

 10.107 19.40°.

 10.108 7.13 in.

 10.110 θ 5 0, unstable; θ 5 137.8°, stable.

 10.112 (a) 22.0°. (b) 30.6°.

 9.155 Ixy 5 28.04 3 1023 kg?m2; Iyz 5 12.90 3 1023 kg?m2;

  Izx 5 94.0 3 1023 kg?m2.

 9.156 Ixy 5 0; Iyz 5 48.3 × 1026 kg?m2;

  Izx 5 24.43 3 1023 kg?m2.

 9.157 Ixy 5 47.9 3 1026 kg?m2; Iyz 5 102.1 3 1026 kg?m2;

  Izx 5 64.1 3 1026 kg?m2.

 9.158 Ixy 5 2m9 R1
3/2; Iyz 5 m9 R1

3/2; Izx 5 2m9 R2
3/2.

 9.159 Ixy 5 wa3(1 2 5π)g; Iyz 5 211π wa3/g;

  Izx 5 4wa3(1 1 2π)/g.

 9.160 Ixy 5211wa3/g; Iyz 5 wa3(π 1 6)/2g; Izx 5 2wa3/4g.

 9.162 (a) mac/20. (b) Ixy 5 mab/20; Iyz 5 mbc/20.

 9.165 18.17 3 1023 kg?m2.

 9.166 11.81 3 1023 kg?m2.

 9.167 5 Wa2/18g.

 9.168 4.41 γta4/g.

 9.169 281 3 1023 kg?m2.

 9.170 0.354 kg?m2.

 9.173 (a) 1/23. (b) 27/12.

 9.174 (a) b/a 5 2; c/a 5 2. (b) b/a 5 1; c/a 5 0.5.

 9.175 (a) 2. (b) 22/3.

 9.179 (a) K1 5 0.363ma2; K2 5 1.583ma2; K3 5 1.720ma2.

  (b) (θx)1 5 (θz)1 5 49.7°, (θy)1 5 113.7°; (θx)2 5 45.0°

  (θy)2 5 90.0°, (θz)2 5 135.0°; (θx)3 5 (θz)3 5 73.5°, (θy)3 5 23.7°.

 9.180 (a) K1 5 14.30 3 1023 kg?m2; K2 5 13.96 3 1023 kg?m2;

  K3 5 20.6 3 1023 kg?m2.

  (b) (θx)1 5 (θy)1 5 90.0°, (θz)1 5 0°; (θx)2 5 3.42°, 

(θy)2 5 86.6°.

  (θz)2 5 90.0°; (θx)3 5 93.4°, (θy)3 5 3.43°, (θz)3 5 90.0°

 9.182 (a) K1 5 0.1639Wa2/g; K2 5 1.054Wa2/g; K3 5 1.115Wa2/g.

  (b) (θx)1 5 36.7°, (θy)1 5 71.6°; (θz)1 5 59.5°; (θx)2 5 74.9°, 

  (θy)2 5 54.5°, (θz)2 5 140.5°; (θx)3 5 57.5°, (θy)3 5 138.8°,

  (θz)3 5 112.4°

 9.183 (a) K1 5 2.26γta4/g; K2 5 17.27γta4/g; K3 5 19.08γta4/g.

  (b) (θx)1 5 85.0°, (θy)1 5 36.8°, (θz)1 5 53.7°; (θx)2 5 81.7°, 

  (θy)2 5 54.7°; (θz)2 5 143.4°; (θx)3 5 9.70°, (θy)3 5 99.0°,

  (θz)3 5 86.3°.

 9.185 Ix 5 16ah3/105; Iy 5 ha3/5.

 9.186 πa3b/8; a/2.

 9.188  I x 5 1.874 3 106 mm4;  I y 5 5.82 3 106 mm4.

 9.189 (a) 3.13 3 106 mm4. (b) 2.41 3 106 mm4.

 9.191 22.81 in4.

 9.193 (a) ma2/3. (b) 3ma2/2.

 9.195 Ix 5 0.877 kg?m2; Iy 5 1.982 kg?m2;

  Iz 5 1.652 kg?m2.

 9.196 0.0442 lb?ft?s2.

CHAPTER 10

 10.1 65.0 Nw.

 10.2 132.0 lb y.

 10.3 39.0 N·m i.

 10.4 1320 lb?in. l.

 10.5 (a) 60.0 N C, 8.00 mmw. (b) 300 N C, 40.0 mmw.

 10.6 (a) 120.0 N C, 16.00 mmw. (b) 300 N C, 40.0 mmw.

 10.9 Q 5 3 P tan θ.

 10.10 Q 5 P[(l/a)] cos3 θ 2 1].

 10.12 Q 5 2 P sin θ/cos (θ/2).

 10.14 Q 5 (3P/2) tan θ.

 10.15 M 5 Pl/2 tan θ.

 10.16 M 5 Pl(sin θ 1 cos θ).

 10.17 M 5 
1
2Wl tan α sin θ.

 10.18 (a) M 5 Pl sin 2θ. (b) M 5 3Pl cos θ. (c) M 5 Pl sin θ.
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Answers to Problems AN11

CHAPTER 11

 11.1  97.5 ft, 49.5 ft/s, 17 ft/s2.

 11.2 1.000s, 15.00 ft, 26.00 ft/s2; 2.00 s, 14.00 ft, 6.00 ft/s2.

 11.3 (a) 102.9 mm, 235.6 mm/s, 211.40 mm/s2.

  (b) 236.1 mm/s, 72.1 mm/s2.

 11.4 (a) 0 mm, 960 mm/s y, 9220 mm/s2 or 9.22 m/s2 z.

  (b) 14.16 mm z, 87.9 mm/s y, 3110 mm/s2 

or 3.11 m/s2 y.

 11.5 0.667 s, 0.259m, 28.56 m/s.

 11.7 (a) 0.586 s and 3.414 s. (b) 0 m. (c) 3.656 m.

 11.9 (a) 77.5 ft/s. (b) 7.75 s.

 11.10 1.427 ft/s, 0.363 ft.

 11.11 x(t) 5 t4y108 1 10t 1 24 m.

  v(t) 5 t3y27 1 10 m/s.

 11.12 (a) 6.00 m/s4. (b) a 5 6t2, v 5 2t3 2 8, x 5 t4y2 2 8t 1 8.

 11.15 800 m/s2
x.

 11.16 (a) 22.43 3 106 ft/s2. (b) 1.366 3 1023 s.

 11.17 (a) 5.89 ft/s. (b) 1.772 ft.

 11.18 167.1 mm/s2
x, 15.19 m/s2

x.

 11.21 (a) 2.52 m2/s2, 4.70 m/s.

 11.22 (a) 10.00 ft. (b) 1.833 ft/s, 0.440 ft/s2.

 11.23 (a) 42.0 ft. (b) 12.86 ft/s.

 11.24 (a) 29.3 m/s. (b) 0.947 s.

 11.25 (a) 4.76 mm/s. (b) 0.171 s.

 11.26  1.995 m/s2.

 11.27 (a) 20.0525 m/s2. (b) 6.17 s.

 11.28 (a) 7.15 mi. (b) 2275 3 1026 ft/s2. (c) 49.9 min.

 11.31 (a) 2.36 v0T, π v0yT. (b) 0.363 v0.

 11.32 r 1
dmax

2
 cos θ,2vmax sin θ,2

dmax

2
θ
$

 sin θ 2
2v2

max

dmax

 cos θ. 

 11.33 (a) 2.0 m/s2. (b) 60.0 m/s.

 11.34 (a) 20.417 m/s2. (b) 18.00 km/h.

 11.35 (a) 6.0 s. (b) 180.0 ft.

 11.36 (a) 252 ft/s. (b) 1076 ft.

 11.39 11.60 s, 50.4 m.

 11.40 (a) 1.563 m/s2. (b) 3.13 m/s2.

 11.41 (a) 23.20 ft/s2 and 3.72 ft/s2. (b) 3.41 s before A reaches the 

exchange zone.

 11.42 (a) 15.05 s, 734 ft from the ititial point of A.

  (b) A: 42.5 mi/h. B: 23.7 mi/h.

 11.43 (a) aA 5 0.767 ft/s2 z, aB 5 0.834 ft/s2 y.

  (b) 20.7 s. (c) 51.8 mi/h.

 11.44 (a) 1.330 s. (b) 4.68 m below the man.

 11.47 (a) 8.00 m/sx. (b) 4.00 m/sx. (c) 12.00 m/sx. 

(d) 8.00 m/sx.

 11.48 (a) aE 5 2.40 ft/s2
x, aC 5 4.80 ft/s2

w.

  (b) 12.00 ft/sx.

 11.49 (a) 0.125 m/sx. (b) 0.5154 m/s a 14°.

 11.50 (a) 18 ft/s2 z, 6 ft/s2
x. (b) 9 ft/s z, 2.25 ft z.

 11.51 (a) 200 mm/s y. (b) 600 mm/s y.

  (c) 200 mm/s z. (d) 400 mm/s y.

 11.52 (a) aA 5 13.33 mm/s2 z, aB 5 20.0 mm/s2 z.

  (b) 13.33 mm/s2 y. (c) 70.0 mm/s y. 440 mm y.

 11.55 (a) 2.5 s. (b) 7.5 in.w.

 11.56 (a) 1.000 s. (b) 3.00 in.w.

 11.57 (a) aA 5 345 mm/s2
w, aB 5 240 mm/s2

x.

  (b) (vA)0 5 43.3 mm/sx, (vC)0 5 130.0 mm/s y.

  (c) 728 mm y.

 11.58 (a) 10.00 mm/s y. (b) aA 5 2.00 mm/s2
x, 

aC 5 6.00 mm/s2 y. (c) 175.0 mmx.

 11.61 88 ft.

 11.62 (b) 5.83 s.

 11.63 (a) 10 s to 26 s, a 5 25.00 m/s2; 

41 s to 46 s, a 5 3.00 m/s2; otherwise a 5 0.

  (b) 1383 m. (c) 9.00 s, 49.5 s.

 11.64 (a) Same as Prob. 11.63. (b) 420 m. (c) 10.69 s, 40.0 s.

 11.65 (a) 162 ft. (b) 18 s and 30 s.

 11.66 (a) 44.8 s. (b) 103.3 m/s2.

 11.69 (a) 0.600 s. (b) 0.200 m/s, 2.84 m.

 11.70 (a) 60.0 m/s, 1194 m. (b) 59.3 m/s.

 11.71 (a) A: 52.2 s, B: 52.0 s. (b) 1.879 m.

 11.72 9.39 s.

 11.73 8.54 s, 58.3 mi/h.

 11.74 77.5 ft.

 11.75 5.67 s.

 11.78 (a) 18.00 s. (b) 178.8 m. (c) 34.7 km/h.

 11.79 (a) 5.01 min. (b) 19.18 mi/h.

 11.80 (a) 2.00 s. (b) 1.200 ft/s, 0.600 ft/s.

 11.83 (a) 2.96 s. (b) 224 ft.

 11.84 (a) 163.0 in/s2. (b) 114.3 in/s2.

 11.85 (a) 15.49 s. (b) 4.65 m/s. (c) 2.90 m/s, 8.50 m.

 11.89 (a) 6.28 m/s c 37.28. (b) 7.49 m.

 11.90 (a) 67.1 mm/s a 63.48, 256 mm/s2 d 69.48.

  (b) 8.29 mm/s a 36.28, 336 mm/s2 d 86.68.

 11.91 (a) (212.57 in/s)i, (239.5 in/s2)j. (b) y 5 x2y8 2 1.

 11.92 (a) max: 15.00 ft/s, min: 5.00 ft/s

  (b) min: t 5 2πN s, x 5 20πN ft, y 5 5 ft, vx 5 5 ft/s, 

vy 5 0, θ 5 0.

  max: t 5 (2N 1 1) π s, x 5 20π(N 1 1) ft, y 5 15 ft,

  vx 5 15 ft/s, vy 5 0, θ 5 0.

 11.95 2R211 1 w2
nt

22 1 c2, Rwn24 1 w2
nt2.

 11.97 1140 ft.

 11.98 (a) 2.94 s. (b) 84.9 m. (c) 10.62 m.

 11.99 (a) 115.3 km/h # v0 # 148.0 km/h.

  (b) h 5 0.788 m, α 5 6.668; h 5 1.068 m, α 5 4.058.

 11.100 15.38 ft/s , v0 , 35.0 ft/s.

 11.102 (a) Meets max. height requirement. (b) 0.937 m.

 11.103 (a) Ball clears the net. (b) 7.01 m from the net.

 11.105 22.9 ft/s.

 11.106 16.20 m/s , v0 , 21.0 m/s.

 11.107 (a) 29.8 ft/s. (b) 29.6 ft/s.

 11.108 37.7 m/s , v0 , 44.3 m/s.

 11.111 (a) 10.388. (b) 9.748.

 11.112 (a) 4.178. (b) 285 m. (c) 15.89 s.

 11.113 (a) 14.668. (b) 0.1074 s.

 11.114 (a) 4.98 m. (b) 23.88.

 11.117 17.80 ft/s b 50.98.

 11.118 vA 5 125 mm/sx, vB 5 75 mm/sw, vC 5 175 mm/sw.

 11.119 (a) 91.0 ft/s d 47.08. (b) 364 ft d 47.08. (c) 293 ft.

 11.120 3.20 km/h c 17.88.

 11.123  (a) 4 ft/sx. (b) 6 ft/s2
w.

 11.124 (a) 8.53 in/s b 54.18. (b) 6.40 in/s b 54.18.

 11.125 (a) 0.979 m. (b) 12.55 m/s c 86.58.

 11.126 (a) 0.835 mm/s2 b 758. (b) 8.35 mm/s b 758.

 11.127 (a) 5.18 ft/s b 158. (b) 1.232 ft/s b 158.

 11.128 10.54 ft/s d 81.38.

 11.129 5.96 m/s c 82.88.

 11.131 15.79 km/h c 26.08.

 11.133 500 m.

 11.134 97.6 km/h.

 11.135 12.13 m/s.

 11.136 (a) 0.407 ft/s2. (b) 0.0333 ft/s2. (c) 0.00593 ft/s2.

 11.137 8.56 s.
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AN12 Answers to Problems

 12.9 (a) 40.1 m. (b) 47.0 m.

 12.10 (a) 2.22 s. (b) 3.32 m.

 12.11 51.0 m.

 12.12 (a) 234 m. (b) 3.33 kN (tension).

 12.15 (a) (1): 10.73 ft/s2
w, (2): 16.10 ft/s2

w, (3): 0.749 ft/s2
w.

  (b) (1): 14.65 ft/sw, (2): 17.94 ft/sw, (3): 3.87 ft/sw.

  (c) (1): 1.864 s, (2): 1.242 s, (3): 26.7 s.

 12.16 aA 5 0.997 ft/s2 a 158, aB 5 1.619 ft/s2 a 158.

 12.17 (a) 765 lb. (b) 1016 lb.

 12.18 (a) 0.986 m/s2 b 258. (b) 51.7 N.

 12.19 (a) 1.794 m/s2 b 258. (b) 58.2 N.

 12.20 (a) 16.19 kN. (b) 2.45 m/s2.

 12.23 a1 5 19.53 m/s2 a 658, a2 5 4.24 m/s2 d 658.

 12.24 1.598 km.

 12.25 (a) 335 m. (b) 73.6 mm/sw.

 12.27 2kym 12l2 1 x2
0 2 l2.

 12.28 (a) 10.00 N. (b) 103.1 N.

 12.29 (a) 8.94 ft/s2 z, 18.06 lb.

  (b) 12.38 ft/s2 z, 15.38 lb. (c) Same as (b).

 12.30 20.26 kg.

 12.31 (a) 2.43 lb. (b) aA 5 3.14 ft/s2 y,

  aB 5 0.881 m/s2 y, aC 5 5.41 m/s2
w.

 12.34 0.0740 m/s2 a 20°, 137.2 N.

 12.35 (a) 5.94 m/s2 c 75.68. (b) 3.74 m/s c 208.

 12.36 (a) 49.98. (b) 6.85 N.

 12.37 (a) 80.4 N. (b) 2.30 m/s.

 12.38 (a) 22.55 s. (b) 6.379°.

 12.39 3.47 m/s.

 12.40 3.01 m/s # v # 3.85 m/s.

 12.42 9.00 ft/s , vC , 12.31 ft/s.

 12.43 2.42 ft/s , v , 13.85 ft/s.

 12.44 (a) 122.2 lb. (b) 145.6 lb.

 12.45 (a) 668 ft. (b) 120.0 lbx.

 12.46 434 N.

 12.47 (a) 4.63 m/s2. (b) 1.962 m/s2. (c) 0.1842 m.s2.

 12.48 77.23 rpm.

 12.49 (a) 2.91 N. (b) 13.098.

 12.50 1126 N b 25.68.

 12.51 (a) 12.19 m/s. (b) 2290 N.

 12.53 (a) 0.1858 W. (b) 10.288.

 12.55 7.67 m/s.

 12.56 (a) 12.00 m/s. (b) 2.05 3 1023 N.

 12.57 0.236.

 12.58 3.71 m.

 12.61 0.400.

 12.62 (a) 0.1834. (b) left: 10.398, right 169.68.

 12.63 (a) 2.98 ft/s. (b) left: 19.298, right 160.78.

 12.64  08,  1808,  and  69.68.

 12.65 (a) no sliding, 0.611 Na 75°. (b) sliding, 0.957 N d 40°.

 12.66 (a) 289.1 lb.

 12.67 22.17 lb and 64.9 lb.

 12.68 2.00 s.

 12.69 (a) 7.47 N a 45°. (b) 6.94 m/s2 c 45°.

 12.71 (a) 126.6 N. (b) 5.48 m/s2 y. (c) 4.75 m/s2
w.

 12.72 (a) 142.7 N. (b) 6.18 m/s2 y. (c) 4.10 m/s2
w.

 12.74 vr 5 v0  sin  2uy1 cos  2u, vu 5 v01 cos  2u.

 12.77 (a) 0. (b) 8m v0
2yr0.

 12.78 413 3 1021 lb?s2/ft.

 12.79 383 3 103 km, 238 3 103 mi.

 12.80 (a) 35 800 km, 22 200 mi. (b) 3.07 km/s, 10.09 3 103 ft/s.

 12.81 (b) 24.8 m/s2.

 12.82 (a) 1.998 3 1030 kg. (b) 276 m/s2.

 11.138 (a) 10.20 mm/s2. (b) 25.2 s.

 11.139 (a) 178.9 m. (b) 1.118 m/s2.

 11.141 (a) 189.5 km/h c 54.08. (b) 21.8 m/s2 c 5.38.

 11.143 (a) 1.047i 2 33.726j m/s2. (b) 247.55i 2 8.64j m/s. 

 11.144 1467.9 m.

 11.145 (a) 281 m. (b) 209 m.

 11.146 (a) 27.6 m. (b) 34.0 m.

 11.147 (a) 0.634 m. (b) 9.07 m.

 11.149 (a) 14.48 m/s. (b) 21.3 m.

 11.151 (R2 1 c2)y2wnR.

 11.152 2.50 ft.

 11.153 149.8 Gm.

 11.154 1425 Gm.

 11.155 16 200 mi/h.

 11.156 7740 mi/h.

 11.159 1.606 h.

 11.161 (a) (1.624 in/s)er 2 (15.56 in/s)eθ

  (b) (249.9 in/s2)er 1 (29.74 in/s2)eθ

  (c) (23.25 in/s2)er .

 11.162 (a) 3πbeθ and 24π
2ber 14.48. (b) θ 5  2Nπ, N 5 0, 1, 2, p .

 11.163 13.280 m/s a 27.08°, 0.2437 m/s2 c 30.00°.

 11.164 (b) 1.787 m/s2.

 11.165 (a) v 5 bkeθ, a 5 2(bk2y2)er.

  (b) v 5 2bker 1 2bkeθ, a 5 2bk2er 1 4bk2eθ.

 11.166 (a) a 5 4bu
.
2. (b) directed toward point A.

 11.169 r
.

5 370 ft/s, r̈ 5 57.9 ft/s2, θ
.

5 20.0924 rad/s, 

ü 5 0.0315 rad/s2.

 11.170 (a) r
.

5 2dwy2, θ
.

5 wy2. (b) r̈ 5 213 dw2y4, ü 5 0.

 11.171 185.7 km/h.

 11.172 61.8 mi/h, 49.78.

 11.175 be
1

2θ
2

θ1θ2 1 4212v2.

 11.176 
b

θ
4
136 1 4θ

2 1 θ
4212v2.

 11.177 v 5 2p2A2 1 n2B2 cos2 2pnt,

  a 5 4p22A2 1 n4B2 sin2 2pnt

 11.179 (a) v 5 2A2 1 B2, a 5 211 1 16π
22 A2 1 B2.

  (b) v 5 2πA, a 5 4π
2A.

 11.180 tan21[R12 1 w2
nt

22yc24 1 w2
nt

2] .

 11.181 (a) θx 5 908, θy 5 123.78, θz 5 33.78.

  (b) θx 5 103.48, θy 5 134.38, θz 5 47.48.

 11.182 (a) 1.00 s and 4.00 s. (b) 1.500 m, 24.5 m.

 11.183 (a) 9.6 s. (b) 543.0 m.

 11.185 (a) 111.4 km/h a 10.508. (b) 2.96 km.

 11.187 (a) aB 5 2.00 in/s2
x, aC 5 3.00 in/s2

w. (b) 0.667 s.

  (c) 0.667 in.x.

 11.188 (a) 38.1 m/s, 20.4 m. (b) 41.1 m/s, 29.6 m.

 11.189 (a) 3.21 ft/s2 c 22.48. (b) 6.43 ft/s2 c 22.48.

 11.190 1.097et 1 19.71en m/s2.

 11.191 (a) 23.4 ft/s. (b) 103.2 ft.

CHAPTER 12

 12.1 (a) 844 lb. (b) 26.2 slugs.

 12.2 (a) 08: 4.987 lb, 458: 5.000 lb, 908: 5.013 lb.

  (b) 5.000 lb. (c) 0.1554 lb?s2/ft.

 12.3 2.84 3 106 kg?m/s.

 12.5 0.242 mi.

 12.6 (a) 1449 ft. (b) 10.0 s.

 12.7 (a) 18.84 s. (b) 36.14 m.

 12.8 (a) 110.5 km/h. (b) 85.6 km/h. (c) 69.9 km/h.
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Answers to Problems AN13

 12.85 (a) 1684 N. (b) 2510 km. (c) 1.620 m/s2.

 12.86 (a) 1551 m/s. (b) 215.8 m/s.

 12.87 2.64 km/s.

 12.88 (a) 5280 ft/s. (b) 8000 ft/s.

 12.89 (a) 5.12 3 103 ft/s. (b) 97.0 ft/s.

 12.90 (a) (aA)r 5 (aA)θ 5 0. (b) 38.4 m/s2. (c) 0.800 m/s.

 12.91 (a) (aB)r 5 (aB)θ 5 0. (b) 61.4 ft/s2. (c) 2.98 ft/s.

 12.100 (a) 10.13 km/s. (b) 2.97 km/s.

 12.101 1.147.

 12.103 12y12 1 α2.
 12.104 (a) 1.637 3 103 m/s. (b) 725 m/s. (c) 0.333.

 12.107 (a) 52.4 3 103 ft/s. (b) A: 1318 ft/s, B9: 3900 ft/s.

 12.108 5.31 3 109 km.

 12.109 91.8 3 103 yr.

 12.112 4.95 h.

 12.113 50 min 55 s.

 12.114 cos21[(1 2 nβ
2)y(1 2 β2)].

 12.115 (a) 4.00 km/s. (b) 0.684.

 12.124 (a) 20.5 ft/s2 d 308. (b) 17.75 ft/s2 y.

 12.125 (a) 1.088 ft/s2 z. (b) 233 lb.

 12.126 (a) 5.79 m/s2. (b) 2.45 m/s2. (c) 0.230 m/s2.

 12.127 18.4 kN b 31.97°.

 12.128 (a) 0.454, down. (b) 0.1796 down. (c) 0.218, up.

 12.129 (a) 539 N. (b) 47.1 m.

 12.132 54.0°.

 12.133 (a) 0.500 m, 0. (b) 0.270 m, 284.1 N.

CHAPTER 13

 13.1 6.17 GJ.

 13.2 (a) 140.1 ft?lb, 140.1 ft. (b) 140.1 ft?lb, 850 ft.

 13.5 10.51 ft/s.

 13.6 9.53 ft.

 13.7 (a) 112.2 km/h. (b) 91.6 km/h.

 13.8 (a) 17.54 m/s. (b) 0.893.

 13.9 (a) 8.70 m. (b) 4.94 m/s d 158.

 13.11 6.71 m.

 13.12 (a) 2.90 m/s. (b) 0.893 m.

 13.15 (a) 57.8 m. (b) 154 N y.

 13.16 (a) 7.41 kN. (b) 5.56 kN (tension).

 13.17 (a) 124.1 ft. (b)  A to B: 19.38 kips (tension); 

B to C: 8.62 kips (tension).

 13.18 (a) 279 ft. (b)  A to B: 19.38 kips (compression);

B to C: 8.62 kips (compression).

 13.19 (a) 46.0 ft?lb.

  (b) A: 19.76 lb; B: 12.10 lb.

 13.20 (a) 7.43 ft/s. (b) 0.800 ft.

 13.23 (a) 1.218 m/s z. (b) 91.0 N.

 13.24 1.190 m/s.

 13.25 (a) 3.96 m/s. (b) 5.60 m/s.

 13.26 (a) 3.29 m/s. (b) 1.533 m.

 13.27 (a) 3.29 m/s. (b) 1.472 m.

 13.28 (a) 8.83 lb/in. (b) 5.13 in.

 13.29 (a) 0.159. (b) 5.92 ft/s.

 13.32 0.7591pAaym.

 13.33 (a) 13.43 ft. (b) 386 ft/s2.

 13.34 A: 5.37 in.; B: 7.21 in.

 13.36 (a) 10.39 km/s. (b) 11.14 km/s. (c) 11.18 km/s.

 13.37 (a) 0.0316%. (b) 25.4%.

 13.38 364 m.

 13.39 14.008.

 13.40 (a) 13gl. (b) 12gl.

 13.41 41.8°.
 13.44 2.30 m/s.

 13.45 (a) 27.48. (b) 3.81 ft.

 13.46 (a) 57.2 kW. (b) 269 kW.

 13.47 (a) 2.75 kW. (b) 3.35 kW.

 13.48 14.80 kN.

 13.51 (a) 14.95 kW. (b) 45.4 kW.

 13.52 (a) 17.75 kW. (b) 46.7 kW.

 13.54 (a) 8.00 hp. (b) 7.91 hp.

 13.55 (a) k1k2y(k1 1 k2). (b) k1 1 k2.

 13.57 (a) 5.12 m/s. (b) 4.20 m/s.

 13.58 49.0 ft/s.

 13.59 23.1 ft/s.

 13.62 (a) 533 lb/ft. (b) 37.0 ft.

 13.64 (a) 2.48 m/s z. (b) 1.732 m/sx.

 13.65 (a) 2.92 m/s. (b) (233.9 N)i 1 (33.3 N)j.
 13.66 (a) 43.58. (b) 8.02 ft/sw.

 13.68 0.269 m.

 13.69 0.1744 m.

 13.70 731 N.

 13.71 (max) 5520 N at D; (min) 731 N just above B.

 13.72 14.34 ft/s, 13.77 lbx.

 13.74 Loop 1: (a) 25.1 ft/s. (b) 1.500 lb z.

  Loop 2: (a) 24.1 ft/s. (b) 1.000 lb.

 13.76 Loop 1: (a) 15gr. (b) 3 W y.

  Loop 2: (a) 14gr. (b) 2 W y.

 13.77 0.488 m.

 13.78 3/5l.
 13.80 V 5 2ln xyz.

 13.81 (a) (k 2 1)a2/2, not conservative. (b) 0, conservative.

 13.82 (a) Px 5 xyR, Py 5 yyR, Pz 5 zyR, where 

R 5 (x2 1 y2 1 z2)1/2.

  (b) UOABD 5 2DVOD 5 a13.

 13.85 (a) 62.5 MJ/kg. (b) 11.18 km/s.

 13.86 (a) 9.56 km/s. (b) 2.39 km/s.

 13.87 (a) 50.1 3 109 ft?lb. (b) 115.9 3 109 ft?lb.

 13.88 (a) 1.918 3 106 ft?lb/lb. (b) 10.51 3 106 ft?lb/lb.

 13.89 25.1 Mm/h.

 13.90 6.48 km/s.

 13.93 vr 5 63.87 m/s, vθ 5 1.000 m/s.

 13.94 (a) 0.720 m. (b) 0.834 m/s.

 13.95 3.77 in, (28.04 ft/s)er 1 (7.96 ft/s)er.

 13.96 (a) 14.36 ft/s. (b) 1.225 ft.

 13.97 (a) 4.14 ft/s. (b) 16.58 ft/s.

 13.100 27.6 3 103 km/h.

 13.101 (a) 7960 ft/s. (b) 4820 ft/s.

 13.102 (a) 16 800 ft/s. (b) 32 700 ft/s.

 13.103 14.20 km/s.

 13.106 (a) 7.35 km/s. (b) 45.08.

 13.107 68.98.

 13.108 rmax 5 r0(1 1 sin α), rmin 5 (1 2 sin α)r0.

 13.109 3450 m/s.

 13.110 (a) 11.32 3 103 ft/s. (b) 13.68 3 103 ft/s.

 13.111 30.9 3 103 ft/s, 58.98.

 13.115 (b) vesc1αy11 1 α2 , v0 , vesc111 1 α2y12 1 α2.
 13.119 4 min 19 s.

 13.120 (a) 3.64 s. (b) 27.3 s.

 13.121 17.86 lb.

 13.123 6.26 s.

 13.124 (a) 2280 lb. (b) 3.00 s.

 13.125 0.278.

 13.126 (a) 18.16 s. (b) 1.94 km.
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AN14 Answers to Problems

 13.129 (a) 14.78 s. (b) 693 lb (tension).

 13.130 (a) 29.6 s. (b) 2500 lb (tension).

 13.131 (a) 5.28 s. (b) 17.05 kN (compression).

 13.132 (a) 0.549 s. (b) 56.8 N.

 13.134 (a) 3730 lb. (b) 7450 lb.

 13.136 223 MPa.

 13.138 15.36 mi/h.

 13.139 76.9 lb.

 13.140 1.449 kips.

 13.141 6.21 W.

 13.142 2.68 kN.

 13.145 (a) 1.67 mi/h z. (b) 0.190 s.

 13.146 (a) car A. (b) 115.2 km/h.

 13.147 65.0 kN.

 13.148 (a) 9.32 ft?lb, 0.932 lb?s.

  (b) 7.99 ft?lb, 0.799 lb?s.

 13.149 497 ft/s.

 13.150 (a) 2.80 ft/s z. (b) 0.229 ft/s z.

 13.151 (a) 1.694 m/sw. (b) 0.1619 J.

 13.152 (a) 778.9 m/s. (b) 4.65 J. (c) 19.74 N.

 13.155 (a) vA 5 0.594 m/s z, vB 5 1.156 m/s y. (b) 2.99 J.

 13.156 (1 2 e2)mv2.

 13.157 0.728 # e # 0.762.

 13.158 (a) 3.00 lb. (b) 2.00 lb # WB # 6.00 lb.

 13.161 (a) v0(1 2 e)/2 and v0(1+e)/2. (b) v0(1 2 e)2/4 and v0(1 1 e)2/4. 

(c) v0(1 1 e)n21/2n21. (d) 0.698v0.

 13.163 0.294 m/s z.

 13.164 vA9 5 0.711 v0 a 39.38, vB9 5 0.636 v0 c 458.

 13.165 (a) 0.848v0 c 27.0°. (b) 0.456v0 a 57.6°.
 13.166 vA9 5 6.37 m/s d 77.28, vB9 5 1.802 m/s a 408.

 13.167 vA9 5 1.322 m/s d 70.98, vB9 5 3.85 m/s c 27.08.

 13.168 (a) 70.2°. (b) 0.322 m/s.

 13.169 0.837.

 13.172 13.09 m/s d 26.6°.

 13.174 (a) 20.6 mi/h. (b) 0.203.

 13.175 (a) 0.294 m. (b) 54.4 mm.

 13.176 (a) 0.324. (b) 14.30 ft/s.

 13.177 (a) 2.90 m/s. (b) 100.5 J.

 13.179 (a) 8.89 mm. (b) 3758 N.

 13.180 (a) 0.588. (b) 148.7 kN/m.

 13.182 (a) vA9 5 0, vB9 5 0.

(b) vA9 5 1.201 m/s z, vB9 5 0.400 m/s y.

 13.183 45.5 mm.

 13.184 (a) 26.65 ft/s a 308.

(b) 31.93 ft/s a 39.08.

 13.185 3.47 in.

 13.186 (a) 0.923. (b) 1.278 m.

 13.188 (a) vA9 5 2.36 ft/s b 83.88, vB9 5 3.23 ft/s y. (b) 1.97 in.

 13.190 102.6 mi/h.

 13.191 1.688 ft?lb.

 13.194 0.283. 

 13.195 (a) 13.31 N y. (b) 4.49 Nw. (c) 13.31 N z.

 13.197 (a) 217 mm. (b) 69.1 mm.

 13.198 (a) vA9 5 vB9 5 vC9 5 1.368 m/s. (b) 0.668 m. (c) 1.049 m.

 13.200 0.107 m.

CHAPTER 14

 14.1 (a) 4.46 m/s z. (b) 0.409 m/s z.

 14.2 10.67 km/h z, 4.27 km/h z, and 4.27 km/h z.

 14.3 (a) 4.25 ft/s y. (b) 4.25 ft/s y.

 14.4 (a) 0.800 oz. (b) 900 ft/s y.

 14.7 (a) 3.79 km/h y, 2.77 km/h y.

  (b) 5.54 km/h y, 2.77 km/h y.

  (c) 5.54 km/h y, 3.60 km/h y.

 14.8 vA 5 1.013 m/s z, vB 5 0.338 m/s z, vC 5 0.150 m/s z.

 14.9 21600 kg?m2/s2i 2 11070.0 kg?m2/s2j 1 1370.0 kg?m2/s2k
 14.10 (a) 122.78 m2i 1 115.00 m2j 1 111.67 m2k.

  (b) 138.0 kg?m/s2i 1 132.0 kg?m/s2j 1 140.0 kg?m/s2k.

(c) 21826.67 kg?m2/s2i2 1602.22 kg?m2/s2j 1 1211.11 kg?m2/s2k.

 14.11 (a) vA 5 14.00 ftÿ/ÿs2j, vB 5 11.000 ftÿ/ÿs2i, vC 5 13.00 ftÿ/ÿs2k.

  (b) 11.20 ft?lb?s2i 1 10.60 ft?lb?s2j 2 12.40 ft?lb?s2k.

 14.12 (a) vA 5 110.00 ftÿ/ÿs2j, vB 5 15.00 ftÿ/ÿs2i, vC 5 110.00 ftÿ/ÿs2k.

  (b) 16.00 ft?lb?s2i 1 13.00 ft?lb?s2j 2 16.00 ft?lb?s2k.

 14.15 (114.4 m)i 2 (76.1 m)j 1 (8.75 m)k.

 14.16 (1180 m)i 1 (140 m)j 1 (155 m)k.

 14.19 x 5 45.2 ft, y 5 54.5 ft.

 14.20 (a) 2.00 s. (b) 92.8 mi/h.

 14.21 (81.5 ft)i 1 (351 ft)k.

 14.22 (a) 8.00 ft/s y. (b) 36.68, vC 5 10.39 ft/s, vD 5 8.72 ft/s.

 14.24 vA 5 431 m/s, vB 5 395 m/s, vC 5 528 m/s.

 14.25 vA 5 646 m/s, vB 5 789 m/s, vC 5 176 m/s.

 14.26 vA 5 919 m/s, vB 5 717 m/s, vC 5 619 m/s.

 14.31 friction: 2.97 J, first impact: 3007 J, second impact: 24.3 J.

 14.32 (a) 23.6 ft?lb. (b) 2.85 ft?lb.

 14.33 (woman) 382 ft?lb, (man) 447 ft?lb.

 14.35 (b) EA 5 180.0 kJ, EB 5 320 kJ.

 14.37 (a) vB 5
mAv0

mA 1 mB
 y. (b) h 5

mA

mA 1 mB
 
v2

0

2g
.

 14.38 vA 5 4.11 m/s a 46.98, vB 5 17.39 m/s c 16.78.

 14.39 (a) vByA 5 11.59 ft/s d 308. (b) vA 5 3.76 ft/s y.

 14.40 vA 5 3.11 ft/s z, vB 5 4.66 ft/s y.

 14.41 vA 5 7.50 ft/ÿs, vB 5 6.50  ft/s, vC 5 11.25 ft/s.

 14.42 vA 5 10.61  ft/s, vB 5 9.19  ft/s, vC 5 5.30  ft/s.
 14.45 vA 5 0.218 m/s  a 53.18 and vB 5 1.813 m/s  b 43.88.

 14.46 (200 ft/s)i 1 (172 ft/s)j 1 (1560 ft/s)k.

 14.47 (a) vC 5 11.00 ft/s, vD 5 5.50 ft/s. (b) 0.786.

 14.48 x 5 181.7 mm, y 5 0, z 5 139.4 mm.

 14.51 (a) vB 5 2.40 m/s a 53.18, vC 5 2.56 m/s y, (b) c 5 1.059 m.

 14.52 (a) vA 5 2.40 m/sw, vB 5 3.00 m/s a 53.18, (b) a 5 1.864 m.

 14.55 (a) vA 5 2.25 ftx, vB 5 2.25 ft/sw, vc 5 3.90 ft/s y. (b) 11.1 in.

 14.56 (a) 2.00 ft/s y. (b) 0.760 ft. (c) 5.29 rad/s i.

 14.57 1086.5 N.

 14.58 ρA2 v2
2 2 ρA1 v

2
1 cos θ.

 14.59 drag 5 26.3  lb y , lift 5 12.74  lb↑.

 14.60 drag 5 34.6 lb y , lift 5 16.76  lb↑.

 14.61 (a) 14.8 kN. (b) 27.7 kN.

 14.62 90.6 N z.

 14.64 Dx 5 329 N, Dy 5 0, Cx 5 2203 N, Cy 5 271 N.

 14.66 (a) θ 5 35.48. (b) 187.3 N d 53.88.

 14.67 (a) 26.0 mÿ/ÿs. (b) 230 N d 48.48.

 14.68 Cx 5 90.0 N, Cy 5 2360 N, Dx 5 0, Dy 5 2900 N.

 14.69 100 kg/s.

 14.70 7580 lb.

 14.71 33.6 kN z.

 14.72 7180 lb.

 14.74 (a) 9690 lb, 3.38 ft. (b) 6960 lb, 9.43 ft.

 14.76 (a) 3.03 m/s2 a 188. (b) 922 km/h.

 14.77 (a) 30.6 m/s. (b) 96.1 m3/s. (c) 55 100 N?m/s.

 14.78 (a) 3.23 MW. (b) 0.464.

 14.79 213 m.

 14.80 (a) 15 450 hp. (b) 28 060 hp. (c) 0.551.

 14.83 (a) m0e
qLÿ/ÿm0v0. (b) v0e

2qLÿ/ÿm0v0.

 14.86 (a) m(v2 1 gy)yl. (b) R 5 mg(1 2 yyl)x.
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Answers to Problems AN15

 14.87 (a) mgyyl. (b) m[g(l 2 y) 1 v2]/lx.

 14.88 1gh tan h11gh tyL 2.
 14.89 10.10 ft/s.

 14.90 4.75 ft/s.

 14.91 533 kg/s.

 14.94 (a) 90.0 m/s2. (b) 35.9 3 103 km/h.

 14.95 7930 m/s.

 14.96 (a) 1800 m/s. (b) 9240 m/s.

 14.99 87.2 mi.

 14.100 (a) 92.8 ft/s2
x. (b) 780 ft/s2

x. (c) 119.3 mi. (d) 14660 mi/h.

 14.101 186.8 km/h.

 14.102 (a) 31.2 km. (b) 197.5 km.

 14.106 (a) 1.595 m/s. (b) 0.370 m.

 14.107 (a) 5.20 km/h y. (b) 4.00 km/h y.

 14.108 (a) 6.05 ft/s. (b) 6.81 ft/s.

 14.110 vA 5 15.38 ft/s y, vB 5 5.13 ft/s z.

 14.112 Ax 5 55.5 lb y, Ay 5 20.2 lbw, mA 5 41.4 lb?ft i.

 14.114 D 5 2.29 kNx, C 5 1.712 kNx.

 14.115 414 rpm.

 14.116 Case 1: (a) 0.333 gw. (b) 0.8172gl.
  Case 2: (a) gyylw. (b) 2gl.

CHAPTER 15
 15.1 (a) 29.6 rad/s. (b) 32.2 rev.

 15.2 (a) 0.50 rad, 24.71 rad/s, 234.50 rad/s2. (b) 0, 21.934 rad/s, 

36.46 rad/s2.

 15.3 (a) 0.253 rad, 20.927 rad/s, 236.55 rad/s2. (b) 0, 0, 0.

 15.4 (a) 23.01 rad/s2. (b) 13 800 rev.

 15.5 (a) 150 rev. (b) 2100 rev.

 15.6 (a) 0.855 rad/s. (b) 3.718.

 15.9 (a) 9.55 rev. (b) ∞. (c) 7.82 s.

 15.10 2(0.450 m/s)i 2 (1.200 m/s)j 1 (1.500 m/s)k, (12.60 m/s2)i 1 

(7.65 m/s2)j 1 (9.90 m/s2)k.

 15.11 (0.750 m/s)i 1 (1.500 m/s)k, (12.75 m/s2)i 1 (11.25 m/s2)j 1 

(3.00 m/s2)k.

 15.12 2(37.4 in/s)i 1 (12.00 in/s)j 2 (15.60 in/s)k, 2(126.1 in/s2)i 2 

(74.3 in/s2)j 1 (246 in/s2)k.

 15.13 2(18.72 in/s)i 1 (6.00 in/s)j 2 (7.80 in/s)k, 2(3.46 in/s2)i 2 

(27.6 in/s2)j 1 (73.1 in/s2)k.

 15.16 66 700 mi/h, 19.47 3 1023 ft/s2.

 15.17 (a) 1525 ft/s, 0.1112 ft/s2. (b) 1168 ft/s, 0.0852 ft/s2. 

(c) 0, 0.

 15.18 (a) 2.50 rad/s l, 1.500 rad/s2 i. (b) 771 mm/s2 c 76.58.

 15.19 12.00 rad/s2 l or 12.00 rad/s2 i.

 15.22 left: 3.49 s; middle: 6.98 s; right: 13.96 s.

 15.23 (a) 0.500 ft/s y, 1.500 ft/s2 z. (b) 4.24 ft/s2 c 458.

 15.24 (a) 300 rpm l, 100 rpm i. (b) aB 5 1974 in/s2 z, 

  aC 5 658 in/s2
y.

 15.25 (a) A: 15.00 rad/s l; B: 7.50 rad/s i.

  (b) A: 75.0 ft/s2
x; B: 37.5 ft/s2

w.

 15.26 (a) C: 120 rpm; B: 275 rpm.

  (b) A: 23.7 m/s2
x; B: 19.90 m/s2

w.

 15.27 (a) 10.00 rad/s. (b) A: 7.50 m/s2; B: 3.00 m/s2
w. 

(c) 4.00 m/s2
w.

 15.28 (a) 0.400 rad/s2 i. (b) 1.528 rev.

 15.29 (a) 3.00 rad/s2 i. (b) 4.00 s.

 15.30 (a) 1.975 rad/s2 l. (b) 6.91 rad/s l.

 15.31 (a) 15.28 rev. (b) 10.14 s.

 15.32 (a) 15.52 s. (b) vA 5 445 rpm l, vB 5 371 rpm i.

 15.33 (a) αA 5 3.40 rad/s2 i, αB 5 1.963 rad/s2 i. (b) 9.23 s.

 15.36 bv2
0y2π y.

 15.37 bv2y2πr3 i.

 15.38 vB 5 140.8 ft/s y, vC 5 0, v0 5 136.0 ft/s a 158, 

vE 5 99.6 ft/s c 458.

 15.39 (a) 0.378 rad/s i. (b) 6.42 in/sx.

 15.40 (a) 0.231 rad/s
 
i. (b) 2(1.00 m/s)i 2 (0.577 m/s)j.

 15.41 (a) 3.00 rad/s i. (b) 1.30 m/s d 67.4°.

 15.44 (a) 10.00 rad/s l. (b) 2(7.40 m/s)i 2 (1.00 m/s)j.
 15.45 (a) 2(1.40 m/s)i 2 (1.00 m/s)j. (b) x 5 100.0 mm, 

y 5 2140.0 mm.

 15.47 (a) 0.583 rad/s i. (b) 1.537 ft/s b 77.48°.
 15.48 (a) vB 5 vC 5 vD 5 

1
2vA l. (b) vS 5 0.25 vA i.

 15.49 (a) vB 5 vC 5 vD 5 150 rpm i. (b) vS 5 195 rpm i.

 15.50 (a) 48.0 rad/s i. (b) 3.39 m/s a 458.

 15.51 (a) 5.65 m/sx. (b) 9000 rpm, (c) 1500.

 15.53 (a) 200 rad/s l. (b) 24.0 rad/s i.

 15.55 (a) (6.00 rad/s)k or 6.00 rad/s l.

  (b) (360 mm/s)i 2(672 mm/s)j or 762 mm/s c 61.88.

 15.56 (a) 540 mm/s y. (b) 457 mm/s b 61.88.

 15.57 (a) 4.38 rad/s i, 12.25 in/sx. (b) 0, 42.0 in/sw. (c) 4.38 rad/s l, 

12.25 in/sw.

 15.58 (a) 22.9° and 192.6°. (b) 5.60 rad/s i and 5.60 rad/s l.

 15.61 (a) vP 5 0, vBD 5 39.3 rad/s l.

(b) vP 5 6.28 m/sw, vBD 5 0.

 15.62 vP 5 6.52 m/sw, vBD 5 20.8 rad/s l.

 15.63 (a) 12.00 rad/s l. (b) 3.90 m/s d 67.48.

 15.64 vDE 5 2.55 rad/s i, vBD 5 0.955 rad/s l.

 15.65 vBD 5 4.00 rad/s l, vEB 5 0.600 rad/s l.

 15.68 (a) 3.33 rad/s l. (b) 2.00 m/s c 56.38.

 15.69 (a) 1.500 m. (b) 5.00 m/sw.

 15.70 14.76 in/s y.

 15.71 (a) 338 mm/s z, 0. (b) 710 mm/s z, 2.37 rad/s i.

 15.72 (1 2 rAyrC)vABC.

 15.74 (a) 1.714 in. below A. (b) 75.0 ft/s y. (c) 53.2 ft/s a 41.2°.
 15.75 x 5 0, z 5 9.34 ft.

 15.76 (a) 3.00 rad/s l. (b) 300 mm/s z. (c) 180.0 mm/s (wound).

 15.77 (a) 3.00 rad/s i. (b) 180 mm/s y. (c) 300 mm/s (unwound).

 15.78 (a) 50 mm to the right of the axle.

  (b) vB 5 750 mm/sw, vD 5 1.950 m/sx.

 15.79 (a) 25 mm to the right of 0. (b) 420 mm/sx.

 15.80 (a)  A: 300 mm to the left of A.

C: 600 mm to the left of C.

  (b) vA 5 4.00 rad/s i, vC 5 2.00 rad/s l.

 15.82 (a) 0.467 rad/s l. (b) 3.49 ft/s a 59.28.

 15.83 (a) 3.08 rad/s l. (b) 83.3 m/s c 73.98.

 15.86 (a) 0.122 rad/s l. (b) 22.76 mm/s a 15°.
 15.87 (a) 0.133 rad/s l. (b) 18.22 mm/s a 15°.
 15.88 (a) (vAyl) sin βycos (β 2 θ). (b) vA cos θycos(β 2 θ).

 15.89 (a) 6.72 ft/s a 45°. (b) 2.75 rad/s i. (c) 6.57 ft/s a 21.2°.
 15.90 (a) 0.900 rad/s i. (b) 411 mm/s c 20.58.

 15.91 (a) 1.00 rad/s i. (b) 1.04 m/s y.

 15.94 (a) 1.58 rad/s i. (b) 28.0 in/s a 78.3°.
 15.95 (a) vAB 5 1.200 rad/s i, vDE 5 0.450 rad/s i. (b) 5.25 in/s z.

 15.96 (a) 5.00 rad/s l. (b) 3.00 m/sw.

 15.97 (a) 2.49 rad/s l. (b) 3.73 rad/s i. (c) 0.835 m/s b 53.6°.
 15.98 (a) vAB 5 1.177 rad/s i, vDE 5 2.50 rad/s i.

  (b) 29.4 in/s z.

 15.99 Space centrode: quarter circle, r 5 15 in, centered at O. Body 

centrode: semicircle, r 5 7.5 in., centered midway between 

A and B.

 15.100 Space centrode: lower rack.

  Body centrode: circumference of gear.
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AN16 Answers to Problems

 15.167 (a) 1018 mm/s b70.5°. (b) 1537 mm/s2 
d 2.4°.

 15.168 (1) 303 mm/s2 y; (2) 168.5 mm/s2 d 57.78.

 15.169 (3) 483 mm/s2 z; (4) 168.5 mm/s2 b 57.78.

 15.170 0.750 m/s a 71.38, 2.13 m/s2 d 61.98.

 15.171 2.79 rad/s i, 2.13 rad/s2 i.

 15.174 (a) 0.436 rad/s l. (b) 0.271 rad/s2 l.

 15.175 (a) 0.354 rad/s l. (b) 0.125 rad/s2 l.

 15.176 7.86 rad/s l, 81.1 rad/s2 l.

 15.177 3.81 rad/s i, 81.4 rad/s2 i.

 15.178 1.526 rad/s i, 57.6 rad/s2 i.

 15.181 (a) 3.61 rad/s l. (b) 86.6 in/s a 308. (c) 563 in/s2 d 46.18.

 15.182 (a) 3.61 rad/s i. (b) 86.6 in/s d 308. (c) 563 in/s2 d 46.18.

 15.183 51.5 m/s2 b 44.48.

 15.184 (a) (33.0 rad/s)i 2 (44.0 rad/s)k. (b) (4.80 m/s)i 1 (3.60 m/s)k.

 15.185 (a) (44.0 rad/s)i 2 (33.0 rad/s)k. (b) (3.60 m/s)i 1 (4.80 m/s)k.

 15.186 (a) (1.5 rad/s)i 2 (3.5 rad/s)j 2 (3.0 rad/s)k.

  (b) (640 mm/s)i 2 (360 mm/s)j 1 (740 mm/s)k.

 15.187 (a) (0.60 rad/s)i 2 (2.00 rad/s)j 1 (0.75 rad/s)k. (b) (20.0 in/s)i 
1 (15.0 in/s)j 1 (24.0 in/s)k.

 15.188 (118.4 rad/s2)i.
 15.189 (230 rad/s2)i 2 (2.5 rad/s2)k.

 15.190 (a) (6.28 rad/s2)i. (b) (8.38 rad/s2)k.

 15.193 (a) 2(0.600 m/s)i 1 (0.750 m/s)j 2 (0.600 m/s)k.

  (b) 2(6.15 m/s2)i 2 (3.00 m/s2)j.
 15.195 (a) 2(20.0 rad/s2)j. (b) 2(4.00 ft/s2)i 1 (10.00 ft/s2)k.
  (c) 2(10.25 ft/s2)j.
 15.196  2(3.46 ft/s2)i 2 (5.13 ft/s2)j 1 (8.66 ft/s2)k.

 15.197 (a) v1 / sinβ. (b) v1 / tan βi. (c) v1
2
 / tan βk.

 15.198 (a) (0.0375 rad/s2)i.
  (b) 2(0.1434 m/s)i 1 (0.204 m/s)j 2 (0.1228 m/s)k.
  (c) 2(0.696 m/s2)i 2 (0.0358 m/s2)j 1 (0.0430 m/s2)k.
 15.199 (a) (28.4 rad/s)i 1 (5.24 rad/s)j. (b) (25.8 rad/s)i.
 15.200 (a) (135.1 rad/s2)k. (b) (5.77 m/s2)i. 2 (232 m/s2)j.
 15.203 2(33.3 in/s)j.
 15.204 (15.0 in/s)j.
 15.205 2(34.5 mm/s)i.
 15.206 2(30.0 in/s)j.
 15.207 (45.7 in/s)j.
 15.210 (v2ycos 258) (2sin 258i 1 cos 258)k.

 15.211 (v1 cos 258) (2sin 258i 1 cos 258k).

 15.212 (a) (1.463 rad/s)i 1 (0.1052 rad/s)j 1 (0.0841 rad/s)k. 

(b) 2(1.725 in/s)i.
 15.213 (a) 2(4.15 rad/s)i 1 (0.615 rad/s)j 2 (2.77 rad/s)k. 

(b) (0.30 m/s)k.

 15.216 2(45.0 in/s2)j.
 15.217 (205 in/s2)j.
 15.218 2(9.51 mm/s2)j.
 15.219 2(8.76 mm/s2)j.
 15.220 (a) (23.00 ft/s)i 1 (6.00 ft/s)j 2 (20.94 ft/s)k. 

(b) (6.28 rad/s2)i.
(c) (262.87 ft/s2)i 2 (9.00 ft/s2)j 1 (12.57 ft/s2)k.

 15.221 (a) 2(24.94 ft/s)k. (b) (1.00 rad/s2)j 1 (8.38 rad/s2)k. 

(c) 2(60.62 ft/s2)i 2 (16.00 ft/s2)j 2 (10.00 ft/s2)k.

 15.222 (a) 2(1.215 m/s)i 1 (1.620 m/s)k. (b) 2(30.4 m/s2)j.
 15.223 (a) 2(1.215 m/s)i 2 (1.080 m/s)j 1 (1.620 m/s)k.

  (b) (19.44 m/s2)i 2 (30.4 m/s2)j 2 (12.96 m/s2)k.

 15.224 (a) (1.200 m/s)i 1 (0.500 m/s)j 2 (1.200 m/s)k. 

  (b) 2(7.20 m/s2)i 2 (14.40 m/s2)k.

 15.227 (a) (0.750 m/s)i 1 (1.299 m/s)j 2 (1.732 m/s)k.

  (b) (27.1 m/s2)i 1 (5.63 m/s2)j 2 (15.00 m/s2)k.

 15.228 (a) (129.9 mm/s)i 1 (75.0 mm/s)j 1 (86.6 mm/s)k.

  (b) (45.0 mm/s2)i 2 (112.6 mm/s2)j 1 (60.0 mm/s2)k.

 15.102 vBD 5 0.955 rad/s i, vDE 5 2.55 rad/s l.

 15.103 vBD 5 4.000 rad/s l, vEB 5 0.600 rad/s l.

 15.105 (a) 0.50 rad/s2 
i. (b) aA 5 3.25 m/s2

x, aE 5 0.75 m/s2
x.

 15.106 (a) 0.20 m/s2
w. (b) 2.20 m/s2

x.

 15.107 (a) 0.900 m/s2 y. (b) 1.800 m/s2 z.

 15.108 (a) 0.600 m from A. (b) 0.200 m from A.

 15.109 (a) 51.3 in/s2
w. (b) 184.9 in/s2 a 16.18.

 15.110 (a) 1.039 rad/s2 i. (b) (2.60 ft/s2)i 1 (4.50 ft/s2)j or 

5.20 ft/s2 a 608.

 15.111 (a) 1430 m/s2
w. (b) 1430 m/s2

x, (c) 1430 m/s2 c 608.

 15.112 (a) 13.35 in/s2 d 61.08. (b) 12.62 in/s2 a 64.08.

 15.113 aA 5 56.6 in/s2 b 58.08, aB 5 80.0 in/s2
x, 

aC 5 172.2 in/s2 b 25.88.

 15.114 aA 5 48.0 in/s2
x, aB 5 85.4 in/s2 b 69.48.

  aC 5 82.8 in/s2 d 65.08.

 15.115 (a) 2.00 rad/s2 
i. (b) 0.224 m/s2 

c 63.4°.
 15.118 (a) 92.5 in/s2. (b) 278 in/s2.

 15.120 148.3 m/s2
w.

 15.121 296 m/s2
x.

 15.122 aD 5 1558 m/s2 c 458. aE 5 337 m/s2 a 458.

 15.124 (a) 242 in/s2 z. (b) 403 in/s2 d 72.58.

 15.125 694 in/s2 z.

 15.127 2.10 m/s2 
a 47.1°.

 15.128 (a) 1.47 rad/s2 l. (b) 1.575 m/s2 
d 47.1°.

 15.129 (a) 228 rad/s2 l. (b) 92.0 rad/s2 i.

 15.130 (a) 138.1 ft/s2 b 78.68. (b) 203 ft/s2 a 19.58.

 15.132 (a) 4.18 rad/s2 i. (b) 2.43 rad/s2 i.

 15.133 (a) 8.15 rad/s2 l. (b) 0.896 rad/s2 i.

 15.134 (a) 3.70 rad/s2 i. (b) 3.70 rad/s2 i.

 15.136 vD 5 1.382 m/sw. aD 5 0.695 m/s2
w.

 15.138 vB 5 bv cos θ, aB 5 bα cos θ 2 bv2 sin θ.

 15.139 vB sin βyl cos θ.

 15.140 (vB sin βyl)2 (sin θycos3 θ).

 15.141 vx 5 v[1 2 cos (vtyr)]. vy 5 v sin (vtyr).
 15.142 v 5 bvA(b2 1 xA

2) l, α 5 2bxA vA
2y(b2 1 xA

2)2 l.

 15.143 vBx
5 vA 2 lb2 vAy(b2 1 xA

2)3y2 y, 1vB2y 5 lb xAvAy(b2 1 xA
2)3y2
x.

 15.144 vBD 5 bv(b 1 l cos θ)y(l2 1 b2 1 2bl cos θ) i,

  vE 5 blv sin θy(l2 1 b2 1 2bl cos θ) c 

tan21[(b sin θy(l 1 b cos θ)]

 15.145 blv2(l2 2 b2) sin θy(l2 1 b2 1 2bl cos θ) l.

 15.147 v 5 v0 sin2 θyr cos θ l, α 5 (v0yr)2 (1 1 cos2 θ) tan3 θ l.

 15.148 1vρ2x 5 rv c cos 

rvt

R 2 r
2 cos vt d ,

  1vρ2y 5 rv c sin 
rvt

R 2 r
1 sin vt d .

 15.149 Path is the y axis. v 5 (Rv sin vt)j,
  a 5 (Rv2 cos vt)j.
 15.150 2.40 m/s c 73.98.

 15.151 2.87 m/s c 44.88.

 15.152 (a) 1.815 rad/s i. (b) 16.42 in/s c 208.

 15.153 (a) 5.16 rad/s i. (b) 1.399 m/s b 608.

 15.154 (a) 3.81 rad/s i, 6.53 m/s a 16.268.

  (b) 3.00 rad/s i, 4.00 m/s y.

 15.155 (a) 11.25 rad/s l. (b) 75.0 in/s y.

 15.160 (a) 1.78 3 1023 m/s2 west. (b) 1.36 3 1023 m/s2 west. 
(c) 1.36 3 1023 m/s2 west.

 15.161 (a) 54 rad/s2 i. (b) 33.9 ft/s2 
a 45°.

 15.162 0.0234 m/s2 west.

 15.164 (a) 0.520 m/s c 82.68. (b) 50.0 mm/s2 b 9.88.

 15.165 (a) 0.520 m/s c 37.48. (b) 50.0 mm/s2 d 69.88.

 15.166 (a) 1006 mm/s a 72.6°. (b) 1811 mm/s2 
a 32.0°.
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Answers to Problems AN17

 15.230 vC 5 2(45.0 in/s)i 1 (36.6 in/s)j 2 (31.2 in/s)k,

aC 5 2(303 in/s2)i 2 (384 in/s2)j 1 (208 in/s2)k.

 15.231 (a) v1 1 (Ryr) (v1 2 v2)k. (b) v1(v1 2 v2) (Ryr)j.
 15.232 2(41.6 in/s2)i 2 (61.5 in/s2)j 1 (103.9 in/s2)k.

 15.233 (a) (0.0375 rad/s2)i.
  (b) 2(0.143 m/s)i 1 (0.205 m/s)j 2 (0.123 m/s)k.

  (c) 2(0.0696 m/s2)i 2 (0.0358 m/s2)j 1 (0.0430 m/s2)k.

 15.234 vA 5 2(1.39 m/s)i 1 (0.80 m/s)j 2 (1.20 m/s)k,

aA 5 2(20.8 m/s2)i 2 (11.09 m/s2)j 1 (33.3 m/s2)k.

 15.235 vA 5 2(1.39 m/s)i 1 (0.80 m/s)j 2 (1.20 m/s)k,

aA 5 2(22.5 m/s2)i 2 (10.09 m/s2)j 1 (34.9 m/s2)k.

 15.236. (a) 2(1.37 ft/s)i 1 (3.76 ft/s)j 1 (1.88 ft/s)k.

  (b) (1.22 ft/s2)i 2 (0.342 ft/s2)j 2 (0.410 ft/s2)k.

 15.239 (a) (4.33 ft/s)i 2 (6.18 ft/s)j 1 (5.30 ft/s)k.

  (b) (2.65 ft/s2)i 2 (2.64 ft/s2)j 2 (3.25 ft/s2)k.

 15.240 (a) (27.2 in/s2)i 2 (6.75 in/s2)j.
  (b) (12.80 in/s2)i 2 (7.68 in/s2)k.

 15.241 (a) 2(1.600 in/s2)i 1 (6.75 in/s2)j.
  (b) (12.80 in/s2)i 1 (7.68 in/s2)k.

 15.242 2(5.04 m/s)i 2 (1.200 m/s)k.

  2(9.60 m/s2)i 2 (25.9 m/s2)j 1 (57.6 m/s2)k.

 15.243 2(0.720 m/s)i 2(1.200 m/s)k,

2(9.60 m/s2)i 1 (25.9 m/s2)j 2(11.52 m/s2)k.

 15.244 (a) rv2
2 sin 308j 2 (rv2

2 cos 308 1 2rv1v2)k.

  (b) 2r(v1
2 1 v2

2 1 2v1v2 cos 308)i 1 rv1
2 cos 308k.

  (c) 2rv2
2 sin 308j 1 r(2v1

2 cos 308 1 v2
2 cos 308 1 2v1v2)k.

 15.245 (a) (0.610 m/s)k, 2(0.880 m/s2)i 1 (1.170 m/s2)j.
  (b) (5.20 m/s)i 2 (0.390 m/s)j 2 (1.000 m/s)k, 

2(4.00 m/s2)i 2(3.25 m/s2)k.

 15.248 (36.0 ft/s)i 2 (64.0 ft/s)j.
 15.249 (a) 5.00 ft/s2 y. (b) 5.63 in z.

 15.252 αBD 5 306 rad/s2 l, αDE 5 737 rad/s2 l.

 15.253 (a) 1080 rad/s2 i. (b) 460 ft/s2 b 64.98.

 15.255 49.4 m/s2 c 26.08.

 15.256 (a) (0.450 m/s)k, (4.05 m/s2)i. (b) 2(1.350 m/s)k, 2(6.75 m/s2)i.
 15.258 (40.0 in/s)k.

 15.259 (9.00 in/s)i 2 (7.80 in/s)j 1 (7.20 in/s)k, 

(9.00 in/s2)i 2 (22.1 in/s2)j 2 (5.76 in/s2)k.

CHAPTER 16 
 16.1 (a) RA 5 60.31 lb a 84.28 and NB 5 28.5 lb z.

(b) μ 5 0.1023.

 16.2 (a) 18.59 ft/s2 y. (b) 0.577.

 16.3 (a) 25.8 ft/s2. (b) 12.27 ft/s2. (c) 13.32 ft/s2.

 16.4 (a) 3.20 m/s2. (b) A 5 3.82 Nx, B 5 20.7 Nx.

 16.5 (a) 4.09 m/s2. (b) 42.5 N.

 16.6 (a) 5270 Nx. (b) 4120 N.

 16.9 (a) 5.00 m/s2 y. (b) 0.311 m # h # 1.489 m.

 16.10 (a) 2.55 m/s2 y. (b) h # 1.047 m.

 16.11 195.9 kg.

 16.12 229 N.

 16.14 (a) 4.91 m/s2 c 30°. (b) FA 5 0, FB 5 68.0 N compression.

 16.15 (a) 173.2 N y. (b) 15.02 rad/s. (c) 86.6 rad/s2 l.

 16.18 By 5 16.48 lb and Dy 5 17.62 lb.

 16.19 (a) 30.6 ft/s2 c 84.18. (b) A 5 0.505 lb a 308, 

B 5 1.285 lb a 308.

 16.20 Block: 17.01 ft/s2 c 58.58; platform: 31.3 ft/s2 c 308.

 16.25 125.7 N-m.

 16.26 9480 rev.

 16.27 93.5 rev.

 16.28 107.6 rev.

 16.29 74.5 s.

 16.30 20.4 rad/s2 i.

 16.31 32.7 rad/s2 l.

 16.33 (a) 5.66 ft/s2
w. (b) 7.52 ft/sw.

 16.34 (1): (a) 8.00 rad/s2 l. (b) 14.61 rad/s l.

  (2): (a) 6.74 rad/s2 l. (b) 13.41 rad/s l.

  (3): (a) 4.24 rad/s2 l. (b) 10.64 rad/s l.

  (4): (a) 5.83 rad/s2 l. (b) 8.82 rad/s l.

 16.36 (a) 6.06 rad/s2 i. (b) 11.28 N Q.

 16.39 (a) No slipping on A; slipping on B.

  (b) αA 5 61.8 rad/s2 l; αB 5 9.66 rad/s2 i.

 16.40 (a) No slipping at either cylinder.

  (b) αA 5 15.46 rad/s2 l, αB 5 7.73 rad/s2 i.

 16.41 (a) αA 5 12.50 rad/s2 l, αB
 5 33.3 rad/s2 l.

  (b) vA 5 240 rpm i, vB 5 320 rpm l.

 16.42 (a) αA 5 12.50 rad/s2 l, αB 5 33.3 rpm l.

  (b) vA 5 90.0 rpm l, vB 5 120.0 rpm i.

 16.43 (a) αA 5 9.16 rad/s2 l, αB 5 38.2 rad/s2 l.

  (b) C 5 54.9 Nx, MC 5 2.64 N?m l.

 16.44 (b) v0y(1 1 mBymA) i.

 16.48 (a) 18.40 ft/s2 y. (b) 9.20 ft/s2 z. (c) z 5 24.0 in.

 16.49 (a) 12.0 in. from end A. (b) 9.20 ft/s2 y.

 16.50 (a) 2.50 m/s2 y. (b) 0.

 16.51 (a) 3.75 m/s2 y. (b) 1.25 m/s2 z.

 16.52 (a) 0, 21.374 rad/s2 j. (b) 2(0.515 ft/s2)i, 21.030 rad/s2 j.
 16.55 aA  5   2.71  m/s2

x and aB  5   1.496  m/s2
x.

 16.56 170.9 mm.

 16.57 (a) 53.1  rad/s2 i. (b) a  5   39.3  ft/s2
w.

 16.58 (a) 0.741 rad/s2 l. (b) 0.857 m/s2.

 16.59 (a) 2800 N. (b) 15.11 rad/s2 i.

 16.60 TA 5 359 lb, TB 5 312 lb.

 16.63 (a) 
3g

2L
 i. (b) 

g

4
x. (c) 

5g

4
w.

 16.64 (a) 
2g

L
 i. (b) 

g

3
 x. (c) 

5g

3
 w.

 16.65 (a)  

3g

L
 i. (b) 1.323  g a 49.18. (c) 2.18  g c 66.68.

 16.66 (a) 0.25 gx. (b) 5 gy4w.

 16.67 (a) 0. (b) gw.

 16.69 (a) 5v0y2r l. (b) v0yμkg. (c) v0
2y2μkg.

 16.70 (a) v0yr l. (b) v0yμkg. (c) v0
2y2μkg.

 16.71 (a) 1.597 s. (b) 9.86 ft/s. (c) 19.85 ft.

 16.72 (a) 1.863 s. (b) 9.00 ft/s. (c) 22.4 ft.

 16.76 (a) 107.1 rad/s2 i. (b) 21.4 N z, 39.2 Nx.

 16.77 (a) 150 mm. (b) 125 rad/s2 i.

 16.78 (a) 12.08 rad/s2 i. (b) 0.750 lb z, 4.00 lbx.

 16.79 (a) 8.05 rad/s2 i. (b) 24.0 in.

 16.80 (a) 1522.9 N. (b) 1341.8 N.

 16.83 13.64 kN y.

 16.84 (a) 1.5 gw. (b) 0.25 mgx.

 16.85 (a) 9gy7. (b) 4mg/7x.

 16.86 (a) 0.6727 ft?lb. (b) 1999.2 lb.

 16.87 (a) 43.6 rad/s2. (b) 21.0 N z, 54.6 Nx.

 16.88 (a) 3.72 rad/s2 i. (b) 1.462 lb.

 16.94 r2g sin βy1r2 1 k22.
 16.95 (a) 2.27 m (7.46 ft). (b) 0.649 m (2.13 ft).

 16.98 (a) 17.78 rad/s2 i, 2.13 m/s2 y. (b) 0.122.

 16.99 (a) 26.7 rad/s2 i, 3.20 m/s2 y. (b) 0.0136.

 16.102 (a) no sliding. (b) 15.46 rad/s2 i, 10.30 ft/s2.

 16.103 (a) no sliding. (b) 23.2 rad/s2 i, 15.46 ft/s2.

 16.104 (a) slides. (b) 4.29 rad/s2 l, 9.66 ft/s2 y.
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AN18 Answers to Problems

 17.13 vA 5
2n

n2 1 1B

πM0

I0

.

 17.16 (a) 13gyL, 2.50 Wx. (b) 5.67 rad/s i, 4.50 lbx.

 17.17 (a) 0.289 l. (b) 1.8611gyl, 2.00 mgx.

 17.18 11.52 rad/s l.

 17.19 16.23 ft/s.

 17.20 (a) 3.94 rad/s i, 271 lb b 5.258.

  (b) 5.58 rad/s i, 701 lbx.

 17.23 7.09 rad/s.

 17.24 (a) 20.250 rpm. (b) 0.249 rpm.

 17.25 14gsy3.

 17.26 1gs.

 17.27 (a) 5.18 ft/s. (b) 0.042.

 17.29 (a) 5.00 rad/s. (b) 24.9 Nx.

 17.30 (a) 1.142
B

g

r
 i. (b) 1.553 mgx.

 17.31 (a) [10g (R 2 r) (1 2 cos β)y7]1y2.

  (b) mg(17 2 10 cos β)y7.

 17.32 (a) 2.06 ft. (b) 4.00 lb.

 17.33 (a) 7.43 ft/sw. (b) 4.00 lb.

 17.35 (a) 11.57 rad/s i. (b) 27.8 rad/s l.

 17.36 vA 5 0.7751gl z, vB 5 0.7751gl d 60°.

 17.37 1.170 rad/s i, 5.07 m/s z.

 17.38 [3g (cos θ0 2 cos θ2)yL]1y2 i.

 17.39 3.71 rad/s l, 7.74 ft/sx.

 17.40 15.54 ft/s y.

 17.42 2.69 m/sw.

 17.43 84.7 rpm i.

 17.44 110.8 rpm i.

 17.45 3.25 m/sw.

 17.46 4.43 m/sw.

 17.47 0.770 m/s z.

 17.48 (a) 44.3 hp. (b) 118.1 hp.

 17.49 (a) 39.8 N?m. (b) 95.5 N?m. (c) 229 N?m.

 17.50 1146 rpm.

 17.51 10.87 lb.

 17.52 179.1 mm.

 17.53 0.335 lb?in.

 17.54 3.87 rad/s.

 17.55 24.6 ft?lb.

 17.58 3.88 s.

 17.59 (1 1 μk
2) rv0y[2μk(1 1 μk)g].

 17.62 v0y(1 1 mAymB).

 17.63 (a) vA 5 686 rpm l, vB 5 514 rpm i. (b) 4.18 lb?sx.

 17.64 (a) 5.15 lb. (b) 2.01 lb.

 17.65 X 5 mv, d 5 k 
2vyv.

 17.69 2.79 ft.

 17.70 (a) r2gt sin βy1r2 1 k 22 c β.

  (b) us $ k 2 tan βy1r2 1 k 22.
 17.71 (a) 2.55 m/sx. (b) 10.53 N.

 17.72 (a) 8.05 ft/s y. (b) 2.68 ft/s y.

 17.74 (a) 8.41 m/sw. (b) 16.82 N.

 17.75 (a) 0.557 s. (b) 16.82 N.

 17.77 (a) 2.50 v0yr. (b) v0yμkg.

 17.78 (a) 2.50 s. (b) 16.95 ft/s.

 17.79 
5

6
 v0.

 17.80 10.19 rpm.

 17.81 A and B: 159.1 rpm i; platform 20.9 rpm l.

 17.82 18.07 rad/s.

 17.83 (a) 2.54 rad/s. (b) 1.902 J.

 16.105 (a) slides. (b) 12.88 rad/s2 l, 3.22 ft/s2 z.

 16.107 (a) 6.63 ft/s2 y. (b) 3.79 ft/s2 y. (c) 0.355 ft y.

 16.108 (a) 72.4 rad/s2 l. (b) 7.24 m/s2
w.

 16.109 (a) 2.64 m/s2 z. (b) 11.87 N z.

 16.111 (a) 0.298. (b) 0.536 g y.

 16.112 (a) 0.322. (b) 0.566 g y.

 16.113 8.26 N z.

 16.114 (a) 0.125 g/r i. (b) 0.125 g y, 0.125 gw.

 16.115 mBg sin θy[2r {mh 1 mB (1 1 cos θ)}].

 16.116 3.43 lb a 70.58, 0.1550 ft?lb i.

 16.117 (a) 
g

L
c  sin θ

1
3 1  sin 

2
θ
d  i. (b) 

mg

1 1 3 sin 
2
θ
x.

 16.118 (a) 27.6 rad/s2 i. (b) 5.714 lbx.

 16.119 (a) 0.510 rad/s2 i. (b) FA 5 31.80 lb a 78.78 and 

FB 5 13.79 lb b11.3°.

 16.120 mg sin θy(1 1 3 sin θ).

 16.121 (a) 6.26  rad/s2 i. (b) 13.22  N z.

 16.124 6.40 N z.

 16.125 7.10 lb y.

 16.126 5.51 lb y.

 16.127 67.62 N d56.0°.

 16.128 75.13 Nx.

 16.129 25.9 N b 60°.

 16.131 (a) 37.8 ft/s2 c 26.1°. (b) 48.4 lbx.

 16.134 (a) 4.36  rad/s2 l. (b) 31.36 lbx.

 16.135 (a) 36.3 N?m l. (b) 231 N z, 524 Nx.

 16.136 (a) 82.3 N?m l. (b) 147.2 N z, 479 Nx.

 16.137 B 5 805 N z, D 5 426 N y.

 16.138 B 5 525 N d 38.1°, D 5 322 N c 15.7°.

 16.139 (a) 24.8 rad/s2 i. (b) 29.5 lbx.

 16.140 (a) 19.3 ft?lb i. (b) 81.9 lbx.

 16.143 (a) αA 5
2

5
  

g

r
 l and αB 5

2

5
  

g

r
 i. (b) 

1

5
 mg. (c) 

4

5
gw.

 16.146 (a) 50.2  N a 60.3°. (b) 0.273.

 16.148 (a) 17.03 ft/s2 c 20°. (b) 42.7 rad/s2 l.

 16.151 Mmax 5 10.39 lb?in. located 20.8 in. below A.

 16.153 20.6 ft.

 16.154 17.34 ft.

 16.156 (a) 2μgy(1 1 3μ). (b) 1.000 g.

 16.157 (a) 0.513 gyL i. (b) 0.912 mgx. (c) 0.241 mg y.

 16.158 (a) 1.519 gyL i. (b) 0.260 gw. (c) 0.740 mgx.

 16.160 (1): (a) 1.200 gyc i. (b) 0.671 g d 63.4°.

  (2): (a) 24 gy17c i, (b) 12 gy17w.

  (3): (a) 2.40 gyc i, (b) 0.500 gw.

 16.162 (a) 51.2 rad/s2 i. (b) 21.0 Nx.

 16.163 (a) 59.8 rad/s2 i. (b) 20.4 Nx.

CHAPTER 17
 17.1 12.77 N?m.

 17.2 8690 rev.

 17.3 9.60 in.

 17.4 0.841.

 17.5 (a) 19.20 lb?ft?s2. (b) 11.46 rev.

 17.6 (a) 293 rpm. (b) 15.92 rev.

 17.7 19.77 rev.

 17.10 109.4 lb y.

 17.11 (a) 6.35 rev. (b) 7.14 N.

 17.12 (a) 2.54 rev. (b) 17.86 N.
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Answers to Problems AN19

 17.86 37.2 rpm.

 17.87 vBC 5 36.6 rpm i and vA 5 16.87 rpm l.

 17.88 2.51 m/s.

 17.89 18.83 rad/s, 0.0508 kg?m2.

 17.90 (a) 31.1 rad/s. (b) 18.13 ft/s.

 17.91 (a) 15.00 rad/s. (b) 20.5 ft/s.

 17.94 1.542 m/s.

 17.95 2.01 ft/s z.

 17.96 0.400 r.
 17.97 (a) 24.4 rad/s i. (b) 1545 lb y.

 17.98 (a) 10.00 in. (b) 22.6 rad/s i.

 17.101 (a) 2.16 m/s y. (b) 4.87 kN a 66.98.

 17.102 (a) 158.0 mm. (b) 1.992 m/s y.

 17.103 (a) 0.90 v0yL i. (b) 0.10 v0 y.

 17.104 2.40 rad/s i.

 17.105 1.667 in.

 17.106 v 5
22gh1c 1  cos θ2

r11 1 c232  i and v 5
22gh1c 1  cos θ2
11 1 c232  y.

 17.107 
π

3
L.

 17.108 (a) mv0yM y. (b) mv0yMR l.

 17.109 (a) 1.500 R. (b) 1.000 R.

 17.112 v 5 2.4 

v0

L
 l and v 5 0.721v0 d 56.3°.

 17.115 2.38 m/s.

 17.116 4.867 rad/s l.

 17.117 (a) 0.4371gyL. (b) 5.12°.

 17.118 (a) 0.250 v0 i. (b) 0.9375. (c) 1.50°.

 17.119 48.7°.

 17.120 1887 ft/s.

 17.121 725 mm.

 17.122 447 mm.

 17.123 0.6062gL y.

 17.124 0.8662gL y.

 17.127 (a) 3.00 rad/s l. (b) 0.938 m/sx.

 17.128 (a) 2.60 rad/s i. (b) 1.635 m/s c 53.4°.

 17.131 1.250 v0yr.
 17.132 (a) vA 5 0, vA 5 v1yr i, vB 5 v1 y, vB 5 0.

  (b) v9A 5 0.286 v1 y, v9B 5 0.514 v1 y.

 17.133 (a) vA 5 (v0 sin θ)j, vB 5 (v0 cos θ)i, vA 5 

(v0yr) (2sin θi 1 cos θj), vB 5 0.

  (b) 0.714 v0 cos θi.
 17.134 vAB 5 2.68 rad/s i, vBC 5 13.39 rad/s i.

 17.135 (a) 106.7 rev. (b) 6.98 s.

 17.136 70.1 lbw.

 17.137 (a) 18.22 ft/s. (b) 359.7 lbx. (c) 234.2 ft?lbs.

 17.139 (a) 53.1°. (b) 1.0951gL c 53.1°.

 17.140 A 5 100.1 Nx, B 5 43.9 N y.

 17.142 0.778 v0.

 17.143 (a) 418 rpm. (b) 220.4 J.

 17.145 (a) 68.6 rpm. (b) 2.82 J.

CH APTER 18
 18.1 0.250 mr2 v2 j 1 0.500 mr2 v1k.

 18.2 2(0.0408 slug?ft2/s)i 1 (0.1398 slug?ft2/s)j.
 18.3 0.247 slug?ft2/s, θx 5 48.6°, θy 5 41.4°, θz 5 90°.

 18.5 (0.1125 kg?m2/s)j 1 (0.675 kg?m2/s)k.

 18.7 0.432 ma2v, 20.2°.

 18.8 9.7°.

 18.9 (1.843 lb?ft?s)i 2 (0.455 lb?ft?s)j 1 (1.118 lb?ft?s)k.

 18.10 2(2.03 kg?m2/s)i 1 (4.16 kg?m2/s)j 1 (0.675.03 kg?m2/s))k.

 18.11 0.500 mr2v1i 2 m(L2 1 0.250 r2) (rv1yL)j.
 18.12 (a) 0.485 rad/s. (b) 0.01531 rad/s.

 18.15 (a) (5.65 kg?m2/s)i 2 (1.885 kg?m2/s)j 1 (12.57 kg?m2/s)k.

(b) 25.4°.

 18.16 (a) (5.65 kg?m2/s)i 2 (1.885 kg?m2/s)j 1 (12.57 kg?m2/s)k. 

(b) 154.6°.

 18.17 (a) (1.078 lb?s?ft)i 2 (0.647 lb?s?ft)k. (b) 31.0°.

 18.18 (a) (1.078 lb?s?ft)i 2 (0.647 lb?s?ft)k. 
(b) (1.078 lb?s?ft)i 2 (0.647 lb?s?ft)k.

 18.21 93.6 kg.

 18.22 2.57 s.

 18.25 (a) 0. (b) (3FDtyma) (i 2 4k).

 18.26 (a) 2(FDtym)i. (b) (3 FDty8ma) (j 1 4k).

 18.27 (a) 2(0.300 m/s)i. (b) 2(0.962 rad/s)i 2 (0.577 rad/s)j.
 18.28 (a) (0.300 m/s)j. 

(b) 2(3.46 rad/s)i 1 (1.923 rad/s)j 2 (0.857 rad/s)k.

  18.31 (a) 0.1250 v0 (2i 1 j). (b) 0.0884 av0k.

 18.32 (a) 0.1031 mav0k. (b) 20.01473 mav0k.

 18.33 (0.0248 rad/s)i 2 (0.277 rad/s)j 2(0.360 rad/s)k.

 18.34 (a) 20.726 rad/s.

  (b) 2(2160 ft/s)i 2 (4860 ft/s)j 1 (860 ft/s)k.

 18.35 (a) tA 5 0.129 s, tB 5 1.086 s. (b) 2(50.6 mm/s)j.
 18.36 (a) 0.941 s. (b) (0.0169 rad/s)j. (c) 2(39.2 mm/s)j.
 18.39 0.1250 mr2 (v2

2 1 2v2
1).

 18.40 0.349 ft?lb.

 18.41 0.978 ft?lb.

 18.42 12.67 ft?lb.

 18.43 15.47 J.

 18.44 0.1250 ma2v2.

 18.45 0.203 ma2v2.

 18.47 237 J.

 18.49 27.0 J.

 18.50 46.2 J.

 18.51 0.1000 mv 
2
0.

 18.53 16.75 ft?lb.

 18.54 39.9 ft?lb.

 18.55 0.500 mr2 v1v2i.
 18.56 (0.204 ft?lb)k.

 18.57 (2.22 ft?lb)k.

 18.58 (5.30 lb?ft)k.

 18.59 (3.38 N?m)i.

 18.60 
1

4
 mr2v2

 sin β cos βk.

 18.64  

1

4
 mr2

α sin β cos βj  1   

1

4
 mr2v2

 sin β cos βk.

 18.65 C 5 0.1667 mbv2 sin β cos βi.
  D 5 20.1667 mbv2 sin β cos βi.
 18.66 A 5 2(4.97 lb)i, B 5 2(1.656 lb)i.
 18.67 A 5 2(1.103 lb)j 2 (0.920 lb)k.

  B 5 (1.103 lb)j 1 (0.920 lb)k.

 18.68 A 5 (14.4 N)k, B 5 2(14.4 N)k.

 18.71 (a) 3M0ymb2 cos2 β. (b) C 5 2D 5 (M0 tan βy2b)k.

 18.72 (a) (14.49 rad/s2)j. (b) A 5 2(1.125 lb)k, B 5 2(0.375 lb)k.

 18.73 (a) (0.873 lb?ft)i. (b) A 5 2B 5 2(0.218 lb)j 1 (0.262 lb)k.

 18.74 (a) (2.67 N?m)i. (b) A 5 2B 5 (2.00 N)j.
 18.75 (a) (0.1301 lb?ft)i. (b) A 5 2B 5 2(0.0331 lb)i 1 (0.0331 lb)j.
 18.76 A 5 2B 5 2(0.449 lb)j 2 (0.383 lb)k.

 18.79 A 5 2B 5 (1.527 N)j.
 18.81 (a) 10.47 N?m. (b) 10.47 N?m.

 18.82 24.0 Nx.
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AN20 Answers to Problems

 19.3 1.273 in., 150.8 ft/s2.

 19.4 (a) 0.324 s, 3.08 Hz. (b) 12.91 mm, 4.84 m/s2.

 19.5 (a) 0.308 s, 3.25 Hz. (b) 1.021 m/s, 20.8 m/s2.

 19.6 (a) 267 rpm. (b) 5.36 ft/s.

 19.7 (a) 11.29°. (b) 1.933 m/s2.

 19.8 (a) 0.557 Hz. (b) 293 mm/s.

 19.11 (a) 0.0352 s. (b) 6.34 ft/s x, 64.4 ft/s2
w.

 19.12 0.445 ftx, 2.27 ft/sw, 114.7 ft/s2
w.

 19.13 (a) 1.288°. (b) 0.874 ft/s, 0.760 ft/s2.

 19.14 (a) 4.91 mm, 5.81 Hz, 0.1791 m/s.

  (b) 491 N, (c) 0.1592 m/sx.

 19.17 (a) 0.517 s, 1.934 Hz. (b) 0.365 m/s, 4.43 m/s2.

 19.18 2.87 s.

 19.19 
B

k

2 m
.

 19.20 (a) 0.361 s, 2.77 Hz. (b) 0.765 m/s, 13.30 m/s2.

 19.23 4.

 19.24 (a) 6.80 kg. (b) 0.583 s.

 19.25 192 lb/ft.

 19.26 (a) 21.7 kg. (b) 1011 kg/m3.

 19.28 (a) 22.3 MN/m. (b) 266 Hz.

 19.30 (a) 858 N/mm. (b) 149.5 rpm.

 19.31 (a) 3.56 kg. (b) 43.7 kg.

 19.34 16.26°.

 19.35 (a) 1.737 s. (b) 1.864 s. (c) 2.05 s.

 19.36 28.1 in.

 19.37 (a) 0.293 s. (b) 0.215 m/s.

 19.38 (a) 1.047 rad/s. (b) 16.42 in.

 19.39 (a) 0.227 s. (b) 333 mm/s.

 19.41 (a) 0.491 s. (b) 9.60 in/s.

 19.42 (a) 0.1957 s. (b) 171.7 ft/s2.

 19.44 75.5°.

 19.45 0.346 Hz.

 19.48 (a) 2.79 s. (b) 1.933 m.

 19.49 (a) 1.617 s. (b) 1.676 s.

 19.50 (a) 227 mm. (b) 1.352 s.

 19.51 (a) 6.33
B

b

g
. (b) 6.67

B

b

g
.

 19.55 (a) 2.21 Hz. (b) 115. 3 N/m.

 19.56 
1

2πB

6k

5m
  1   

9g

10l
  Hz.

 19.57 
1

2πB

2k

3m
1

4g

3L
  Hz.

 19.59 (a) 0.426 s. (b) 15.44 ft/s.

 19.60 (a) 88.1 mm/s. (b) 85.1 mm/s.

 19.62 82.2 mm/sx.

 19.63 6.57 kg?m2.

 19.64 (a) 21.3 kg. (b) 1.836 s.

 19.67 0.672 in.

 19.68 8.60 ft.

 19.69 19.02 mm.

 19.70 
1

2π
  

B

k

5m
 Hz.

 19.71 3.18 s.

 19.72 6.281Ryg.

 19.75 ly112.

 19.76 75.5°.

 19.77 0.159112ky3m2 1 14gy3L2.
 19.78 2.10 Hz.

 19.79 (a) 0.715 s. (b) 0.293 ft/s.

 19.80 0.821 s.

 18.84 1.138°; up.

 18.85 10.20 rad/s.

 18.86 (a) 27.0°. (b) 8.09 rad/s.

 18.87 (a) 7.53 rad/s. (b) 7.00 rad/s.

 18.88 4.84 rad/s.

 18.90 7.89 rad/s.

 18.91 15.24 rad/s.

 18.93 A 5 2B 5 (0.1906 lb)k.

 18.94 7.87 rad/s.

 18.95 (a) C 5 2(592 N)j and D 5 (592 N)j. (b) C 5 D 5 0.

 18.96 35.5 rpm.

 18.99 2(45.0 N)i, (3.38 N?m)i 1 (10.13 N?m)k.

 18.100 (a) A 5 (1.786 kN)i 1 (143.5 kN)j,
  B 5 2(1.786 kN)i 1 (150.8 kN)j, (b) 2(35.7 kN?m)k.

 18.101 C 5 2(7.81 lb)i 1 (7.43 lb)k,

  D 5 2(7.81 lb)i 2 (7.43 lb)k.

 18.102 C 5 2(12.58 lb)i 1 (9.43 lb)k,

  D 5 2(12.58 lb)i 2 (9.43 lb)k.

 18.103 D 5 2(22.0 N)i 1 (26.8 N)j, E 5 2(21.2 N)i 2 (5.20 N)j.
 18.104 (a) (0.392 N?m)k. (b) D 5 2(21.0 N)i 1 (28.0 N)j,
  E 5 2(21.0 N)i 2 (4.00 N)j.
 18.107 2930 rpm.

 18.109 45.9 rpm, 533 rpm.

 18.111 442 rpm.

 18.112 68.1°.

 18.113  cos 
21 £ 2d2c

.

1d2
  1   h22f.

§ .
 18.114 (a) 128.3 rad/s. (b) 2.17 in.

 18.115 23.7°.

 18.116 (a) 52.7 rad/s. (b) 6.44 rad/s.

 18.117 (a) 4.89 rpm. (b) 4.96 rpm, 396 rpm.

 18.124 (a) 13.19°. (b) 1242 rpm (retrograde)

 18.126 24.8 rev/h.

 18.127 (a) 12.85°. (b) 5.78 rev/h. (c) 20.7 rev/h.

 18.128 (a) 109.4 rpm, γx 5 90°, γy 5 100.05°, γz 5 10.05°.

  (b) θx 5 90°, θy 5 113.9°, θz 5 23.9°.

  (c) precession: 47.1 rpm; spin: 64.6 rpm.

 18.130 (a) θx 5 90.0°, θy 5 26.0°, θz 5 64.0°.

  (b) precession, 0.847 rad/s (retrograde); spin: 0.1593 rad/s.

 18.131 (a) 40.0° , θ , 140.0°. (b) 5.31 rad/s. (c) 5.58 rad/s.

 18.132 (a) 2.00 rad/s. (b) 8.94 rad/s.

 18.135 (a) 41.2°. (b) 5.52 rad/s.

 18.136 (a) 4.23 rad/s. (b) 12.50 rad/s.

 18.139 (a) 47.0°. (b) precession: 15.25 rad/s; spin: 307 rad/s.

 18.140 (a) 76.3°. (b) precession: 9.62 rad/s; spin: 294 rad/s. (c) 36.5°.

 18.148 (0.234 kg?m2/s)j 1 (1.250 kg?m2/s)k.

 18.150 (a) 0. (b) (FDtyma) (2.50i 2 1.454j 1 2.19k).

 18.151 4.29 kN?m.

 18.153 D 5 2(7.12 lb)j 1 (4.47 lb)k, E 5 2(1.822 lb)j 1 (4.47 lb)k.

 18.154 D 5 0; MD 5 (11.23 N?m) cos2 θi 1 

(11.23 N?m) sin θ cos θj 2 (2.81 N?m) sin θ cos θk.

 18.155 (a) θx 5 52.5°, θy 5 37.5°, θz 5 90°.

  (b) 53.8 rev/h. (c) 6.68 rev/h.

 18.156 axis: 32.0°, precession: 1.126 rpm, and spin: 0.344 rpm.

 18.157 (a) 4.00 rad/s. (b) 5.66 rad/s.

CHAPTER 19
 19.1 10 mm, 3.18 Hz.

 19.2 4.33 ft/s, 0.551 Hz.
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Answers to Problems AN21

 19.83 1.327 s.

 19.85 1.834 s.

 19.86 2.39 s.

 19.87 2π2112r2 1 2l22y3gl.

 19.89 (a) 216ka2 2 3mgl2y12π2. (b) 2mgly2k.

 19.90 2.29 Hz.

 19.91 0.911 Hz.

 19.92 0.13121gyr.

 19.95 0.2761gyl.

 19.96 
1

2π
 
D

12k

7m
1

8g

733l
 Hz.

 19.97 1.814ly1gr.

 19.98 0.352 s.

 19.99 (a) 37.1 mm. (b) 260 mm.

 19.100 (a) 160.0 N/m. (b) 40.0 N/m.

 19.101 
B

2k

3m
, vf ,

B

4k

3m
.

 19.102 50.1 lb.

 19.105 vf , 8.46 rad/s, (no out-of-phase solution).

 19.106 3.21 m/s2.

 19.107 (a) 0.450 rad/s. (b) 2.70 m/s2.

 19.109 vf . 12gyl.
 19.110 (a) 1.034 in. (b) 2 0.1033 sin πt (lb).

 19.112 651 rpm.

 19.114 22.0 mm.

 19.115 0.0999 in.

 19.116 vf , 322 rpm.

 19.117 39.1 kg.

 19.119 149.3 mm.

 19.121 Force transmissibility: 1y(1 2 v2
fyvn

2),

  Displacement transmissiblity: 1y(1 2 v2
fyvn

2).

 19.122 (a) 4.17%. (b) 84.9 Hz.

 19.123 8.04%.

 19.125 (a) 1399 rpm. (b) 0.01670 in.

 19.132 (a) 6.49 kip ? s/ft. (b) 230 kips/ft.

 19.133 5.48 N?m?s.

 19.134 (a) 6490 lb/ft. (b) 0.1939 s.

 19.135 (a) 0.118. (b) 38.4 mm.

 19.136 56.9 mm.

 19.137 8.82 N.

 19.138 106.5 mm/sx.

 19.139 0.1791 in.

 19.140 10.61 lb?s/in.

 19.141 $ 0.707.

 19.143 (a) 147 kip/ft. (b) 0.0292.

 19.144 0.0162 in.

 19.145 (a) 0.127. (b) 462 N?s/m.

 19.146 0.487.

 19.148 (a) 71.8 N. (b) 39.0 N.

 19.149 (a) 4.90 in. (b) 30.3 lb.

 19.151 (a) mẍ 1 cx
.

1 kx 5 1k sin vf 
t 1 cvf cos vf 

t2δm.

  (b) x 5 xm sin (vft 2 w 1 c), where

  xm 5 δm2k2 1 1cvf22y21k 2 mv2
f 22 1 1cvf22,

  tan w 5 cvfy(k 2 mvf
2), tan c 5 cvfyk.

 19.153 R , 21LyC.

 19.154 (a) EyR. (b) LyR.

 19.157 (a)  c1x. A 2 x
.
m2 1 kxA 5 0

mẍm 1 c1x. m 2 x
.

A2 5 Pm sin vf 
t

  (b)  R1q. A 2 q
.

m2 1 11yC2qA 5 0

Lq̈m 1 R1q. m 2 q
.

A2 5 Em sin vf 
t

 19.159 0.760 lb?s2? ft, 8.66 in.

 19.160 (a) 6.82 lb. (b) 33.4 lb/ft.

 19.161 1.785 s.

 19.162 (a) 0.0139. (b) 0.0417 lb?s/ft.

 19.165 (a) 0.07246θ̈ 1 0.3375θ
.

1 1.25θ 5 0.

  (b) 219.05 3 1026 degrees.

 19.168 (a) mẍ 1 2T12xyl2 5 0. (b) π1mlyT.

 19.169 0.045 in.
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I1

A
Absolute acceleration, 1030 

Absolute velocity, 998 

Acceleration 

absolute, 1030 

angular 

constrained (plane) motion, 1146–1147

fixed-axis rotation, 982–983, 989

average, 618–619, 664 

Coriolis 

motion with respect to a rotating frame, 980, 

1051–1052, 1058

three-dimensional (space) motion, 1083, 1089

two-dimensional (planar) motion, 

1051–1052, 1058

of particles, 621–622 

curvilinear motion and, 664–665

determining, 618–620

instantaneous, 619, 664

radial and transverse components of, 694

rectangular components of, 667–668

rectilinear motion and, 618–662

tangential and normal components of, 

691–692, 700

of rigid bodies, 1029–1039 

constrained (plane) motion, 1044–1046, 

1159–1160

moving frames of reference, 1083–1084, 

1089–1090

normal components, 1029–1031

plane motion, 1029–1039

tangential components, 1029–1031

three-dimensional (space) motion, 1066, 

1068, 1072–1073, 1083–1084, 

1089–1090

two-dimensional (planar) motion, 982–983, 

989, 1029–1039

vector polygons for determination 

of, 1030

relative, 669, 1029–1030, 1038–1039 

vector, 664–665, 667–668 

Addition 

of couples, 123–124 

of forces, 4, 32–33 

of vectors, 18–20 

parallelogram law for, 4, 18 

polygon rule for, 19–20 

summing x and y components, 32–33 

triangle rule for, 19 

Amplitude, 1333, 1336, 1343 

Analysis, see Structural analysis 

Angles 

Eulerian, 1305–1306, 1312 

firing, 671, 676 

formed by two vectors, 106, 113 

lead, 451 

of friction, 433–434 

of repose, 434 

phase, 1336, 1343 

Angular acceleration

constrained (plane) motion, 1146–1147

fixed-axis rotation, 982–983, 989

Angular coordinate, 982, 989 

Angular moment couple, 1212 

Angular momentum 

about a mass center, 922–924, 928, 1111, 

1267–1268, 1276

central force and, 764–765, 769 

conservation of, 765, 924, 939, 944 

equations for, 919–920 

in polar coordinates, 764 

Newton’s law of gravitation for, 765–766 

of a rigid body in plane motion, 1110–1111 

of particle motion, 719, 763–769 

of systems of particles, 919–920, 922–924, 

928, 939, 944

orbital motion and, 763–769 

rate of change 

of a particle, 736–764

of rigid bodies in plane motion, 1111

of three–dimensional rigid bodies, 

1285–1286, 1294–1295

three-dimensional rigid bodies, 1266–1270, 

1276, 1285–1286

about a fixed point, 1269–1270, 

1276–1277

about a mass center, 1267–1268, 1276

inertia tensor, 1268

principle axes of inertia, 1268, 1276

reduction of particle moments, 1269

vector forms, 763 

Angular velocity, 982, 989, 1000, 1038 

Apogee, 777 

Arbitrary shaped bodies, moments of inertia of, 

552–553, 556 

Area 

centroid of common, 238 

composite, 240 

first moment of, 231, 235–237, 244, 250 

integration 

centroids determined by, 249–250

moments of inertia determined by, 

488–489, 494

moment of inertia, 487–494, 498–506, 

513–519

for a rectangular area, 488–489

for composite areas, 499–506

for hydrostatic force system, 488, 506

of common geometric shapes, 500

polar moments, 490, 494

principle axis and moments, 514–516, 519

product of inertia, 513–514, 519

second moments, 487–494

transformation of, 513–519

using same strip elements, 489

radius of gyration, 490–491 

theorems of Pappus–Guldinus, 250–252 

two-dimensional bodies, 231, 235–237, 244

units of, 7–9 

Areal velocity, 765 

Average acceleration, 618–619, 664 

Average power, 804 

Average velocity, 618, 663 

Axel friction, 459–460, 465 

Axes 

moments of a force about, 84, 105–114 

arbitrary point for, 109–110

given origin for, 108–109

mixed triple products, 107–108

scalar products, 105–106

neutral, 487 

principle axis and moments of inertia 

about the centroid, 516

ellipsoid of inertia, 550–552

for a body of arbitrary shape, 552–553, 556

of a mass, 551–553, 557

of an area, 514–516, 519

Axisymmetric body analysis, 1306, 

1308–1309, 1313–1314 

B
Balance, 1289 

Ball and socket supports, 206 

Basic units, 6 

Beams 

bending moment in, 379–381, 385, 391–399

centroids of, 262–264, 267 

classification of, 378 

loading conditions 

concentrated, 262–263, 378

distributed, 262–264, 267, 378

internal forces and, 368, 378–386

uniformly distributed, 378

pure bending, 487 

shear and bending moment diagrams for, 

381, 386

shearing forces, 379–381, 385, 391–399 

span, 379 

Belt friction, 469–474 

Bending moments, 370–373 

beams, 379–381, 385, 391–399 

diagrams for, 381, 386 

external forces and, 380 

internal forces as, 368, 370–373 

shearing force relations with, 392–393 

Binormal, 692 

Body centrode, 1017 

Body cone, 1066 

Bracket supports, 206 

C
Cable supports, 173, 206 

Cables, 368, 403–410, 416–420 

catenary, 416–420 

internal forces of, 368, 403–410 

Index
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I2 Index

parabolic, 405–406, 410 

sag, 405 

solutions for reactions, 409–410, 420 

span, 405 

supporting concentrated loads, 403–404, 409

supporting distributed loads, 404–405, 410, 

416–120

supporting vertical loads, 403–404, 409 

Catenary cables, 416–420 

Center of force, 764 

Center of gravity, 84 

composite area, 240 

composite bodies, 275 

composite plate, 239–240 

location of, 232–233 

problem solving with, 239–244 

three-dimensional bodies, 273–275, 282 

two-dimensional bodies, 231–233 

Center of pressure, 263 

Central-force motion, 720, 764–765, 769, 

774–782 

angular momentum of a particle, 764–765, 769

applications of, 774–782 

of particles, 720, 764–765, 769, 774–782 

space mechanics, 775–778 

eccentricity, 775–776

escape velocity, 777

gravitational force, 775–776

initial conditions, 776–777

Kepler’s laws of planetary motion, 778

periodic time, 777–778

trajectory of a particle, 774–775 

Central impact, 877, 894 

Centrifugal force, 1146 

Centrodes, 1017 

Centroid, 231, 233–235 

distributed load problems using, 262–268 

integration for determination of, 249–250, 277

location of, 233–235, 244 

of areas, 233–235, 238, 244, 249–250, 262–268

of common shapes, 238–239, 276 

of lines, 233–235, 239, 244 

of volume, 274–277 

theorems of Pappus–Guldinus, 250–252 

three-dimensional bodies, 274–277 

two-dimensional bodies, 233–235, 238–239

Centroidal frame of reference, 923, 936–937 

Centroidal rotation, 1112, 1127 

Circle of friction, 460, 465 

Circular orbits, 767–769 

Coefficients 

impact analysis, 878–879, 882, 894–895 

of critical damping, 1389, 1396 

of friction, 432–433, 463, 465 

of restitution, 878–879, 882, 894–895 

of viscous damping, 1389 

vibration analysis, 1389, 1396 

Collar bearings, 460–461 

Commutative property, 88, 105 

Complimentary function, 1376 

Composite bodies, 275–276 

center of gravity of, 275 

centroid of, 275–276 

mass moment of inertia of, 533–540, 556 

Composite plates and wires, 237–240 

Compound truss, 318–319 

Compressibility of fluids, 2 

Compression, deformation from, 86 

Concentrated loads 

beams, 262–263, 378 

cables supporting, 403–404, 409 

Concurrent forces 

resultants, 20, 57 

system reduction of, 138 

Connections, 172–174. 

See also Support reactions 

Conservation of angular momentum, 765, 939, 

944, 1214, 1222 

Conservation of energy 

conservative forces, 829–830, 832, 840 

energy conversion and, 831 

in particle motion, 827–841 

in rigid-body plane motion, 1186–1188, 1199 

in systems of particles, 937, 944 

kinetic energy, 937, 944 

potential energy, 827–829, 840–841 

principle of, 830–831 

space mechanics applications, 832 

vibration applications of, 1364–1368 

Conservation of momentum, 857 

angular, 765, 939, 944, 1214, 1222 

direct central impact and, 877–878, 894 

linear, 857, 939, 944 

oblique central impact and, 880, 895 

particle motion, 857 

rigid-body plane motion, 1214, 1222 

systems of particles, 924, 928, 939, 944 

Conservative forces 

exact differential, 829 

potential energy of, 598, 829–830 

space mechanics applications, 832 

work of, 829 

Constant force, work of in rectilinear motion, 

799, 815 

Constant of gravitation, 766 

Constrained (plane) motion, 1144–1160 

acceleration, 1044–1046, 1159–1160 

angular acceleration, 1146–1147 

free-body and kinematic diagrams for, 

1144–1145, 1159

moments about a fixed axis, 1146, 1159 

noncentroidal rotation, 1145–1146, 1159 

rolling, 1146–1147, 1160 

sliding and, 1146–1147, 1160 

system of rigid bodies, 1160 

unbalanced rolling disk or wheel, 1147, 1160

Constraining forces, 172, 176–177, 205 

completely constrained, 176 

free-body diagram reactions, 172 

improperly constrained, 177, 205 

partially constrained, 176, 205 

three-dimensional rigid bodies, 205 

two-dimensional rigid bodies, 176–177 

Conversion

of energy, 831

of units, 10–12 

Conveyor belt, fluid stream diversion by, 

951–952, 959 

Coplanar forces 

resultants, 19–20 

system reduction of, 139–140 

Coplanar vectors, 19–20 

Coriolis acceleration, 980 

motion with respect to a rotating frame, 980, 

1051–1052, 1058

moving frames of reference, 1083, 1089 

rotating frames of reference, 1051–1052, 1058

three-dimensional (space) motion, 1083, 1089

two-dimensional (planar) motion, 1051–1052, 

1058

Coulomb friction, see Dry friction 

Couples, 120–128 

addition of, 123–124

angular moment, 1212

equivalent, 121–123 

force-couple system resolution, 124–125 

moment of, 120–121 

work of, 577 

Critical damping coefficient, 1389, 1396 

Critically damped vibration, 1390, 1396 

Cross product, see Vector product 

Curvilinear motion of particles, 663–677 

acceleration vectors, 664–665, 667–669 

derivatives of vector functions, 665–667 

firing angle, 671, 676 

frame of reference, 667–669 

position vectors, 663, 669 

projectile motion, 668, 670–672, 676 

rate change of a vector, 666 

rectangular components, 667–668 

relative–motion problems, 668–669, 

673–675, 677

rotation compared to, 979 

two-dimensional problems, 677 

velocity vectors, 663–664, 667–669 

Cylindrical coordinates for radial and transverse 

components, 694, 701 

D
Damped circular frequency, 1390 

Damped vibration, 1334, 1389–1397 

critically, 1390, 1396 

electrical analogs, 1393–1395 

forced vibration, 1391–1393, 1397 

free vibration, 1389–1391, 1396–1397 

friction causes of, 1389 

magnification factor, 1392–1393, 1397 

overdamped, 1390, 1396 

period of, 1390–1391 

phase difference, 1392 

underdamped, 1390, 1396 

Damping factor, 1390 

Deceleration, 619 

Definite integrals, 621 

Deformable bodies, mechanics of, 2 

Deformation, 86–87 

from impact, 877–878, 1234 

internal forces and, 86 

principle of transmissibility for prevention of, 

86–87

Degrees of freedom, 600, 637 

Dependent motion of particles, 637, 645 

Derived units, 6 

Dick clutch, 465 

Direct central impact, 877–880, 894 

coefficient of restitution, 878–879, 894 

conservation of momentum and, 877–878, 894

deformation from, 877–878 

energy loss from, 879–880 

perfectly elastic, 879 

perfectly plastic, 879 

period of restitution, 877–878 

Direct impact, 877 

Direction cosines, 53, 55 

Cables (Cont.)
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I3Index

Direction of a force, 17, 31. 

See also Line of Action 

Disk friction, 460–462, 465 

Displacement 

finite, 595–597, 798, 800 

from mechanical vibration, 1333 

of a particle, 575 

vertical, 799 

virtual, 577–578, 585 

work of a force, 577–578, 585, 595–597, 

797–800

Displacement vector, 663 

Distributed forces, 230–296. 

See also Centroids 

beam loads, 262–264, 267, 378 

cables supporting loads, 404–405, 410, 416–120

concentrated load and, 262–263 

integration methods for centroid location, 

249–257, 277, 282

moments of inertia, 485–572 

of areas, 487–494, 498–506

of masses, 487

polar, 486, 490, 494

transformation of, 513–519

submerged surfaces, 263, 265–268 

theorems of Pappus–Guldinus, 250–252 

three-dimensional bodies, 273–282 

center of gravity, 273–275, 282

centroid of volume location, 274–277, 282

composite bodies, 275–276

two-dimensional bodies, 232–244 

center of gravity, 232–233, 244

centroid of area and line location, 233–235, 

238–239, 244

composite plates and wires, 237–240

first moment of an area or line, 235–237, 244

planar elements, 232–244

Distributive property, 88 

Dot product, 105. 

See also Scalar products 

Double integration, 249, 277 

Dry friction, 430–441 

angles of, 433–434 

coefficients of, 432–433 

kinetic friction force, 431–432 

laws of, 431 

problems involving, 434–441 

static friction force, 431–432 

E
Eccentric impact, 877, 1234–1246 

Eccentricity, 775–776 

Efficiency 

mechanical, 580–581, 805 

overall, 805 

power and, 804–805 

Elastic force, 596–597, 602.

See also Spring force 

Elastic potential energy, 828 

Electrical analogs, 1393–1395 

Ellipsoid of inertia, 550–552 

Elliptic integral, 1339 

Elliptical orbits, 767–769 

Elliptical trajectory, 775–776, 781–782 

End bearings, 460–461 

Energy and momentum methods, 795–914, 

1181–1263 

angular momentum, 1266–1270, 1276 

conservation of energy 

conservative forces, 829–830, 832, 840

in particle motion, 827–841

in rigid-body plane motion, 1186–1188, 1199

potential energy, 827–829, 840–841

principle of, 830–831

space mechanics applications, 832

displacement, 797–800 

efficiency and, 804–805 

friction forces and, 804, 831 

impact 

conservation of energy and, 883–884, 895

direct central, 877–880, 894

eccentric, 1234–1246

oblique central, 880–882, 894–895

problems involving multiple kinetics 

principles, 882–884

impulse and momentum 

conservation of angular momentum, 

1214, 1222

conservation of linear momentum, 857

impulse of a force, 855–856, 865–866

impulsive motion, 857–858

of particle motion, 855–866

of rigid-body plane motion, 1211–1222

kinetic energy 

particle motion, 801–802, 816, 830–831, 840

rigid-body plane motion, 1185–1186, 1198

systems of particles, 936–937, 944

three-dimensional rigid-body motion, 

1271–1272, 1277

particle motion, 795–914 

power 

from particle motion, 804–805, 816

from rigid-body plane motion, 1188, 1199

principle of impulse and momentum 

particle motion, 796, 855–857, 865

rigid-body plane motion, 1211–1213, 

1221–1222

three–dimensional rigid-body motion, 

1270–1271, 1277

principle of work and energy 

particle motion, 796, 801–804

rigid-body plane motion, 1183–1184, 1198

rigid-body plane motion, 1181–1263 

systems of particles, 936–944 

conservation of energy, 937, 944

conservation of momentum, 939, 944

impulse-momentum principle, 938–939

work-energy principle, 937

systems of rigid bodies, 1116, 1127, 1214, 1222

three-dimensional rigid-body motion, 

1266–1277

work of a force 

constant force in rectilinear motion, 799, 815

force of gravity, 799, 815

gravitational force, 800–801, 816

particle motion, 797–816

pin-connected members, 1199

rigid-body plane motion, 1184–1185, 1198

spring force, 799–800, 815, 1199

Energy conversion, 831 

Energy loss from impact, 879–880, 895 

Engineering examination, fundamentals of, A1 

Equal and opposite vectors, 18 

Equilibrium, 39 

equations of, 39–40 

force relations and, 16, 39–45 

frame determinacy and, 332–333 

free-body diagrams for, 40–41, 170–172 

Newton’s first law of motion and, 40 

neutral, 599 

of a particle, 39–40, 66–74 

three-dimensional (space) problems, 66–74

two-dimensional (planar) problems, 39–40

of rigid bodies, 169–229 

statically determinate reactions, 176

statically indeterminate reactions, 

176–177, 205

support reactions, 172–174, 204–206

three-dimensional structures, 204–213

three-force body, 196–198

two-dimensional structures, 172–183

two-force body, 195, 198

principle of transmissibility and, 4 

stable, 599–600 

unstable, 599–600 

virtual work conditions, 598–602 

potential energy and, 598–599, 602

stability and, 599–602

Equipollent forces, 1112 

Equipollent particles, 919 

Equipollent systems, 138 

Equivalent couples, 121–123 

Equivalent systems of forces, 82–168 

deformation and, 86–87 

external, 84–85 

internal, 84, 86–87 

point of application, 84–85 

principle of transmissibility and, 83, 85–87

reduction to force–couple system, 136–137

rigid bodies, 82–168 

simplifying, 136–150 

weight and, 84–85 

Escape velocity, 777 

Eulerian angles, 1305–1306, 1312 

Euler’s equations for motion, 1065, 

1286–1287 

Euler’s theorem, 1065 

Exact differential, 829 

External forces 

acting on a rigid body in plane motion, 

1112–1113

acting on systems of particles, 916–919 

equivalent systems and, 84–85 

shear and bending moment conventions, 380

F
Finite rotation, 1066 

Firing angle, 671, 676 

First moment

of an area or line, 231, 235–237, 244 

of volume, 274 

Fixed-axis rotation 

angular acceleration, 982–983, 989 

angular coordinate, 982, 989 

angular velocity, 982, 989 

equations for, 984, 990 

noncentroidal, 1146, 1159 

rigid-body motion, 978–990 

shaft balance, 1289 

slab representation, 983–984, 989–990 

three-dimensional motion analysis, 

1288–1289, 1295–1296

Fixed frame of reference, 668 
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I4 Index

Fixed point, motion about a, 979

acceleration, 1066, 1072 

angular momentum, 1269–1270, 1276–1277 

Euler’s theorem for, 1065 

instantaneous axis of rotation, 1065–1066 

plane motion analysis, 1065–1067, 1072 

rate of change of angular momentum, 

1285, 1294

three-dimensional motion analysis, 

1287–1288, 1295

velocity, 1067, 1072

Fixed (bound) vector, 18 

Fixed supports, 174, 206 

Fluid friction, 430–431 

Fluids

compressibility of, 2 

flow through a pipe, 952–953 

stream diversion by a vane, 951–952, 959 

Force. See also Distributed forces; Equivalent 

forces; Force systems 

centrifugal, 1146 

concept of, 3 

concurrent, 20, 138 

conservative, 597, 829–830, 832, 840 

constant in rectilinear motion, 799, 815 

constraining, 172, 176–177, 205 

conversion of units of, 11 

coplanar, 19–20, 139–140 

direction, 17, 31 

elastic, 597 

equilibrium and, 16, 39–45 

equipollent, 1112 

equivalent, 85 

external, 916–919, 1112–1113 

friction, 430–431, 804, 831, 1146 

gravitational, 775–776 800–801, 816 

impulsive, 857, 865 

input (machines), 348 

internal, 916–919 

kinetic friction, 431–432 

line of action (direction), 17, 56–57 

magnitude, 17, 52, 56–57 

of gravity, 597, 799, 815, 827 

of rigid-body plane motion, 1112–1116 

output (machines), 348 

parallel, 140–141 

parallelogram law for addition of, 4 

particle equilibrium and, 15–81 

planar (two-dimensional), 16–51 

concurrent force resultants, 20

parallelogram law for, 17

rectangular components, 29–32

resolution into components, 20–21

resultant of two forces, 17

scalar components, 30

summing x and y components, 32–33

unit vectors for, 29–32

point of application, 17 

scalar representation, 18, 20 

sense of, 17 

spring, 799–800, 815 

static friction, 431–432 

systems of particles, 916–919 

three dimensions of space, 52–74 

concurrent force resultants, 57

rectangular components, 52–55

scalar components, 53

unit vectors for, 54–55

vector representation, 17–20 

weight, 4–5 

work of, 575–577, 595–597, 797–816 

Force–couple systems, 124–125 

conditions for, 137–138 

equipollent, 138 

equivalent systems reduced to, 137–138 

reactions equivalent to, 174 

reducing a systems of forces into, 136–137

resolution of a given force into, 124–125, 128

resultant couples, 138–141 

wrench, 141–142 

Force systems, 82–168 

center of gravity, 84 

concurrent, 138 

coplanar, 139–140 

couples, 120–128 

equipollent, 138 

equivalent, 84–87, 136–150 

external forces, 84–85 

force-couple, 124–125 

internal forces, 84–87, 298–299 

moment about a point, 83 

moment about an axis, 84 

parallel, 140–141 

point of application, 84–85 

position vectors defining, 90, 136 

reducing into force–couple system, 136–137

resolution of a given force into force–couple 

system, 124–125, 128

simplifying, 136–150 

virtual work application to connected rigid 

bodies, 578–580

weight and, 84–85 

Force triangle, 41 

Forced circular frequency, 1375 

Forced frequency, 1376 

Forced vibration, 1334 

caused by periodic force, 1375, 1380 

caused by simple harmonic motion, 1375, 1381

damped, 1391–1393, 1367 

forced circular frequency, 1375 

forced frequency, 1376 

frequency ratio for, 1376 

magnification factor, 1376–1377, 

1392–1393, 1397

resonance of the system, 1377, 1380 

undamped, 1375–1381 

Frame of reference, 667–669 

centroidal, 923, 936–937 

fixed, 668 

general motion, 1083–1084, 1090 

motion relative to, 668–669 

moving, 668, 1082–1090 

newtonian, 721 

rate of change of a vector, 667, 1048–1049, 1058

relative position, velocity, and 

acceleration, 669

rotating, 1048–1058, 1082–1083, 1089 

three-dimensional particle motion, 

1082–1083, 1089

translation of, 667, 669 

Frames, 299, 330–338 

collapse of without supports, 332–333 

equilibrium of forces, 332–333 

free-body diagrams of force members, 

330–332

multi-force members, 299, 330 

statically determinate and rigid, 333 

statically indeterminate and nonrigid, 333

Free-body diagrams, 13 

equilibrium 

particle force, 40–41

rigid-body force, 170–172

frame analysis using, 330–332 

machine analysis of members, 348, 351 

particle motion, 725–726, 741 

rigid-body constrained motion, 1144–1145, 1159

rigid-body plane motion, 1114–1116, 1126 

truss analysis of joint forces, 303 

two-dimensional problems, 40–41, 170–172

Free vector, 18 

Free vibration, 1334 

damped, 1389–1391, 1396–1397 

of rigid bodies, 1350–1356 

pendulum motion, 1337–1339, 1343 

simple harmonic motion with, 1334–1343 

undamped, 1334–1343, 1350–1356 

Frequency, 1333 

damped circular, 1390 

forced, 1376 

forced circular, 1375 

natural, 1337, 1342 

natural circular, 1335, 1343 

units of, 1337 

Frequency ratio, 1376 

Friction, 429–484 

angles of, 433–434 

axel, 459–460, 465 

belt, 469–474 

circle of, 460 

coefficients of, 432–433 

disk, 460–462, 465 

dry, 430–441 

fluid, 430–431 

forces of, 430–431 

journal bearings, 459–460, 465 

lubrication and, 431, 459 

potential energy of, 831 

rolling resistance, 462–463, 465 

screws, 450–451, 453–454 

sliding and, 1146 

slipping and, 470–471, 474 

thrust bearings, 459, 460–462, 465 

vibration caused by, 1389 

wedges, 450, 452, 454 

wheel, 462–463, 465 

work of, 804 

Frictionless pins, 173–174 

Frictionless surface supports, 173, 206 

Fundamental of Engineering Exam, A1 

G
General motion, 979 

about a fixed point, 1067–1068, 1073 

acceleration, 1068, 1073 

velocity, 1067, 1073, 1083–1084, 1090 

relative to a moving frame of reference, 

1083–1084, 1090

General plane motion, see Plane motion 

Gradient of the scalar function, 830 

Graphical solutions, 652–655 

Gravitational force, work of, 800–801, 816 

Gravitational units, 9 

Gravity (weight) 

constant of, 766 

force of, 799, 815 
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I5Index

Newton’s law of, 765–766 

potential energy with respect to, 597, 602, 

827–828

work of, 596 

Gyroscopes, 1305–1314 

axisymmetric body analysis, 1306, 1308–1309, 

1313–1314

Eulerian angles of, 1305–1306, 1312 

steady precession of, 1307–1308, 1312–1313

three-dimensional analysis of motion, 1305–1314

H
Harmonic motion, 1334–1343 

Homogeneous equation, 1375 

Hydraulics, 2 

Hydrostatic force system, 488, 506 

Hyperbolic trajectory, 775–776, 781–782 

I
Impacts 

central, 877, 894 

coefficient of restitution, 878–879, 882, 

894–895, 1235

direct, 877 

direct central, 877–880, 894 

eccentric, 877, 1234–1246 

energy loss from, 879–880, 895 

line of, 877 

oblique, 877 

oblique central, 880–882, 894–895 

particle motion, 877–895 

problems involving multiple kinetics 

principles, 882–884

rigid-body plane motion, 1234–1246 

Impending motion, 432–433, 441 

sliding, 1146 

slip, 470 

Impulse, 855–866 

eccentric impact and, 1234–1246 

linear, 855 

momentum and, 855–866 

of a force, 855–856, 865–866, 1246 

principle of impulse and momentum, 796, 

855–857, 865

time interval, 865 

units of, 855–856 

Impulse-momentum diagram, 856, 865, 

880–882, 894, 1246 

Impulse-momentum principle, 858, 938–939 

Impulsive force, 857, 865, 1246 

Impulsive motion, 857–858, 1246 

Inertia, principle axes and moments of, 1268, 

1276, 1294 

Inertia tensor, 1268 

Inextensible cord, work of forces exerted on, 1199 

Infinitesimal rotation, 1066 

Initial conditions, 621, 644 

Input forces, 348, 580 

Instantaneous acceleration, 619, 664 

Instantaneous axis of rotation, 1065–1066 

Instantaneous center of rotation, 980, 

1015–1022 

Instantaneous velocity, 618, 663 

Integration 

centroids determined by 

of an area, 249–250

of volume, 277

definite integrals, 621 

double, 249, 277 

moments of inertia determined by 

for a body of revolution, 533, 540

for a rectangular area, 488–489

for a three–dimensional body, 533

of a mass, 533, 540

of an area, 488–489, 494

using the same elemental strips, 489

motion determined by, 621–622 

theorems of Pappus-Guldinus applied to, 250–252

triple, 277 

Internal forces, 84, 367–428 

acting on systems of particles, 916–919 

axial forces as, 369, 370 

beams, 368, 378–386 

bending moments, 368, 370, 379–381, 385, 

391–399

cables, 368, 403–410, 416–420 

deformation and, 86–87 

equivalent systems and, 84, 86–87 

in compression, 86, 368 

in members, 368–373 

in tension, 86, 368 

loadings, 378–379, 391–399, 403–405 

principle of transmissibility for equilibrium 

of, 86–87

relations among load, shear, and bending 

moments, 391–399

rigid bodies, 84, 86–87 

shear and bending moment diagrams for, 

381, 386

shearing forces as, 368, 370, 379–381, 385, 

391–399

structural analysis and, 298–299 

International System of Units (SI), 6–9 

J
Jet engines, steady stream of particles from, 

952–953, 959 

Joints under special loading conditions, 304–306 

Journal bearings, axel friction of, 459–460, 465 

K
Kepler’s laws of planetary motion, 778, 782 

Kinematics, 616 

Coriolis acceleration, 980, 1051–1052, 1058, 

1083, 1089

degrees of freedom, 637 

graphical solutions for, 652–655 

initial conditions for, 621, 644 

of particles, 615–717 

curvilinear motion, 663–677

dependent motion, 637, 645

independent motion, 636–637, 644

non-rectangular components, 690–701

rectilinear motion, 617–629

relative motion, 636–645

solutions for motion problems, 628–629, 

644–645

three-dimensional (space) motion, 692

two-dimensional (planar) motion, 690–692

uniform rectilinear motion, 635–636

of rigid bodies, 977–1106 

acceleration of, 1029–1039, 1066, 1068, 

1072–1073, 1083–1084, 1089–1090

general motion, 979, 1067–1068, 1073, 

1083–1084, 1090

general plane motion, 979–980, 997–1006, 

1029–1039

instantaneous center of rotation, 980, 

1015–1022

motion about a fixed point, 979, 1065–1067, 

1072

moving frames, motion relative to, 

1082–1090

rotating frames, motion relative to, 

1048–1058

rotation about a fixed axis, 978–980, 

981–990

three-dimensional (space) motion, 980, 

1065–1073, 1082–1090

translation, 978, 980–981, 990

two-dimensional (planar) motion, 978–1058

velocity of, 997–1006, 1015–1022, 1067, 

1072–1073, 1084, 1089–1090

Kinetic diagrams 

particle motion, 725–726, 741 

rigid-body constrained motion, 1144–1145, 1159

rigid-body plane motion, 1112–1116, 1126 

Kinetic energy 

of a particle 

principle of conservation of energy, 

830–831, 840

principle of work and energy, 801–802, 816

of rigid-body plane motion 

body in translation, 1185, 1198

noncentroidal rotation, 1185–1186

of systems of particles 

centroidal frame of reference for, 936–937

conservation of energy, 937, 944

loss of in collisions, 944

work-energy principle, 937

of three-dimensional rigid-body motion 

with a fixed point, 1272, 1277

with respect to the mass center, 

1271–1272, 1277

Kinetic friction force, 431–432 

Kinetic units, 5–6 

Kinetics, 616 

free-body and kinetic diagrams for, 725–726, 

741, 1114–1116, 1126

constrained motion, 1144–1145, 1159

plane motion, 1112–1116, 1126

Newton’s second law and, 725–726, 741

of particles, 718–794 

angular momentum, 719, 763–769

central-force motion, 720, 764–765, 769, 

774–782

energy and momentum methods, 795–914

Kepler’s laws of planetary motion, 778, 782

motion of, 718–794

multiple principles, problems involving, 

882–884

Newton’s law of gravitation for, 765–766

Newton’s second law for, 719–742, 884

principle of work and energy, 796, 

801–804, 884

principle of impulse and momentum, 796, 

855–857, 865, 884

of rigid bodies, 1107–1180, 1264–1331 

angular momentum of, 1110–1111
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I6 Index

centroidal rotation, 1112, 1127

constrained (plane) motion, 1144–1160

forces of, 1112–1116

general plane motion, 1113, 1127

noncentroidal rotation, 1145–1146, 1159

plane motion of, 1107–1180

principle of transmissibility and, 1113

rolling, 1146–1147, 1160

systems of, 1116, 1127

three-dimensional motion, 1264–1331

translation, 1112, 1126

L
Lead and lead angle, 451, 454 

Length, conversion of units of, 10–11 

Line of action, 17 

force direction representation, 4, 17, 56–57

magnitude and, 3–4, 17 

moment of a force, 91–92 

particles, 17, 54–57 

planar (two dimensional) force, 17 

reactions with known, 172–173 

rigid bodies, 91–92, 172–173 

three-dimensional (space) force, 54–57 

unit vector along, 54–55 

Line of impact, 877 

Linear momentum 

conservation of, 857, 924, 939, 944 

equations for, 919–920, 928 

particle motion, 857 

systems of particles, 919–920, 924, 928, 

939, 944

Linear momentum vector, 1212 

Lines 

centroid of common, 239 

first moment of, 231, 235–237, 244 

two-dimensional bodies, 231, 235–237, 244

Loading conditions 

beams, 262–264, 267, 368, 378–386 

cables, 368, 403–410, 416–420 

center of pressure, 263 

centroid of the area, 262–268 

concentrated, 262–263, 378, 403–404, 409 

distributed, 262–268, 267, 378, 404–405, 410, 

416–120

relations with shear and bending moments, 

391–399

submerged surfaces, 263, 265–268 

uniformly distributed, 378 

Lubrication, friction and, 431, 459 

M
Machines 

free-body diagrams of members, 348, 351

input forces, 348 

mechanical efficiency of, 580–581 

multi-force members, 299, 330 

output forces, 348 

structural analysis of, 299, 330, 348–351 

Magnification factor 

damped vibration, 1392–1393, 1397 

undamped vibration, 1376–1377 

Magnitude, speed as, 618, 663 

Magnitude of a force 

force characteristics, 3–4, 17 

line of action and, 4, 17, 56–57 

moments of a force, 90–92 

particles, 17, 52, 56–57 

reactions with unknown direction and, 173–174

rigid bodies, 90–92 

units of, 71 

vector characteristics, 52 

Mass 

concept of, 3 

conversion of units of, 11 

gain and loss effects on thrust, 953–954, 960

moments of inertia, 487, 529–540 

integration used to determine, 533, 540

of common geometric shapes, 500, 534

of composite bodies, 533–540, 556

of simple mass, 529–530

of thin plates, 532–533

parallel-axis theorem for, 530–531, 539

principle axis and moments, 551–553, 557 

product of inertia, 549–550, 556 

Mass center 

angular momentum about 

rigid bodies in plane motion,1111

rigid bodies in three-dimensional motion, 

1267–1268, 1276

systems of particles, 922–924, 928

center of gravity compared to, 921 

centroidal frame of reference, 923 

equations for, 921–922, 928 

projectile motion and, 922 

systems of particles, 916, 921–924, 928 

Mechanical efficiency of machines, 580–581, 805 

Mechanical energy, 830–831 

Mechanical vibration, 1333. 

See also Vibration 

conservation of energy applications, 1364–1368

electrical analogs, 1393–1395 

of rigid bodies, 1350–1356 

pendulum motion, 1337–1339, 1343 

approximate solution, 1337–1338

exact solution, 1338–1339

oscillations, 1338, 1343

system displacement as, 1333 

Mechanics 

conversion of units, 10–12 

fundamental concepts and principles, 3–5 

method of solving problems, 12–14 

newtonian, 3 

numerical accuracy, 14 

of deformable bodies, 2 

of fluids, 2 

of particles, 3–4 

of rigid bodies, 2, 4 

relativistic, 3 

role of statics and dynamics in, 2 

study of, 2–3 

systems of units, 5–10 

Members 

axial forces in, 369, 370 

free-body diagrams of, 330–332 

internal forces in, 368–373 

machine analysis of, 348, 351 

multi-force, 299, 330, 369–370 

redundant, 319 

shearing force in, 370 

two-force, 299, 300, 370 

zero-force, 305 

Method of joints, 302–309 

Method of sections, 317–323 

Mixed triple products of vectors, 107–108 

Mohr’s circle for moments of inertia, 523–526 

Moment arm, 91.

See also Line of Action 

Moments, see Moments of a force; Moments 

of inertia 

Moments of a force 

about a point, 83, 90–99 

line of action (moment arm), 91–92

magnitude of, 90–92

position vector of, 90

rectangular components of, 93–94

right-hand rule for, 90

three-dimensional problems, 93–94, 99

two-dimensional problems, 92–93, 94, 99

Varignon’s theorem for, 93

vector products, 90

about an axis, 84, 105–114 

angles formed by two vectors, 106, 113

arbitrary point for, 109–110

given origin for, 108–109

mixed triple products, 107–108

perpendicular distance between lines, 

109, 113–114

projection of a vector for, 106, 113

scalar products, 105–106

of a couple, 120–121 

Moments of inertia, 485–572 

integration used to determine, 488–489, 494, 

533, 540

Mohr’s circle for, 523–526 

neutral axis, 487 

of arbitrary shaped bodies, 552–553, 556 

of areas, 487–494, 498–506 

for composite areas, 499–506

for hydrostatic force system, 488, 506

of common geometric shapes, 500

of masses, 487, 529–540 

for composite bodies, 533–540, 556

for thin plates, 532–533, 539

of common geometric shapes, 500, 534

of simple mass, 529–530

parallel-axis theorem for, 498–506, 514, 

530–531, 539, 550

polar, 486, 490, 494 

radius of gyration, 490–491, 494, 530 

transformation of, 513–519, 549–556 

ellipsoid of inertia, 550–552

mass product of inertia, 549–550, 556

principle axis and moments, 514–516, 519, 

551–553, 557

product of inertia, 513–514, 519

second moment as, 486–487, 494 

unit-related errors, 539 

Momentum, 855–866. 

See also Principle of impulse and momentum 

angular, 919–920, 922–924, 928 

angular couple, 1212 

conservation of, 857, 877–878, 894, 924, 928

direct central impact and, 877–878, 894 

impulse and, 855–866 

impulsive force of, 857, 865 

linear, 877–878, 919–920, 928 

linear vector, 1212 

particle motion, 855–866 

rigid-body plane motion, 1211–1213, 1221–1222

systems of particles, 917–928 

total, 857, 866 

Kinetics (Cont.)
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I7Index

Motion, 40, 84–85 

equations of 

Euler’s, 1065, 1286–1287

particle kinetics, 725–727, 741

radial and transverse components, 727, 741

rectangular components, 726–727, 741

rigid-body kinetics, 1109–1110, 1112, 

1126, 1265

rotational, 1109

scalar form, 1112

tangential and normal components, 727, 741

translational, 1109

external forces and, 84–85 

free-body and kinetic diagrams for, 725–726, 741

impending, 432–433, 441, 470 

kinematics of a particle, 615–717 

curvilinear, 663–677

dependent, 637, 645

determination of a particle, 621–622

independent, 636–637, 644

initial conditions for, 627

integration for determination of, 621–622

projectile, 668, 676

rectilinear, 617–629

relative, 636–645

kinematics of rigid bodies, 977–1106 

about a fixed point, 979, 1065–1067, 1072

acceleration of, 1029–1039, 1068, 1073, 

1083–1084, 1089–1090

general, 979, 1067–1068, 1073, 

1083–1084, 1090

instantaneous center of rotation, 980, 

1015–1022

moving frames, relative to, 1082–1090

plane, 979–980, 997–1006, 1029–1039

rotating frames, relative to, 1048–1058

rotation about a fixed axis, 978–980, 

981–990

three–dimensional (space), 980, 1065–1073, 

1082–1090

translation, 978, 980–981, 990

two-dimensional (planar), 978–1058

velocity of, 997–1006, 1015–1022, 1067, 

1073, 1084, 1089–1090

kinetics of a particle, 718–794 

angular momentum, 719, 763–769

central force, 720, 764–765, 769, 774–782

Newton’s second law for, 719–742

orbital, 763–769

kinetics of rigid bodies, 1107–1180 

centroidal rotation, 1112, 1127

constrained, 1144–1160

general plane, 1113, 1127

noncentroidal rotation, 1145–1146, 1159

plane, 1107–1180

rolling, 1146–1147, 1160

sliding, 1146–1147, 1160

three-dimensional (space), 1264–1331

Newton’s first law of, 4, 40 

relative, 435 

rotation, 85 

translation, 85 

slipping, 470–471, 474 

space mechanics, 775–778, 832 

gyroscopes, 1305–1314

trajectories, 775–778, 782–782

under a conservative central force, 832

under a gravitational force, 775–776

weight and, 84–85 

Moving frame of reference, 668 

acceleration of, 1083–1084, 1089–1090 

Coriolis acceleration, 1083, 1089 

in general motion, 1083–1084, 1090 

rigid-body motion relative to, 1082–1090 

rotating frame, 1082–1083, 1089 

three-dimensional particle motion, 

1082–1083, 1089

velocity of, 1082–1084, 1089–1090 

Multi–force members, 299, 330, 369–370.

See also Frames; Machines 

N
Natural circular frequency, 1335, 1343 

Natural frequency, 1337, 1342 

Neutral axis, 487 

Neutral equilibrium, 599, 602 

Newtonian frame of reference, 721 

Newtonian mechanics, 3 

Newton’s laws, 4–5 

first law of motion, 4, 40 

gravitation, 4–5, 765–766 

motion, 4, 40 

particles in equilibrium and, 40 

second law of motion, 4, 719–742 

application of, 728–742

equations of motion, 725–727, 741

free-body and kinetic diagrams for, 

725–726, 741

linear momentum and, 719–742

mass and, 720

of multiple forces, 722

radial and transverse components, 727, 741

rectangular components, 726–727, 741

statement of, 720

systems of particles, 917–919

tangential and normal components, 727, 741

third law of motion, 4, 299 

Noncentroidal rotation 

about a fixed axis, 1146, 1159 

kinetic energy of a body in, 1185–1186 

of a body in constrained motion, 

1145–1146, 1159

principle of impulse and momentum for, 1213

Nonhomogeneous equation, 1375 

Nonimpusive forces, 1246 

Nonrigid truss, 319 

Normal components, see Tangential and normal 

components 

Numerical accuracy, 14 

Nutation, rate of, 1305 

O
Oblique impact, 877 

central impact, 880–882, 894–895 

coefficient of restitution, 882, 895 

conservation of momentum and, 880, 895 

impulse-momentum diagrams for, 880–882, 894

Orbital motion, 763–769. 

See also Angular momentum 

Oscillations, 1338, 1343, 1351 

Osculating plane, 692 

Output forces, 348, 580 

Over rigid truss, 319 

Overdamped vibration, 1390, 1396 

P
Pappus–Guldinus, theorems of, 250–252 

Parabolic cables, 405–406, 410 

Parabolic trajectory, 668, 775–776, 781–782 

Parallel-axis theorem 

composite area application of, 499–506 

for mass moments of inertia, 530–531, 539

for mass product of inertia, 550 

for moments of inertia of an area, 498–506

for product of inertia, 514 

Parallel forces, reduction of system of, 140–141 

Parallelogram law, 4 

addition of two vectors, 18 

addition of forces, 4 

resultant of two forces, 17 

Particle moments, reduction of in 

three-dimensional motion,1269 

Particles, 3–4.

See also Systems of Particles 

direction of a force, 17, 31 

displacement of, 575 

equipollent, 919 

kinematics of, 615–717 

curvilinear motion, 663–677

dependent motion, 637, 645

independent motion, 636–637, 644

non-rectangular components, 690–701

radial and transverse components, 693–694, 

696–699, 701

rectilinear motion, 617–629

relative motion, 636–637

relative to a rotating frame, 1082–1083, 1089

solutions for motion problems, 628–629, 

644–645

tangential and normal components

three-dimensional (space) motion, 692, 

1082–1083, 1089

two-dimensional (planar) motion, 690–692

uniform rectilinear motion, 635–636

kinetics of, 718–794 

angular momentum, 719, 763–769

central-force motion, 720, 764–765, 769, 

774–782

linear momentum, 719

mass, 719

Newton’s second law for, 719–742

resultant of forces, 719

line of action (direction), 17, 56–57 

magnitude of force, 17, 52, 56–57 

mechanics of, 3–4 

resultant of forces, 16–17, 20 

scalars for force representation, 18, 20, 30

statics of, 15–81 

three-dimensional (space) problems, 52–74

adding forces in space, 52–62

concurrent force resultants, 57

direction cosines for, 53, 55

equilibrium of, 39–45

force defined by magnitude and two points, 

56–57

rectangular components, 52–55

two-dimensional (planar) problems, 16–50 

adding forces by components, 29–35

concurrent force resultants, 20

equilibrium of, 39–45

free-body diagrams, 40–41

Newton’s first law of motion for, 40

planar forces in, 16–25

bee98242_ndx_I1-I2.indd   I7bee98242_ndx_I1-I2.indd   I7 12/4/14   4:54 PM12/4/14   4:54 PM

UPLOADED BY AHMAD T JUNDI



I8 Index

rectangular components, 29–32

resolving several forces into two 

components, 32–33

unit vectors for, 29–32, 54–55 

vectors for force representation, 17–20, 29–30

Path-independent forces, see Conservative forces 

Pendulum motion 

approximate solution, 1337–1338 

exact solution, 1338–1339 

impact, 883–884 

oscillations, 1338, 1343 

vibration, 1337–1339, 1343 

Perfectly elastic impact, 879 

Perfectly plastic impact, 879 

Perigee, 777 

Period of restitution, 877–878, 1234 

Period of vibration, 1336 

correction factor for, 1339 

damped vibration, 1390–1391 

free vibration equation for, 1336 

time intervals as, 1333, 1336–1337 

undamped vibration, 1334–1339, 1342 

Periodic function, 1335 

Periodic time, 777–778, 782 

Perpendicular distance between lines, 109, 113–114 

Phase angle, 1336, 1343 

Phase difference, 1392 

Pin-connected members, work of forces 

exerted on, 1199 

Pin supports, 173–174, 206 

Pipes, fluid flow through, 952–953 

Pitch, 451, 454 

Planar forces, 16–51 

equilibrium of, 39–45 

line of action, 17 

magnitude of, 17 

parallelogram law for, 17 

rectangular components, 29–32 

resolution into components, 20–21 

resultant of several concurrent forces, 20 

resultant of two forces, 17 

scalar components, 30 

scalar representation of, 18, 20 

summing x and y components, 32–33 

unit vectors for, 29–32 

vector representation of, 17–20 

Plane motion, 979 

acceleration of, 1029–1039 

absolute, 1030

normal components, 1029–1031

relative, 1029–1031, 1038–1038

tangential components, 1029–1031

analysis of, 997–998, 1031 

diagrams for rotation and translation, 

997–998, 1006, 1029–1030, 1038

equations of, 1109–1110, 1126 

free-body diagrams for, 1114–1116, 1126 

in terms of parameters, 1121, 1129 

instantaneous center of rotation, 980, 

1015–1022

kinetic diagrams for, 1112–1116, 1126 

particles in, 690–692 

rigid bodies in, 978–1058, 1107–1180, 

1181–1263

angular momentum of, 1110–1111

centroidal rotation, 1112, 1127

constrained, 1144–1160

energy and momentum methods, 1181–1263

forces of, 1112–1116

general, 1113, 1127

principle of transmissibility and, 1113

systems of, 1116, 1127

translation, 1112, 1126

rotating frames of reference, 1049–1052 

velocity of, 997–1006 

absolute, 998

angular, 1000

instantaneous center of zero, 1015

relative, 998–1000

Plates 

center of gravity for, 239–240 

circular, 533 

composite, 239–240 

mass moment of inertia for, 532–533 

rectangular, 533 

thin, 532–533, 539 

Point of application, 17, 84–85 

Polar coordinates 

angular momentum of particle motion in, 764

radial and transverse components, 693–694, 

696–699, 701

Polar moment of inertia, 486, 490, 494 

Position coordinate, 617–618 

Position relative to frame of reference, 669 

Position vector, 90, 136, 663 

Potential energy 

conservation of energy, 827–829, 840–841 

determination of, 827–829 

elastic, 828 

equations of, 597–598 

equilibrium and, 598–599, 602 

friction forces and, 831 

gravitational, 827–828 

of conservative forces, 829–830 

of spring forces, 597, 602, 828–829 

virtual work and, 574, 597–599, 602 

with respect to gravity (weight), 597, 602 

work of, 827 

Potential function, 829 

Power 

average, 804 

efficiency and, 804–805, 816 

from particle motion, 804–805, 816 

from rigid-body plane motion, 1188, 1199 

rate of work as, 804–805, 816 

units of, 804–805 

Precession 

rate of, 1305 

steady, 1307–1308, 1312–1313 

Principal normal, 692 

Principle axes of inertia, 1268, 1276, 1294 

Principle axis and moments of inertia 

about the centroid, 516 

ellipsoid of inertia, 550–552 

for a body of arbitrary shape, 552–553, 556

of a mass, 551–553, 557 

of an area, 514–516, 519 

Principle of conservation of energy, 830–831 

Principle of impulse and momentum 

noncentroidal rotation, 1213 

particle motion, 796, 855–857, 865 

rigid-body plane motion, 1211–1213, 1221–1222

three-dimensional rigid-body motion, 

1270–1271, 1277

Principle of transmissibility, 4, 83, 85–87 

equivalent forces of, 85–87 

for rigid-body plane motion, 1113 

rigid-body applications, 83, 85–87 

sliding vectors from, 83, 85 

Principle of virtual work, 574, 577–580, 585 

application of, 578–580 

virtual displacement, 577–578, 585 

Principle of work and energy 

particle motion, 796, 801–804 

rigid-body plane motion, 1183–1184, 1198 

Problems, 12–14 

error detection, 13–14 

force triangle, 41 

free-body diagrams for, 13, 40–41 

methods for solving, 12–14 

SMART method for solving, 13 

solution basis, 12–13 

space diagram for, 40 

Product of inertia, 513–514, 519 

Projectile motion, 668, 670–672, 676 

Projection of a vector, 106, 113 

Pure bending, 487 

Q
Quadratic surface equation, 550 

R
Radial and transverse components 

acceleration in, 694 

cylindrical coordinates for, 694, 701 

equations of motion, 727, 741 

particle motion analysis using, 693–694, 

696–699, 701

polar coordinates for, 693–694, 696–699, 701 

velocity in, 694 

Radial direction, 693, 701 

Radius of gyration, 490–491, 494, 530 

Rate of change 

in polar coordinates, 764 

of a vector, 666–667, 763, 1048–1049 

of angular momentum 

fixed-point motion, 1285, 1294

particles, 763–764

rotational motion, 1286, 1295

three-dimensional rigid–bodies, 

1285–1286, 1295

rotating frames of reference, 1048–1049 

Reactions, 172 

constraining forces, 172, 176–177 

equilibrium of rigid bodies and, 172–174, 

204–206

equivalent to force and couple, 174 

free-body diagrams showing, 172 

support, 172–174, 204–206 

three-dimensional structures, 204–206 

two-dimensional structures, 172–176 

with known line of action, 172–173 

with unknown direction and magnitude, 173–174

Rectangular components 

curvilinear motion of, 667–668 

equations of motion, 726–727, 741 

moments of a force, 93–94 

of particles, 29–32, 52–55, 667–668, 

726–727, 741

of rigid bodies, 88–90, 93–94 

planar (two-dimensional) forces, 29–32 

space (three-dimensional) forces, 52–55 

Particles (Cont.)

bee98242_ndx_I1-I2.indd   I8bee98242_ndx_I1-I2.indd   I8 12/4/14   4:54 PM12/4/14   4:54 PM

UPLOADED BY AHMAD T JUNDI



I9Index

unit vectors for, 29–32, 54–55 

vector products, 88–90 

Rectilinear motion of particles, 617–629 

acceleration, 618–622, 628 

constant force in, 799, 815 

deceleration, 619 

determination of, 621–629 

graphical solutions for, 652–655 

initial conditions for, 621 

position coordinate, 617–618 

speed (magnitude), 618 

uniform, 635–636 

uniformly accelerated, 635–656 

velocity, 618 

work of constant force in, 799, 815 

Redundant members, 319 

Relative acceleration, 669, 1029–1030, 1038–1039 

Relative motion, 435 

curvilinear solution to problems, 668–669, 

673–675, 677

dependent motion, 637, 645 

independent motion, 636–637, 644 

of particles, 636–645 

Relative position, 669 

plane motion, 998–1000 

variable systems of particles, 952–954 

Relativistic mechanics, 3 

Resonance, 1377, 1380 

Resultant couples, 138–141 

Resultant of forces, 16–17 

concurrent, 20, 57 

of several concurrent forces, 20 

of two forces, 17 

parallelogram law for, 17 

particle statics, 17, 20 

planar forces, 17, 20 

statics and, 16 

three-dimensional (space), 57 

Revolution, mass moment of inertia for a body 

of, 533, 540 

Right-hand rule, 87, 90 

Right–handed triad, 87–88 

Rigid bodies, 83.

See also Systems of rigid bodies 

constraining forces, 172, 176–177, 205 

couples, 120–128 

energy and momentum methods, 1181–1263

conservation of angular momentum, 

1214, 1222

conservation of energy, 1186–1188, 1199

eccentric impact, 1234–1246

kinetic energy, 1185–1186, 1198

noncentroidal rotation, 1185–1186, 1213

power, 1188, 1199

principle of impulse and momentum, 

1211–1213, 1221–1222

principle of work and energy, 1183–1184, 1198

systems, analysis of, 1186, 1199, 1214

work of forces, 1184–1185, 1198

equilibrium of, 169–229 

statically determinate reactions, 176

statically indeterminate reactions, 176–177

support reactions for, 172–174, 204–206

three-dimensional structures, 204–213

three-force body, 196–198

two-dimensional structures, 172–183

two-force body, 195, 198

equivalent systems of forces, 82–168 

center of gravity, 84

deformation and, 86–87

external forces, 84–85

internal forces, 84, 86–87

point of application, 84–85

reduction to force-couple system, 136–137

simplifying, 136–150

weight and, 84–85

force-couple systems 

equipollent, 138

equivalent systems reduced to, 137–138

reducing a systems of forces into, 136–137

resolution of force into, 124–125, 128

resultant couples, 138–141

wrench, 141–142

free-body diagrams for, 170–172 

free vibration of, 1350–1356 

kinematics of, 977–1106 

acceleration of, 982–983, 989, 1029–1039, 

1066, 1068, 1072–1073, 1083–1084, 

1089–1090

in general motion, 979, 1067–1068, 1073, 

1083–1084, 1090

general plane motion, 979–980, 997–1006, 

1029–1039

instantaneous center of rotation, 980, 

1015–1022

motion about a fixed point, 979, 

1065–1067, 1072

rotating frames, motion relative to, 

1048–1058, 1082–1083, 1089

rotation about a fixed axis, 978–980, 981–990

three-dimensional (space) motion, 980, 

1065–1073, 1082–1090

translation, 978, 980–981, 990

two-dimensional (planar) motion, 978–1058

velocity of, 997–1006, 1067, 1072–1073, 

1084, 1089–1090

kinetics of, 1107–1180 

angular momentum of, 1110–1111

centroidal rotation, 1112, 1127

constrained plane motion, 1144–1160

forces of, 1112–1116

general plane motion, 1113, 1127

plane motion, 1107–1180

principle of transmissibility and, 1113

systems of, 1116, 1127

three–dimensional (space) motion, 

1264–1331

translation, 1112, 1126

mechanics of, 2, 4 

moments 

of a couple, 120–128

of a force about a point, 83, 90–99

of a force about an axis, 84, 105–114

principle of transmissibility and, 4, 83, 

85–87

reactions, 172–174 

rectangular components, 88–90, 93–94 

scalar (dot) products, 105–106 

sliding vector representation, 18, 83 

vector products, 87–90, 105–108 

virtual work application to systems of 

connected, 578–580

Rigid truss, 301 

Rocker supports, 172–173 

Roller supports, 172–173 

Rolling 

angular acceleration, 1146–1147 

resistance, 462–463, 465 

sliding and, 1146–1147, 1160 

unbalanced disk or wheel, 1147, 1160 

Rotating frames of reference 

Coriolis acceleration, 1051–1052, 1058 

plane motion of a particle relative to, 1049–1052

rate of change of a vector, 1048–1049, 1058 

rigid-body motion relative to, 1048–1058, 

1082–1083, 1089

three-dimensional particle motion, 

1082–1083, 1089

Rotation, 85, 978 

about a fixed axis 

angular acceleration, 982–983, 989

angular coordinate, 982, 989

angular velocity, 982, 989

equations for, 984, 990

noncentroidal, 1146, 1159

slab representation, 983–984, 989–990

rate of change of angular momentum, 

1286, 1295

rigid-body motion, 978–990

centrifugal force, 1146 

centroidal, 1112, 1127 

curvilinear translation compared to, 979 

finite, 1066 

force as, 85 

infinitesimal, 1066 

instantaneous axis of, 1065–1066 

instantaneous center of, 980, 1015–1022 

motion about a fixed point, 1065–1067 

noncentroidal 

kinetic energy of a body in, 1185–1186

of a body in constrained motion, 

1145–1146, 1159

plane motion diagrams, 997–998, 1006, 

1029–1030, 1038

uniform, 1146 

Rotational equation of motion, 1109 

Rough surface supports, 173, 206 

S
Sag, 405 

Scalar product 

of vector functions, 666 

of vectors, 105–106 

Scalars, 18 

particle force representation, 18 

product of vector and, 20 

rectangular force components, 30, 53 

Screws, 450–451, 453–454 

friction and, 450–451, 453–454 

lead and lead angle, 451, 454 

pitch, 451, 454 

self–locking, 451 

square threaded, 450–451, 454 

Self-locking screws, 451 

Shaft rotation, balance of, 1289 

Shearing forces, 370–373 

beams, 368, 370, 379–381, 385, 391–399 

bending moment relations with, 392–393 

diagrams for, 381, 386 

external forces and, 380 

internal forces as, 368, 370–373 

load relations with, 391–392 

Simple truss, 300–302, 306 

Slab representation for fixed-axis rotation, 

983–984, 989–990 
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Sliding motion, 1146–1147, 1160 

Sliding vectors, 18, 83, 85 

Slipping, belt friction and, 470–471, 474 

Slipstream, 952–953 

SMART method for solving problems, 13 

Space, concept of, 3.

See also Three-dimensional problems 

Space centrode, 1017 

Space cone, 1066 

Space diagram, 40 

Space mechanics 

conservation of energy, 832 

eccentricity, 775–776 

escape velocity, 777 

gravitational force, 775–776 

gyroscopes, 1305–1314 

analysis of motion, 1305–1314

axisymmetric body analysis, 1306, 

1308–1309, 1313–1314

Eulerian angles of, 1305–1306, 1312

steady precession of, 1307–1308, 1312–1313

initial conditions, 776–777 

Kepler’s laws of planetary motion, 778, 782 

periodic time, 777–778, 782 

projectile motion, 668, 670–672, 676 

thrust, 952–954, 959–960 

trajectories, 775–778, 782–782 

under a conservative central force, 832 

Space truss, 306 

Span, 379, 405 

Speed (magnitude), 618, 663 

Spin, rate of, 1305 

Spring force 

potential energy of, 828–829 

virtual work of, 799–800, 815, 1199 

work of elastic force, 596–597, 602 

Square threaded screws, 450–451 

Stable equilibrium, 599–600, 602 

Static friction force, 431–432 

Statically determinate reactions, 176, 333 

Statically indeterminate reactions, 176–177, 

205, 333 

Statics 

of particles, 15–81 

resultant of forces, 16–17, 20 

role of in mechanics, 2 

state of equilibrium, 16 

Steady-state vibration, 1367, 1380 

Steady stream of particles, 950–953, 959 

fan flow, 953 

fluid flow through a pipe, 952–953 

fluid stream diversion by a vane, 951–952, 959

helicopter blade flow, 953 

jet engine flow, 952–953 

units for, 951–952 

Structural analysis, 297–366 

frames, 299, 330–338 

internal force reactions, 298–299 

machines, 299, 330, 348–351 

multi-force members, 299, 330 

Newton’s third law for, 299 

trusses, 299–309, 317–324 

two-force members, 299, 300 

virtual work applications, 578–580 

zero-force members, 305 

Structures 

analysis of, 297–366 

equilibrium of, 172–183, 204–213 

statically determinate reactions, 176, 333 

statically indeterminate reactions, 176–177, 

205, 333

three-dimensional, 204–213 

two-dimensional, 172–183 

Submerged surfaces, distributed forces on, 263, 

265–268 

Support reactions, 172–174, 204–206 

fixed, 174 

frictionless pins, 173–174 

of one unknown and one direction, 172–173

rollers and rockers, 172–173 

static determinacy and, 333 

three-dimensional structures, 204–206 

two-dimensional structures, 172–174 

Symmetry, planes of, 277 

Systems of particles, 915–976 

conservation of energy in, 937, 944 

conservation of momentum in, 924, 928, 

939, 944

energy and momentum methods for, 936–944

impulse-momentum principle, 938–939

kinetic energy, 936–937, 944

work-energy principle, 937

external and internal forces acting on, 916–919

Newton’s second law for, 917–919 

mass center of, 916, 921–924, 928 

momentum in, 917–928 

angular, 919–920, 922–924, 928, 939, 944

linear, 919–920, 924, 928, 939, 944

variable, 950–960 

fluid flow, 952–953

fluid stream diversion, 951–952, 959

mass gain and loss, 953–954, 960

relative velocity, 952, 953

steady stream of particles, 950–953, 959

thrust, 952–953, 954, 959

Systems of rigid bodies

constrained (plane) motion of, 1160 

plane motion of, 1116, 1127 

principle of impulse and momentum for, 

1214, 1222

principle of work and energy for, 1116, 1127 

Systems of units, 5–12 

converting between, 10–12 

International System of Units (SI), 6–9 

U.S. customary units, 9–10, 12 

T
Tangential and normal components 

acceleration in, 691–692, 700, 1029–1031 

equations of motion, 727, 741 

particle analysis using, 690–692, 695–696, 700

rigid-body analysis using, 1029–1031 

three-dimensional (space) motion, 692 

two-dimensional (planar) motion, 690–692, 

1029–1031

Tension, deformation from internal forces of, 86 

Theorems

Euler’s, 1065 

Pappus-Guldinus, 250–252 

parallel-axis, 498–506, 514, 530–531, 539 

Varignon’s, 93 

Theory of relativity, 3 

Thin plates, mass moment of inertia for, 

532–533, 539 

Three-dimensional bodies, 273–282 

center of gravity, 273–275, 282 

centroid of volume location, 274–277, 282 

composite bodies, 275–276 

Three-dimensional (space) motion 

about a fixed point 

analysis of, 1287–1288, 1295

angular momentum of, 1269–1270, 

1276–1277

instantaneous axis of rotation, 1065–1066

about a mass center, 1267–1268, 1276 

angular momentum in 

about a fixed point, 1269–1270, 1276–1277

about a mass center, 1267–1268, 1276

inertia tensor, 1268

of rigid bodies, 1266–1270, 1276, 

1285–1288, 1294–1295

principle axes of inertia, 1268, 1276, 1294

rate of change of, 1285–1286, 1295

reduction of particle moments, 1269

energy and momentum in, 1266–1277 

angular momentum, 1266–1270, 1276

principle of impulse and momentum for, 

1270–1271, 1277

kinetic energy, 1271–1272, 1277

equations and principles for, 1265–1266 

Euler’s equations for, 1065, 1286–1287 

general, 1067–1068, 1073, 1083–1084, 1089 

gyroscopes, 1305–1314 

axisymmetric body analysis, 1306, 

1308–1309, 1313–1314

Eulerian angles of, 1305–1306, 1312

steady precession of, 1307–1308, 

1312–1313

kinematics of, 692, 980, 1065–1073, 

1082–1090

kinetics of, 1264–1131 

of particles, 692, 1082–1083, 1089 

of rigid bodies, 980, 1065–1073, 1082–1090, 

1264–1331

relative to moving frame of reference, 

1082–1090

rotation about a fixed axis, 1288–1289, 

1295–1296

solutions for problems, 1285–1296 

Three-dimensional (space) problems, 52–74 

adding forces in, 52–65 

concurrent force resultants, 57 

direction cosines for, 53, 55 

equilibrium in, 66–74, 204–213 

forces in, 52–74 

line of action, 54–57 

magnitude of force, 56–57 

moments of a force about a point, 93–94, 99

particles, 52–74 

rectangular components, 52–55 

rigid bodies, 93–94, 99, 204–213 

support reactions, 204–206 

unit vector for, 54–55 

Three-force body, equilibrium of, 196–198 

Thrust 

fluid flow causing, 952–953, 959 

mass gain and loss required for rockets, 954, 960

units for, 954 

Thrust bearings, disk friction of, 459, 

460–462, 465 

Time, concept of, 3 

Time interval 

impulse of a force, 865 

period of damped vibration, 1390–1391 

period of undamped vibration, 1334–1339, 1342
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Trajectory 

central-force motion and, 774–782 

elliptical, 775–776, 781–782 

hyperbolic, 775–776, 781–782 

of a particle, 774–775 

of space mechanics, 775–778, 782–782 

parabolic, 668, 775–776, 781–782 

periodic time, 777–778, 782 

Transient vibration, 1376.

See also Free vibration 

Translation, 85, 978 

curvilinear motion and, 667 

external forces from plane motion, 

1112, 1126

force as, 85 

kinetic diagrams for, 1112, 1126 

kinetic energy of a body in, 1185 

plane motion diagrams for, 997–998, 1006, 

1029–1030, 1038

rigid body in, 980–981, 990, 1112, 1126 

Translational equation of motion, 1109 

Translational equation of 

motion, 1109 Translational equation 

of motion, 1109

Transmissibility, see Principle of 

Transmissibility 

Transverse components, see Radial and 

transverse components 

Transverse direction, 693, 701 

Triangle rule for addition of vectors, 19 

Triple integration, 277 

Trusses, 299–309, 317–324 

analysis of, 299–309, 317–324 

compound, 318–319 

free-body joint diagrams, 303 

joints under special loading conditions, 

304–306

method of joints, 302–309 

method of sections, 317–323 

nonrigid, 319 

over rigid, 319 

redundant members, 319 

rigid, 301 

simple, 300–302, 306 

space, 306 

two-force members, 299, 300 

zero-force members, 305 

Two-dimensional bodies, 232–244 

center of gravity, 232–233, 244 

centroid of area and line location, 233–235, 

238–239, 244

composite plates and wires, 237–240 

first moment of an area or line, 235–237, 244

planar elements, 232–244 

Two-dimensional (planar) motion 

of particles, 690–692 

of rigid bodies, 978–1058 

Two-dimensional (planar) problems 

equilibrium in, 172–183 

moments of a force, 92–93, 94, 99 

rigid-body structures, 172–183 

statically determinate reactions, 176 

statically indeterminate reactions, 

176–177

support reactions, 172–174 

Two-force body, equilibrium of, 

195, 198 

Two-force members, 299, 300, 370. 

See also Trusses 

U
Unbalanced rolling disk or wheel, 1147, 1160 

Undamped vibration 

free vibration, 1334–1343, 1350–1356 

forced vibration, 1334, 1375–1381 

simple harmonic motion, 1334–1343 

Underdamped vibration, 1390, 1396 

Uniform rectilinear motion of particles, 

635–636 

Uniform rotation, 1146 

Uniformly accelerated rectilinear motion, 

635–656 

Uniformly distributed loads, 378 

Unit vectors, 29–32, 54–55 

Units, 5–12 

basic, 6 

converting between systems, 10–12 

derived, 6 

for steady stream of particles, 951–952 

for thrust, 954 

gravitational, 9 

International System of Units (SI), 6–9 

kinetic, 5–6 

of area and volume, 7–9 

of energy, 575 

of force, conversion of, 11 

of frequency, 1337 

of impulse, 855–856 

of length, conversion of, 10–11 

of mass, conversion of, 11 

of power, 804–805 

of work, 798 

quantity equivalents of SI and U.S. 

customary, 12

SI abbreviations (formulas) of, 8 

SI prefixes, 7 

systems of, 5–10 

U.S. customary, 9–10, 12 

Universal joint supports, 206 

Unstable equilibrium, 599–600, 602 

U.S. customary units, 9–10, 12 

V
Vanes, fluid stream diversion by, 951–952, 959 

Variable systems of particles, 950–960 

fluid flow, 952–953 

fluid stream diversion, 951–952, 959 

mass gain and loss, 953–954, 960 

relative velocity, 952–954 

steady stream of particles, 950–953, 959 

thrust, 952–953, 954, 959–960 

Varignon’s theorem, 93 

Vector products, 87–90, 105–108 

commutative property and, 88 

distributive property and, 88 

mixed triple products, 107–108 

moment of force about a given axis, 105–108

moment of force about a point, 87–90 

of scalar products, 105–106 

of vector functions, 666 

rectangular components of, 88–90 

right-hand rule for, 87, 90 

triple product, 983 

Vectors, 17–20 

acceleration, 664–665, 667–668 

addition of, 18–20 

parallelogram law for, 18

polygon rule for, 19–20

triangle rule for, 19

angle formed by, 106 

angular momentum of particles as, 763 

coplanar, 19–20 

curvilinear motion and, 663–677 

derivatives of functions, 665–667 

displacement, 663 

equal and opposite, 18 

fixed (bound), 18 

force addition using, 17–20, 52–55 

frame of reference, 667 

free, 18 

function, 663–664 

linear momentum, 1212 

mixed triple products, 107–108 

moments of a force, 90, 105–114 

about a given axis, 105–114

about a point, 90

negative, 18–19 

particle force representation, 17–20 

planar forces, 17–20 

position, 90, 136, 663 

product of scalar and, 20 

projection of, 106 

rate of change of, 666–667, 1048–1049, 1058

rectangular force components, 30, 29–32, 

667–668

rigid-body representation, 83, 85 

sliding, 18, 83, 85 

three-dimensional forces, 53–55 

subtraction of, 19 

unit, 29–32, 54–55 

velocity, 663–664, 667–668 

Velocity 

absolute, 998 

angular, 982, 989, 1000 

areal, 765 

average, 618, 663 

curvilinear motion and, 663–664 

determining, 618 

escape, 777 

general motion, 1067, 1073, 1083–1084, 1090

instantaneous, 618, 663 

instantaneous center at zero, 1015 

instantaneous center of rotation for, 1015–1022

moving frames of reference, 1082–1084, 

1089–1090

plane motion, 997–1006 

radial and transverse components of, 694 

rectangular components of, 667–668 

rectilinear motion and, 618 

relative, 669, 952–954, 1000 

rotating frame of reference, 1082, 1089 

speed (magnitude), 618, 663 

three-dimensional (space) motion, 1067, 

1072–1073, 1082–1084, 1089–1090

two-dimensional (planar) motion, 997–1006 

variable systems of particles, 952–954 

vector, 663–664, 667–668 

Vibration, 1332–1411 

amplitude, 1333, 1336, 1343 

conservation of energy applications, 1364–1368

damped, 1334, 1389–1397 

forced, 1334, 1375–1381, 1391–1393 

free, 1334–1343, 1350–1356, 1389–1391, 

1396–1397

frequency, 1333, 1335, 1337, 1343, 1375–1376
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of rigid bodies, 1350–1356 

oscillations, 1338, 1343, 1351 

period, 1333, 1336, 1342, 1390–1391 

periodic function, 1335 

phase angle, 1336, 1343 

simple harmonic motion, 1334–1343 

steady-state, 1367, 1380 

transient, 1376 

undamped, 1334–1343, 1350–1356, 1375–1376

Virtual work, 573–613 

displacement of a particle, 575 

equilibrium conditions, 598–602 

mechanical efficiency of machines, 580–581

method of, 574–585 

potential energy and, 574, 597–599, 602 

principle of, 574, 577–580, 585 

application to systems of connected rigid 

bodies, 578–580

virtual displacement, 577–578, 585

work 

during finite displacement, 595–597

input, 580

of a couple, 577

of a force, 575–577, 595–597

output, 580

virtual, 577–578, 585

Viscosity, see Fluid friction 

Volume, units of, 7–9 

W
Wedges, 450, 452, 454 

Weight, 4–5 

as a force, 4–5 

center of gravity, 84 

external force as, 84–85 

gravity and, 596–597, 602 

potential energy effected by, 597, 602 

point of application, 84 

rigid-body motion and, 84–85 

work of, 596 

Wheel friction, 462–463, 465 

Work 

during finite displacement, 595–597 

input, 580 

of a couple, 577 

of a force, 575–577, 595–597 

constant in rectilinear motion, 799, 815

for particle motion, 797–816

for pin-connected members, 1199

for potential energy, 827–829

for rigid-body plane motion, 1183–1185, 

1198–1199

gravitational, 800–801, 816

of a spring, 596–597, 799–800, 815, 1199

of gravity, 799, 815, 827–828

principle of work and energy, 796, 801–804, 

1183–1184, 1198

of a weight (gravity), 596 

output, 580 

virtual, 577–578, 585 

Work-energy principle for systems of 

particles, 937 

Wrench, reduction of force-couple forces into, 

141–142 

Z
Zero-force members, 305 

Vibration (Cont.)
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